Please do not adjust margins

ARTICLE

Statistical Analysis of C—H Activation by Oxo Complexes Supports
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Transition metal oxo species are key intermediates for the activation of strong C—H bonds. As such, there has been interest
DOI: 10.1039/x0xx00000x in understanding which structural or electronic parameters of metal oxo complexes determine their reactivity. Factors such
as ground state thermodynamics, spin state, steric environment, oxygen radical character, and asynchronicity have all been
cited as key contributors, yet there is no consensus on when each of these parameters is significant or the relative magnitude
of their effects. Herein, we present a thorough statistical analysis of parameters that have been proposed to influence
transition metal oxo mediated C—H activation. We used density functional theory (DFT) to compute parameters for transition
metal oxo complexes and analyzed their ability to explain and predict an extensive data set of experimentally determined
reaction barriers. We found that, in general, only thermodynamic parameters play a statistically significant role. Notably,
however, there are independent and significant contributions from the oxidation potential and basicity of the oxo complexes

which suggest a more complicated thermodynamic picture than what has been shown previously.

reaction,?-24 put there is a lack of consensus regarding their

Introduction

The activation of C—H bonds through proton-coupled electron
transfer (PCET) underpins a wide range of biological and
synthetic processes. The applications of this reaction include
drug metabolism by cytochrome P450 enzymes as well as
synthetic methods for the preparation of fine chemicals.’3 In
many cases PCET reactions are mediated by transition metal
oxo intermediates generated within either protein-based or
synthetic ligand scaffolds. In these reactions, both a proton and
an electron are transferred to an oxo complex resulting in the
net removal of a hydrogen atom from the organic substrate. The
generality of this reaction combined with the ubiquity of C—H
bonds in synthesis has led to considerable interest in
determining what properties govern the PCET reactivity of
transition metal oxo species.

A large body of work supports that the free energy of
reaction (AGpcet) is central to transition metal oxo mediated C—
H activation and also offers a great deal of explanatory and
predictive power.*7 Recently however, additional properties
have been cited as important although it is not clear if any have
a widespread effect on reactivity. Individual cases support the
influence of O-centered spin density,® spin state,®! steric
environment,12-14 the free energies of proton and electron
transfer (AGpr and AGgr),1520 or the asynchronicity (n) of the
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generality and relative importance (Scheme 1).825-27 Very few
studies have explored these parameters outside of a narrow
range of complexes,#610202128 and none have statistically
examined the significance of parameters other than AGpcer On
the reactivity of a broad set of metal oxo complexes.

We previously found an atypical dependence on AGer in the
concerted C—H activation reactivity of a terminal Co"' oxo
complex which contrasts with the expected rate dependence
on AGpcer.1® Given the disparity of this result with the literature,
we sought to understand the interplay of characteristics
affecting a broad range of transition metal oxo mediated PCET
reactions using multivariable linear free energy relationships
(LFERs). These models can be used to relate experimentally
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Scheme 1 Investigated Parameters of Metal Oxo Species.
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determined data, such as reaction rates, to multiple predictor
variables simultaneously. LFER models have recently been used
as versatile tools to optimize organic methodology, predict
reaction barrier heights, and investigate underlying
mechanisms.29-33

We have applied this analysis to examine trends in rates of
PCET mediated C—H activation for a broad dataset of previously
reported metal oxo complexes. This analysis enables a statistical
examination of several hypotheses regarding what parameters
of metal species determine their PCET reactivity.
Unsurprisingly, we observe that AGpcer is the most important
factor. However, we also observe a significant role for AGpr and
AGer beyond and independent of their contribution to AGpcer.
Furthermore, the other parameters investigated do not have
broad significance. These results suggest that thermodynamic
factors are generally the dominant contributors to transition
metal oxo C—H activation reactivity, but also demonstrate that
thermodynamic parameters beyond the commonly invoked
AGpecer are influential.

OXo

Results and Discussion

We began our analysis by compiling an extensive data set of
second order rate constants (kz) for the oxidation of 9,10-
dihydroanthracene (DHA) by thirty well-characterized metal
oxo complexes.213.1517,34-51 Thijs diverse data set comprises
complexes of five different transition metals, tetragonal and
trigonal geometries, spin multiplicities from 1 to 5, charges from
-1 to +3, and d-electron counts from 0 to 6. We manually
divided the data set into a training set of seventeen metal oxo
complexes and a test set of thirteen metal oxo complexes such
that each set had a diverse mix of species. For our analysis, we
calculated the values of parameters that have been
hypothesized as important to metal oxo mediated PCET
investigated
parameters include the steric environment (quantified by
percent buried volume, %BV),>2 the spin density on the oxygen
atom (via intrinsic bond order (IBO) analysis),>35* the energetic
cost of accessing a higher spin state if one lies closer to the

reactivity for each metal oxo complex. The

product spin multiplicity than the reactant ground spin state
(spin excitation), the thermodynamic free energies AGpcer, AGer,
and AGgr, and the magnitude of the asynchronicity parameter
(In]).2t The detailed approaches used to determine the values
for these parameters are provided in the methods section.
Importantly, none of these parameters require transition state
optimizations which are relatively difficult and less reliable than
ground state calculations.>3°¢ While this precludes a direct
estimation of transition state effects, we expect to indirectly
capture some of them. For instance, parameters such as AGpcer
and |n| have been shown to correlate with tunneling.23.57

We examined the effect of each of these parameters on
experimental reaction barriers by building multivariable free
energy models via ordinary least squares regression of the
barrier heights against the parameters. Each model consists of
a set of coefficients (with variable units such that the product
with the respective parameter gives units of kcal/mol) and an
intercept (with units kcal/mol). These models were used to
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generate predicted reaction barriers for each data point, which
could be compared with experimental reaction barriers to
assess the utility of the model. Because AGpcer has strong
theoretical and experimental support for affecting reaction
barrier heights,*® we analyzed each parameter in combination
with AGpcer and compared the resulting model to regression
against AGpcer alone.

We evaluated each regression based on R2, leave-one-out
(LOO) RZ (sometimes referred to as Q2), and a statistical F-
test.>8-61 R2 is a goodness of fit measure which quantifies the
amount of variation explained by a model. The predictive ability
of a model is gauged with LOO R?, in which each data point is
left out and predicted by the remaining data points and the
goodness of fit is then reevaluated. Critically, unlike regular R?
this metric does not necessarily improve with an increase in
parameters; overfitted models with too many parameters
perform poorly with LOO R2. For each R2, a value close to 1
indicates a good fit. Finally, we report the p-value from an F-test
on each model, which shows the probability the observed
correlation arises from statistical noise. The lower this p-value
is, the more significant a given parameter. Additionally, the
calculation of p-values considers the number of parameters
added to a model, so, as with LOO RZ, an F-test is not biased in
favor of adding more parameters.

A summary of our findings is presented in Table 1. In line with
previous reports, we find a strong correlation between the
experimental reaction barriers and AGpcer. This parameter alone
explains 70% of the variation in reaction barriers within the
training set (R2 = 0.70) and has high predictive ability (LOO RZ =
0.60). Interestingly, most other parameters do not significantly
improve the model. While we do observe a small correlation
with %BV steric metrics, the magnitude of the effect is too small
to be statistically significant. Compared to the AGpcer only
model, spin-based parameters and |n| barely improve R2 and
perform similarly or worse in LOO cross-validation. While it is
difficult to rule out the importance of these parameters in
individual cases, an F-test indicates they do not have a
statistically significant effect across our entire data set.

In contrast, addition of AGpr and AGer does significantly
improve the fit. For this {AGpcer, AGpr, AGer} model, R2 increases
from 0.70 to 0.86 and LOO R? increases from 0.60 to 0.71,
indicating both better explanation of the available data and
better predictive ability. An F-test gives p < 0.01 which suggests
the observed effect is statistically significant. The equation from
this fit is AG* = 0.31 AGpcer + 0.07 AGpr + 0.12 AGer - 0.26 (all
coefficients unitless; free energies and intercept in kcal/mol).
Typically, AGpcer is a negative value while AGpr and AGgr are
positive values. Thus, the positive sign of the AGpcer coefficient
indicates that a more exergonic reaction will have a lower
barrier while increases in AGpr and AGer will raise the barrier.
The larger coefficient of AGpcer indicates the reaction barrier is
most sensitive to this free energy. Satisfyingly, the AGpcer
coefficient agrees with experimental data: for metal oxo
complexes that have a demonstrated trend of log(kobs) Vs.
substrate bond dissociation free energy (BDFE), the average
slope of AG* vs. substrate BDFE is ~0.3 (see Table S1), very
similar to the 0.31 observed in our analysis. The intercept of —
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Table 1 Statistical Results of Various Models.

Parameter(s) Training Set on DHA? All Data for Multiple Substrates®
Regressed with AGpcer R? LOO¢ R? p-value? R? LOO® R?
AGecer only 0.70 0.60 <0.001/ 0.45 0.36
%BV Steric Metrics 0.77 0.64 0.15 0.48 0.28
Oxo Spin Density 0.70 0.55 0.78 0.53 0.37
Spin Excitation 0.71 0.50 0.49 0.50 0.39
[l 0.73 0.53 0.22 0.50 0.30
0.0082
AGet, AGer 0.86 0.71 0.023¢ 0.64 0.50
0.0038"

aA subset of the reactions of 17 metal oxo complexes with DHA. *Excluding outlier metal oxo complexes (Ru oxos and oxo complexes of 13-TMC); substrates are DHA,
1,4-cyclohexadiene, xanthene, and fluorene. cLeave-One-Out. 9From an F-test where the null hypothesis is that only AGpcer has an effect. eLeave-One-Out, slightly
modified such that all reactions for a given metal oxo are left out together. fFrom an F-test where the null hypothesis is that AGpcer has no effect. 8From an F-test

where the null hypothesis is that AGer has no effect. "From an F-test where the null hypothesis is that AGer has no effect.

0.26 contains contributions to the average error not accounted
for by the three free energies.

The significance of AGpr and AGgr is intriguing because the
literature discussion of these values has often been framed in
terms of how they contribute to AGpcer rather than in terms of
their intrinsic contribution to reaction barrier heights.16-19.27
However, AGpr and AGer as defined here are the energies to
form the intermediates involved in stepwise reactivity — the
protonated metal oxo with the deprotonated substrate, or the
reduced metal oxo with the oxidized substrate (Scheme 1).
Critically, AGpr and AGer do not form a full thermodynamic cycle
with AGpcer and thus are fundamentally distinct. This fact is
statistically supported by poor correlations between AGpcer and
AGpr and between AGpcer and AGer (—0.12 and 0.31,
respectively, see Regression S6). Finally, we find that AGpr and
AGer have importance independent of a contribution to AGpcer
as clearly demonstrated by the LOO R2s and F-tests. All of our
analyses therefore suggest that the combination of AGpr and
AGer is an independent and significant contributor to C—H
activation barrier heights.

While the observation of a dependence on AGpr and AGegr
that arises from our linear regressions is principally empirical, it
is consistent with prior theoretical models in the literature. The
physical underpinning of this dependency on AGpr and AGer is
likely due to mixing of proton transfer and electron transfer
intermediates into the concerted transition state despite these
intermediates never being fully realized.®?=%4 Within transition
state theory, this can be envisioned by a More-O’Ferrall-Jencks
plot in which the transition state lies not on a one-dimensional
line connecting reactant and product but on a two-dimensional
plane containing reactant, product, and intermediates.®>¢ |n
this case, the intermediates arise from proton transfer and
electron transfer, and when either AGpr or AGer lowers in energy
the transition state character can adopt structural and
electronic components of these intermediates resulting in a
lower barrier height. While the use of these classical structure-
energy relationships to analyse PCET reactions has been
questioned recently,2%27 proton transfer and electron transfer
states and their energies also have roles in nonadiabatic rate
theories of PCET which treat proton transfer in a quantum
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mechanical fashion.7.68 Therefore, the use of AGpr and AGer to
predict barrier heights of PCET is consistent with prior
theoretical foundations.

Assigning a direct role for AGpr and AGeris in line with recent
computational studies of PCET transition states which invoke
off-AGpcer diagonal thermodynamic terms from Scheme 1, such
as asynchronicity (n), as key contributors to DFT derived
reaction barriers.21724 Asynchronicity is derived not from the
sum of AGpr and AGgr, but rather their difference. Conversely,
we instead find that the sum of AGpr and AGer have a more
significant effect than |n|. The reason for this discrepancy is
unclear, but a possible explanation is that experimental noise
prevents us from observing a comparatively more subtle trend
between |n| and the experimental reaction barrier heights.
Furthermore, the well-controlled nature of the series of
complexes previously investigated for asynchronicity may have
too little variation in (AGpr + AGer) to manifest similarly to the
effects we observe here.

Another way in which our data may not be amenable to
investigating the effect of |n| is the variable reorganization
energy of the metal oxo complexes examined here. |n| is
adjustment to the Marcus
reorganization energy;2! therefore |n|’s effect may only be

specifically framed as an

clear when reorganization is properly accounted for. While it is
clear that the reorganization energy is important to PCET
reactivity, there is no established way to compute it without
computationally expensive transition state geometries.11,67-69
We have made multiple attempts to derive reorganization or
deformation parameters using the optimized metal oxo and
metal hydroxide geometries and frequencies, but none of these
parameters have statistically significant contributions to
predicted reaction barriers with or without |n| (see ESI).
Therefore, a combination of noise in the experimental data and
our inability to compute a reliable reorganization parameter
could preclude us from observing an effect of |n| on the barrier
heights. Nonetheless, previous studies as well as this current
work offer increasing support that off-AGpcer diagonal
thermodynamic terms such as AGpr and AGer have important
effects on reactivity independent of AGpcer.
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Fig. 1 Regression analysis of the experimental reaction barrier vs. AGpcer, AGpr, and
AGgr for various metal oxo complexes reacting with DHA. Specific cases discussed
in the main text are given unique symbols. The grey line marks where predicted
equals experimental. Predicted values are computed using the given formula.

The all-thermodynamic model we find here provides
insights and possible alternative explanations for previously
reported trends in PCET reactivity. In one study,!2 steric and spin
state effects were invoked to explain the comparatively high
reactivity of the S = 2 complex [Fe'V(O)(TMG.dien)(CHsCN)]2*. A
higher rate of C—H activation as compared to S = 2
[FeV(O)(TMGstren)]?* was ascribed to reduced steric
hinderance in the TMG,dien complex,’3 and the higher rate of
C—-H activation as compared to the S = 1 complexes
[Fe!V(O)(N4Py)]?* and [Fe'V(O)(TMC)(CHsCN)]%* was ascribed to
the S = 2 spin state in the TMG,dien complex.3644 However, it
was noted that the even faster reactivity of
[Fe'V(O)(MesNTB,CH3CN)]?*, which is S = 1 and has a similar %BV
profile to [FeV(O)(TMG.dien)(CHsCN)]%*,3* is not easily
explained by either hypothesis. Our analysis suggests that the
thermodynamic properties of these complexes may provide an
alternative explanation in these comparisons (see Table S9). The
MesNTB complex has by far the most exergonic reaction with
DHA (AGpcer = —16 kcal/mol), followed by the TMG.dien
complex (AGpcer = -9 kcal/mol), followed by the complexes of
TMGstren, TMC, and N4Py (AGpcer = =7, —6, and —6 kcal/mol,
respectively). Thus, thermodynamic parameters would predict
the MesNTB complex to have the lowest reaction barrier and
fastest rate of reaction, with the TMG.dien complex being the
next most reactive, and the remaining complexes the least
reactive as is observed experimentally.

In another study, it was observed that the rates of PCET
reactions performed by [Fe'V(O)(TMC)(X)]"* decrease with more
strongly donating axial ligands X.3¢ Variation in AGpcer was ruled
out as a cause of this trend, as it was calculated to be similar for
all complexes investigated. suggested that the
accessibility of a high-spin state may explain this variation in the

It was
rates, as the energy of the quintet excited state decreased with

stronger X ligands. However, our calculations indicate that while
stronger axial donors increase AGgr, AGpr decreases more
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substantially (see Table S9). In our model, these changes result
in a net decrease in the reaction barrier, suggesting that despite
a similar AGpcer, the reactivity trend could be explained by
thermodynamic effects. These analyses do not rule out that spin
state or steric effects may be important in the previous studies,
but suggest that thermodynamics may also play an important
role.

The fit of the training data to {AGpcer, AGpr, AGer} and this
model’s performance on the test set is depicted graphically in
Figure 1. It is clear that the reaction barriers for most metal oxo
complexes in the test set are well predicted. Nonetheless,
several metal oxo complexes (given unique symbols in Figure 1)
deserve further discussion.

The {AGpcer, AGpr, AGer model behaves the most poorly in
predicting reaction barriers for the Fe'V oxo and Co oxo
complexes of the ligand 13-TMC.#%70 Essentially no barrier is
predicted for these reactions, which is not observed
experimentally. This is due to a large negative calculated AGpcer
in both cases; in fact, these complexes are outliers even in the
AGpcer only fit (see Regression S1). The cause of this discrepancy
is not entirely clear. However, it appears to be systemic to the
particular ligand scaffold rather than the identity of the metal
center, which suggests this discrepancy could arise from
ambiguity in the primary coordination sphere of these
complexes. No structural characterization is reported for the
FeV complex, and while a short Co—O bond is identified by
EXAFS for the Co'v complex, it is difficult to conclusively
determine the primary coordination sphere. Any discrepancy in
coordination sphere would render our calculated parameters
incorrect, potentially explaining their inability to predict the
experimental reaction barriers.

The reaction barrier is overestimated for all Ru oxo
complexes, and for three of them by more than two kcal/mol.
As Ru is the only second row transition metal in our data set, we
suspect this overestimation is due to a consistent difference
between first and second row transition metals rather than Ru
examples not following the same trends. For instance, it is
possible that the Ru oxo complexes have relatively low
structural reorganization energy or that relativistic effects
influence the coefficients. It may also simply be a change in the
systemic DFT error upon going to the second row. Regardless,
regression of barriers from the kinetics of an individual Ru oxo
complex reacting with several different substrates reveals there
is a trend with AGpcer, AGpr, and AGer with similar coefficients to
those obtained from the more general model with multiple
different oxo complexes (see ESI). This supports that the same
trends in free energies are at play in the Ru oxo complexes.

Interestingly, the {AGpcer, AGpr, AGer} model only
moderately underestimates the reaction barrier (by ~2
kcal/mol) for a terminal Co"' oxo complex which has unusual
trends in its reactivity with various substrates.!> Unlike most
metal oxo complexes, the reactivity of this complex does not
have a clear trend with AGpcer; its kinetics are instead
dominated by AGpr. Therefore, its adherence to trends in
{AGpcer, AGpr, AGer} as seen for the broad set of metal oxo
complexes deserves further investigation. We regressed the
experimental reaction barriers for the reactivity of this complex
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Fig. 2 Regression analysis for a Co" oxo. The {AGpr} fit is shown in black with
predicted values computed using the indicated formula; R? = 0.94 and LOO R? =
0.93. The {AGpr, AGpcer} fit is shown in red with predicted values computed using
the indicated formula; R2=0.97 and LOO R2 = 0.95. The negative barriers are due
to overestimation of the entropy of association. The grey line marks where the
predicted barrier matches the experimentally determined barrier.

with several substrates against only AGpr as well as against
{AGpt, AGpcer} (Figure 2). We find that the inclusion of AGpcer
significantly improves the model, increasing R? from 0.94 to
0.97 and LOO R2 from 0.93 to 0.95 and having an F-test p-value
of 0.02 (see ESI). However, the relative weighting of the
contribution from AGpcer is quite different than for the broader
set of complexes.

In the broader set we observe that AGpcer has a larger effect
on the reaction barriers than either AGpr or AGer, which is
reflected in the larger coefficient for the AGpcer term than for
the AGpr and AGer terms in the fit equation (Figure 1). In
contrast, AGpr has a greater effect than AGpcer on the reaction
barriers for the Co'"' oxo complex, again reflected in the
magnitude of their coefficients (Figure 2). Furthermore, the
addition of AGgr significantly improves the model for the
broader set of metal oxo complexes (Table 1) but is insignificant
for the series of substrates reacting with the Co"' oxo complex
(p-value > 0.05, see Regressions S42 and S43). Overall, this Co"
oxo complex is not so dissimilar from the broader set of metal
oxo complexes in that the same thermodynamic free energies
explain the reactivity of both. However, this individual case
demonstrates a different weighting of parameters than that
observed in the broad set.

Our analysis of the Co'"! reactivity rests on the assumption
that the coefficients of the model do not change appreciably
from substrate to substrate. To test this assumption, we
extended our analysis of the larger set of metal oxo complexes
to include reactivity with 1,4-cyclohexadiene (CHD), fluorene,
and xanthene in addition to DHA. We refit the model with
reported data for the reactions between each substrate and all
metal oxo complexes (excluding the previously discussed Ru
and 13-TMC oxo complexes). As with our regressions for DHA
alone, the inclusion of AGpr and AGgr notably improves the fit
(Table 1, Figure 3). Other parameters offer comparably little
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improvement to the fit and do not perform well by LOO cross
validation. The equation for this model is AG* = 0.23 AGpcer +
0.04 AGpr + 0.10 AGer + 2.10, which is satisfyingly similar to the
equation of the fit to DHA data alone, supporting the
assumption that the coefficients of the model are not
appreciably affected by the identity of the substrate.

Conclusions

Overall, this thorough analysis of the reported C—H activation
reactivity of transition metal oxo complexes demonstrates that
AGpcer, AGpr, and AGer have a statistically significant correlation
with the reaction barrier. Interestingly, no other parameters
examined here, including steric environment and spin-based
parameters, provide a significant improvement to a AGpcer only
model. This is in contrast to previous literature reports which
implicate such factors in explaining metal oxo mediated PCET.
The {AGpcer, AGpr, AGer} model predicts all but five of the
reaction barrier heights for reactivity with DHA within 2
kcal/mol, and predicts most of these barrier heights within 1
kcal/mol. We find that the asynchronous reactivity of a Co"' oxo
complex is also well-predicted, although a fit to just this
complex alone reveals changes in the relative importance of
AGpcer, AGpt, and AGegr. The structural and electronic bases for
such variation, and whether concomitant changes in selectivity
can be leveraged, are exciting avenues for future research.
While the relative importance of these thermodynamic
parameters can vary between specific cases, this study on a
broad set of metal oxo complexes suggests that thermodynamic
parameters provide the most general contribution to reaction
barriers. Furthermore, while a strong dependence on AGpcer is
observed, as is expected based on literature precedent,
significant and independent contributions from AGerand AGer
are observed. This conclusion adds to the growing body of
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Fig. 3 Regression analysis of the experimental reaction barrier to PCET mediated C-H
activation vs. AGpcer, AGpr, and AGgr for all non-outlier metal oxo complexes reacting with
DHA, CHD, xanthene, and fluorene. The grey line marks where predicted equals
experimental. Predicted values are computed using the given formula.

J. Name., 2013, 00, 1-3 | 5



literature supporting the
parameters beyond AGpcer.

importance of thermodynamic

Methods

Tabulation of Experimental Kinetics

In this study we used thirty reported k> values of metal oxo
species reacting with DHA.1213,1517,34-51 For each of these oxo
complexes, we tabulated various descriptors (metal, valency, d-
count, coordination number, etc.), experimental parameters
(M-0 bond length and vibrational frequency, BDFE, pK,, etc.),
and the reported kinetics for reactions with various substrates
(k2, and, if reported, the statistical correction to this k3,
experimental AH* and AS*, and the KIE) along with the
conditions these data were reported in (temperature and
solvent). A full tabulation is found in the S| data folder. We
excluded a few metal oxo species from our analysis despite
having reported kinetic data for reactivity with DHA. The
reasons for these exclusions were varied: several did not have a
well-defined primary coordination sphere,”~7* we were unable
to calculate the reduced form of Mn"' oxo complexes without
deprotonation of the hydrogen-bonding ligands,720 one VY oxo
has too much experimental uncertainty in its k, value,’®
corrolazine complexes were too large to calculate their
vibrational frequencies using our methods,1%7¢ vibrational
frequencies did not converge for the reduced form of two RuV!
dioxo complexes,>® we did not include third row complexes or
complexes with ligand radicals,37:77-7 and in one case saturation
was reported at higher concentrations of DHA.8 We also found
several reports of metal oxo mediated C—H activation of
substrates besides DHA4:39.70,81-94 gnd useful reviews.2>%

All rate constants utilized here were reported as k, values
with the exception of several rate constants used in the Co'" oxo
reactivity analysis.1> In this case, for substrates which did not
have a reported k3, the pseudo-first order rate constant kops at
0.0125 M of substrate was divided by 0.0125 M to obtain an
approximate k. We used all substrates with reported kinetic
data in this analysis except for 1,1,3,3-tetraphenylpropene. This
substrate reacts unusually slowly, which we believe to be due
to large steric hindrance of the reacting C—H bond. The
remaining substrates were sterically similar enough that there
is no steric effect on their kinetics (see Regression S41).

Determination of Experimental Barrier Heights

Before determining barrier heights from experimental k; values,
we first multiplied each k; by any reported stochiometric and
statistical adjustments so as to start from consistently
unadjusted k; rate constants (experimental k, rate constants
are often reported with statistical corrections to facilitate
comparisons between substrates, either for the stoichiometry
of the substrate’s reactivity or for the number of benzylic C—H
bonds). We assume that where no adjustment is noted in a
paper, none has been made. The barriers of PCET reactivity
were then determined from the unadjusted experimental k;
values by solving the Eyring equation®’ and subtracting
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approximate expressions for the free energy of metal oxo-
substrate association:

3
kyh 2m W RT\2 1
;)_RT In (L)

5
AG} pr = RT1 ( “la
PCET n nennoRT Ce +2 €3]

where h is Planck’s constant, ngy is 2 for DHA and CHD and 1
for fluorene and xanthene, n, is the number of oxo ligands in
the metal oxo complex, RT is the thermal energy, u is the
reduced mass of the metal oxo and the substrate, and C°is 1 M.
Our n¢y adjusts for the typical stoichiometry of each substrate’s
oxidation (DHA and CHD tend to lose two H-atoms, fluorene and
xanthene one H-atom); we do not adjust for the number of
reactive H-atoms, as ring puckering of the substrates means
that not all reactive C—H bonds are equivalent. For instance,
DHA has four benzylic C—H bonds, with two lying equatorial to
the central ring and two lying axial. It is unlikely that the
equatorial and axial positions are equally reactive, and it is
entirely possible that reactivity predominantly occurs at only
one of the positions. It is therefore not necessarily true that
DHA is four times as reactive as an otherwise similar substrate
with only one benzylic C—H bond.

The second and third terms in Equation 1 are an
approximation for the free energy of association of the metal
oxo and the substrate.?” This adjustment allows us to compare
kinetic data collected at different temperatures. As C—H bonds
are poor hydrogen bond donors, we assume that the cost of
association is purely entropic (or at least that enthalpic
components vary minimally between different metal oxo
complexes and substrates) and further assume this entropy cost
is solely the loss of translational entropy. This neglects the loss
of rotational entropy and the gain of low frequency metal oxo-
substrate vibrational modes, but these effects will partially
cancel. Regression with AGpcer and RT does not fit DHA reaction
barrier heights significantly better than a fit to AGpcer alone (see
Regression S10), indicating that this adjustment satisfactorily
accounts for the temperature dependence of the reaction
barrier.

We do not take into account hydrogen bonding between the
metal oxo complexes and protic solvents as we were unable to
derive a suitably accurate correction. However, in the Sl we
demonstrate that our best attempt to do so does not change
the main conclusions herein (see Table S11).2898-100

Calculation of Parameters

For each of these oxo complexes we calculated the values of
parameters that have been proposed to influence metal oxo
mediated PCET reactivity. Specifically, the parameters
investigated were %BV steric metrics, spin density on the
oxygen atom, available spin states, thermodynamic free
energies AGpcer, AGpr, and AGgr, and the magnitude of the
asynchronicity parameter (|n|). Geometry optimization and
frequency calculations were performed in ORCA using the def2
basis sets of Weigend and Ahlrichs and the O3LYP functional.101-
106 For the wider set of metal oxo complexes, all transition
metals were given the def2-TZVPP basis set, all metal-bonded
atoms and the transferring hydrogen atom the def2-TZVP basis

This journal is © The Royal Society of Chemistry 20xx



set, and the remaining atoms the def2-SV(P) basis set.
Substrates were calculated entirely with the def2-TZVP basis
set. For calculations regarding the Co"' oxo and various
substrates, Co, N, O, the carbene carbons of the ligand, and the
carbon undergoing C—H activation was given def2-TZVPP; all
other atoms were given def2-SVP. For both sets of calculations
solvent effects were included as a polarizable continuum (CPCM
with the dielectric constant of acetonitrile for the broader set of
metal oxo complexes; COSMO with the dielectric constant of
THF for the Co" oxo with substrates). This is primarily to
mitigate the effect of self-interaction error;07 we assume that
the solvent dielectric has little effect on the rate of PCET, as
reported solvent effects on similar reactions are typically
limited to hydrogen bonding.28100,108 The def2 ECP was used for
ruthenium.19® The resolution of identity approximation was
used for coulomb integrals and the chain of spheres
approximation for exchange integrals (with def2/) as the
auxiliary basis). No change was made to ORCA’s default grid
settings. Free energies were derived from the electronic
energies and vibrational calculations using the quasi-harmonic
oscillator formulation of Grimme and coworkers.10

Unfortunately, several of our optimized structures have
small imaginary frequencies (See ESI), which we believe is due
to numerical noise of CPCM solvation. Occasionally these
frequencies lie below =100 cm™ but in each of these cases the
mode is isolated to a soft dihedral motion, e.g. methyl rotation
on an acetonitrile ligand. We used the absolute value of these
frequencies when calculating the thermodynamic enthalpy and
entropy values, believing that to be a better approximation for
these modes than either nonexistence or a frequency of 0 cm~2.
We were unable to reoptimize these structures to remove the
imaginary frequencies.

In many cases, the correct ground state multiplicity of a
species was not immediately clear. In such cases we confirmed
our initial assignment by running ten geometry optimization
cycles on alternate spin states and confirming these alternate
assignments were several kcal/mol uphill of the assigned spin
state. In a few cases were the energy was within 5 kcal/mol and
the optimization was not close to convergence, we fully
optimized the alternate spin state. Whenever two spin states
had nearly the same energy, we chose the higher spin state as
the ground state due to the typically higher entropy of high spin
states.

To quantify the steric environment around each metal oxo
center or substrate reactive C—H bond, we calculated percent
buried volume (%BV) steric metrics using the online SambVCA
web application.>2 We centered the calculation on the oxygen
atom (for oxos) or the transferring hydrogen (for substrates),
defined the negative z-axis as going through the metal center
(for oxos) or the reacting carbon center (for substrates), and
defined the xz plane as containing another atom bonded to the
metal or carbon (the first such atom in the .xyz file). We had the
center oxygen or hydrogen atom deleted from the calculation,
included hydrogen atoms in the calculation, and left all other
settings to their default value (using Bondi radii scaled by 1.17,
a sphere radius of 3.5 Angstroms, and a mesh setting of 0.10
Angstroms). The application returns a total percent buried
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volume, as well as that for individual quadrants of the sphere.
For metal oxo complexes, we used the total percent buried
volume (%BV Tot) and the standard deviation of these four
quadrants (%BV Dev) in our regressions in order to capture both
overall steric bulk and how evenly distributed this bulk is around
the metal oxo moiety. For substrates, we solely used %BV Tot.
See the ESI for a further discussion of steric parameters and
their effect on reaction barrier heights.

To evaluate the effect of spin and spin state on reactivity,
we used two parameters that have been discussed in the
literature: spin density on the oxo ligand and the energy to
excite to a higher spin state.®10 Atomic spin populations were
determined via IBO analysis using the freely available IBO
Viewer software.>35* We recorded the spin density on the metal
and on oxygen for each metal oxo complex as well as how much
spin both atoms gain upon PCET reduction; we also tabulated
similar values for the IBO charges. In the regression analysis we
solely used the spin density on the oxo ligand. The “Spin
Excitation Energy” is the vertical energy from the ground spin
state of the initial oxo complex to the lowest lying excited spin
state that is within one spin multiplicity of the resulting metal
hydroxide ground spin state. If the ground spin state is already
one spin multiplicity greater or lower than the product
hydroxide spin state, then the spin excitation energy is taken to
be zero. For instance, in the case of a triplet Fe'V oxo reacting to
give a sextet Fe'' hydroxide the spin excitation energy is the
energy of the quintet Fe'V oxo relative to the triplet Fe'V oxo at
the ground state optimized geometry. This is the scenario for
most Fe'V oxos in the data set. But in the case of the two non-
heme Fe'V quintet oxos,%13 the spin excitation energy is zero
because the ground spin state is already within one spin
multiplicity of the sextet hydroxide product. Essentially, the spin
excitation energy is the energy needed to reach a spin surface
on which reduction to the metal hydroxide’s ground spin state
is spin allowed. While this simple metric ignores the nuances of
two state reactivity theory (such as the spin inversion
probability) it is relatively simple to compute and has precedent
as a quantitative measure of PCET reactivity.10.36

For each metal oxo-substrate combination assessed here,
we tabulated the free energies of proton coupled electron
transfer (AGpcet, EQuation 2), proton transfer (AGer, Equation 3),
electron transfer (AGer, Equation 4), and the asynchronicity as
defined by Srnec and coworkers (n, Equation 5):21

AGpcpr = Gy—on + Ge. — Gy=0 — Ge—y (2)
AGpr = Gy_ou+ + Gem — Gy=o — Ge_y (3)
AGgy = Gy—o- + Ge_p+ — Gy=0 — Ge-p (4)

_ Gy_ou+ + Gem — Gy—o- — Gc—H’f/
5
n [_2( )

where Gy —o is the calculated free energy of the oxo species,
Gc_p isthe calculated free energy of the substrate, and all other
free energies are defined analogously. We also tabulated the
absolute value of the asynchronicity (|n|), the average of AGer

and AGer (AGcer average), and the analogous electronic energies
(same notation, with G replaced with E).
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Statistical Analysis

All statistical analysis was performed in Python using the
Numpy, Scipy, Pandas, Sklearn, and Matplotlib packages.111-115
A script ran a prescribed set of regression models and reported
statistics on each model. All regressions were performed with
ordinary least squares. Prior to fitting any regression, we
separated the data into a test set and a training set of metal oxo
species. While we show both test and training sets for each
regression in the ESI, we initially did not plot the test set or
calculate statistics with it. We solely used the training set in the
earlier stages of our analysis, where we determined which
parameters improved a fit to AGpcer only and which did not. We
then examined if the good fits to the training set extrapolated
well to the test set. We had to make a few changes to the initial
division of the training and test sets, however. Initially, the Co"v
oxo was included in the training set,* but that was interfering
with the fit to AGpcer. We moved it to the test set, and to provide
insight into this poor fit we calculated the Fe'V oxo complex of
13-TMC and added it to the test set.” We also saw, visually, that
the inclusion of a Ru'v oxo in the training set was interfering with
the addition of other parameters and moved all Ru oxo
complexes to the test set.3843,45,50,51

The simplest metrics reported from these models are the
mean square error (MSE) and the goodness of fit R2.58-61 These
both give an indication of how well a model fits the available
data but are prone to overfitting; more complicated models can
only improve these metrics, regardless of whether or not the
model is actually better.

We also evaluated each model with cross validation (CV)
metrics, which can become worse upon overfitting. In K-fold
cross validation, the training data is further subdivided into K
subsets, and each subset is predicted by the K-1 remaining
subsets.59.61 When K is the number of data points, i.e. each data
point being predicted by the rest of the data points, this is
known as leave-one-out (LOO) cross validation. These predicted
data points can be used to calculate the MSE and R? as above.
The MSE from LOO cross validation is an approximately
unbiased estimate of the expected error of a test set; however,
it has high variability from training set to training set because
each prediction uses nearly every point in a given training set.
By repeatedly subdividing into larger groups and averaging the
resultant K-fold MSEs, one obtains a pessimistic but less variable
estimate of the expected test error. As we see similar trends for
both LOO and 5-fold CV, we only report LOO R2 in the main text
but show all metrics in the ESI.

Another way to determine the significance of the model is
to use a statistical F-test.58%0 This allows one to compare an
restricted one (fewer
parameters used as regressors, or no parameters regressed, or
restrictions placed on the relationship between coefficients,
etc.). In the language of hypothesis testing, the null hypothesis
is that the unrestricted model offers no improvement on the
restricted model and the alternate hypothesis is that there is an
improvement. When both models are fit to the data, the
unrestricted model will have less total squared error than the
restricted model. Assuming said error of each data point is

unrestricted model with a more
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normally distributed (or that there is enough data such that the
error is approximately normally distributed), that the average
error is zero, and that the model is properly formulated, it is
possible to determine the probability that this reduction in total
squared error is spurious. This probability is known as the p-
value. The test relies on a well-defined number of degrees of
freedom in both the restricted and unrestricted model to draw
out what the statistical distribution of total squared error ought
to be.

For regressions on multiple substrates at once, the unequal
weighting of different metal oxo complexes (depending on how
many substrates are reported for them) renders these statistical
metrics unreliable.®? We ameliorate this issue for LOO cross
validation by leaving out all reaction barriers for a given metal
oxo complex together rather than one at a time. That is, we
leave one metal oxo complex out and predict its reaction barrier
heights based on all other metal oxos’ reaction barrier heights
rather than leave one reaction barrier height out and predict
this barrier based off all other barriers. We accordingly only
report LOO CV metrics for this set of regressions.
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