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Statistical Analysis of C–H Activation by Oxo Complexes Supports 
Diverse Thermodynamic Control Over Reactivity†  

Joseph E. Schneider,a McKenna K. Goetz, a and John S. Anderson* a 

Transition metal oxo species are key intermediates for the activation of strong C‒H bonds. As such, there has been interest 

in understanding which structural or electronic parameters of metal oxo complexes determine their reactivity. Factors such 

as ground state thermodynamics, spin state, steric environment, oxygen radical character, and asynchronicity have all been 

cited as key contributors, yet there is no consensus on when each of these parameters is significant or the relative magnitude 

of their effects. Herein, we present a thorough statistical analysis of parameters that have been proposed to influence 

transition metal oxo mediated C‒H activation. We used density functional theory (DFT) to compute parameters for transition 

metal oxo complexes and analyzed their ability to explain and predict an extensive data set of experimentally determined 

reaction barriers. We found that, in general, only thermodynamic parameters play a statistically significant role. Notably, 

however, there are independent and significant contributions from the oxidation potential and basicity of the oxo complexes 

which suggest a more complicated thermodynamic picture than what has been shown previously.

Introduction 

The activation of C‒H bonds through proton-coupled electron 

transfer (PCET) underpins a wide range of biological and 

synthetic processes. The applications of this reaction include 

drug metabolism by cytochrome P450 enzymes as well as 

synthetic methods for the preparation of fine chemicals.1–3 In 

many cases PCET reactions are mediated by transition metal 

oxo intermediates generated within either protein-based or 

synthetic ligand scaffolds.  In these reactions, both a proton and 

an electron are transferred to an oxo complex resulting in the 

net removal of a hydrogen atom from the organic substrate. The 

generality of this reaction combined with the ubiquity of C‒H 

bonds in synthesis has led to considerable interest in 

determining what properties govern the PCET reactivity of 

transition metal oxo species. 

A large body of work supports that the free energy of 

reaction (ΔGPCET) is central to transition metal oxo mediated C–

H activation and also offers a great deal of explanatory and 

predictive power.4–7 Recently however, additional properties 

have been cited as important although it is not clear if any have 

a widespread effect on reactivity. Individual cases support the 

influence of O-centered spin density,8 spin state,9–11 steric 

environment,12–14 the free energies of proton and electron 

transfer (ΔGPT and ΔGET),15–20 or the asynchronicity (η) of the 

reaction,21–24 but there is a lack of consensus regarding their 

generality and relative importance (Scheme 1).8,25–27 Very few 

studies have explored these parameters outside of a narrow 

range of complexes,4,6,10,20,21,28 and none have statistically 

examined the significance of parameters other than ΔGPCET on 

the reactivity of a broad set of metal oxo complexes. 

We previously found an atypical dependence on ΔGPT in the 

concerted C–H activation reactivity of a terminal CoIII oxo 

complex which  contrasts with the expected rate dependence 

on ΔGPCET.15 Given the disparity of this result with the literature, 

we sought to understand the interplay of characteristics 

affecting a broad range of transition metal oxo mediated PCET 

reactions using multivariable linear free energy relationships 

(LFERs). These models can be used to relate experimentally 

 

Scheme 1 Investigated Parameters of Metal Oxo Species. 
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determined data, such as reaction rates, to multiple predictor 

variables simultaneously. LFER models have recently been used 

as versatile tools to optimize organic methodology, predict 

reaction barrier heights, and investigate underlying 

mechanisms.29–33 

We have applied this analysis to examine trends in rates of 

PCET mediated C–H activation for a broad dataset of previously 

reported metal oxo complexes. This analysis enables a statistical 

examination of several hypotheses regarding what parameters 

of metal oxo species determine their PCET reactivity. 

Unsurprisingly, we observe that ΔGPCET is the most important 

factor. However, we also observe a significant role for ΔGPT and 

ΔGET beyond and independent of their contribution to ΔGPCET. 

Furthermore, the other parameters investigated do not have 

broad significance. These results suggest that thermodynamic 

factors are generally the dominant contributors to transition 

metal oxo C–H activation reactivity, but also demonstrate that 

thermodynamic parameters beyond the commonly invoked 

ΔGPCET are influential. 

Results and Discussion 

We began our analysis by compiling an extensive data set of 

second order rate constants (k2) for the oxidation of 9,10-

dihydroanthracene (DHA) by thirty well-characterized metal 

oxo complexes.12,13,15,17,34–51 This diverse data set comprises 

complexes of five different transition metals, tetragonal and 

trigonal geometries, spin multiplicities from 1 to 5, charges from 

−1 to +3, and d-electron counts from 0 to 6. We manually 

divided the data set into a training set of seventeen metal oxo 

complexes and a test set of thirteen metal oxo complexes such 

that each set had a diverse mix of species. For our analysis, we 

calculated the values of parameters that have been 

hypothesized as important to metal oxo mediated PCET 

reactivity for each metal oxo complex. The investigated 

parameters include the steric environment (quantified by 

percent buried volume, %BV),52 the spin density on the oxygen 

atom (via intrinsic bond order (IBO) analysis),53,54 the energetic 

cost of accessing a higher spin state if one lies closer to the 

product spin multiplicity than the reactant ground spin state 

(spin excitation), the thermodynamic free energies ΔGPCET, ΔGPT, 

and ΔGET, and the magnitude of the asynchronicity parameter 

(|η|).21 The detailed approaches used to determine the values 

for these parameters are provided in the methods section. 

Importantly, none of these parameters require transition state 

optimizations which are relatively difficult and less reliable than 

ground state calculations.55,56 While this precludes a direct 

estimation of transition state effects, we expect to indirectly 

capture some of them. For instance, parameters such as ΔGPCET 

and |η| have been shown to correlate with tunneling.23,57 

We examined the effect of each of these parameters on 

experimental reaction barriers by building multivariable free 

energy models via ordinary least squares regression of the 

barrier heights against the parameters. Each model consists of 

a set of coefficients (with variable units such that the product 

with the respective parameter gives units of kcal/mol) and an 

intercept (with units kcal/mol). These models were used to 

generate predicted reaction barriers for each data point, which 

could be compared with experimental reaction barriers to 

assess the utility of the model. Because ΔGPCET has strong 

theoretical and experimental support for affecting reaction 

barrier heights,4–6 we analyzed each parameter in combination 

with ΔGPCET and compared the resulting model to regression 

against ΔGPCET alone.  

We evaluated each regression based on R2, leave-one-out 

(LOO) R2 (sometimes referred to as Q2), and a statistical F-

test.58–61 R2 is a goodness of fit measure which quantifies the 

amount of variation explained by a model. The predictive ability 

of a model is gauged with LOO R2, in which each data point is 

left out and predicted by the remaining data points and the 

goodness of fit is then reevaluated. Critically, unlike regular R2 

this metric does not necessarily improve with an increase in 

parameters; overfitted models with too many parameters 

perform poorly with LOO R2. For each R2, a value close to 1 

indicates a good fit. Finally, we report the p-value from an F-test 

on each model, which shows the probability the observed 

correlation arises from statistical noise. The lower this p-value 

is, the more significant a given parameter.  Additionally, the 

calculation of p-values considers the number of parameters 

added to a model, so, as with LOO R2, an F-test is not biased in 

favor of adding more parameters. 

A summary of our findings is presented in Table 1. In line with 

previous reports, we find a strong correlation between the 

experimental reaction barriers and ΔGPCET. This parameter alone 

explains 70% of the variation in reaction barriers within the 

training set (R2 = 0.70) and has high predictive ability (LOO R2 = 

0.60). Interestingly, most other parameters do not significantly 

improve the model. While we do observe a small correlation 

with %BV steric metrics, the magnitude of the effect is too small 

to be statistically significant. Compared to the ΔGPCET only 

model, spin-based parameters and |η| barely improve R2 and 

perform similarly or worse in LOO cross-validation. While it is 

difficult to rule out the importance of these parameters in 

individual cases, an F-test indicates they do not have a 

statistically significant effect across our entire data set. 

In contrast, addition of ΔGPT and ΔGET does significantly 

improve the fit. For this {ΔGPCET, ΔGPT, ΔGET} model, R2 increases 

from 0.70 to 0.86 and LOO R2 increases from 0.60 to 0.71, 

indicating both better explanation of the available data and 

better predictive ability. An F-test gives p < 0.01 which suggests 

the observed effect is statistically significant. The equation from 

this fit is ΔG‡ = 0.31 ΔGPCET + 0.07 ΔGPT + 0.12 ΔGET - 0.26 (all 

coefficients unitless; free energies and intercept in kcal/mol). 

Typically, ΔGPCET is a negative value while ΔGPT and ΔGET are 

positive values. Thus, the positive sign of the ΔGPCET coefficient 

indicates that a more exergonic reaction will have a lower 

barrier while increases in ΔGPT and ΔGET will raise the barrier. 

The larger coefficient of ΔGPCET indicates the reaction barrier is 

most sensitive to this free energy. Satisfyingly, the ΔGPCET 

coefficient agrees with experimental data: for metal oxo 

complexes that have a demonstrated trend of log(kobs) vs. 

substrate bond dissociation free energy (BDFE), the average 

slope of ΔG‡ vs. substrate BDFE is ~0.3 (see Table S1), very 

similar to the 0.31 observed in our analysis. The intercept of –
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0.26 contains contributions to the average error not accounted 

for by the three free energies. 

The significance of ΔGPT and ΔGET is intriguing because the 

literature discussion of these values has often been framed in 

terms of how they contribute to ΔGPCET rather than in terms of 

their intrinsic contribution to reaction barrier heights.16–19,27 

However, ΔGPT and ΔGET as defined here are the energies to 

form the intermediates involved in stepwise reactivity – the 

protonated metal oxo with the deprotonated substrate, or the 

reduced metal oxo with the oxidized substrate (Scheme 1). 

Critically, ΔGPT and ΔGET do not form a full thermodynamic cycle 

with ΔGPCET and thus are fundamentally distinct. This fact is 

statistically supported by poor correlations between ΔGPCET and 

ΔGPT and between ΔGPCET and ΔGET (−0.12 and 0.31, 

respectively, see Regression S6). Finally, we find that ΔGPT and 

ΔGET have importance independent of a contribution to ΔGPCET 

as clearly demonstrated by the LOO R2s and F-tests. All of our 

analyses therefore suggest that the combination of ΔGPT and 

ΔGET is an independent and significant contributor to C–H 

activation barrier heights. 

While the observation of a dependence on ΔGPT and ΔGET 

that arises from our linear regressions is principally empirical, it 

is consistent with prior theoretical models in the literature. The 

physical underpinning of this dependency on ΔGPT and ΔGET is 

likely due to mixing of proton transfer and electron transfer 

intermediates into the concerted transition state despite these 

intermediates never being fully realized.62–64 Within transition 

state theory, this can be envisioned by a More-O’Ferrall-Jencks 

plot in which the transition state lies not on a one-dimensional 

line connecting reactant and product but on a two-dimensional 

plane containing reactant, product, and intermediates.65,66 In 

this case, the intermediates arise from proton transfer and 

electron transfer, and when either ΔGPT or ΔGET lowers in energy 

the transition state character can adopt structural and 

electronic components of these intermediates resulting in a 

lower barrier height. While the use of these classical structure-

energy relationships to analyse PCET reactions has been 

questioned recently,26,27 proton transfer and electron transfer 

states and their energies also have roles in nonadiabatic rate 

theories of PCET which treat proton transfer in a quantum 

mechanical fashion.67,68 Therefore, the use of ΔGPT and ΔGET to 

predict barrier heights of PCET is consistent with prior 

theoretical foundations. 

Assigning a direct role for ΔGPT and ΔGET is in line with recent 

computational studies of PCET transition states which invoke 

off-ΔGPCET diagonal thermodynamic terms from Scheme 1, such 

as asynchronicity (η), as key contributors to DFT derived 

reaction barriers.21–24 Asynchronicity is derived not from the 

sum of ΔGPT and ΔGET, but rather their difference. Conversely, 

we instead find that the sum of ΔGPT and ΔGET have a more 

significant effect than |η|. The reason for this discrepancy is 

unclear, but a possible explanation is that experimental noise 

prevents us from observing a comparatively more subtle trend 

between |η| and the experimental reaction barrier heights. 

Furthermore, the well-controlled nature of the series of 

complexes previously investigated for asynchronicity may have 

too little variation in (ΔGPT + ΔGET) to manifest similarly to the 

effects we observe here. 

Another way in which our data may not be amenable to 

investigating the effect of |η| is the variable reorganization 

energy of the metal oxo complexes examined here. |η| is 

specifically framed as an adjustment to the Marcus 

reorganization energy;21 therefore |η|’s effect may only be 

clear when reorganization is properly accounted for. While it is 

clear that the reorganization energy is important to PCET 

reactivity, there is no established way to compute it without 

computationally expensive transition state geometries.11,67–69 

We have made multiple attempts to derive reorganization or 

deformation parameters using the optimized metal oxo and 

metal hydroxide geometries and frequencies, but none of these 

parameters have statistically significant contributions to 

predicted reaction barriers with or without |η| (see ESI). 

Therefore, a combination of noise in the experimental data and 

our inability to compute a reliable reorganization parameter 

could preclude us from observing an effect of |η| on the barrier 

heights. Nonetheless, previous studies as well as this current 

work offer increasing support that off-ΔGPCET diagonal 

thermodynamic terms such as ΔGPT and ΔGET have important 

effects on reactivity independent of ΔGPCET. 

Table 1 Statistical Results of Various Models. 

Parameter(s)  

Regressed with ΔGPCET 

Training Set on DHAa All Data for Multiple Substratesb 

R2 LOOc R2 p-valued R2 LOOe R2 

ΔGPCET only 0.70 0.60 < 0.001f 0.45 0.36 

%BV Steric Metrics 0.77 0.64 0.15 0.48 0.28 

Oxo Spin Density 0.70 0.55 0.78 0.53 0.37 

Spin Excitation 0.71 0.50 0.49 0.50 0.39 

|η| 0.73 0.53 0.22 0.50 0.30 

ΔGPT, ΔGET 0.86 0.71 

0.0082 

0.023g 

0.0038h 

0.64 0.50 

aA subset of the reactions of 17 metal oxo complexes with DHA. bExcluding outlier metal oxo complexes (Ru oxos and oxo complexes of 13-TMC); substrates are DHA, 

1,4-cyclohexadiene, xanthene, and fluorene. cLeave-One-Out. dFrom an F-test where the null hypothesis is that only ΔGPCET has an effect. eLeave-One-Out, slightly 

modified such that all reactions for a given metal oxo are left out together. fFrom an F-test where the null hypothesis is that ΔGPCET has no effect. gFrom an F-test 

where the null hypothesis is that ΔGPT has no effect. hFrom an F-test where the null hypothesis is that ΔGET has no effect. 
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The all-thermodynamic model we find here provides 

insights and possible alternative explanations for previously 

reported trends in PCET reactivity. In one study,12 steric and spin 

state effects were invoked to explain the comparatively high 

reactivity of the S = 2 complex [FeIV(O)(TMG2dien)(CH3CN)]2+. A 

higher rate of C–H activation as compared to S = 2 

[FeIV(O)(TMG3tren)]2+ was ascribed to reduced steric 

hinderance in the TMG2dien complex,13 and the  higher rate of 

C–H activation as compared to the S = 1 complexes 

[FeIV(O)(N4Py)]2+ and [FeIV(O)(TMC)(CH3CN)]2+ was ascribed to 

the S = 2 spin state in the TMG2dien complex.36,44 However, it 

was noted that the even faster reactivity of 

[FeIV(O)(Me3NTB,CH3CN)]2+, which is S = 1 and has a similar %BV 

profile to [FeIV(O)(TMG2dien)(CH3CN)]2+,34 is not easily 

explained by either hypothesis. Our analysis suggests that the 

thermodynamic properties of these complexes may provide an 

alternative explanation in these comparisons (see Table S9). The 

Me3NTB complex has by far the most exergonic reaction with 

DHA (ΔGPCET = −16 kcal/mol), followed by the TMG2dien 

complex (ΔGPCET = −9 kcal/mol), followed by the complexes of 

TMG3tren, TMC, and N4Py (ΔGPCET = −7, −6, and −6 kcal/mol, 

respectively). Thus, thermodynamic parameters would predict 

the Me3NTB complex to have the lowest reaction barrier and 

fastest rate of reaction, with the TMG2dien complex being the 

next most reactive, and the remaining complexes the least 

reactive as is observed experimentally.   

In another study, it was observed that the rates of PCET 

reactions performed by [FeIV(O)(TMC)(X)]n+ decrease with more 

strongly donating axial ligands X.36 Variation in ΔGPCET was ruled 

out as a cause of this trend, as it was calculated to be similar for 

all complexes investigated. It was suggested that the 

accessibility of a high-spin state may explain this variation in the 

rates, as the energy of the quintet excited state decreased with 

stronger X ligands. However, our calculations indicate that while 

stronger axial donors increase ΔGET, ΔGPT decreases more 

substantially (see Table S9). In our model, these changes result 

in a net decrease in the reaction barrier, suggesting that despite 

a similar ΔGPCET, the reactivity trend could be explained by 

thermodynamic effects. These analyses do not rule out that spin 

state or steric effects may be important in the previous studies, 

but suggest that thermodynamics may also play an important 

role. 

The fit of the training data to {ΔGPCET, ΔGPT, ΔGET} and this 

model’s performance on the test set is depicted graphically in 

Figure 1. It is clear that the reaction barriers for most metal oxo 

complexes in the test set are well predicted. Nonetheless, 

several metal oxo complexes (given unique symbols in Figure 1) 

deserve further discussion. 

The {ΔGPCET, ΔGPT, ΔGET} model behaves the most poorly in 

predicting reaction barriers for the FeIV oxo and CoIV oxo 

complexes of the ligand 13-TMC.49,70  Essentially no barrier is 

predicted for these reactions, which is not observed 

experimentally. This is due to a large negative calculated ΔGPCET 

in both cases; in fact, these complexes are outliers even in the 

ΔGPCET only fit (see Regression S1). The cause of this discrepancy 

is not entirely clear. However, it appears to be systemic to the 

particular ligand scaffold rather than the identity of the metal 

center, which suggests this discrepancy could arise from 

ambiguity in the primary coordination sphere of these 

complexes. No structural characterization is reported for the 

FeIV complex, and while a short Co–O bond is identified by 

EXAFS for the CoIV complex, it is difficult to conclusively 

determine the primary coordination sphere. Any discrepancy in 

coordination sphere would render our calculated parameters 

incorrect, potentially explaining their inability to predict the 

experimental reaction barriers. 

The reaction barrier is overestimated for all Ru oxo 

complexes, and for three of them by more than two kcal/mol. 

As Ru is the only second row transition metal in our data set, we 

suspect this overestimation is due to a consistent difference 

between first and second row transition metals rather than Ru 

examples not following the same trends. For instance, it is 

possible that the Ru oxo complexes have relatively low 

structural reorganization energy or that relativistic effects 

influence the coefficients. It may also simply be a change in the 

systemic DFT error upon going to the second row. Regardless, 

regression of barriers from the kinetics of an individual Ru oxo 

complex reacting with several different substrates reveals there 

is a trend with ΔGPCET, ΔGPT, and ΔGET with similar coefficients to 

those obtained from the more general model with multiple 

different oxo complexes (see ESI). This supports that the same 

trends in free energies are at play in the Ru oxo complexes.  

Interestingly, the {ΔGPCET, ΔGPT, ΔGET} model only 

moderately underestimates the reaction barrier (by ~2 

kcal/mol) for a terminal CoIII oxo complex which has unusual 

trends in its reactivity with various substrates.15 Unlike most 

metal oxo complexes, the reactivity of this complex does not 

have a clear trend with ΔGPCET; its kinetics are instead 

dominated by ΔGPT. Therefore, its adherence to trends in 

{ΔGPCET, ΔGPT, ΔGET} as seen for the broad set of metal oxo 

complexes deserves further investigation. We regressed the 

experimental reaction barriers for the reactivity of this complex 

Fig. 1 Regression analysis of the experimental reaction barrier vs. ΔGPCET, ΔGPT, and 
ΔGET for various metal oxo complexes reacting with DHA. Specific cases discussed 
in the main text are given unique symbols. The grey line marks where predicted 
equals experimental. Predicted values are computed using the given formula.  
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with several substrates against only ΔGPT as well as against 

{ΔGPT, ΔGPCET} (Figure 2). We find that the inclusion of ΔGPCET 

significantly improves the model, increasing R2 from 0.94 to 

0.97 and LOO R2 from 0.93 to 0.95 and having an F-test p-value 

of 0.02 (see ESI). However, the relative weighting of the 

contribution from ΔGPCET is quite different than for the broader 

set of complexes.  

In the broader set we observe that ΔGPCET has a larger effect 

on the reaction barriers than either ΔGPT or ΔGET, which is 

reflected in the larger coefficient for the ΔGPCET term than for 

the ΔGPT and ΔGET terms in the fit equation (Figure 1). In 

contrast, ΔGPT has a greater effect than ΔGPCET on the reaction 

barriers for the CoIII oxo complex, again reflected in the 

magnitude of their coefficients (Figure 2). Furthermore, the 

addition of ΔGET significantly improves the model for the 

broader set of metal oxo complexes (Table 1) but is insignificant 

for the series of substrates reacting with the CoIII oxo complex 

(p-value > 0.05, see Regressions S42 and S43). Overall, this CoIII 

oxo complex is not so dissimilar from the broader set of metal 

oxo complexes in that the same thermodynamic free energies 

explain the reactivity of both. However, this individual case 

demonstrates a different weighting of parameters than that 

observed in the broad set. 

Our analysis of the CoIII reactivity rests on the assumption 

that the coefficients of the model do not change appreciably 

from substrate to substrate. To test this assumption, we 

extended our analysis of the larger set of metal oxo complexes 

to include reactivity with 1,4-cyclohexadiene (CHD), fluorene, 

and xanthene in addition to DHA. We refit the model with 

reported data for the reactions between each substrate and all 

metal oxo complexes (excluding the previously discussed Ru 

and 13-TMC oxo complexes). As with our regressions for DHA 

alone, the inclusion of ΔGPT and ΔGET notably improves the fit 

(Table 1, Figure 3). Other parameters offer comparably little 

improvement to the fit and do not perform well by LOO cross 

validation. The equation for this model is ΔG‡ = 0.23 ΔGPCET + 

0.04 ΔGPT + 0.10 ΔGET + 2.10, which is satisfyingly similar to the 

equation of the fit to DHA data alone, supporting the 

assumption that the coefficients of the model are not 

appreciably affected by the identity of the substrate. 

Conclusions 

Overall, this thorough analysis of the reported C–H activation 

reactivity of transition metal oxo complexes demonstrates that 

ΔGPCET, ΔGPT, and ΔGET have a statistically significant correlation 

with the reaction barrier. Interestingly, no other parameters 

examined here, including steric environment and spin-based 

parameters, provide a significant improvement to a ΔGPCET only 

model. This is in contrast to previous literature reports which 

implicate such factors in explaining metal oxo mediated PCET. 

The {ΔGPCET, ΔGPT, ΔGET} model predicts all but five of the 

reaction barrier heights for reactivity with DHA within 2 

kcal/mol, and predicts most of these barrier heights within 1 

kcal/mol. We find that the asynchronous reactivity of a CoIII oxo 

complex is also well-predicted, although a fit to just this 

complex alone reveals changes in the relative importance of 

ΔGPCET, ΔGPT, and ΔGET. The structural and electronic bases for 

such variation, and whether concomitant changes in selectivity 

can be leveraged, are exciting avenues for future research.  

While the relative importance of these thermodynamic 

parameters can vary between specific cases, this study on a 

broad set of metal oxo complexes suggests that thermodynamic 

parameters provide the most general contribution to reaction 

barriers. Furthermore, while a strong dependence on ΔGPCET is 

observed, as is expected based on literature precedent, 

significant and independent contributions from ΔGPT and ΔGET 

are observed. This conclusion adds to the growing body of 

 

Fig. 2 Regression analysis for a CoIII oxo. The {ΔGPT} fit is shown in black with 
predicted values computed using the indicated formula; R2 = 0.94 and LOO R2 = 
0.93. The {ΔGPT, ΔGPCET} fit is shown in red with predicted values computed using 
the indicated formula; R2 = 0.97 and LOO R2 = 0.95. The negative barriers are due 
to overestimation of the entropy of association. The grey line marks where the 

predicted barrier matches the experimentally determined barrier. 

 

Fig. 3 Regression analysis of the experimental reaction barrier to PCET mediated C‒H 

activation vs. ΔGPCET, ΔGPT, and ΔGET for all non-outlier metal oxo complexes reacting with 

DHA, CHD, xanthene, and fluorene. The grey line marks where predicted equals 

experimental. Predicted values are computed using the given formula. 
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literature supporting the importance of thermodynamic 

parameters beyond ΔGPCET. 

Methods 

Tabulation of Experimental Kinetics 

In this study we used thirty reported k2 values of metal oxo 

species reacting with DHA.12,13,15,17,34–51 For each of these oxo 

complexes, we tabulated various descriptors (metal, valency, d-

count, coordination number, etc.), experimental parameters 

(M–O bond length and vibrational frequency, BDFE, pKa, etc.), 

and the reported kinetics for reactions with various substrates 

(k2, and, if reported, the statistical correction to this k2, 

experimental ΔH‡ and ΔS‡, and the KIE) along with the 

conditions these data were reported in (temperature and 

solvent). A full tabulation is found in the SI data folder. We 

excluded a few metal oxo species from our analysis despite 

having reported kinetic data for reactivity with DHA. The 

reasons for these exclusions were varied: several did not have a 

well-defined primary coordination sphere,71–74 we were unable 

to calculate the reduced form of MnIII oxo complexes without 

deprotonation of the hydrogen-bonding ligands,17,20 one VV oxo 

has too much experimental uncertainty in its k2 value,75 

corrolazine complexes were too large to calculate their 

vibrational frequencies using our methods,16,76 vibrational 

frequencies did not converge for the reduced form of two RuVI 

dioxo complexes,50 we did not include third row complexes or 

complexes with ligand radicals,37,77–79 and in one case saturation 

was reported at higher concentrations of DHA.80 We also found 

several reports of metal oxo mediated C–H activation of 

substrates besides DHA14,39,70,81–94 and useful reviews.95,96  

All rate constants utilized here were reported as k2 values 

with the exception of several rate constants used in the CoIII oxo 

reactivity analysis.15 In this case, for substrates which did not 

have a reported k2, the pseudo-first order rate constant kobs at 

0.0125 M of substrate was divided by 0.0125 M to obtain an 

approximate k2. We used all substrates with reported kinetic 

data in this analysis except for 1,1,3,3-tetraphenylpropene. This 

substrate reacts unusually slowly, which we believe to be due 

to large steric hindrance of the reacting C–H bond. The 

remaining substrates were sterically similar enough that there 

is no steric effect on their kinetics (see Regression S41). 

Determination of Experimental Barrier Heights 

Before determining barrier heights from experimental k2 values, 

we first multiplied each k2 by any reported stochiometric and 

statistical adjustments so as to start from consistently 

unadjusted k2 rate constants (experimental k2 rate constants 

are often reported with statistical corrections to facilitate 

comparisons between substrates, either for the stoichiometry 

of the substrate’s reactivity or for the number of benzylic C–H 

bonds). We assume that where no adjustment is noted in a 

paper, none has been made. The barriers of PCET reactivity 

were then determined from the unadjusted experimental k2 

values by solving the Eyring equation97 and subtracting 

approximate expressions for the free energy of metal oxo-

substrate association: 

Δ𝐺𝑃𝐶𝐸𝑇
‡ = 𝑅𝑇 ln (

𝑘2ℎ

𝑛𝐶𝐻𝑛𝑂𝑅𝑇
) − 𝑅𝑇 [ln ((

2𝜋 𝜇 𝑅𝑇

ℎ2 )

3
2 1

𝐶∘) +
5

2
] (1) 

where ℎ is Planck’s constant, 𝑛𝐶𝐻  is 2 for DHA and CHD and 1 

for fluorene and xanthene, 𝑛𝑂  is the number of oxo ligands in 

the metal oxo complex, 𝑅𝑇 is the thermal energy, 𝜇 is the 

reduced mass of the metal oxo and the substrate, and 𝐶∘ is 1 M. 

Our 𝑛𝐶𝐻  adjusts for the typical stoichiometry of each substrate’s 

oxidation (DHA and CHD tend to lose two H-atoms, fluorene and 

xanthene one H-atom); we do not adjust for the number of 

reactive H-atoms, as ring puckering of the substrates means 

that not all reactive C–H bonds are equivalent. For instance, 

DHA has four benzylic C–H bonds, with two lying equatorial to 

the central ring and two lying axial. It is unlikely that the 

equatorial and axial positions are equally reactive, and it is 

entirely possible that reactivity predominantly occurs at only 

one of the positions. It is therefore not necessarily true that 

DHA is four times as reactive as an otherwise similar substrate 

with only one benzylic C–H bond. 

The second and third terms in Equation 1 are an 

approximation for the free energy of association of the metal 

oxo and the substrate.97 This adjustment allows us to compare 

kinetic data collected at different temperatures. As C–H bonds 

are poor hydrogen bond donors, we assume that the cost of 

association is purely entropic (or at least that enthalpic 

components vary minimally between different metal oxo 

complexes and substrates) and further assume this entropy cost 

is solely the loss of translational entropy. This neglects the loss 

of rotational entropy and the gain of low frequency metal oxo-

substrate vibrational modes, but these effects will partially 

cancel. Regression with ΔGPCET and 𝑅𝑇 does not fit DHA reaction 

barrier heights significantly better than a fit to ΔGPCET alone (see 

Regression S10), indicating that this adjustment satisfactorily 

accounts for the temperature dependence of the reaction 

barrier. 

We do not take into account hydrogen bonding between the 

metal oxo complexes and protic solvents as we were unable to 

derive a suitably accurate correction. However, in the SI we 

demonstrate that our best attempt to do so does not change 

the main conclusions herein (see Table S11).28,98–100 

Calculation of Parameters 

For each of these oxo complexes we calculated the values of 

parameters that have been proposed to influence metal oxo 

mediated PCET reactivity. Specifically, the parameters 

investigated were %BV steric metrics, spin density on the 

oxygen atom, available spin states, thermodynamic free 

energies ΔGPCET, ΔGPT, and ΔGET, and the magnitude of the 

asynchronicity parameter (|η|). Geometry optimization and 

frequency calculations were performed in ORCA using the def2 

basis sets of Weigend and Ahlrichs and the O3LYP functional.101–

106 For the wider set of metal oxo complexes, all transition 

metals were given the def2-TZVPP basis set, all metal-bonded 

atoms and the transferring hydrogen atom the def2-TZVP basis 
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set, and the remaining atoms the def2-SV(P) basis set. 

Substrates were calculated entirely with the def2-TZVP basis 

set. For calculations regarding the CoIII oxo and various 

substrates, Co, N, O, the carbene carbons of the ligand, and the 

carbon undergoing C–H activation was given def2-TZVPP; all 

other atoms were given def2-SVP. For both sets of calculations 

solvent effects were included as a polarizable continuum (CPCM 

with the dielectric constant of acetonitrile for the broader set of 

metal oxo complexes; COSMO with the dielectric constant of 

THF for the CoIII oxo with substrates). This is primarily to 

mitigate the effect of self-interaction error;107 we assume that 

the solvent dielectric has little effect on the rate of PCET, as 

reported solvent effects on similar reactions are typically 

limited to hydrogen bonding.28,100,108 The def2 ECP was used for 

ruthenium.109 The resolution of identity approximation was 

used for coulomb integrals and the chain of spheres 

approximation for exchange integrals (with def2/J as the 

auxiliary basis). No change was made to ORCA’s default grid 

settings. Free energies were derived from the electronic 

energies and vibrational calculations using the quasi-harmonic 

oscillator formulation of Grimme and coworkers.110 

Unfortunately, several of our optimized structures have 

small imaginary frequencies (See ESI), which we believe is due 

to numerical noise of CPCM solvation. Occasionally these 

frequencies lie below −100 cm-1 but in each of these cases the 

mode is isolated to a soft dihedral motion, e.g. methyl rotation 

on an acetonitrile ligand. We used the absolute value of these 

frequencies when calculating the thermodynamic enthalpy and 

entropy values, believing that to be a better approximation for 

these modes than either nonexistence or a frequency of 0 cm−1. 

We were unable to reoptimize these structures to remove the 

imaginary frequencies. 

In many cases, the correct ground state multiplicity of a 

species was not immediately clear. In such cases we confirmed 

our initial assignment by running ten geometry optimization 

cycles on alternate spin states and confirming these alternate 

assignments were several kcal/mol uphill of the assigned spin 

state. In a few cases were the energy was within 5 kcal/mol and 

the optimization was not close to convergence, we fully 

optimized the alternate spin state. Whenever two spin states 

had nearly the same energy, we chose the higher spin state as 

the ground state due to the typically higher entropy of high spin 

states. 

To quantify the steric environment around each metal oxo 

center or substrate reactive C‒H bond, we calculated percent 

buried volume (%BV) steric metrics using the online SambVCA 

web application.52 We centered the calculation on the oxygen 

atom (for oxos) or the transferring hydrogen (for substrates), 

defined the negative z-axis as going through the metal center 

(for oxos) or the reacting carbon center (for substrates), and 

defined the xz plane as containing another atom bonded to the 

metal or carbon (the first such atom in the .xyz file). We had the 

center oxygen or hydrogen atom deleted from the calculation, 

included hydrogen atoms in the calculation, and left all other 

settings to their default value (using Bondi radii scaled by 1.17, 

a sphere radius of 3.5 Angstroms, and a mesh setting of 0.10 

Angstroms). The application returns a total percent buried 

volume, as well as that for individual quadrants of the sphere. 

For metal oxo complexes, we used the total percent buried 

volume (%BV Tot) and the standard deviation of these four 

quadrants (%BV Dev) in our regressions in order to capture both 

overall steric bulk and how evenly distributed this bulk is around 

the metal oxo moiety. For substrates, we solely used %BV Tot. 

See the ESI for a further discussion of steric parameters and 

their effect on reaction barrier heights. 

To evaluate the effect of spin and spin state on reactivity, 

we used two parameters that have been discussed in the 

literature: spin density on the oxo ligand and the energy to 

excite to a higher spin state.8,10 Atomic spin populations were 

determined via IBO analysis using the freely available IBO 

Viewer software.53,54 We recorded the spin density on the metal 

and on oxygen for each metal oxo complex as well as how much 

spin both atoms gain upon PCET reduction; we also tabulated 

similar values for the IBO charges. In the regression analysis we 

solely used the spin density on the oxo ligand. The “Spin 

Excitation Energy” is the vertical energy from the ground spin 

state of the initial oxo complex to the lowest lying excited spin 

state that is within one spin multiplicity of the resulting metal 

hydroxide ground spin state. If the ground spin state is already 

one spin multiplicity greater or lower than the product 

hydroxide spin state, then the spin excitation energy is taken to 

be zero. For instance, in the case of a triplet FeIV oxo reacting to 

give a sextet FeIII hydroxide the spin excitation energy is the 

energy of the quintet FeIV oxo relative to the triplet FeIV oxo at 

the ground state optimized geometry. This is the scenario for 

most FeIV oxos in the data set.  But in the case of the two non-

heme FeIV quintet oxos,12,13 the spin excitation energy is zero 

because the ground spin state is already within one spin 

multiplicity of the sextet hydroxide product. Essentially, the spin 

excitation energy is the energy needed to reach a spin surface 

on which reduction to the metal hydroxide’s ground spin state 

is spin allowed. While this simple metric ignores the nuances of 

two state reactivity theory (such as the spin inversion 

probability) it is relatively simple to compute and has precedent 

as a quantitative measure of PCET reactivity.10,36 

For each metal oxo-substrate combination assessed here, 

we tabulated the free energies of proton coupled electron 

transfer (ΔGPCET, Equation 2), proton transfer (ΔGPT, Equation 3), 

electron transfer (ΔGET, Equation 4), and the asynchronicity as 

defined by Srnec and coworkers (η, Equation 5):21 

Δ𝐺𝑃𝐶𝐸𝑇 = 𝐺𝑀−𝑂𝐻 + 𝐺𝐶⋅ − 𝐺𝑀=𝑂 − 𝐺𝐶−𝐻 (2) 

Δ𝐺𝑃𝑇 = 𝐺𝑀−𝑂𝐻+ + 𝐺𝐶:− − 𝐺𝑀=𝑂 − 𝐺𝐶−𝐻 (3) 

Δ𝐺𝐸𝑇 = 𝐺𝑀−𝑂− + 𝐺𝐶−𝐻+ − 𝐺𝑀=𝑂 − 𝐺𝐶−𝐻 (4) 

𝜂 =
𝐺𝑀−𝑂𝐻+ + 𝐺𝐶:− − 𝐺𝑀−𝑂− − 𝐺𝐶−𝐻+

√2
⁄  (5) 

where 𝐺𝑀=𝑂 is the calculated free energy of the oxo species, 

𝐺𝐶−𝐻  is the calculated free energy of the substrate, and all other 

free energies are defined analogously. We also tabulated the 

absolute value of the asynchronicity (|η|), the average of ΔGPT 

and ΔGET (ΔGCT Average), and the analogous electronic energies 

(same notation, with G replaced with E). 
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Statistical Analysis 

All statistical analysis was performed in Python using the 

Numpy, Scipy, Pandas, Sklearn, and Matplotlib packages.111–115 

A script ran a prescribed set of regression models and reported 

statistics on each model. All regressions were performed with 

ordinary least squares. Prior to fitting any regression, we 

separated the data into a test set and a training set of metal oxo 

species. While we show both test and training sets for each 

regression in the ESI, we initially did not plot the test set or 

calculate statistics with it. We solely used the training set in the 

earlier stages of our analysis, where we determined which 

parameters improved a fit to ΔGPCET only and which did not. We 

then examined if the good fits to the training set extrapolated 

well to the test set. We had to make a few changes to the initial 

division of the training and test sets, however. Initially, the CoIV 

oxo was included in the training set,49 but that was interfering 

with the fit to ΔGPCET. We moved it to the test set, and to provide 

insight into this poor fit we calculated the FeIV oxo complex of 

13-TMC and added it to the test set.70 We also saw, visually, that 

the inclusion of a RuIV oxo in the training set was interfering with 

the addition of other parameters and moved all Ru oxo 

complexes to the test set.38,43,45,50,51 

The simplest metrics reported from these models are the 

mean square error (MSE) and the goodness of fit R2.58–61 These 

both give an indication of how well a model fits the available 

data but are prone to overfitting; more complicated models can 

only improve these metrics, regardless of whether or not the 

model is actually better. 

We also evaluated each model with cross validation (CV) 

metrics, which can become worse upon overfitting. In K-fold 

cross validation, the training data is further subdivided into K 

subsets, and each subset is predicted by the K−1 remaining 

subsets.59,61 When K is the number of data points, i.e. each data 

point being predicted by the rest of the data points, this is 

known as leave-one-out (LOO) cross validation. These predicted 

data points can be used to calculate the MSE and R2 as above. 

The MSE from LOO cross validation is an approximately 

unbiased estimate of the expected error of a test set; however, 

it has high variability from training set to training set because 

each prediction uses nearly every point in a given training set. 

By repeatedly subdividing into larger groups and averaging the 

resultant K-fold MSEs, one obtains a pessimistic but less variable 

estimate of the expected test error. As we see similar trends for 

both LOO and 5-fold CV, we only report LOO R2 in the main text 

but show all metrics in the ESI. 

Another way to determine the significance of the model is 

to use a statistical F-test.58,60 This allows one to compare an 

unrestricted model with a more restricted one (fewer 

parameters used as regressors, or no parameters regressed, or 

restrictions placed on the relationship between coefficients, 

etc.). In the language of hypothesis testing, the null hypothesis 

is that the unrestricted model offers no improvement on the 

restricted model and the alternate hypothesis is that there is an 

improvement. When both models are fit to the data, the 

unrestricted model will have less total squared error than the 

restricted model. Assuming said error of each data point is 

normally distributed (or that there is enough data such that the 

error is approximately normally distributed), that the average 

error is zero, and that the model is properly formulated, it is 

possible to determine the probability that this reduction in total 

squared error is spurious. This probability is known as the p-

value. The test relies on a well-defined number of degrees of 

freedom in both the restricted and unrestricted model to draw 

out what the statistical distribution of total squared error ought 

to be. 

For regressions on multiple substrates at once, the unequal 

weighting of different metal oxo complexes (depending on how 

many substrates are reported for them) renders these statistical 

metrics unreliable.61 We ameliorate this issue for LOO cross 

validation by leaving out all reaction barriers for a given metal 

oxo complex together rather than one at a time. That is, we 

leave one metal oxo complex out and predict its reaction barrier 

heights based on all other metal oxos’ reaction barrier heights 

rather than leave one reaction barrier height out and predict 

this barrier based off all other barriers. We accordingly only 

report LOO CV metrics for this set of regressions. 
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