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Abstract—Bayesian filtering deals with computing the posterior  conditional densities:
distribution of the state of a stochastic dynamic system given noisy
observations. In this paper, motivated by applications in counter- g~ Pry o =p(@|TRo1), 20 ~ 0, )
adversarial autonomous systems, we consider the following inverse
filtering problem: Given a sequence of posterior distributions from Yk ~ Baypy =p (Ylzk), 2

a Bayesian filter, what can be inferred about the transition kernel
of the state, the observation likelihoods of the sensor and the
measured observations? For finite-state Markov chains observed in
noise (hidden Markov models), we show that a least-squares fit for
estimating the parameters and observations amounts to a combi-
natorial optimization problem with non-convex objective. Instead,
by exploiting the algebraic structure of the corresponding Bayesian
filter, we propose an algorithm based on convex optimization for
reconstructing the transition kernel, the observation likelihoods
and the observations. We discuss and derive conditions for identifia-
bility. As an application of our results, we demonstrate the design of
a counter-adversarial autonomous system: By observing the actions
of an autonomous enemy, we estimate the accuracy of its sensors
and the observations it has received. The proposed algorithms are
illustrated via several numerical examples.

Index Terms—Bayesian filtering, inverse filtering, hidden
Markov models, counter-adversarial autonomous systems, unique
identifiability, group LASSO, nullspace clustering, adversarial
signal processing.

1. INTRODUCTION

N A partially observed stochastic dynamic system, the state
I is hidden in the sense that it can only be observed in noise
via a sensor. Formally, with p denoting a generic probability
density (or mass) function, such a system is represented by the
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where by ~ we mean “distributed according to” and k =
0,1,... denotes discrete time. In (1), the state x; evolves
according to a Markovian transition kernel P on state-space
X, and m is its initial distribution. In (2), an observation yy
(in observation-space )) of the state is measured at each time
instant according to observation likelihoods B. An important
example of (1)—~(2), where (1) is a finite-state Markov chain, is
the so called hidden Markov model (HMM) [1], [2].

In the Bayesian (stochastic) filtering problem [3], one seeks to
compute the conditional expectation of the state given noisy ob-
servations by evaluating a recursive expression for the posterior
distribution of the state:

me(x) = pleg = zlyr, .-, Yk), reX. 3)

The recursion for the posterior is given by the Bayesian filter
Wk:T(Wk—hyk§P>B)7 (4)
where the operator 7" for the Bayesian filtering update (4) is
{T(m,y; P, B) }(z)
_ BuyJy Peam(QdC

f;( Bay fx Porwm(¢')dC dz’ ’
—see, e.g., [1], [2] for derivations and details. Two well known
finite dimensional cases of (5) are the Kalman filter, where the
dynamical system (1)—(2) is a linear Gaussian state-space model,
and the HMM filter, where the system (1) is a finite-state Markov
chain.

In this paper, we formulate and provide solutions to the
following inverse filtering problem:

zeX, (5

Given a sequence of posteriors m1,...,mN from the filter (4),
reconstruct (estimate) the filter’s parameters, namely, the system’s
transition kernel P, the sensor’s observation likelihoods B and the
measured observations yi, ..., Yn.

A. Motivation

In this section, we outline various motivating applications
where the inverse filtering problem is of relevance.
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We employ a drone to probe a sophisticated autonomous adversary that: i) measures our state and filters the data, ii) ranks different actions via a policy,

and iii) automatically executes its choice. We aim to devise a counter-adversarial autonomous system that can remotely estimate the accuracy of the adversary’s
sensor (see Problem 3 in Section IV). This forms a basis for predicting, and taking measures against, its future actions. (Photo: UMS SKELDAR V-200 / UMS

AERO Group and Saab.)

1) Fault Detection: Methods for model-based fault-
detection study the discrepancy between the observed output
yr of a system and that predicted by a model. The simplest
tests flag that a fault has occurred if the instantaneous value of
the residual is above some predetermined threshold, but more
sophisticated algorithms consider also the statistics and trends
in the residuals [4].

It can, however, be difficult (or even impossible) to access raw
sensor datain integrated smart sensors since they are often tightly
encapsulated. Without access to the observations yy, the residu-
als cannot be computed. For example, in robotics applications,
the pose (position and orientation) is an important quantity that
has to be estimated. The pose can indirectly be measured from
several different sensor systems such as odometry, computer
vision, sonar and laser. The output from these so-called pose
providers are often limited to state estimates 7 [5], [6] via a
filter (5) — the raw observations y;, can be difficult to extract.

Hence, a relevant question for fault-detection of such sensor
systems is: Can the residuals be reconstructed from state esti-
mates 7y, ? Solutions to the inverse filtering problem posed above
— the ability to reconstruct the observations y;, measured by a
filtering system from only its output 7, — offers an affirmative
answer to this question, and therefore lays a foundation for the
application of model-based fault-detection algorithms.

2) Counter-Adversarial Autonomous Systems: Our main
motivating application is the design of counter-adversarial au-
tonomous systems [7]-[10]: Given measurements of the actions
of a sophisticated autonomous adversary, how can we estimate
information private to the adversary (e.g., the accuracy of its
sensors) and use such insights to devise counter-measures (e.g.,
predict and guard against future actions)?

Asaconcrete example, consider an adversarial scenario where
we control a drone or an unmanned aerial vehicle (UAV).! The
adversary employs a radar system to measure our kinematic
state x,. Its noisy measurements g, are processed by a filtering
system 7" via (5) to produce a posterior distribution 7. Based
on its posterior 7, and a policy, an action is taken which we
can measure or infer — for example, with a cognitive radar, the
adversary’s response can be to have its resource manager adjust,
e.g., waveform, beam orientation and aperture [11]. Based on

"More generally, we control a probe signal z;, that can be of electromagnetic,
cyber or physical nature.

such actions, we aim to estimate the adversary’s sensor B. See
Fig. 1 for a schematic illustration.

The inverse filtering problem arises as a subproblem: Given
the adversary’s posteriors 7, reconstruct (estimate) its sensor 3.
(The complementary subproblem of estimating the adversary’s
posteriors from its actions is treated in [8], [9], [12], and is
discussed in Section IV-C.)

3) Transfer Learning: Many machine learning algorithms
assume that training and test data are drawn from the same
distribution. If conditions change, the statistical model needs
to be re-estimated from scratch from newly collected training
data. In many real-world applications, this can be expensive, in
terms of data collection (e.g., clinical trials) and computation.
Transfer learning addresses this problem by allowing knowledge
gained while solving one problem to be reused and applied to a
different, but related problem — see, e.g., [13]-[15].

In the context of reinforcement learning [16], in many practi-
cal cases, there exists an agent interacting with an environment
that usually has acceptable, but suboptimal performance, and itis
requested to replace such an agent by an automatic system with
comparable or superior performance [14], [15]. For example,
this is the ambition of replacing human drivers by self-driving
vehicles.

The inverse filtering problem appears as a means to extract the
internal model (P, B) of a filtering-based agent [10, Sec. 1.1.2].
The extracted model can then serve as a basis (i.e., as a transfer
of knowledge) for designing an automatic substitute system.
In comparison to constructing such an automatic system from
scratch, by extracting (“reverse engineering”’) the model of the
existing agent, one can effectively warm-start the model calibra-
tion phase, yielding accelerated and safe learning[ 14], [15], [17].

4) Cyber-Physical Security: Consider a malicious actor per-
forming a stealth attack on a cyber-physical control system. The
attacker (for reasons of, e.g., sabotage, financial gain or terror-
ism) injects a malicious signal while aiming to avoid detection.
For example, this could amount to counterfeiting the sequence
of posteriors, or modifying the system and sensor parameters
while presenting the expected ones to the operator — the Stuxnet
cyberweapon is a motivating real-world example [18].

Revealing and alleviating the consequences of such attacks
have received increasing attention during the last decade[19]-
[21]. Solutions to the inverse filtering problem could function as
anomaly detectors that allow the operator to infer inconsistencies
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between the estimates 73, produced by a filtering-based system
and its parameters (and, hence, detect the attack).

B. Main Results and Outline

To construct a tractable analysis, we consider the case where
(1)—(2) constitute a hidden Markov model (HMM) on a finite
observation-alphabet. The main results of this paper are:

® We analyze the uniqueness of the updates of the Bayesian
filter (5) for HMMs (Theorems 1 and 2), and derive an
alternative characterization (Theorem 3) that highlights
important structural properties.

® We introduce the nullspace clustering problem (Problem 2
in Section III) and propose an algorithm based on the group
LASSO [22], [23] to solve it. In Theorem 4, we detail a
procedure to uniquely factorize unnormalized nullspaces
into HMM parameters.

® By leveraging the previous two points we demonstrate how
the transition kernel as well as the observation likelihoods
of an HMM can be reconstructed from a sequence of
posteriors (Algorithm 1); then, the corresponding sequence
of observations can be reconstructed (Remark 5).

e We apply our results to the remote sensor calibration
problem (Problem 3 in Section I'V) for counter-adversarial
autonomous systems. Even in a mismatched setting where
the adversary employs uncertain estimates P and B in its
filter, we can estimate the sensor of the adversary and,
surprisingly, we can do so regardless of the quality of its
estimates P and B.

¢ Finally, the performance of our proposed inverse filtering
algorithms is demonstrated in numerical experiments.

The paper is structured as follows. Section II formulates the
problems we consider, discusses identifiability, and shows that a
direct approach is computationally infeasible for large data sizes.
Our proposed inverse filtering algorithms are given in Section III.
In Section IV, we consider the design of counter-adversarial
autonomous systems and show how an adversary’s sensor can be
estimated from its actions. In Section V, the proposed algorithms
are illustrated via numerical experiments. Detailed proofs and
algebraic manipulations are available in the appendices.

C. Related Work

Kalman’s inverse optimal control paper [24] from 1964, aim-
ing to determine for what cost criteria a given control policy is
optimal, is an early example of an inverse problem in signal
processing and automatic control. More recently, an interest
for similar problems has been sparked in the machine learning
community with the success of topics such as inverse reinforce-
ment learning, imitation learning and apprenticeship learning
[25]-[29]. In essence, these works aim to determine the cost
function or policy employed by an expert agent. In contrast, in
the inverse filtering problem treated in this paper, we target the
system and sensor parameters together with the sample path of
observations given posterior distributions from an HMM filter.

Variations of inverse filtering problems can be found in the
microeconomics literature (social learning and revealed pref-
erences; [30], [31]) and the fault detection literature (e.g., [4],
[32]-[34]), where the stochastic filter is a standard tool.
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In relation to the discussion in Section I-A1 on fault detection,
in [5], [6], an extended observer was used to reconstruct the
residuals from state estimates in a linear state-space model. The
work [35] derives a similar solution for discrete systems, but
where instead of state estimates, it is assumed that only part of
the system’s output can be observed. In contrast, i) we consider
HMMs and work with the posterior distributions from an HMM
filter, and ii) we exploit the structure of the HMM filter directly
to reconstruct the sample path of observations.

To the best of the authors’ knowledge, the specific inverse
filtering problem we consider — reconstructing system and sen-
sor parameters directly from posteriors — was first introduced
in [36] for HMMs, and later discussed for linear Gaussian
state-space models in [37]. However, in these papers, strong
simplifying assumptions were made. It was assumed that 1) the
transition kernel P of the system was known, and that ii) the
system and the filter were matched in the sense that the update
T(mg—1,yx; P, B) was used in (4) and not the more realistic,
mismatched, T'(7x_1, Yx; P, B), where P and B denote esti-
mates. This paper disposes both of these assumptions.

The latter is of crucial importance when applying inverse fil-
tering algorithms in counter-adversarial scenarios. Recall from
Section I-A2 that in such, an adversary is trying to estimate our
state (via Bayesian filtering). Previous works, [8], [9], [36], as-
sume that both we and the enemy know the transition kernel P. In
reality, if we generate the signal =, then the enemy estimates P
(e.g., maximum likelihood estimate) and employs a mismatched
filtering system; hence, we have to estimate the enemy’s estimate
of P. The first part of this paper constructs algorithms for doing
this based on observing (intercepting) posterior distributions.
In the second part of the paper, we consider the general setting
where only actions based on the enemy’s posteriors are observed.

Lastly, the previous works [8], [9], [36], [37] do not address
general identifiability issues in inverse filtering. The current
paper gives necessary and sufficient conditions for identifiability
of P and B given a sequence of posteriors.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first detail our notation and provide nec-
essary background material on hidden Markov models and
their corresponding Bayesian filter. We then formally state the
problem we consider and discuss the uniqueness of its solution.
Finally, we outline a “direct” approach to the problem and point
to potential computational concerns.

A. Notation

All vectors are column vectors unless transposed. The vector
of all ones is denoted 1 and the 7th Cartesian basis vector e;.
The element at row ¢ and column j of a matrix is [-];;, and the
element at position ¢ of a vector is [-];. The Kronecker product is
denoted with ®. The vector operator diag(-) : R™ — R™*" gives
the matrix where the vector has been put on the diagonal, and
all other elements are zero. The operator vec(-) : R™*™ — R™"
converts a matrix into a column vector by stacking the columns
of the matrix on top of another. The indicator function I{-} takes
the value 1 if the expression - is fulfilled and O otherwise. The
unit simplex is denoted as A. The nullspace of a matrix is ker -,
and - denotes pseudo-inverse.
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B. Hidden Markov Models

We refer to a partially observed stochastic dynamical model
(1)—(2) whose state-space X = {1,..., X} is discrete as a hid-
den Markov model (HMM). We limit ourselves to HMMs with
observation processes on a finite alphabet Y = {1,...,Y}.

For such HMMs, the state x;, evolves according to the X x X
transition probability matrix P with elements

[P]” = PI‘[.T]H_l = j|l’k = Z], Z,j c X (6)

The corresponding observation y;, is measured according to the
X XY observation probability matrix B with elements

[Blij = Prlyy = jlap =1i], i€ X,j €. @)

We denote column y of the observation matrix as b, € RX —
therefore

B= [bl by} : 8)
Note that both P and B are row-stochastic matrices; their
elements are non-negative and the elements in each row sum
to one.

Under this model structure, it can be shown —see [1] or [2] for
complete treatments — that the Bayesian filter (5) for updating
the posterior takes the form

diag(byk)PTﬂ-k—l

=T (mp_ P, B) = 9
Tk (ﬂ-k 1, Yk: £, ) ]leiag(byk)Pka,l ) ( )

initialized by m,> which we refer to as the HMM filter. Here,
the posterior 7, € R has elements

[wk]i:Pr[xk:i|y1,...,yk], 1€ X. (10)

Note that m € {m € R* : 7 >0, ﬂTﬁzl}(le:f'ACRX.
That is, the posterior 7 lies on the (X — 1)-dimensional unit
simplex.

C. Inverse Filtering for HMMs

Although the problems we consider in this paper can be
generalized to partially observed models (1)—(2) on general state
and observation spaces, to obtain tractable algorithms and ana-
lytical expressions, we limit ourselves to only discrete HMMs
as introduced in the previous section:

Problem 1 (Inverse Filtering for HMMs): Given a sequence
of posteriors 7o, 71, ..., TN € R from an HMM filter (9) with
known state and observation dimensions X and Y, reconstruct
the following quantities: 1) the transition matrix P; ii) the obser-
vation matrix B; iii) the observations 1, ..., yn.

To ensure that Problem 1 is well-posed, and to simplify our
analysis, we make the following two assumptions:

Assumption 1 (Ergodicity): The transition matrix P and the
observation matrix B are elementwise (strictly) positive.

Assumption 2 (Identifiability): The transition matrix P and
the observation matrix B are full column rank.

Assumption 1 serves as a proxy for ergodicity of the HMM
and the HMM filter — it is a common assumption in statistical

2For notational simplicity, we assume that the initial prior for the filter is the
same as the initial distribution of the HMM.
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inference for HMMs [2], [38]. Assumption 2 is related to iden-
tifiability and assures that no state or observation distribution is
a convex combination of that of another.

Remark 1: Neither of these two assumptions are strict; we
violate Assumption 1 in the numerical experiments in Section V,
and Assumption 2 could be relaxed according to [36, Sec. 2.4].
However, they simplify our analysis and the presentation.

D. Identifiability in Inverse Filtering

In this section, we first give a general characterization of
identifiability in inverse filtering for HMMs: essentially, that
different HMMs yield different HMM filters (as measured by
how they update an arbitrary distribution) and vice versa. We
then provide a specific sufficient condition to verify identifi-
ability from a finite set of posterior distributions, which is of
importance in relation to Problem 1.

Under Assumptions 1 and 2, we have the following identifia-
bility result: o

Theorem 1: Suppose that two HMMs (P, B) and (P, B) both
satisfy Assumptions 1 and 2. Then the HMM filter is uniquely
identifiable in terms of the transition and observation matrices.
That is, with ) = {1,..., Y},

T(m,y; P,B) = T(m,y; P,B), Yye Y, VreA, (11)

if and only if P = P and B = B.

Put differently, Theorem 1 says that the Bayesian maps
T(.,-;P,B)and T(-,-; P, B) are equivalent on A x ) if and
onlyif P = Pand B = B.

Theorem 1 guarantees that the HMM filter update (9) is unique
in the sense that two HMMs with different transition and/or
observation matrices cannot generate exactly the same filtering
updates for all arbitrary distributions 7 € A. In turn, this leads
us to expect that Problem 1 is well-posed: if we knew how any
distribution m € A would be updated by the filter we seek to
identify, we should be able to reconstruct both P and B uniquely.

In practice, however, we are only given a finite sequence
{7k}, of posterior distributions (see Problem 1) and so The-
orem 1 cannot be used (since it requires a continuum of 7 € A).
Thus Theorem 1 does not directly lead to a practical algorithm.
Note that even if we let N — oo, the realized sequence of
posteriors might still not visit the whole simplex.

The following theorem is a generalization of Theorem 1 and
is the main identifiability result of this paper. o

Theorem 2: Suppose that two HMMs (P, B) and (P, B) both
satisfy Assumptions 1 and 2. Foreachy € ) = {1,..., Y}, let
Ay ={r{,..., 7%, 7%, 1} C A beasetof X +1 posteriors
such that ¥, ... 7% € R are linearly independent. Suppose
the last posterior 7% 41 € R¥ can be written as

1 = Bhrf + -+ [Blx 7k, (12)
with 8 € R¥ and [8]; # 0 for each i. Then,
T(m,y; P,B) = T(m,y; P,B), VyeY, ¥re A, (13)

if and only if P = P and B = B.

Theorem 2 relaxes Theorem 1, since relation (11) implies re-
lation (13), in the sense that, for each observationy = 1,...,Y,
we only need X + 1 distributions satisfying the conditions for
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[7]3

Fig. 2. Illustration of the set A, in Theorem 2 (for X = 3). The red stars
correspond to 77, ..., % and the green cross to % . For the conditions of

the theorem to be fulfilled, the point 7r13’( 11 cannot lie on the dashed black lines
(which correspond to [8]; = 0 in equation (12), for some 3).

the set A,. Applied in the context of Problem 1, Theorem 2
guarantees that we can uniquely identify the HMM parameters
once there exist subsequences Ay C {7y b iy,—y C {7k }1 o
for y = 1,...,Y, that satisfy the conditions given in the theo-
rem. In particular, condition (12) says that when the last posterior
vector in the set A, is expressed in the basis corresponding to
the first X vectors, it has non-zero components.

To make Theorem 2 more concrete, we provide an illustration
in Fig. 2 for the case X = 3. The linear independence conditions
of Theorem 2 mean that the posteriors given in Problem 1
corresponding to a measurement of each different observation
cannot all lie on the lines connecting some three posteriors.

E. Direct Approach to the Inverse Filtering Problem

At a first glance, any formulation of Problem 1 as an op-
timization problem appears computationally intractable: there
are combinatorial elements (due to the unknown sequence of
observations) and non-convexity from the products between
columns b, of the observation matrix and the transition matrix
P in the HMM filter (9).

In order to reconstruct parameters that are consistent with
the data (i.e., that satisfy the filter equation (9) and fulfill the
non-negativity and sum-to-one constraints imposed by proba-
bilities), a direct approach is to solve the following constrained
optimization problem:

N
k=1

diag(by, ) P"my 1

{yk}szﬂgj};;l,p T~ 17 diag(by, ) PTmx-1
s.t. yr € {1,...,Y}, fork=1,...,N,
b, >0, fory=1,...,Y,
[by...by]l =1,
Pi=1, P>0, (14)

where the choice of norm is arbitrary since the cost is zero for
any feasible set of parameters.

The problem (14) is combinatorial (in {yx}2_,}) and non-
convex (in {by};/:1 and P). In the next section, we will propose
an indirect approach that results in a computationally more
attractive solution to Problem 1.
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III. INVERSE FILTERING BY EXPLOITING THE
STRUCTURE OF THE HMM FILTER

In this section, we first derive an alternative characterization of
the HMM filter (9). The properties of this characterization allow
us to formulate an alternative solution to Problem 1. This solu-
tion still requires solving a combinatorial problem (a nullspace
clustering problem, see Problem 2 below) that is, essentially,
equivalent to (14). However, by leveraging insights from its
geometrical interpretation, we derive a convex relaxation based
on structured sparsity regularization (the fused group LASSO
[22], [23]). The final outcome of this section is Algorithm 1
which yields a practical and computationally attractive solution
to Problem 1.

A. Alternative Characterization of the HMM Filter

Our first result is a variation of the key result derived in [36].
First note that the HMM filter (9) can be rewritten as

(9) <= 17diag(b,, )P" 717 = diag(by, )P mr_1,
(15)
by simply multiplying by the denominator (which is allowed
under Assumption 1). By restructuring® (15), we obtain an
alternative characterization of the HMM filter (9):
Theorem 3: Under Assumptions 1 and 2, the HMM filter-
update (9) can be equivalently written as

(mh_y @ [ 1" — 1)) vec(diag(by, ) PT) =0, (16)

fork=1,...,N.

To see why the reformulation (16) is useful, recall that in
Problem 1, we aim to estimate the transition matrix P, the
observation matrix B and the observations y;, given posteriors
7. Hence, the coefficient matrix (7} | @ [m, 17 — I]) on the
left-hand side of (16) is known to us, and all that we aim to
estimate is contained in its nullspace.

B. Reconstructing P and B from Nullspaces

It is apparent from (16) that everything we seek to estimate
(i.e., the transition matrix P, the observation matrix B and
the observations) is accommodated in a vector that lies in the
nullspace of a known coefficient matrix. Even so, it is not obvious
that the sought quantities can be reconstructed from this. In
particular, since a nullspace is only determined up to scalings
of its basis vectors, by leveraging (16) we can at most hope to
reconstruct the directions of vectors vec(diag(b, ) P7):

a, vec(diag(b, ) PT) € RY’, y=1,....Y, (17

where o, € R+ correspond to scale factors.

Can aset of vectors (17) be factorized into P and B, and do the
undetermined scale factors o, (which are due to the nullspace
basis only being determined up to scaling) pose a problem? Our
next theorem shows that it can be done and that they do not.
First, note that by reshaping (17), we equivalently have access
to matrices v, diag(b,)PT € R**¥ for y = 1,...,Y, which
we denote by V, in the following theorem.

3Detailed algebraic manipulations can be found in the appendices.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 10,2021 at 13:38:09 UTC from IEEE Xplore. Restrictions apply.



4992

Theorem 4: Given matrices V,, &t o, diag(b,)PT for y =
1,...,Y,where Pand B = [bl

eters satisfying Assumptions 1 and 2, and ¢, are strictly positive

def. . .
scalars.* Let L = ZZ/: 1 VyT. Then, the transition matrix P can

be reconstructed as

by:| are HMM param-

P = L diag(L™'1). (18)

[VlP*T]I Vo P T ]1} _Then, the
observation matrix B can be reconstructed as

B = B diag(B'1).

lef.

Subsequently, let B ¢

19)

The proof of Theorem 4 amounts to algebraically verifying
that the relations (18) and (19) hold by employing properties of
row-stochastic matrices. The last factor in each equation can be
interpreted as a sum-to-one normalization.

C. How to Compute the Nullspaces?

Theorem 4 gives us a procedure for reconstructing the tran-
sition and observation matrices from vectors (17) —i.e., vectors
parallel to vec(diag(b,)PT) fory = 1,...,Y. The goal in the
remaining part of this section is to compute such vectors from
the known coefficient matrices in (16).

If the nullspace of the coefficient matrix of (16) were one-
dimensional, we could proceed as in [36]: Since there are only a
finite number of values, namely Y/, that the y;’s can take, there
are only a finite number of directions in which the nullspaces
can point; along the vectors vec(diag(b, ) PT) fory = 1,...,Y.
Hence, once a coefficient matrix corresponding to each obser-
vation y has been obtained (i.e., once {1,..., Y} C {yx 1)),
these directions can be reconstructed.

Unfortunately, the nullspace of the coefficient matrix of (16)
is not one-dimensional:

Lemma 1: Under Assumptions 1 and 2, we have that

rank(n} | @ [mp 17 — 1)) = X — 1. (20)

Since vec(diag(b,)PT) € RX”, the nullspace is, in fact,
X? — (X — 1) dimensional. Below, we demonstrate how, by in-
tersecting multiple nullspaces, we can obtain a one-dimensional
subspace (a vector) that is parallel to the vector vec(diag(b, ) PT)
that we seek.

Remark 2: The above is not surprising in the light of thatevery
update (9) of the posterior corresponds to X equations.’ In [36],
only the X parameters of diag(b, ) had to be reconstructed at each
time instant since P was assumed known. Now, instead, we aim
to reconstruct the X2 parameters of diag(b, ) P7', which cannot
be done with just one update (i.e., with X equations). Hence, we
will need to employ the equations from several filtering updates.

D. Special Case: Known Sequence of Observations

To make the workings of our proposed method more transpar-
ent, suppose for the moment that we have access to the sequence

4Note that the scalars vy are unknown (if they were known, one would first
reconstruct P by summing a;l Vi, over y, which then readily yields B).

3 Actually, only X — 1 equations since the sum-to-one property of the poste-
rior makes one equation superfluous.
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of observations y1, . ..,y that were processed by the filter (9).
By Theorem 3, we know that the vector vec(diag(b,, ) PT) lies
in the nullspace of the coefficient matrix (7} | ® [rx 17 — I])
forallk =1,..., N.

If we consider only the time instants when a certain observa-
tion, say y, was processed, then the vector vec(diag(b, ) PT) lies
in the nullspace of all the corresponding coefficient matrices:

vec(diag(b,)PT) € ﬂ ker (m{_y @ [mp 1T = 1)), (21)
k:yr=y

fory = 1,...,Y. Now, if the intersection on the right-hand side
of (21) is one-dimensional, this gives us a way to reconstruct the
direction of vec(diag(b, ) PT). In this case,

span(vec(diag(b, ) PT)) = ﬂ ker (n} | @ [mp 17 — 1)),
k:yr=y
(22)
and we simply compute the one-dimensional intersection. Recall
that the next step would then be to factorize these directions into
the products P and B via Theorem 4.

The identifiability result of Theorem 2 tells us that this
happens when there exist subsequences A, C {7y }.y, =y that
satisfy the criteria in Theorem 2.

Remark 3: In practice, by Remark 2, roughly X updates for
each y should be enough for this to occur. An upper bound on
how many samples are expected to be required can be obtained
via similar reasoning as in [36, Lemma 3].

E. Inverse Filtering via Nullspace Clustering

Problem 1 is complicated by the fact that in the inverse filtering
problem, we do not have access to the sequence of observations —
we only observe a sequence of posteriors. Thus, we do not know
at what time instants a certain observation y was processed and,
hence, which nullspaces to intersect, as in (22), to obtain a vector
parallel to vec(diag (b, ) PT).

An abstract version of this problem can be posed as follows:

Problem 2 (Nullspace Clustering): Given is a set of matrices
{A,}2_, that can be divided into Y subsets (clustered) such
that the intersection of the nullspaces of the matrices in each
subset is one-dimensional. That is, there are numbers {yx }2_,
with i, € {1,...,Y} such that,

ﬂ ker Ay, = span(v,), (23)
k:yr=y
for some vector v, withy = 1,..., Y. Find the vectors {v, })_,

that span the intersections.

We provide a graphical illustration of the nullspace clustering
problem in Fig. 3. Note that, in our instantiation of the prob-
lem, Ay = (7} | @ [mx17 — I]) is the coefficient matrix of the
HMM filter (16), and each vector v, = vec(diag(b, ) PT) is what
we aim to reconstruct (up to a positive scale factor).

The problem was simplified in the previous section, since by
knowing the observations y1,...,yx, we know which vector
each subspace is generated about (i.e., the subset assignments)
and can simply intersect the subspaces in each subset to ob-
tain the vectors vy, ..., vy. By not having direct access to the
sequence of observations, the problem becomes combinatorial:
which nullspaces should be intersected? Albeit a solution can
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nullspace of A;

nullspace of Ay

Fig. 3. We are given a set of unlabeled subspaces parametrized by the
nullspaces of matrices Ay, ..., An. These subspaces have the property that
each subspace contains one of the Y vectors v1,...,vy. In the nullspace
clustering problem (Problem 2), the aim is to find the (directions of) vectors
Vly...,Vy.

be obtained via mixed-integer optimization in much the same
fashion as in (14), since Problem 2 is merely a reformulation of
the original problem, such an approach can be highly computa-
tionally demanding.

We propose instead the following two-step procedure that
consists of, first, a convex relaxation, and second, a refinement
step using local heuristics. We emphasize that if the two steps
succeed, then there is nothing approximate about the solution
we obtain; the directions of the vectors v,, are obtained exactly.

Step 1. Convex Relaxation: Compute a solution to the convex
optimization problem:

N N
D> lwi = wjl

min
toehin, 555
st.  Apwr =0, fork=1,...,N,
wg > 1, fork=1,...,N, (24)
where, in our instantiation of the problem, Ay € RX*X? and

wi € RX ? Problem (24) aims to find IV vectors wy, that each lie
in the nullspace of the corresponding matrix Ay, (first constraint).
The objective function can be interpreted as a fused group
LASSO [22], [23] that promotes the vectors to coincide — that
is, the set {wy, }_, is sparse in the number of unique vectors.

Problem (24) is a relaxation because the hard constraint of
there only being exactly Y different vectors has been dropped.
The second constraint wy, > 1 (which could be replaced by, e.g.,
17w;, > 1) has been included in order to avoid the trivial solu-
tion wy, = 0 for all k. The || - ||-norm is used for convenience
since problem (24) can then be recast as a linear program, which
can be solved using a range of efficient algorithms [39], [40].

Step 2. Refinement via Spherical Clustering: The solution of
(24) does not completely solve our problem for two reasons: i) it
is not guaranteed to return precisely Y unique basis vectors, and
ii) it does not tell us to which subset the nullspace of each Ay
should be assigned (i.e., we still do not know which nullspaces
to intersect).
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In order to address these two points, we perform a local
refinement using spherical k-means clustering [41] on the set
of vectors {wy, }2_, resulting from (24). This provides us with
a set of Y centroid vectors, as well as a cluster assignment of
each vector wy. We employ the spherical version of k-means
since we seek nullspace basis vectors — the appropriate distance
measure is angular spread, and not the Euclidean norm employed
in standard k-means clustering.

Now, the centroid vectors should provide good approxima-
tions of the vectors we seek (since {wy, }I_, are expected to be
spread around the intersections of the nullspaces by the sparsity
promoting objective in (24)). However, they do not necessarily
lie in any nullspace since their computation is unconstrained.
To obtain an exact solution to the problem, we go through the
wy,’s assigned to each cluster in order of distance to the cluster’s
centroid and intersect the nullspaces of the corresponding Ay’s
until we obtain a one-dimensional intersection.

It should be underlined that when an intersection that is one-
dimensional has been obtained, the (direction of) the vector v,
has been computed exactly. Recall that in our instantiation of
the problem, each vector v, = vec(diag(b,)P”), so that once
these have been reconstructed, they can be decomposed into the
transition matrix P and the observation matrix B according to
Theorem 4.

Remark 4: Theorem 4 assumes that we are given the matrices
V, sorted according to the actual labeling of the HMM’s obser-
vations. If we use the method described above, the vectors are
only obtained up to permutations of the observation labels (this
corresponds to the label assigned to each cluster in the spherical
k-means algorithm). Hence, in practice, we will obtain B up to
permutations of its columns.

F. Summary of Proposed Algorithm

For convenience, the complete procedure for solving Prob-
lem 1 is summarized in Algorithm 1. It should be pointed out
that the algorithm will fail to determine a solution to Problem 1 if
it can not intersect down to a one-dimensional subspace for some
y. Then, the direction of the vector vec(diag(b,)PT’) cannot be
determined uniquely, and the full set of these vectors is required
in Theorem 4. This is because this observation has not been
measured enough times, or that the convex relaxation has failed.

Remark 5: Once P and B have been reconstructed via
Algorithm 1, to obtain the sequence of observations, simply
check which observation y € ) maps 71 to 7 via the HMM
filter (9) for k = 1,..., N. This can be done in linear time (in
N).

IV. APPLICATIONS OF INVERSE FILTERING TO
COUNTER-ADVERSARIAL AUTONOMOUS SYSTEMS

During the last decade, the importance of defense against
adversarial autonomous treats has been highlighted on numerous
occasions —e.g., [7], [18], [42]. In this section, we illustrate how
the results in the previous section can be generalized when i) the

®Intersecting the blue and green nullspaces in Fig. 3 reconstructs the vector vy
exactly (assuming v, € R3). By stopping once a one-dimensional intersection
has been obtained, we do not intersect nullspaces of vectors classified to
the wrong clusters by the k-means algorithm (hence, a misclassified orange
nullspace would not cause a problem).
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Algorithm 1: Inverse Filtering (Solution to Problem 1).

Require: Sequence of posteriors {7 }_,, dimensions
XY

1:  Compute the coefficient matrices
Ap = (@ [mlT —I])in(16) fork=1,...,N

2:  Compute a solution {wy, }2¥_, to the convex problem
(24)

3:  Run spherical k-means clustering for Y clusters on the
vectors {wy HY_;

4: for each of the Y clusters do

50 k-set={}

6: for each wy, in order of increasing distance to its
cluster’s centroid do

7: Compute intersection of current, and past,

corresponding Ay’s nullspaces:
i) Add & to k-set,
ii) Compute (). ;e kT Ag

8: if intersection is one-dimensional then

9: Save as v, and proceed to the next cluster
10: end if
11: end for
12:  end for

13: Factorize {v,})_, into P and B using equations (18)
and (19), respectively

14:  To obtain the corresponding sequence of observations,
see Remark 5

posteriors from the Bayesian filter are observed in noise, and
ii) the filtering system is mismatched. The problem is motivated
by remotely calibrating (i.e., estimating) the sensors of an au-
tonomous adversary by observing its actions (c.f., Section [-A2).

A. Counter-Adversarial Autonomous Systems

Consider an adversary that employs an autonomous filtering
and control system that estimates our state and takes actions
based on a control policy. The goal in the design of a counter-
adversarial autonomous (CAA) system is to infer information
private to the adversary, and to predict and guard against its
future actions [7]-[9].

Formally, it can be interpreted as a two-player game in the
form of a partially observed Markov decision process (POMDP;
[1]), where information is partitioned between two players: us
and the adversary. The model (1)—(2) is then generalized to:

us: T ~ Py, 0 =p(®lxk_1), xo ~ 10 (25)

adversary: yi ~ By, , = p(y|zk), (26)
adversary: 7 = T(ﬂ-kflvyk;pvg)? @n
adversary & us: uy ~ Gr, o = p(u|mg), (28)

which should be interpreted as follows.

The state x;, € X, withinitial condition 7y, is our state that we
use to probe the adversary. The observation y;, € ) is measured
by the adversary, who subsequently computes its posterior (in
this setting, we refer to it also as a belief) my, of our state using the
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Bayesian filter T from (5).” Note that the adversary does not have
perfect knowledge of our transition kernel P nor of its sensor B;
it uses estimates P and B in (27). Finally, the adversary takes an
action uy, € U, where U is an action set, according to a control
policy G based on its belief.

A schematic overview is drawn in Fig. 4, where the dashed
boxes demarcate information between the players (public means
both we and the adversary have access).

B. Remote Calibration of an Adversary’s Sensors

Various questions can be asked that are of importance in the
design of a CAA system. The specific problem we consider is
that of remotely calibrating the adversary’s sensor:

Problem 3 (Remote Sensor Calibration in CAA Systems):
Consider the CAA system (25)—(28). Given knowledge of our
realized state sequence xg, x1, ..., Iy, our transition kernel P
and the actions taken by the adversary ui, ..., uy, estimate the
observation likelihoods B of the adversary’s sensor.

For a concrete instantiation of the model (25)—(28) and Prob-
lem 3, see the example described in Section [-A2.

Note that our final targets in Problem 3 are the actual sensor
likelihoods B and not the adversary’s own estimate B. Previous
work [8], [9], [36] that considered the above problem, or vari-
ations thereof, assumed that the adversary’s filter was perfectly
matched (i.e., P=PandB = B). This results in two significant
simplifications. First, the assumption that P=p implies that
the adversary knows our transition kernel. In the present setup,
we will have to estimate the adversary’s estimate P. Second, if
B = Bthenitis enough to estimate the model B employed by
the adversary in its filter (since it is exact). In the present setup,
we will have to reconstruct the observations measured by the
adversary so as to form our own estimate of the sensor B.

In order to leverage the results obtained in Section III, we
consider only discrete CAA systems — that is, where the state
space X = {1,..., X} and observation space Y = {1,...,Y}
are discrete. To simplify, we assume that the dimensions X and
Y are known to both us and the adversary.

C. Reconstructing Beliefs from Actions

The feasibility of Problem 3 clearly depends on the adver-
sary’s policy. For example, if the policy is independent of its
belief 75, we can hardly hope to estimate anything regarding
its sensor. A natural assumption is that the adversary is ratio-
nal and that its policy G is based on optimizing its expected
cost[43]-[45]:

min  E,, {c(xp,ur)|y1,-- -, yx}
up €U
st. u,€C, (29)

where ¢(z,u) is a cost function that depends on our state and
an action u € C C U, with C and U being constraint and action
sets, respectively.

Recall that the results in Section III reconstruct filter parame-
ters from posteriors (see Algorithm 1). In order to employ these

7 Again, for notational simplicity, we assume that the initial prior for the filter
is the same as the initial distribution of the state.
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Schematic Overview of a (Mismatched) Counter-Adversarial Autonomous System

Fig. 4.

3 Us i 3 Adversary i 3 Public
: State | : Observation Posterior | 1 Action
| |

| System TE oo Sensor Yk Filter Tk Policy Ly

I P L B T:PB G Lo

| [ | |

| [ | |

Schematic illustration of the setup in (25)—(28). An autonomous adversary measures our state xj, as ¥ via a sensor B. A mismatched (note that estimates

P and B are employed) Bayesian filter is used to compute its posterior 73 of our state. Based on this posterior and a policy (G, a public action uy, is taken. In the
remote sensor calibration problem (Problem 3), the aim is to estimate the adversary’s sensor B (which, in general, is different from B).

results for Problem 3, we first need to obtain the adversary’s
posterior distributions from its actions. This is discussed to a
longer extent in [8], [9] in a Bayesian framework and in [12]
in an analytic setting. We will use and briefly recap the main
results of the latter below.

Note, however, that even with a structural form such as (29)
in place, the set of potential policies is still infinite. Without
any prior assumptions on the adversary’s preferences and con-
straints, it is impossible to conclusively infer specifics regarding
its posteriors. In [12], it is assumed that the action set is contin-
uous U = RY, for some integer U, and that:

Assumption 3: We know the adversary’s cost function ¢(x, u)
and its constraint set C. Moreover, c¢(x, u) is convex and differ-
entiable in u.

Under this assumption, the full set of posteriors that the
adversary could have had at any time instant was characterized
in [12] using techniques from inverse optimization [46]. Some
regularity conditions are needed to guarantee that a unique
posterior can be reconstructed — in general, several posteriors
could result in the same action, which would complicate our
upcoming treatment of Problem 3. One set of such conditions is
the following:

Assumption 4: The adversary’s decision is unconstrained in
Euclidean space (C = U = RY) and the matrix

Vaue(X,u)

Plu) = ;

Vaue(l,u)
1 (30)

has full column rank when evaluated at the observed actions
ULy, UN.

Intuitively, the cost functions ¢(1,u), . .., ¢(X, u) assigned to
each state have to be sufficiently different for us to be able to
distinguish in which state the adversary believes we are, from its
actions. The matrix F'(u) in (30) measures how characteristic
each cost function is, with respect to the others, by the linear
independence of their gradients. In essence, Assumption 4 as-
sures that no information is truncated via active constraints, and
that the cost functions employed in problem (29) are sufficiently
disperse.

Remark 6: The “worst case” would be that the adversary
associates the same cost function to two different states c(i, u) =
¢(j,u), for some i # j € X In that case, it would be impossible
for us to infer how likely the adversary thought each state was
since both ¢ and j would result in the same behavior.

The key result is then the following theorem:

Theorem 5: Under Assumptions 3 and 4, the posteriors of an
adversary selecting actions according to (29) can be uniquely
reconstructed by us from its actions as

T

e = Fug)! [o 0 1} , 31)

fork =1,..., N, where the matrix F'(u) is defined in (30) and
the last vector consists of X zeros and a single one.

The theorem follows directly from [12, Theorem 1] and the
linear independence of columns of the matrix F'(u) in (30), with
details available in the appendices.

D. Solution to the Remote Sensor Calibration Problem

In this section, we provide a solution to Problem 3 that
leverages the above result and the inverse filtering algorithm
from Section III.

Step 1. Reconstruct Posteriors: Using Theorem 5, reconstruct
the adversary’s sequence of posteriors 7y, ...,mn from the
observed actions u1, . . ., un and the structural form (29) of its
policy.

Step 2. Reconstruct P and B: Apply Algorithm 1 from Sec-
tion III on the sequence of posteriors. Note that the posteriors
were computed by the adversary using a mismatched filter (27)
—ie., as T(m,y; P, B) —, so that Algorithm 1 reconstructs the
adversary’s estimates P and B of our transition matrix P and
its sensor B.

Step 3. Reconstruct the Observations: As mentioned in Re-
mark 5, once the parameters of the filter are known the cor-
responding sequence of observations ¥4, ...,y can be recon-
structed (by checking which y maps 7x_1 to 7).

Step 4. Calibrate the Adversary’s Sensor: We now have ac-
cess to the observations 1, ...,yy that were realized by the
HMM (P, B) and, by the setup of the CAA system (25)—(28),
the corresponding state sequence x1, ...,z y. With this infor-
mation, we can compute our maximum likelihood estimate B
of the adversary’s sensor B via

N ) .
_ Yopet Haw =i, ye = j}
= 5 .
> k=1 Haw =}
which corresponds to the M-step in the expectation-
maximization (EM) algorithm for HMMs —see, e.g., [47, Section
6.2.3]. This completes the solution to Problem 3.

Discussion: It is worth making a few remarks at this point.
First of all, it should be underlined that B # B — that is, our

[Bli; : (32)
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estimate B is not necessarily equal to that of the adversary B.
In fact, our estimate depends on the number /N of observed
actions and is, as such, improving over time by the consistency
of the maximum likelihood estimate. If the adversary does not
recalibrate its estimate B online, then for large enough N, our
estimate will eventually be more accurate than the adversary’s
own estimate.

Moreover, the steps in Section IV-D are independent of the
accuracy of the adversary’s estimates P and B (as long as they
fulfill Assumptions 1 and 2) since we are exploiting the algebraic
structure of its filter. This means that, even if the adversary
employs a bad estimate of our transition matrix P, as long as it
is taking actions, we can improve our estimate of its sensor B.

Finally, as a potential extension, if the setup is modified so
that we do not have access to the transition matrix P or the
realized state sequence in (25), then the step (32) would be
replaced by the full EM algorithm. This setup would correspond
to a third-party observer aiming to infer the probe’s transition
matrix and the adversary’s sensor. Again, by the asymptotic
properties of the maximum likelihood estimate, the accuracy
of the estimates formed by the observer (that depend on V') will
eventually surpass those of the adversary.

V. NUMERICAL EXPERIMENTS

In this section, we illustrate the proposed inverse filtering
algorithms in numerical examples. All simulations were run in
MATLAB R2018a on a 1.9 GHz CPU. To solve problem (24)
we used CVX, a package for specifying and solving convex
programs[48].

A. Reconstructing P and B via Inverse Filtering

Recall that Problem 1 aims to reconstruct HMM parame-
ters given a sequence of posterior distributions. Algorithm 1
is deterministic, but there is randomness in terms of the data
(the realization of the HMM) which can cause the algorithm
to fail to reconstruct the HMM’s parameters. This can happen
for three different reasons. First, if a certain observation has
been measured too few times then there are fundamentally too
few equations available to reconstruct the parameters — see
Remark 2 (in Section III-C). Second, if too few independent
equations have been generated, we do not have identifiability
and cannot intersect to a one-dimensional subspace in (22) — see
Theorem 2. Third, we rely on a convex relaxation to solve the
original combinatorial problem. This is a heuristic and it is not
guaranteed to converge to a solution of the original problem.
Hence, in these simulations, we estimate the probability of the
algorithm succeeding (with respect to the realization of the
HMM data).

In order to demonstrate that the assumptions we have made
in the paper are not strict, we first consider the following HMM:

0 12 0 0 1 2/s 25 15
I 0 12 0 O 25 25 15
P=10 12 0 Y2 0|,B=|25 15 2/
0 0 Y2 0 1 /5 25 2/5
o 0 0 Y2 0 s 2[5 2/s

(33)
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Fig. 5. In Problem 1, we obtain a sequence {TI']C}]ICV:O of posteriors from an
HMM filter (9). Out of 100 realizations, for each value of N, we compute
the fraction of times that Algorithm 1 successfully reconstructs the transition
matrix P and the observation matrix B of the HMM (red diamonds). We also
plot the success rate of an oracle method (green circles) that has access to the
observations. With around N = 50 posteriors, the proposed algorithm succeeds
in more than 90% of the cases.

Note that its transition matrix corresponds to a random walk,
which violates Assumption 1.

We consider a reconstruction successful if the error in norm
is smaller than 10~3 for both P and B. We generated 100
independent realizations for a range of values of N (the number
of posteriors). The fractions of times that P and B were suc-
cessfully reconstructed are plotted in Fig. 5 with red diamonds
for Algorithm 1, and with green circles for an oracle method
that has access to the corresponding sequence of observations
(Section III-D). The oracle method provides an upper bound
on the success rate (if it fails, it is not possible to uniquely
reconstruct the HMM parameters, as discussed above). The gap
between the curves is due to the convex relaxation.

A few things should be noted from Fig. 5. First, with only
around 50 posteriors from the HMM filter, the fraction of times
the algorithm succeeds in solving Problem 1 is high (=93%).
Second, the gap between the two curves is small — hence, the
convex relaxation is successful in achieving a solution to the
original combinatorial problem. Finally, it should be mentioned
that with 50 posteriors, the run-time is approximately thirty
seconds.

B. Evolution of the Posterior Distribution

Next, to illustrate the conditions of Theorem 2, we plot the
set {1, }2% , on the simplex. To be able to visualize the data, we
consider an HMM with dimension X = 3:

0.8 01 0.1 0.7 01 02
P=1005 09 005/, B=1]01 08 0.1]. @34
0.2 01 0.7 0.05 0.05 0.9

In Fig. 6, each posterior has been marked according to
which observation was subsequently measured. We can clearly
find four posteriors, for each observation, that are sufficiently
disperse (see the illustration in Fig. 2), and hence fulfill the
conditions for Theorem 2 that guarantee a unique solution.

The results of simulations with the same setup as before are
shown in Fig. 7. Similar conclusions can be drawn, namely, with
around 50 posteriors, the algorithm has a high rate of success
(~95%).
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Fig. 6. A realization of the set {7 20:0, corresponding to the HMM (34),
illustrated on the simplex. The points are labeled according to what observation
was measured: y = 1 (red triangle), y = 2 (blue cross), y = 3 (green circle). To
fulfill the conditions of Theorem 2, the points corresponding to each observation
cannot all lie on the lines connecting some three points (c.f., Fig. 2).

- %- Algorithm 1
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1 1 1 1

20 40 60 80
number of posteriors, [N

fraction of times P & B
successfully reconstructed
o
(23
T

100

Fig.7. Same setup as in Fig. 5, but with the HMM (34). With access to around
50 posteriors, Algorithm 1 succeeds in reconstructing P and B in about 95% of
the simulations.

VI. CONCLUSION

This paper has investigated and extended results in inverse
filtering problems for stochastic dynamic systems, as well as
provided early steps towards an understanding of adversarial
signal processing for counter-adversarial autonomous systems.

A. Summary

We presented four main results. First, in Section II, we for-
mulated the inverse filtering problem for finite-alphabet HMMs:
Given a sequence of posteriors 7, . . ., 7 from an HMM filter
(9), estimate the filter’s parameters, comprising the transition
matrix P, the observation matrix B and the measured observa-
tions 41, . . . , y . In relation to this, we discussed identifiability
in inverse filtering by first providing a general characterization
of identifiability in Theorem 1; if two HMMs induce the same fil-
tering updates everywhere, they have to coincide. Subsequently,
Theorem 2 provided instead a specific sufficient condition to
verify identifiability; sufficient in the sense that it is applicable
only for special sequences of posteriors and outputs.

Second, Section III accommodates solutions to the inverse
problem. Motivated by computational concerns with a direct
approach (14), we derived an alternative characterization of the
HMM filter in Theorem 3. More specifically, Theorem 3 says
that the transition and observation matrices can be obtained
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from the nullspace of a coefficient matrix that consists only of
observed quantities. To account for the fact that the nullspace
(at a single time-step) can be multi-dimensional, we abstracted
it to a nullspace clustering problem: the unique solution vector
(per observation value, up to scaling) is an intersection of the
nullspace basis vectors of all the coefficient matrices for a cluster.
Performing nullspace clustering amounts to a combinatorial
feasibility problem, but its geometric interpretation allowed us
to formulate a convex relaxation (24) based on the group LASSO
and refined using local heuristics (Algorithm 1). After having
determined the transition and observation matrices, the sequence
of observations is trivially obtained from the filtering equation
(Remark 5).

Third, our main motivation for studying the inverse filtering
problem was its potential implications in the design of counter-
adversarial autonomous systems. In Section IV, we formulated a
general mathematical abstraction (25)—(28) of the setup in such
a system (e.g., Section [-A2 and Fig. 1). By reconstructing the
posteriors of an adversary from its actions, or directly intercept-
ing them, we demonstrated how our inverse filtering algorithms
can be used to estimate the sensor of a sophisticated autonomous
adversary in Section IV-D.

Finally, Section V gave numerical examples that validated our
proposed inverse filtering algorithms and demonstrated that the
assumptions made are not critical to their success.

B. Extensions

There are several interesting extensions that can be made in
future work. In the paper, the scope was limited to HMMs on
finite observation-alphabets. Could computationally tractable
algorithms for inverse filtering in general HMMs be derived?
It is worth noting that the HMM filter (9) has the same structure
for continuous-valued observation processes [1, Sec. 3.5]. In-
verse filtering for general partially observed stochastic dynamic
models (1)—(2) could potentially be approached by formulating
a Bayesian filter [8] to invert suboptimal filters (e.g., particle
filters), or exploiting structure in the Kalman filter [37].

Considering the case that Y = |)| is unknown has a number
of interesting implications. If one applies inverse filtering for
an assumed Y smaller than the true Y, does this correspond
to a model-order reduction? If so, what type of model-order
reduction? In practice, this could be done by modifying Step 3
of Algorithm 1 to compute Y clusters (instead of Y'). In contin-
uation, what if one applies inverse filtering to posterior distribu-
tions 7y, generated by a completely different filter architecture
(e.g., a suboptimal particle filter, or deep learning)? Could one
approximate such a filter with an HMM filter via inverse filtering
(find the closest HMM that best approximates the alternative
structure)?

With respect to the theoretical foundation of inverse filtering,
it would be interesting to establish probabilistic guarantees for
satisfying Theorem 2 using, e.g., recent results on reachability of
positive systems [49] — the posterior 7y, can via (9) be interpreted
as a positive dynamical system driven by the signal yy.

Lastly, there is a wide range of other important problems
in relation to the design of counter-adversarial autonomous
systems: How can we design our probing sequence zj (via
P) so as to obtain maximally informative measurements, or

Authorized licensed use limited to: Cornell University Library. Downloaded on May 10,2021 at 13:38:09 UTC from IEEE Xplore. Restrictions apply.



4998

maximally confuse the adversary? How can we predict the future
behavior of the adversary and, in extension, devise appropriate
counter-measure against it?

APPENDIX A
PROOF OF THEOREM 1

To prove Theorem 1, we use the following auxiliary lemma:
Lemma 2: Let A € R**X and M € R**X be two non-
singular matrices. If

Az = k(x)Mz, V€A, 35)

where k(z) is a non-zero scalar, and A = {z € R* : 2 >
0,172 = 1} is the unit simplex, then

A=rM, (36)
where £ is a non-zero constant scalar.
Proof: Consider the ith Cartesian basis vector e; € A:
Ae; = k(e;)Me;. 37
Concatenate (37) fori: =1,..., X, to get
A |:61 ex} =M [n(el)el n(ex)ex} =
k(e1) 0
A=M (38)
0 k(ex)

Next, consider any vector on the simplex with non-zero compo-
nents:

x=[zher + -+ [z]xex €A, 39)

such that [x]; # 0fori = 1,..., X. Introducing (38) in (35) for
this x yields

k(er) 0
M ([$]161+"'
0 k(ex)
= r(@)M ([z]ier + - + [2]xex) =
r(er)[zlier + - - + kex)[z]xex

— k(@)[zlier + - + r(@)falxex.

+ [7]xex)

(40)

where in the implication we have multiplied by M ~! from the
left and simplified the expression. Since the e;’s are linearly
independent, consider any component of (40):

k(ei)[z]; = k(x)[z]; = k(e;) = k(x), 41)
fori =1,...,X, since [z]; # 0. In other words,
k(er) =+ =k(ex) = k(x) &t (42)
is constant. Introducing this in (38) yields
K 0
A=M =M. (43)
0 K
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To employ Lemma 2, we reformulate (11) as follows:

T(r,y; P, B) = T(m,y; P, B) =
diag(b,)PTw  diag(b,)PTn -
17diag(b,)PTm  17diag(h,)PT
. 17 diag(b,) P S
diag(b PTw:—~d1a b)) P, (44
g(by) 1T diag(b,) BT g(by) (44)

which holds forallm € Aandy =1,...,Y.

Next, we consider (44) for a fixed 3/, and note that the matrices
diag(b,)PT and diag(b,)P” are non-singular (by Assump-
tions 1 and 2). Lemma 2 then yields that

diag(b,) PT = a(y)diag(b,)PT =

Pdiag(b,) = Pa(y)diag(b,), (45)

where a(y) € R is a scalar and which holds fory =1,...,Y.
If we sum equations (45) over y, and use the fact that B is a
stochastic matrix,

(46)

and then right-multiply by 1, and use that P is a stochastic
matrix, we obtain

Y Y
Pl = ﬁ’z a(y)diag(b,)1 = 1 = pZa(y)i)y (47)
y=1 y=1

Pre-multiplying by P~ yields

Y ~
=> alyb,  @¥
y=1

where we have used the fact that the row-sums of the inverse of
a (row) stochastic matrix are all equal to one.® By applying the
diag()-operation to (48), we see that

Za )diag(b, (49)

y=1
which when introduced in (46) yields that

P=P (50)

_Next, note that (48) can be rewritten as 1=
Bla(l) ... a(Y)]'. We know that B1 =1, since it is
a stochastic matrix, and that B has full column rank by
assumption. Hence, 1 = [a(1) ... a(Y)]T. This yields

b, = by, (51)

fory =1,...,Y, from (45) by first pre-multiplying by P!,

8To see this, consider an invertible stochastic matrix A: Al =1 =
ATlAl=A"11= A1 =1.
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The other direction is trivial; if P = P and B = B, then
T(m,y; P,B) =T(m,y; P,B) for all m € A and each y =
1,...,Y by (9):

diag(b,)PTw  diag(b,)PT
17 diag(b,)PTm  17diag(b,)PTn

(52)

APPENDIX B
PROOF OF THEOREM 2

We begin by giving a generalization of Lemma 2:

Lemma 3: Let A € R¥*X and M € R**¥ be two non-
singular matrices. Let Z = {z1,...,2x,2x+1} be a set of
vectors where z1,...,zx € R¥ are linearly independent and
the last vector zx 41 € R¥ when expressed in this basis has
non-zero components. That is, the vector zx 4 ; can be expressed
as

zx+1 = [Bliz1 + - + [Blx2x, (53)
with 8 € RX and [3]; # 0fori=1,..., X.If
Az = k(x)Mz, Vze Z, (54)
where x(z) is a non-zero scalar, then
A=kM, (55)
where k is a non-zero constant scalar.
Proof: For the ith vector in Z, we have by (54) that
Az = k(z;) M z;, (56)
which can be concatenated to
Aln ZX] - M [li(zl)zl H(ZX)ZX] =
AZ =M [zl Zx}
K(z1) 0
X
0 K(zx)
K(z1) 0
=MZ ,  (87)
0 K(zx)
where we have denoted 7 = {zl el Z X} .
We can rewrite (53) with this definition of Z as
zx4+1 = ZP, (58)
which together with (57) yields
Azx 1 = AZp
K(21) 0
=MZ .. B. (59)
0 K(zx)

4999

Next, by employing (54) for zx ;1 and using (58), we obtain
Azxy1 = k(zxy1)Mzx 11
=r(zx1)MZp. (60)

Equating (59) and (60) yields

k(z1) 0
Mz B = k(zx11)MZB =
| 0 K(zx) |
_/i(zl) 0 |
: B = k(zx+1)B, (61)
| 0 K(2x) |

by multiplying by the inverse of M Z from the left. The ith
component of (61) is

K(2:)[Bli = K(zx+1)[Bli =

k(zi) = k(zx41), (62)
since [(]; # 0. Hence,
K(z) == Klex) = Alexe) SR, (63)
which when introduced in (57) yields
K 0
AZ =MZ =rMZ, (64)
0 K

or, finally, A = kM by multiplying with the inverse of Z from
the right. |
Remark 7: Note that Lemma 2 follows from Lemma 3 by
considering the vectors eq,...,ex € A and any vector in the
interior of the simplex.
As in the proof of Theorem 1, to employ Lemma 3, we first
reformulate (13) as follows:

T(r,y; P,B) = T(m,y; P,B) =

diag(b,)PTn  diag(b,) P N
17 diag(b,)PT"m ~ 17diag(b,)PTr
17 diag(b, ) PT -
diag(b,)PTr = Mdiag(by)PTﬁ, (65)
17diag(b,)PT'n

which holds fory = 1,...,Y andm € A,.
For a fixed y, the conditions of Lemma 3 are fulfilled; identify
A, with the set Z and note that the matrices diag(b,)P” and

diag(b,) P" are non-singular. Hence,

diag(b,)P" = a(y)diag(b,)PT, (66)

or, by taking the transpose,
P diag(b,) = Pa(y)diag(b,), (67)
fory = 1,...,Y.Thesetup is now exactly the same as after (45)

in the proof of Theorem 1 — the rest of the proof is identical.
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APPENDIX C
PROOF OF THEOREM 3

Multiply expression (9) for the HMM filter by its denominator
to obtain (15), and then reshuffle the terms:

17 diag(b,, )P np_ 17y, = diag(b,, )P m) 1 <=
mp 1 diag(by, ) P 11 = diag(b,, )P mp1 <=
(mi 1™ — I) diag(by, )P )1 = 0. (68)

By vectorizing and employing a well-known result relating the
vectorization operator to Kronecker and matrix products’[50],
with an appropriate grouping of the terms, we obtain that

vec { [wk]lT —1I (diag(byk)PT) Tpo1} =0 <

(mi 4 @ [mp1” — I]) vec(diag(by, ) PT) = 0. (69)

APPENDIX D
PROOF OF THEOREM 4

By definition, we have that

(70)

First, note that L is invertible since P is invertible (by Assump-
tion 2) and the result of the summation is a diagonal matrix with
strictly positive entries (by Assumption 1). Next, we evaluate
L diag(L~'1) by introducing (70):

L diag(L~'1)

Y Yy -1
P (Z oy diag(b,,)) diag <PZ oy diag(by)> 1
y=1 y=1

Y
P <Z oy diag(by)>
y=1
v -1
diag <Z oy diag(by)> P11
y=1
Y Y -1
=P <Z oy diag(by)> diag (Z oy diag(by)> 1
y=1 y=1
Y Y -1
=P (Z oy diag(b,,)) (Z ay, diag(by)> =P, (71)
y=1 y=1

9For matrices A, B and C' of compatible dimensions: vec(ABC) = (CT @
A) vec(B).
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where in the third equality we used the fact that the inverse
of a row-stochastic matrix has elements on each row that sum
to one,'? and in the fourth that the result of the summation is a
diagonal matrix and that it has a diagonal inverse that is obtained
by inverting each element.'! This allows us to reconstruct the
transition matrix P.

To reconstruct the observation matrix, we proceed as follows.
First note that by multiplying V,, by P~T1 from the right, we
obtain

V, P 11 = a,diag(b, ) PT(P~T1) = ab,,  (72)
which is column y of the observation matrix scaled by a factor
av,. By horizontally stacking such vectors, we build the matrix

B [VlP*T]l VyP*T]l}

= [albl Oéyby}

= [, by | diag(las ... ay]")

= Bdiag([a; ... ay]T), (73)

which is the observation matrix B with scaled columns.

From (73), it is clear that each column of B is colinear with
each corresponding column of B. Hence, we seek a diagonal
matrix that properly normalizes B:

B = B diag(d), (74)
where d € RY is the vector of how much each column should be
scaled. By multiplying (74) from the right by 1 and employing
the sum-to-one property of B, we obtain that the following
should hold

Bl = B diag(d)1 = 1 = Bd. (75)
A solution to this equation exists by (73) and that the a,’s are
non-zero — each element of d is simply the inverse of each .
Now, since B is full column rank and the «,’s are non-zero,
relation (73) implies that B is also full column rank. Hence, the
unique vector of normalization factors d is

d = B'1. (76)
APPENDIX E
PROOF OF LEMMA 1
We use the following result for Kronecker products[50]:
rank(A ® B) = rank(A) rank(B), (77)
which implies that
rank(m{_, @ [mp 17 — 1)) = 1 x rank(m, 17 — ). (78)

The last factor rank(ﬂkILT —I)isequal to X — 1, since it is a
rank-1 perturbation to the identity matrix.

10Assume A is invertible and row-stochastic: Al =1 = A 1Al =
A =1=A"11.
Uf D is a diagonal matrix, then diag(D1) = D.
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APPENDIX F
PROOF OF REMARK 5

To see that a unique observation can be reconstructed at
each time instant k, suppose that 7, = T'(mx_1,yx; P, B) =
T(mk-1,Yx; P, B). We have, for a general posterior vector
m € A and two observations y,y € ), that

T(m,y; P,B) =T(m,y; P, B) =
diag(by)P"n  diag(by)P"
17diag(b,) P77 17diag(by) PTn

diag(b,) PTm = adiag(by) P,

(79)

where o € R+ is a positive scalar. In continuation, equation
(79) implies

(diag(b,) — adiag(b;)) PTr =0 =
diag(b, — aby)PTr =0 =

[by — abg], [PT7], =0, (80)
fori =1,..., X. Under Assumption 1, we have that [P 7]; >
0, so that we must have [b, —aby]; =0, for i=1,... X.
Equivalently,

b, = aby. (81)

This yields, under Assumption 2, that « = 1 and y = .

APPENDIX G
PROOF OF THEOREM 5

In essence, [12, Theorem 1] amounts to formulating the
Karush-Kuhn-Tucker conditions for (29) and considering the
posterior as an unknown variable. It follows directly from this
result that the adversary could have held a belief 73, when making
the decision uy, if and only if

X
T €9 mEAY [w]iVucli,ug) =0 (82)
i=1
The set in (82) can be rewritten on matrix-vector form as
0
we(1, wc(X, :
reRY, Vue(l, ug) Vel uk)w: : ’
= 1 1
1
(83)

which is non-empty by the fact that the adversary made a
decision. Since, by Assumption 4, the matrix

Vaue(l,ug) Vue(X, ug)

F(uy) = 1 . 1

(84)

has full column rank, the set (82) — or, equivalently (83) — is
singleton and the sole posterior in it is

e = F(ug)t [0 .01 (85)
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