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Abstract— Communication in parallel systems consumes sig-
nificant amount of time and energy which often turns out to be
a bottleneck in distributed machine learning. In this paper,
we present EventGraD - an algorithm with event-triggered
communication in parallel stochastic gradient descent. The
main idea of this algorithm is to modify the requirement of
communication at every epoch to communicating only in certain
epochs when necessary. In particular, the parameters are
communicated only in the event when the change in their values
exceed a threshold. The threshold for a parameter is chosen
adaptively based on the rate of change of the parameter. The
adaptive threshold ensures that the algorithm can be applied
to different models on different datasets without any change.
We focus on data-parallel training of a popular convolutional
neural network used for training the MNIST dataset and show
that EventGraD can reduce the communication load by up to
70% while retaining the same level of accuracy.

I. INTRODUCTION

Machine Learning workloads are increasing in size due

to the massive growth in data collected from the internet,

multiple connected sensors, etc. Hence training machine

learning models in a parallel environment is becoming ever

popular [1], [2]. Most parallel machine learning endeavours

have focused on training in multi-core desktop environments

or small commodity clusters. However, recently researchers

have become interested in machine learning on large-scale

clusters such as supercomputers [3]–[7].

One of the biggest challenges in such large-scale parallel

environments is that communication is often more expensive

in terms of time and energy than computation [8], [9].

Consequently there has been a lot of research aimed at

reducing communication in parallel simulations. Most of the

focus has been in the context of parallel numerical solutions

of partial differential equations [10]–[12] but there has been

recent work with respect to parallel training of machine

learning models, mostly neural networks [13], [14]. In this

paper, we introduce a novel algorithm for communication

reduction in parallel machine learning.

Parallel or distributed machine learning can be data-

parallel or model-parallel [15], [16]. In the former, the dataset

is divided into multiple processors, with each processor

having a copy of the entire model and averaging its model

with others during the training. In the latter, the neural

network model itself is divided among the multiple PEs,

however the dataset is not divided. Note that the model

decomposition in model parallelism is usually done across

the neurons in each layer (width), not across layers (depth)

because of the obvious sequential dependencies. There have

been approaches to combine the two for hybrid parallelism.

In any kind of parallelism in training, the processors

need to exchange the weights and biases with each other

before moving to the next training epoch. For example, in

data parallelism, the weights and biases among the different

processors are averaged with each other before executing the

next training epoch. Such an exchange usually happens by

message passing at the end of every epoch. In this paper, we

propose an algorithm where the exchange of these weights

and biases happens in events only when a certain criterion is

satisfied. In particular, the main contributions of this paper

are:

• We propose a parallel stochastic gradient descent (SGD)

training algorithm where the weights/biases are com-

municated to other processors only when the change in

their norm exceeds a threshold; otherwise the intended

receiver continues averaging using the last received

values.

• We emphasize on a threshold that is adaptive to the

slope of the parameter values, thus requiring no separate

procedure for tuning the threshold for different models.

• We provide an HPC implementation of our algorithm

using PyTorch and Message Passing Interface (MPI) in

C++ and highlight the implementation challenges of this

algorithm, particularly the need of advanced features

such as MPI one-sided communication.

Using this algorithm, we show that the same accuracy

can be achieved with 70% lesser messages sent between

processors using a popular convolutional neural network on

the MNIST dataset. This translates to savings in time and

energy involved in communication, thus making the overall

training more efficient. Our implementation is open-source

and available at [17]. To the best of our knowledge, this

algorithm is novel and has not been proposed before in

literature in the context of parallel machine learning. Note

that we proposed a similar algorithm in the context of parallel

numerical simulations of partial differential equations in our

previous work [12].

It is important to note that while we focus on data-

parallel stochastic gradient descent in this paper, the idea

of event-triggered communication can be generalized to

model-parallel and hybrid configurations. Further it can be

extended to training algorithms other than SGD such as
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Adam, RMSProp, etc.

The paper is organised as follows:- Section II surveys

related work and Section III introduces the necessary back-

ground. The idea of our algorithm is proposed in Section IV

with implementation details in Section V. Section VI contains

the experimental results followed by conclusion in Section

VII. For notational convenience, we denote the abbreviation

PE to be a processing element, either CPU or GPU.

II. RELATED WORK

There are a number of approaches to reducing commu-

nication in parallel stochastic gradient descent in neural

networks. Before we discuss some of the popular works in

literature regarding this, we outline the main approaches for

parallelizing SGD in Fig 1.

Fig. 1. Popular ways of parallelizing neural networks.

Since we are focused on data parallelism, we study related

work in that context. In data-parallelism, every PE has a

subset of the overall dataset and a copy of the neural network

model. During the training process, the PEs exchange infor-

mation among each other, namely the weights and biases, to

ensure that the training is carried out on the entire dataset

and not just the sub-datasets assigned to every PE.

During each epoch of the training process, the common

approach is to average the gradients of the weights and

biases among all the PEs. There are two approaches which

build up on this idea. In the parameter server approach,

there is a central parameter server PE that stores the neural

network model. All the remaining PEs calculate the gradient

in their sub-dataset and then send it to the parameter server.

The parameter server averages all the gradients, updates

the model and then the worker PEs continue to the next

epoch of training, resulting in a synchronized algorithm.

This requirement of synchronization was relaxed by the

Hogwild algorithm [18] where the worker PEs can send

gradients to the parameter server without any lock step. There

are numerous other works improving the performance of

parameter server based approaches [19], [20]. However, this

approach is not very suitable for machine learning on HPC

environments because of the central point of dependence on

the parameter server, resulting in poor scalability.

The second approach does not involve a parameter server.

Instead all PEs average their gradients using an AllReduce

mechanism. Every PE has a copy of the same model which

is updated using the averaged gradients in every iteration.

At the end of training, the models in all PEs are averaged

to do testing/inference. Instead of a normal AllReduce, there

have been several optimized variants proposed in literature.

The authors in [21] have proposed one-bit quantization

where each gradient update is quantized to 1-bit, resulting

in reduction of data volume to be communicated. Threshold

quantization was developed by [22] where only gradient

updates greater than a static threshold are encoded with a

fixed value and sent. A hybrid approach combining both

1-bit and threshold quantization was given in the adaptive

quantization proposed by [13]. Deep Gradient Compression

in [23] compresses the size of gradients and accumulates

the quantization error and momentum to maintain accuracy.

There have been approaches to minimize communication by

reducing the precision of gradients, e.g., using half precision

(16-bit) for training [24] and mixed precision [25]. Sparsified

methods that communicate only the top-k most significant

values have been proposed by [14], [26]. Combining the

two methods of quantization and sparsification is presented

in [27]. A different approach based on changing MPI oper-

ations to reduce communication has been discussed in [28]

in which the AllReduce operation is replaced by relocating

the intermediate data and using an Allgather operation.

All the above works are improvements on the AllReduce

based training where averaging is done among all the pro-

cesses. Another version of data-parallel training has been

proposed where gradient averaging can be done with few

selected PEs instead of all the PEs. In particular, the PEs

can be assumed to be connected in a ring topology and

each PE averages its gradient with the two neighbors in the

ring [29]. The intuition is that a processor will communicate

its information to its neighbors, which will then communicate

to its neighbors and so on. Thus information gets propagated

through all the processors. While it might seem that such a

scheme will converge slowly with lesser accuracy due to

the delayed propagation of information, the authors in [30]

showed that there is negligible drop in accuracy. While [30]

considers a regular communication pattern with neighbors

which remain fixed throughout training, there are interesting

gossip algorithms [31]–[33] that choose neighbors randomly

and exchange information. Whether the neighbors remain

fixed or not, the main advantage of these methods is the

replacement of collective communication with peer-to-peer

communication, resulting in significant savings in communi-

cation time and energy.

In this paper, we build on such an algorithm proposed

in [30]. In [30], communication of messages with neighbor

PEs happen at every epoch of training. This might not be

necessary since values might not change significantly in

every epoch. The main idea of this paper is that instead of

communicating the parameters with neighbors at every epoch

of training, communication is triggered in events only when

necessary. We show that our algorithm achieves the same

level of accuracy on the test set using approximately 70%

lesser communication.
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III. BACKGROUND

As stated before, we consider the decentralized stochastic

gradient descent algorithm mentioned in [30] as our baseline.

The PEs are assumed to be connected in a ring, with each PE

having two neighbors shown in Fig 2. This topology stays

fixed throughout the training.

Fig. 2. Usual topology of processors executing training based on averaging
with neighbors. For illustrative purposes, 4 PEs are shown here but the ring
topology can be generalized to any number of PEs.

To mathematically formulate the training procedure of the

algorithm in [30], consider xI as a parameter in the I-th PE,

NI the set of neighbors of the I-th PE, F the loss function

involved. Then xI(k + 1) for epoch k + 1 is updated as

follows:

xI(k + 1) = WIIxI(k) +
∑
J∈NI

WIJxJ(k)− γ∇FIk(xI(k)),

(1)

where W = [WIJ ]1≤I≤N,1≤J≤N is the adjacency matrix.

WII corresponds to the weight of the state of the I-th PE

while WIJ corresponds to the weight of the state of J-th PE

on the state of the I-th PE. For the topology in Fig 2,NI = 2.

Note that in (1), the parameters of the neural network, i.e.,

the weights and biases are exchanged instead of the usual

method of exchanging their gradients. The authors in [30]

were able to show that such a scheme involving exchange

of the parameters is almost equivalent to exchanging the

gradients of the parameters. For details on how to choose W
optimally, the reader is referred to [34]. Usually the values

of W are taken to be 1
NI+1 , meaning the weight of the I-th

PE is averaged with that of its neighbors after every epoch

of training. After training concludes, the models in all the

PEs are usually averaged to produce one model which is

then evaluated on the testing dataset. This algorithm in [30]

is stated in pseudo code in Algorithm A.

IV. MAIN IDEA

The decentralized algorithm in (1) assumes that the model

parameters in a PE are exchanged with neighbors in every

epoch of the training. This might be a waste of resources

since the parameters might not differ a lot in every epoch.

The main idea behind our approach is to relax this require-

ment of communication with neighbors at every epoch of

Algorithm A : Regular Communication in Data Parallel

Machine Learning

for k = 0, 1, 2, . . . K-1 do
Randomly sample from dataset in I-th PE

Compute the local stochastic gradient ∇FIk(xI(k))
Communicate parameters to neighbors

Update parameters using (1)

end for
Obtain averaged model from all PEs

training. Every PE tracks the changes in the parameters of

its model, i.e., the weights and biases. When the norm of

a particular weight or bias in a PE has changed by some

threshold, it is sent to the neighbors. Otherwise that particular

parameter is not sent after that epoch to the neighbors and

the neighbors continue averaging their own model with the

last received parameters.

Fig. 3. Illustration of change in norm of parameters over iterations/epochs
(taken from [12]). The left plot shows the norm of the parameter over
iterations at the sender. The right plot shows the norm of that corresponding
parameter used at the receiver.

Fig 3 illustrates this phenomenon. Usually in neural net-

work training, the parameters change rapidly during the

initial iterations, followed by sluggish changes before they

reach an approximately steady value. Because of this behav-

ior, we consider the concave curve in Fig 3 for illustration.

The left plot shows the evolution of the norm of a parameter

over training iterations. When this norm changes by more

than a threshold (0.1 in Fig 3) from the norm of the pre-

viously communicated values, an event for communication

is triggered as marked by an asterisk. The first event of

communication is forced to take place at iteration k = 0 for

convenience. The right plot shows the corresponding values

that the receiving PE uses when averaging its parameters

with parameters from this corresponding sending PE. When

a new value is received due to an event of communication

at the sender, that value is used by the receiver. Otherwise,

the last communicated value is used at the receiver. Due

to implementation challenges involving MPI one-sided com-

munication which we describe in detail in the next section,

this algorithm becomes completely asynchronous unlike the

synchronous algorithm in [30]. So before we formulate our

algorithm, let us define two sequences:

• λIJ(k) - This is the sending sequence containing the

current iteration number of the I-th PE when the I-th

3
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PE sends a message to the J-th PE.

• τIJ(k) - This is the receiving sequence containing the

current iteration number of the I-th PE when the I-th

PE receives a message from the J-th PE.

Now, the sending PE sends a parameter xI when it changes

by a threshold δ. Thus the sending sequence λIJ(k) is given

by:

λIJ(k) =

{
k, if (xI(k)− xI(λIJ(k − 1))) ≥ δ

λIJ(k − 1), otherwise.

(2)

Consequently, the training algorithm at the receiving PE

gets modified from (1) to

xI(k + 1) = WIIxI(k) +
∑
J∈NI

WIJxJ(τIJ(k))

− γ∇FIk(xI(k)). (3)

The pseudo code for this algorithm is given in Algo-

rithm B. It is important to have the distinction between

the sending and receiving sequences because of the asyn-

chronous nature of this algorithm. Note that the sending

sequence λIJ(k) for the I-th PE is the same for all J ∈ NI .

However, the receiving sequence τIJ(k) for the I-th PE is

different for different J ∈ NI .

Algorithm B : EventGraD - Event-Triggered Communica-

tion in Data Parallel SGD
for k = 0, 1, 2, . . . K-1 do

Randomly sample from dataset in I-th PE

Compute the local stochastic gradient FIk(xI(k))
if (xI(k)− xI(λIJ(k − 1))) ≥ δ then

Communicate parameter to neighbors

end if
Update parameters using (3)

end for
Obtain averaged model from all PEs

Choosing the threshold δ is a design problem. The effi-

ciency of this algorithm depends totally on selecting appro-

priate thresholds. The simplest option would be to choose

a constant static value. But selecting the appropriate value

would involve a lot of trial and error. Further, when the

neural network model changes, the process would have to

be repeated all over again. In other words, if the number of

neurons in a layer or the number/type of layers changes, a

different value of the constant threshold would need to be

chosen.

Instead, it is better to choose a dynamic threshold that is

adaptive to the rate of change of the parameters, i.e., the

slope of the parameters. This means that the threshold for

each parameter is a function of the slope of the parameter.

Whenever an event of communication is triggered, the slope

is calculated between the current value and the last communi-

cated value. This slope is multiplied by a horizon to calculate

the threshold as shown in Fig 4. Thus the threshold has the

following form:

Threshold δ = Slope× Horizon. (4)

This threshold will be kept fixed until another event is

triggered, resulting in calculation of a new threshold. The

intuition behind making the threshold dependent on the slope

is to save on communication as much as possible while

ensuring that communication does not stop, i.e., happens

once in a while. If a parameter is changing fast, it means

that it will satisfy the criterion for communication soon -

thus a high threshold (due to the high slope) can be suitable.

However, if the parameter is changing slowly, there might a

long period before the next communication happens which

might slow down convergence of the overall algorithm.

Hence the threshold is decreased (due to the low slope) to

incentivize communication. The horizon is a hyperparameter

that has to be chosen by the user. It might seem that

the horizon hyperparameter requires tuning as well, thereby

nullifying its advantages over the static threshold. However,

we found empirically that the same horizon used for training

different models worked well. This plays a huge role in

keeping EventGraD portable across multiple models.

Fig. 4. Illustration of slope-based adaptive threshold. The right green star
denotes the event of current communication while the left green star denotes
the event of last communication. The slope is calculated between these two
points which is then multiplied by the horizon to obtain the new adaptive
threshold.

Often the parameters in a neural network have local minor

oscillations due to the nature of the stochastic gradient

descent algorithm. In other words, the change in parameters

may not be as smooth as illustrated in Fig 4. This might be

lead to calculation of a threshold that is not representative of

the overall non-oscillatory trend in the parameter. In order for

the threshold to reflect the aggregate trend in the parameter

and not the local oscillations, the sender keeps a history of

multiple previously communicated events instead of just one

previous event. Then the average slope is calculated which

is the mean of the slopes between two consecutive events

in that history. This average slope is then multiplied by the

horizon to obtain the threshold. The length of the history is a

hyperparameter which is similar in notion to the length of a

moving average filter. The higher the length, the smoother the

trend but at the cost of increased computational complexity.

We note that the theoretical convergence properties of this

algorithm have to be studied which we will address in our

future work. However, in experiments, we noticed that the
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EventGrad algorithm reaches the same level of accuracy as

the algorithm in [30].

V. IMPLEMENTATION

There are a lot of popular frameworks for machine learn-

ing like PyTorch, TensorFlow, CNTK, etc. Almost all of

these frameworks support parallel or distributed training.

TensorFlow follows the parameter server approach for paral-

lelization. PyTorch provides a module called DistributedDat-

aParallel that implements AllReduce based training. Horovod

is another framework developed by Uber that implements

an optimized AllReduce algorithm. However, none of these

frameworks provide native support for the training involving

averaging with just neighbors. Hence we decide to implement

them without using any of the distributed modules in these

frameworks.

We use PyTorch and MPI for our implementation. Re-

cently, PyTorch released a C++ frontend called Libtorch

which is suitable for HPC environments unlike the usual

Python interface. Libtorch has almost the same function-

alities as PyTorch. Hence we combine the neural network

training functionalities of Libtorch with communication rou-

tines in MPI to implement our algorithm. Note that the

LBANN HPC toolkit introduced in [3] is also a great

candidate for implementing distributed machine learning in

HPC environments.

It is worth noting that the events for communication are

dependent on the change in values of the parameters of the

sender which is a local phenomenon. Thus, when an event

is triggered in the sending PE, it can issue a MPI Send

operation. However, since the intended receiving PE is not

aware of when the event is triggered at the sender, it does

not know when to issue a MPI Recv operation. So two-sided

communication using MPI Send and MPI Recv cannot be

used for our algorithm.

Fig. 5. Comparison of two-sided and one-sided communication.

We select one-sided communication for our purpose as

was also the case in our previous work [12]. In one-sided

communication, only the sending PE has to know all the

parameters of the message for both the sending and receiving

side and can remotely write/read from a portion of the mem-

ory of the receiver without the receiver’s involvement - hence

the alternate name of RMA (Remote Memory Access) [35].

That region of memory in the receiver is called window
and can be publicly accessed. In our case, it is used to

store the model parameters from the neighbors. So when an

event for communication is triggered in the sending PE, it

uses MPI Put to write its model parameters directly into the

window of the corresponding neighbor PE. An illustration of

one-sided vs two-sided communication is provided in Fig 5.

MPI one-sided communication provides two options for

establishing a communication channel between two PEs. The

first is active target synchronization such as the fence mecha-

nism or post/start/complete/wait (PSCW) mechanism. These

mechanisms require active participation from the receiver

which is not possible in our case since the receiver is not

aware of the occurrences of events at the sender. Instead

we select the other option of passive target synchroniza-
tion where the receiving PE plays no role. The sending

PE can start a RMA access epoch using MPI Win lock,

transfer the message using MPI Put and then end the access

epoch by MPI Win unlock. Sometimes, before the unlock,

MPI Win flush is used to ensure that RMA operations have

completed.

In Libtorch, all the model parameters such as weights and

biases are stored as tensors just like PyTorch. Using MPI one-

sided operations to send tensors in Libtorch is challenging.

At the moment, we convert the multidimensional tensors

into contiguous unidimensional arrays, which are sent by

the sender. At the receiver, these arrays are converted back

into the corresponding multidimensional tensors again before

they are used by the receiver. In future, we will look at how

to allocate the memory of a Libtorch tensor as a MPI window

so that one-sided operations can be done seamlessly without

conversion into intermediate arrays.

VI. EVALUATION

We perform experiments to evaluate the performance of

our EventGraD algorithm. All our simulations are done on

CPUs. We use an HPC cluster of nodes with each node

having 2 CPU Sockets of AMD’s EPYC 24-core 2.3 GHz

processor and 128 GB RAM per node. The cluster uses

Mellanox EDR interconnect. The MPI library chosen in

Open MPI 4.0.1 compiled with gcc 8.3.0. The version of

Libtorch used is 1.5.0. We choose the MNIST dataset for

our experiments due its simplicity and popularity. Our neural

network is made of convolutional and linear layers with max-

pooling and dropout as shown in Fig 6. This is a simple

model architecture which is popular for training the MNIST

dataset and achieves around 98% accuracy [36]. For training

this network, a learning rate of 0.05 is used with cross-

entropy as the loss function.

As mentioned before, we focus on data-parallel training

where the dataset is divided into multiple PEs, with each

PE having a copy of the model in Fig 6. We run all our

experiments on 4 PEs. The batch size on each PE is 64,

making the effective batch size 256 on 4 PEs. The MNIST

5
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Fig. 6. Architecture of the Convolutional Neural Network used in our experiments. FC stands for Fully Connected (Linear) layers. ReLU is the rectified
linear unit activation function.

dataset has 60000 training images, so each PE has 15000
images. The model is trained over 10 epochs. Hence we

can estimate the total number of parameter update steps as
15000
64 × 10 ∼ 2500.

For the purpose of our experiments, we choose two

different combinations of neurons and kernel sizes for the

model in Fig 6. They are described in Tables I and II.

TABLE I

PARAMETERS OF LAYERS OF CNN-1

Layer Parameters

ConvLayer1
InChannels= 1, OutChannels= 10,

KernelSize= 5
MaxPool1 KernelSize= 2

ConvLayer2
InChannels= 10, OutChannels= 20,

KernelSize= 5, DropoutProbability= 0.5
MaxPool2 KernelSize= 2

FCLayer1
Inputs= 320, Outputs= 100,

DropoutProbability= 0.5
FCLayer2 Inputs= 100, Outputs= 10

TABLE II

PARAMETERS OF LAYERS OF CNN-2

Layer Parameters

ConvLayer1
InChannels= 1, OutChannels= 10,

KernelSize= 3
MaxPool1 KernelSize= 2

ConvLayer2
InChannels= 10, OutChannels= 20,

KernelSize= 3, DropoutProbability= 0.5
MaxPool2 KernelSize= 2

FCLayer1
Inputs= 500, Outputs= 100,

DropoutProbability= 0.5
FCLayer2 Inputs= 100, Outputs= 10

First we are interested in looking at how the parameters

of the layers change over the update steps. As an example,

Fig 7 shows the euclidean norm of the weights and biases

of each layer for the model configuration in Table I in one

PE. The change in weights for all the layers is similar to

the illustration before in Fig 3 whereas biases stay almost

flat throughout training. This means that not all parameters

need to be communicated at every update step, thereby

suggesting the possibility of saving messages by triggering

communication in events.

Fig. 7. Evolution of the euclidean norm of the weights and biases of the
4 corresponding layers in Fig 6 over the update steps for one PE.

Now we implement event-triggered communication to the

training of the two models in Tables I and II. First, we

implement a constant static threshold for both. We study

how different thresholds affect the percentage of messages

along with the training and testing accuracy of the network.

The percentage of messages is measured with respect to the

case with communication at every update step, equivalent

to a threshold of 0 in the event-triggered communication

algorithm. The plot in Fig 8 is for Table I and Fig 9 for

Table II. We see that with increase in threshold, the number

of messages decreases resulting in savings in communication

while the accuracy stays practically same up to a point.

After that point, the accuracy falls sharply indicating that

thresholds above that are not suitable. The threshold from

which accuracy sharply degrades is around 0.6 × 10−3 for

Table I and around 2 × 10−3 for Table II. Since the two

models are different, the range of thresholds for them are

also different. It is not tractable to experiment with different

thresholds for different models and then choose a suitable

one for that specific model.
Instead we emphasize on the adaptive threshold proposed
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Fig. 8. Plot of percentage of messages and accuracy versus the threshold
for the model configuration in Table I.

Fig. 9. Plot of percentage of messages and accuracy versus the threshold
for the model configuration in Table II.

in Section IV. As a reminder, the adaptive threshold is

determined by estimating the slope of the parameters mul-

tiplied by a horizon as shown before in Fig 4. A value of

1 for the horizon and a value of 2 for the length of the

history of previously communicated values is chosen for

our experiments. Using this threshold, the model in Table I

achieves an accuracy of 97% with 40% of the messages. The

model in Table II achieves an accuracy of 95% with 25% of

the messages. No different thresholds have to be chosen here

for different models unlike the constant threshold. Hence

adaptive threshold is the better choice.

It is useful to study the accuracy vs the percentage of

messages sent for both the types of threshold for both the

models. Fig 10 shows that plot for the model in Table I and

Fig 11 for Table II. We see that the slope-based adaptive

threshold achieves a high level of accuracy with only 25
to 40% of the messages. However, there are values of the

constant threshold that achieve the same accuracy with even

lower percentage of the messages. To achieve that using

the adaptive threshold would probably require the threshold

to be a non-linear function of the slope instead of the

linear function considered in this paper. Thus finding out

the optimal way to choose the adaptive threshold is an open

problem which we leave for future work.

Fig. 10. Accuracy versus percentage of messages sent for the model
configuration in Table I. The blue asterisks denote the values of the threshold
in Fig 8, with the highest threshold on the left and the lowest threshold on
the right.

Fig. 11. Accuracy versus percentage of messages sent for the model
configuration in Table II. The blue asterisks denote the values of the
threshold in Fig 9, with the highest threshold on the left and the lowest
threshold on the right.

VII. CONCLUSION

This paper introduces a novel communication mechanism

in parallel training of neural networks using stochastic gra-

dient descent. The proposed EventGraD algorithm based

on event-triggered communication reduces communication

up to around 70% while maintaining the same accuracy.

The choice of the threshold for triggering events is chosen

adaptively based on the slope of the parameter values,

thus ensuring that it can be applicable for different neural

network configurations without any change. The implemen-

tation challenges of the algorithm using MPI and PyTorch,

specifically the need for MPI one-sided communication, are

also discussed.

For future work, we want to apply this algorithm for train-

ing state-of-the-art neural network models such as ResNet-

50 and VGG-16 on larger datasets such as ImageNet. We

plan on using GPUs for those simulations, so we have

to implement one-sided communication operations between

GPUs using tools such as Nvidia GPUDirect. Further, we

are working on characterizing theoretical properties of this
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algorithm such as the optimal way to choose the adaptive

threshold and the rate of convergence with the adaptive

threshold.
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[26] Cèdric Renggli, Saleh Ashkboos, Mehdi Aghagolzadeh, Dan Alistarh,
and Torsten Hoefler. Sparcml: High-performance sparse communi-
cation for machine learning. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage
and Analysis, pages 1–15, 2019.

[27] Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi.
Qsparse-local-sgd: Distributed sgd with quantization, sparsification
and local computations. In Advances in Neural Information Processing
Systems, pages 14695–14706, 2019.

[28] Sunwoo Lee, Ankit Agrawal, Prasanna Balaprakash, Alok Choudhary,
and Wei-Keng Liao. Communication-efficient parallelization strategy
for deep convolutional neural network training. In 2018 IEEE/ACM
Machine Learning in HPC Environments (MLHPC), pages 47–56.
IEEE, 2018.

[29] Kun Yuan, Qing Ling, and Wotao Yin. On the convergence of decen-
tralized gradient descent. SIAM Journal on Optimization, 26(3):1835–
1854, 2016.

[30] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang,
and Ji Liu. Can decentralized algorithms outperform centralized
algorithms? a case study for decentralized parallel stochastic gradient
descent. In Advances in Neural Information Processing Systems, pages
5330–5340, 2017.

[31] Michael Blot, David Picard, Matthieu Cord, and Nicolas Thome.
Gossip training for deep learning. arXiv preprint arXiv:1611.09726,
2016.

[32] Peter H Jin, Qiaochu Yuan, Forrest Iandola, and Kurt Keutzer. How
to scale distributed deep learning? arXiv preprint arXiv:1611.04581,
2016.

[33] Jeff Daily, Abhinav Vishnu, Charles Siegel, Thomas Warfel, and
Vinay Amatya. Gossipgrad: Scalable deep learning using gossip
communication based asynchronous gradient descent. arXiv preprint
arXiv:1803.05880, 2018.

[34] Stephen Boyd, Persi Diaconis, and Lin Xiao. Fastest mixing markov
chain on a graph. SIAM review, 46(4):667–689, 2004.

[35] William Gropp, Torsten Hoefler, Rajeev Thakur, and Ewing Lusk. Us-
ing advanced MPI: Modern features of the message-passing interface.
MIT Press, 2014.

[36] Libtorch mnist example. https://github.com/pytorch/
examples/blob/master/cpp/mnist/mnist.cpp.
Accessed: 07-11-2020.

8

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on May 10,2021 at 13:43:04 UTC from IEEE Xplore.  Restrictions apply. 


