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Abstract— Communication in parallel systems consumes sig-
nificant amount of time and energy which often turns out to be
a bottleneck in distributed machine learning. In this paper,
we present EventGraD - an algorithm with event-triggered
communication in parallel stochastic gradient descent. The
main idea of this algorithm is to modify the requirement of
communication at every epoch to communicating only in certain
epochs when necessary. In particular, the parameters are
communicated only in the event when the change in their values
exceed a threshold. The threshold for a parameter is chosen
adaptively based on the rate of change of the parameter. The
adaptive threshold ensures that the algorithm can be applied
to different models on different datasets without any change.
We focus on data-parallel training of a popular convolutional
neural network used for training the MNIST dataset and show
that EventGraD can reduce the communication load by up to
70% while retaining the same level of accuracy.

I. INTRODUCTION

Machine Learning workloads are increasing in size due
to the massive growth in data collected from the internet,
multiple connected sensors, etc. Hence training machine
learning models in a parallel environment is becoming ever
popular [1], [2]. Most parallel machine learning endeavours
have focused on training in multi-core desktop environments
or small commodity clusters. However, recently researchers
have become interested in machine learning on large-scale
clusters such as supercomputers [3]-[7].

One of the biggest challenges in such large-scale parallel
environments is that communication is often more expensive
in terms of time and energy than computation [8], [9].
Consequently there has been a lot of research aimed at
reducing communication in parallel simulations. Most of the
focus has been in the context of parallel numerical solutions
of partial differential equations [10]-[12] but there has been
recent work with respect to parallel training of machine
learning models, mostly neural networks [13], [14]. In this
paper, we introduce a novel algorithm for communication
reduction in parallel machine learning.

Parallel or distributed machine learning can be data-
parallel or model-parallel [15], [16]. In the former, the dataset
is divided into multiple processors, with each processor
having a copy of the entire model and averaging its model
with others during the training. In the latter, the neural
network model itself is divided among the multiple PEs,
however the dataset is not divided. Note that the model
decomposition in model parallelism is usually done across
the neurons in each layer (width), not across layers (depth)
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because of the obvious sequential dependencies. There have
been approaches to combine the two for hybrid parallelism.

In any kind of parallelism in training, the processors
need to exchange the weights and biases with each other
before moving to the next training epoch. For example, in
data parallelism, the weights and biases among the different
processors are averaged with each other before executing the
next training epoch. Such an exchange usually happens by
message passing at the end of every epoch. In this paper, we
propose an algorithm where the exchange of these weights
and biases happens in events only when a certain criterion is
satisfied. In particular, the main contributions of this paper
are:

« We propose a parallel stochastic gradient descent (SGD)
training algorithm where the weights/biases are com-
municated to other processors only when the change in
their norm exceeds a threshold; otherwise the intended
receiver continues averaging using the last received
values.

« We emphasize on a threshold that is adaptive to the
slope of the parameter values, thus requiring no separate
procedure for tuning the threshold for different models.

« We provide an HPC implementation of our algorithm
using PyTorch and Message Passing Interface (MPI) in
C++ and highlight the implementation challenges of this
algorithm, particularly the need of advanced features
such as MPI one-sided communication.

Using this algorithm, we show that the same accuracy
can be achieved with 70% lesser messages sent between
processors using a popular convolutional neural network on
the MNIST dataset. This translates to savings in time and
energy involved in communication, thus making the overall
training more efficient. Our implementation is open-source
and available at [17]. To the best of our knowledge, this
algorithm is novel and has not been proposed before in
literature in the context of parallel machine learning. Note
that we proposed a similar algorithm in the context of parallel
numerical simulations of partial differential equations in our
previous work [12].

It is important to note that while we focus on data-
parallel stochastic gradient descent in this paper, the idea
of event-triggered communication can be generalized to
model-parallel and hybrid configurations. Further it can be
extended to training algorithms other than SGD such as
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Adam, RMSProp, etc.

The paper is organised as follows:- Section II surveys
related work and Section III introduces the necessary back-
ground. The idea of our algorithm is proposed in Section IV
with implementation details in Section V. Section VI contains
the experimental results followed by conclusion in Section
VII. For notational convenience, we denote the abbreviation
PE to be a processing element, either CPU or GPU.

II. RELATED WORK

There are a number of approaches to reducing commu-
nication in parallel stochastic gradient descent in neural
networks. Before we discuss some of the popular works in
literature regarding this, we outline the main approaches for
parallelizing SGD in Fig 1.

Parallel SGD

!—I—\

HilRE Data-Parallel
Parallel

!—‘—\

Averaging Averaging with
among all PEs neighbor PEs
Server

Fig. 1. Popular ways of parallelizing neural networks.

Since we are focused on data parallelism, we study related
work in that context. In data-parallelism, every PE has a
subset of the overall dataset and a copy of the neural network
model. During the training process, the PEs exchange infor-
mation among each other, namely the weights and biases, to
ensure that the training is carried out on the entire dataset
and not just the sub-datasets assigned to every PE.

During each epoch of the training process, the common
approach is to average the gradients of the weights and
biases among all the PEs. There are two approaches which
build up on this idea. In the parameter server approach,
there is a central parameter server PE that stores the neural
network model. All the remaining PEs calculate the gradient
in their sub-dataset and then send it to the parameter server.
The parameter server averages all the gradients, updates
the model and then the worker PEs continue to the next
epoch of training, resulting in a synchronized algorithm.
This requirement of synchronization was relaxed by the
Hogwild algorithm [18] where the worker PEs can send
gradients to the parameter server without any lock step. There
are numerous other works improving the performance of
parameter server based approaches [19], [20]. However, this
approach is not very suitable for machine learning on HPC
environments because of the central point of dependence on
the parameter server, resulting in poor scalability.

The second approach does not involve a parameter server.
Instead all PEs average their gradients using an AllReduce

mechanism. Every PE has a copy of the same model which
is updated using the averaged gradients in every iteration.
At the end of training, the models in all PEs are averaged
to do testing/inference. Instead of a normal AllReduce, there
have been several optimized variants proposed in literature.
The authors in [21] have proposed one-bit quantization
where each gradient update is quantized to 1-bit, resulting
in reduction of data volume to be communicated. Threshold
quantization was developed by [22] where only gradient
updates greater than a static threshold are encoded with a
fixed value and sent. A hybrid approach combining both
1-bit and threshold quantization was given in the adaptive
quantization proposed by [13]. Deep Gradient Compression
in [23] compresses the size of gradients and accumulates
the quantization error and momentum to maintain accuracy.
There have been approaches to minimize communication by
reducing the precision of gradients, e.g., using half precision
(16-bit) for training [24] and mixed precision [25]. Sparsified
methods that communicate only the top-k most significant
values have been proposed by [14], [26]. Combining the
two methods of quantization and sparsification is presented
in [27]. A different approach based on changing MPI oper-
ations to reduce communication has been discussed in [28]
in which the AllReduce operation is replaced by relocating
the intermediate data and using an Allgather operation.

All the above works are improvements on the AllReduce
based training where averaging is done among all the pro-
cesses. Another version of data-parallel training has been
proposed where gradient averaging can be done with few
selected PEs instead of all the PEs. In particular, the PEs
can be assumed to be connected in a ring topology and
each PE averages its gradient with the two neighbors in the
ring [29]. The intuition is that a processor will communicate
its information to its neighbors, which will then communicate
to its neighbors and so on. Thus information gets propagated
through all the processors. While it might seem that such a
scheme will converge slowly with lesser accuracy due to
the delayed propagation of information, the authors in [30]
showed that there is negligible drop in accuracy. While [30]
considers a regular communication pattern with neighbors
which remain fixed throughout training, there are interesting
gossip algorithms [31]-[33] that choose neighbors randomly
and exchange information. Whether the neighbors remain
fixed or not, the main advantage of these methods is the
replacement of collective communication with peer-to-peer
communication, resulting in significant savings in communi-
cation time and energy.

In this paper, we build on such an algorithm proposed
in [30]. In [30], communication of messages with neighbor
PEs happen at every epoch of training. This might not be
necessary since values might not change significantly in
every epoch. The main idea of this paper is that instead of
communicating the parameters with neighbors at every epoch
of training, communication is triggered in events only when
necessary. We show that our algorithm achieves the same
level of accuracy on the test set using approximately 70%
lesser communication.
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III. BACKGROUND

As stated before, we consider the decentralized stochastic
gradient descent algorithm mentioned in [30] as our baseline.
The PEs are assumed to be connected in a ring, with each PE
having two neighbors shown in Fig 2. This topology stays
fixed throughout the training.

Fig. 2. Usual topology of processors executing training based on averaging
with neighbors. For illustrative purposes, 4 PEs are shown here but the ring
topology can be generalized to any number of PEs.

To mathematically formulate the training procedure of the
algorithm in [30], consider x; as a parameter in the /-th PE,
N7 the set of neighbors of the I-th PE, F the loss function
involved. Then z;(k + 1) for epoch k + 1 is updated as
follows:

wr(k+1) = Wz (k) + > Wiz (k) — yVFr, (z1(k)),
JEN]
ey

where W = [Wijli<i<ni<J<n is the adjacency matrix.
Wi corresponds to the weight of the state of the /-th PE
while W7 ; corresponds to the weight of the state of J-th PE
on the state of the I-th PE. For the topology in Fig 2, N7 = 2.
Note that in (1), the parameters of the neural network, i.e.,
the weights and biases are exchanged instead of the usual
method of exchanging their gradients. The authors in [30]
were able to show that such a scheme involving exchange
of the parameters is almost equivalent to exchanging the
gradients of the parameters. For details on how to choose W
optimally, the reader is referred to [34]. Usually the values
of W are taken to be ﬁ meaning the weight of the /-th
PE is averaged with that of its neighbors after every epoch
of training. After training concludes, the models in all the
PEs are usually averaged to produce one model which is
then evaluated on the testing dataset. This algorithm in [30]
is stated in pseudo code in Algorithm A.

IV. MAIN IDEA

The decentralized algorithm in (1) assumes that the model
parameters in a PE are exchanged with neighbors in every
epoch of the training. This might be a waste of resources
since the parameters might not differ a lot in every epoch.
The main idea behind our approach is to relax this require-
ment of communication with neighbors at every epoch of

Algorithm A : Regular Communication in Data Parallel
Machine Learning

fork=0,1,2,...K-1 do
Randomly sample from dataset in I/-th PE
Compute the local stochastic gradient VFy, (z7(k))
Communicate parameters to neighbors
Update parameters using (1)

end for

Obtain averaged model from all PEs

training. Every PE tracks the changes in the parameters of
its model, i.e., the weights and biases. When the norm of
a particular weight or bias in a PE has changed by some
threshold, it is sent to the neighbors. Otherwise that particular
parameter is not sent after that epoch to the neighbors and
the neighbors continue averaging their own model with the
last received parameters.
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Fig. 3. Tllustration of change in norm of parameters over iterations/epochs
(taken from [12]). The left plot shows the norm of the parameter over
iterations at the sender. The right plot shows the norm of that corresponding
parameter used at the receiver.

Fig 3 illustrates this phenomenon. Usually in neural net-
work training, the parameters change rapidly during the
initial iterations, followed by sluggish changes before they
reach an approximately steady value. Because of this behav-
ior, we consider the concave curve in Fig 3 for illustration.
The left plot shows the evolution of the norm of a parameter
over training iterations. When this norm changes by more
than a threshold (0.1 in Fig 3) from the norm of the pre-
viously communicated values, an event for communication
is triggered as marked by an asterisk. The first event of
communication is forced to take place at iteration k = 0 for
convenience. The right plot shows the corresponding values
that the receiving PE uses when averaging its parameters
with parameters from this corresponding sending PE. When
a new value is received due to an event of communication
at the sender, that value is used by the receiver. Otherwise,
the last communicated value is used at the receiver. Due
to implementation challenges involving MPI one-sided com-
munication which we describe in detail in the next section,
this algorithm becomes completely asynchronous unlike the
synchronous algorithm in [30]. So before we formulate our
algorithm, let us define two sequences:

e Ars(k) - This is the sending sequence containing the
current iteration number of the I-th PE when the I-th
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PE sends a message to the J-th PE.

o 775(k) - This is the receiving sequence containing the
current iteration number of the I-th PE when the I-th
PE receives a message from the J-th PE.

Now, the sending PE sends a parameter 2; when it changes
by a threshold §. Thus the sending sequence Ar (k) is given
by:

_ k, 1f(x1(k)—x1()\”(k—1))) 26
Ary(k) = .
Arj(k—1), otherwise.

2

Consequently, the training algorithm at the receiving PE
gets modified from (1) to

xr(k+1) =Wra(k) + E Wiz (r(k))
JeNT

=V (21(k)). 3)

The pseudo code for this algorithm is given in Algo-
rithm B. It is important to have the distinction between
the sending and receiving sequences because of the asyn-
chronous nature of this algorithm. Note that the sending
sequence Aj; (k) for the I-th PE is the same for all J € N7.
However, the receiving sequence 77;(k) for the I-th PE is
different for different J € N/.

Algorithm B : EventGraD - Event-Triggered Communica-
tion in Data Paralle]l SGD
fork=0,1,2,...K-1do
Randomly sample from dataset in I/-th PE
Compute the local stochastic gradient Fy, (z1(k))
if (I[(k‘) — I[()\[](k — 1))) > ¢ then
Communicate parameter to neighbors
end if
Update parameters using (3)
end for
Obtain averaged model from all PEs

Choosing the threshold § is a design problem. The effi-
ciency of this algorithm depends totally on selecting appro-
priate thresholds. The simplest option would be to choose
a constant static value. But selecting the appropriate value
would involve a lot of trial and error. Further, when the
neural network model changes, the process would have to
be repeated all over again. In other words, if the number of
neurons in a layer or the number/type of layers changes, a
different value of the constant threshold would need to be
chosen.

Instead, it is better to choose a dynamic threshold that is
adaptive to the rate of change of the parameters, i.e., the
slope of the parameters. This means that the threshold for
each parameter is a function of the slope of the parameter.
Whenever an event of communication is triggered, the slope
is calculated between the current value and the last communi-
cated value. This slope is multiplied by a horizon to calculate
the threshold as shown in Fig 4. Thus the threshold has the

following form:
Threshold § = Slope x Horizon. 4)

This threshold will be kept fixed until another event is
triggered, resulting in calculation of a new threshold. The
intuition behind making the threshold dependent on the slope
is to save on communication as much as possible while
ensuring that communication does not stop, i.e., happens
once in a while. If a parameter is changing fast, it means
that it will satisfy the criterion for communication soon -
thus a high threshold (due to the high slope) can be suitable.
However, if the parameter is changing slowly, there might a
long period before the next communication happens which
might slow down convergence of the overall algorithm.
Hence the threshold is decreased (due to the low slope) to
incentivize communication. The horizon is a hyperparameter
that has to be chosen by the user. It might seem that
the horizon hyperparameter requires tuning as well, thereby
nullifying its advantages over the static threshold. However,
we found empirically that the same horizon used for training
different models worked well. This plays a huge role in
keeping EventGraD portable across multiple models.

Threshold = Slope * Horizon

Last Event

X
Value Y
Slope = X

Iterations

Fig. 4. Tllustration of slope-based adaptive threshold. The right green star
denotes the event of current communication while the left green star denotes
the event of last communication. The slope is calculated between these two
points which is then multiplied by the horizon to obtain the new adaptive
threshold.

Often the parameters in a neural network have local minor
oscillations due to the nature of the stochastic gradient
descent algorithm. In other words, the change in parameters
may not be as smooth as illustrated in Fig 4. This might be
lead to calculation of a threshold that is not representative of
the overall non-oscillatory trend in the parameter. In order for
the threshold to reflect the aggregate trend in the parameter
and not the local oscillations, the sender keeps a history of
multiple previously communicated events instead of just one
previous event. Then the average slope is calculated which
is the mean of the slopes between two consecutive events
in that history. This average slope is then multiplied by the
horizon to obtain the threshold. The length of the history is a
hyperparameter which is similar in notion to the length of a
moving average filter. The higher the length, the smoother the
trend but at the cost of increased computational complexity.

We note that the theoretical convergence properties of this
algorithm have to be studied which we will address in our
future work. However, in experiments, we noticed that the
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EventGrad algorithm reaches the same level of accuracy as
the algorithm in [30].

V. IMPLEMENTATION

There are a lot of popular frameworks for machine learn-
ing like PyTorch, TensorFlow, CNTK, etc. Almost all of
these frameworks support parallel or distributed training.
TensorFlow follows the parameter server approach for paral-
lelization. PyTorch provides a module called DistributedDat-
aParallel that implements AllReduce based training. Horovod
is another framework developed by Uber that implements
an optimized AllReduce algorithm. However, none of these
frameworks provide native support for the training involving
averaging with just neighbors. Hence we decide to implement
them without using any of the distributed modules in these
frameworks.

We use PyTorch and MPI for our implementation. Re-
cently, PyTorch released a C++ frontend called Libtorch
which is suitable for HPC environments unlike the usual
Python interface. Libtorch has almost the same function-
alities as PyTorch. Hence we combine the neural network
training functionalities of Libtorch with communication rou-
tines in MPI to implement our algorithm. Note that the
LBANN HPC toolkit introduced in [3] is also a great
candidate for implementing distributed machine learning in
HPC environments.

It is worth noting that the events for communication are
dependent on the change in values of the parameters of the
sender which is a local phenomenon. Thus, when an event
is triggered in the sending PE, it can issue a MPI_Send
operation. However, since the intended receiving PE is not
aware of when the event is triggered at the sender, it does
not know when to issue a MPI_Recv operation. So two-sided
communication using MPI_Send and MPI_Recv cannot be

used for our algorithm.
. MPI_Send MPI_Recv.
Receiver PE knows

Sender PE knows
when to receive

when to send
Receiver PE not

Sender PE knows
when to send involved

MPI Two-sided
Communication

MPI One-sided
Communication

Fig. 5. Comparison of two-sided and one-sided communication.

We select one-sided communication for our purpose as
was also the case in our previous work [12]. In one-sided
communication, only the sending PE has to know all the
parameters of the message for both the sending and receiving

side and can remotely write/read from a portion of the mem-
ory of the receiver without the receiver’s involvement - hence
the alternate name of RMA (Remote Memory Access) [35].
That region of memory in the receiver is called window
and can be publicly accessed. In our case, it is used to
store the model parameters from the neighbors. So when an
event for communication is triggered in the sending PE, it
uses MPI_Put to write its model parameters directly into the
window of the corresponding neighbor PE. An illustration of
one-sided vs two-sided communication is provided in Fig 5.

MPI one-sided communication provides two options for
establishing a communication channel between two PEs. The
first is active target synchronization such as the fence mecha-
nism or post/start/complete/wait (PSCW) mechanism. These
mechanisms require active participation from the receiver
which is not possible in our case since the receiver is not
aware of the occurrences of events at the sender. Instead
we select the other option of passive target synchroniza-
tion where the receiving PE plays no role. The sending
PE can start a RMA access epoch using MPI_Win_lock,
transfer the message using MPI_Put and then end the access
epoch by MPI_Win_unlock. Sometimes, before the unlock,
MPI_Win flush is used to ensure that RMA operations have
completed.

In Libtorch, all the model parameters such as weights and
biases are stored as tensors just like PyTorch. Using MPI one-
sided operations to send tensors in Libtorch is challenging.
At the moment, we convert the multidimensional tensors
into contiguous unidimensional arrays, which are sent by
the sender. At the receiver, these arrays are converted back
into the corresponding multidimensional tensors again before
they are used by the receiver. In future, we will look at how
to allocate the memory of a Libtorch tensor as a MPI window
so that one-sided operations can be done seamlessly without
conversion into intermediate arrays.

VI. EVALUATION

We perform experiments to evaluate the performance of
our EventGraD algorithm. All our simulations are done on
CPUs. We use an HPC cluster of nodes with each node
having 2 CPU Sockets of AMD’s EPYC 24-core 2.3 GHz
processor and 128 GB RAM per node. The cluster uses
Mellanox EDR interconnect. The MPI library chosen in
Open MPI 4.0.1 compiled with gcc 8.3.0. The version of
Libtorch used is 1.5.0. We choose the MNIST dataset for
our experiments due its simplicity and popularity. Our neural
network is made of convolutional and linear layers with max-
pooling and dropout as shown in Fig 6. This is a simple
model architecture which is popular for training the MNIST
dataset and achieves around 98% accuracy [36]. For training
this network, a learning rate of 0.05 is used with cross-
entropy as the loss function.

As mentioned before, we focus on data-parallel training
where the dataset is divided into multiple PEs, with each
PE having a copy of the model in Fig 6. We run all our
experiments on 4 PEs. The batch size on each PE is 64,
making the effective batch size 256 on 4 PEs. The MNIST
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Fig. 6. Architecture of the Convolutional Neural Network used in our experiments. FC stands for Fully Connected (Linear) layers. ReLU is the rectified

linear unit activation function.

dataset has 60000 training images, so each PE has 15000
images. The model is trained over 10 epochs. Hence we
can estimate the total number of parameter update steps as
18000 % 10 ~ 2500.

For the purpose of our experiments, we choose two
different combinations of neurons and kernel sizes for the

model in Fig 6. They are described in Tables I and II.

suggesting the possibility of saving messages by triggering
communication in events.

3 Conv Layer 4 Conv Layer with Dropout

3
2
— Weights 2 —Weights
— Biases — Biases

1
1
| | S —

0 0
0 1000 2000 3000 0 1000 2000 3000

Value

Fully Connected Layer

TABLE I
PARAMETERS OF LAYERS OF CNN-1
Layer Parameters
ConvL. 1 InChannels= 1, OutChannels= 10,
onvL.ayer KernelSize= 5
MaxPooll KernelSize= 2
ConvLayer? InChannels= 10, OutChannels= 20,
¥ KernelSize= 5, DropoutProbability= 0.5
MaxPool2 KernelSize= 2
. Inputs= 320, Outputs= 100,

FCLayerl DropoutProbability= 0.5
FCLayer2 Inputs= 100, Outputs= 10

TABLE 11
PARAMETERS OF LAYERS OF CNN-2
Layer Parameters
ConvLayerl InChannels= 1, OutChannels= 10,
onvi.aye KernelSize= 3
MaxPooll KernelSize= 2
ConvLayer2 InChannels= 10, OutChannels= 20,
¥ KernelSize= 3, DropoutProbability= 0.5
MaxPool2 KernelSize= 2
Inputs= 500, Outputs= 100,

FCLayerl DropoutProbability= 0.5
FCLayer2 Inputs= 100, Outputs= 10

First we are interested in looking at how the parameters
of the layers change over the update steps. As an example,
Fig 7 shows the euclidean norm of the weights and biases
of each layer for the model configuration in Table I in one
PE. The change in weights for all the layers is similar to
the illustration before in Fig 3 whereas biases stay almost
flat throughout training. This means that not all parameters
need to be communicated at every update step, thereby

Iéully Connected Layer with Dropout

3
4
~—Weights 2 ~——Weights
—Biases ——Biases
2
| W SRS SR

1

0
0 1000 2000 3000 0 1000 2000 3000
Iterations

Fig. 7. Evolution of the euclidean norm of the weights and biases of the
4 corresponding layers in Fig 6 over the update steps for one PE.

Now we implement event-triggered communication to the
training of the two models in Tables I and II. First, we
implement a constant static threshold for both. We study
how different thresholds affect the percentage of messages
along with the training and testing accuracy of the network.
The percentage of messages is measured with respect to the
case with communication at every update step, equivalent
to a threshold of 0 in the event-triggered communication
algorithm. The plot in Fig 8 is for Table I and Fig 9 for
Table II. We see that with increase in threshold, the number
of messages decreases resulting in savings in communication
while the accuracy stays practically same up to a point.
After that point, the accuracy falls sharply indicating that
thresholds above that are not suitable. The threshold from
which accuracy sharply degrades is around 0.6 x 1073 for
Table I and around 2 x 10~3 for Table II. Since the two
models are different, the range of thresholds for them are
also different. It is not tractable to experiment with different
thresholds for different models and then choose a suitable
one for that specific model.

Instead we emphasize on the adaptive threshold proposed
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Fig. 8. Plot of percentage of messages and accuracy versus the threshold
for the model configuration in Table I.
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Fig. 9. Plot of percentage of messages and accuracy versus the threshold
for the model configuration in Table II.

in Section IV. As a reminder, the adaptive threshold is
determined by estimating the slope of the parameters mul-
tiplied by a horizon as shown before in Fig 4. A value of
1 for the horizon and a value of 2 for the length of the
history of previously communicated values is chosen for
our experiments. Using this threshold, the model in Table I
achieves an accuracy of 97% with 40% of the messages. The
model in Table II achieves an accuracy of 95% with 25% of
the messages. No different thresholds have to be chosen here
for different models unlike the constant threshold. Hence
adaptive threshold is the better choice.

It is useful to study the accuracy vs the percentage of
messages sent for both the types of threshold for both the
models. Fig 10 shows that plot for the model in Table I and
Fig 11 for Table II. We see that the slope-based adaptive
threshold achieves a high level of accuracy with only 25
to 40% of the messages. However, there are values of the
constant threshold that achieve the same accuracy with even
lower percentage of the messages. To achieve that using
the adaptive threshold would probably require the threshold
to be a non-linear function of the slope instead of the

linear function considered in this paper. Thus finding out
the optimal way to choose the adaptive threshold is an open
problem which we leave for future work.
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Fig. 10.  Accuracy versus percentage of messages sent for the model
configuration in Table I. The blue asterisks denote the values of the threshold
in Fig 8, with the highest threshold on the left and the lowest threshold on
the right.
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Fig. 11.  Accuracy versus percentage of messages sent for the model
configuration in Table II. The blue asterisks denote the values of the
threshold in Fig 9, with the highest threshold on the left and the lowest
threshold on the right.

VII. CONCLUSION

This paper introduces a novel communication mechanism
in parallel training of neural networks using stochastic gra-
dient descent. The proposed EventGraD algorithm based
on event-triggered communication reduces communication
up to around 70% while maintaining the same accuracy.
The choice of the threshold for triggering events is chosen
adaptively based on the slope of the parameter values,
thus ensuring that it can be applicable for different neural
network configurations without any change. The implemen-
tation challenges of the algorithm using MPI and PyTorch,
specifically the need for MPI one-sided communication, are
also discussed.

For future work, we want to apply this algorithm for train-
ing state-of-the-art neural network models such as ResNet-
50 and VGG-16 on larger datasets such as ImageNet. We
plan on using GPUs for those simulations, so we have
to implement one-sided communication operations between
GPUs using tools such as Nvidia GPUDirect. Further, we
are working on characterizing theoretical properties of this
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algorithm such as the optimal way to choose the adaptive
threshold and the rate of convergence with the adaptive
threshold.
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