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Abstract. Moving boundary problems are ubiquitous in nature, technology

and engineering. Examples include the human heart and heart valves interact-

ing with blood flow, biodegradable micro-beads swimming in water to clean up
water pollution, a micro camera in the human intestine used for an early colon

cancer detection, and design of next generation vascular stents to prop open

the clogged arteries, and prevent heart attacks. These are time-dependent,
dynamic processes, which involve the interaction between fluids and various

structures. Analysis and numerical simulation of fluid-structure interaction

(FSI) problems can provide insight into the “invisible” properties of flows and
structures, and can be used to advance design of novel technologies and im-

prove the understanding of many physical and biological phenomena. Math-
ematical analysis of FSI models is at the core of this understanding. In this

paper we give a brief survey of the recent progress in the area of mathematical

well-posedness for moving boundary problems describing fluid-structure inter-
action between incompressible, viscous fluids and elastic, viscoelastic, and rigid

solids.
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1. Introduction

Moving boundary problems are time-dependent problems describing the motion
of a quantity such as fluid in a domain which is moving due to e.g., the domain’s
exterior boundary motion, or the motion of an immersed structure within the fluid,
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or both. An immersed structure within the fluid defines an interior fluid domain
boundary described by the fluid-structure interface location, which is, in general,
time dependent. Moving boundary problems can be classified into two types. The
first type is a moving boundary problem in which the domain boundary motion is
given a priori, and the second is a moving boundary problem in which the motion of
the domain boundary is not known a priori, but is one of the unknowns in the prob-
lem. In both cases the flow inside the domain is strongly affected by the motion of
the domain boundary, while in the second case the motion of the domain boundary
is simultaneously adjusted as it is being impacted by the flow inside the domain.
In this case, two sets of coupling conditions need to be prescribed to capture this
two-way coupling: the kinematic condition describing the coupling of the kinematic
quantities such a velocity, and the dynamic coupling condition describing the dy-
namic balance of forces. Depending on the problem at hand, this two-way coupling
can be evaluated along the “current” location of the moving boundary, or along the
fixed domain boundary. The coupling along a fixed domain boundary is said to be
linear (i.e., it is linearized around the fixed, reference domain configuration), while
the coupling along the current location of the moving boundary not known a priori
is said to be nonlinear. See Fig. 1. Needless to say, the nonlinear coupling between

Figure 1. Fluid flow in a cylinder moving from left to right. The
colors show the magnitude of pressure. The figure on the left shows
the fluid domain in a linearly coupled fluid-structure interaction
problem. The figure on the right shows the fluid domain in the
nonlinearly coupled fluid-structure interaction problem.

the flow and boundary motion gives rise to an exceedingly complicated nonlinear
moving boundary problem, for which the theory of existence and uniqueness of
solutions, and their continuous dependence on data, has only recently become the
focus of a systematic mathematical study. Thus, it is of major interest to develop
a general framework for the study of solutions to moving boundary problems.

In this paper we survey some recent developments and open problems in this
area. In particular, we focus on problems arising from the interaction between in-
compressible, viscous fluids and elastic, viscoelastic, or rigid solids (also referred
to as “structures”). Fluid-structure interaction (FSI) problems are ubiquitous in
nature, technology and engineering: from environmental science where pollutant
concentration is studied in aquifers through poroelastic media, to biomedical engi-
neering and cardiovascular medicine where, e.g., design of vascular stents for the
treatment of coronary artery disease or heart valve replacement are studied.

Interestingly enough, even though the mathematical theory of the motion of bod-
ies in a liquid is one of the oldest and most classical problems in fluid mechanics,
mathematicians have only recently become interested in a systematic study of the
basic problems related to fluid-structure interaction. One reason for this may be
that problems of this type are notoriously difficult to study. In addition to the non-
linearity in the fluid and possibly the structure equations, the nonlinear coupling
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between the fluid and structure motion may give rise to strong geometric nonlin-
earities. The mathematical study of existence of solutions to the coupled problems
must account for the nonlinearities due to the strong energy exchange between the
fluid and (elastic) structure motion in problems with nonlinear coupling, and em-
ploy novel compactness arguments to deal with the nonlinearities. Due to the fluid
domain motion, the compactness results must hold for a family of operators defined
on time-dependent function spaces associated with moving domains not known a
priori . Additionally, the compactness arguments must account for the fact that
the coupled problem involves two sets of equations of different type (parabolic vs.
hyperbolic) accounting for the different physics in the problem. Crucial for the
existence proofs and the compactness arguments is to make use of the parabolic
regularizing effects (by the fluid viscosity) to keep the high frequency oscillations
of the (hyperbolic) structure under control.

In existence proofs, and in numerical schemes, an additional difficulty is imposed
by the incompressibility of the fluid. The main difficulty in existence proofs is
related to the construction of divergence-free extensions of fluid velocity to a larger
domain containing all the moving domains, and obtaining quantitative estimates of
the extensions in terms of the changing geometry. Incompressibility is intimately
related to the pressure, and pressure is a major component of the load, i.e., contact
force, exerted by the fluid onto the solid. Designing constructive existence proofs
and numerical schemes that approximate the load “correctly” is a key ingredient for
the stability of constructive solution schemes. In particular, the fluid surrounding
the structure affects the structure motion as an extra mass that the structure must
displace when moving within a fluid. This has long been known in engineering
as the “added mass effect”. Not accounting for the added mass effect can have
negative impact on the stability of partitioned FSI schemes, and is a well-known
problem in FSI problems for which the density of the structure is less than or equal
to that of the fluid, i.e., for which the structure is “light” with respect to the fluid.
The added mass is a leading order effect in biofluidic FSI problems, since biological
tissues (structures) have density which is approximately the same as that of the
surrounding fluid. A failure to account for this effect is associated with the lack of
uniform energy estimates in constructive existence proofs for nonlinearly coupled
FSI problems.

The question of global-in-time existence of solutions to moving boundary
problems is affected by two open problems. One is inherited from the Navier-Stokes
equations and the open outstanding question of global existence of strong solutions,
and the other is related to the so called “no collision” paradox: global weak solu-
tion existence results for moving boundary problems are typically obtained until a
possible fluid domain degeneracy occurs, such as, e.g., collapse of the cylindrical
tube leading to the cross-sectional area of the tube approaching zero. The prob-
lems of finite time contact between elastic bodies in a viscous, incompressible fluid
remains an open question, known as the “no-collision paradox”. As we shall see
below, various questions related to the no-collision paradox are being investigated,
including the possibility of finite time contact for “classical” models, investigation
and design of mathematical models that would allow finite time contact, and the
type of boundary conditions (no-slip versus slip) for which finite-time contact may
occur.
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Nonlinearities in the coupled FSI problem also affect the study of uniqueness
of solutions. It is not surprising that uniqueness of weak solutions to the coupled
FSI problems is still largely an outstanding open problem, since even in the case of
classical 3D Navier-Stokes equations, the uniqueness of the Leray-Hopf weak solu-
tions has not been resolved. However, recent advances in this area are significant,
and we summarize those results below.

To explain the main challenges in more detail, we present a benchmark problem
for FSI involving elastic structures, and a benchmark problem for FSI involving
rigid solids, and provide a literature review of the recent results.

2. FSI with elastic structures

Although the development of numerical methods for fluid-structure interaction
problems started almost 40 years ago (see e.g., [42, 131, 113, 114, 46, 73, 74, 41, 87,
117, 9, 8, 90, 47, 86, 73, 74, 75, 76, 78] and the references therein), the development
of existence theory for FSI problems started less than 20 years ago. We state
a benchmark problem in this field, and summarize some recent results and open
problems.

Description of the Main Problem. To describe the interaction between a fluid
and an elastic (or viscoelastic) structure across a moving interface mathematically,
two types of coupling conditions have to be prescribed. This contrasts classical fluid
dynamics problems defined on fixed domains where only one boundary condition,
e.g., the no-slip condition, is sufficient to define the problem. As mentioned ear-
lier, the two sets of coupling conditions describe: (1) how the kinematic quantities,
such as velocity, are coupled (the kinematic coupling condition, e.g., no-slip), and
(2) the elastodynamics of the fluid-structure interface (the dynamic coupling con-
dition). While the precise form of the kinematic and dynamic coupling conditions
depends on the particular application at hand, the most common coupling is done
via the no-slip kinematic condition, stating that the fluid and structure velocities
are continuous across the moving interface, and the dynamic coupling condition
stating that the fluid-structure interface, namely the moving boundary, is driven
by the jump in traction, i.e., normal stress, across the interface. For problems in
which one expects small interface displacements and small displacement gradients,
the coupling conditions may be evaluated at a fixed interface, without changing the
fluid domain, namely, the fluid and structure may be linearly coupled [45, 10, 11, 93].
For problems where this may not be a good approximation of reality, the coupling
conditions must be evaluated across the moving interface, giving rise to an addi-
tional nonlinearity in the problem, which is due to the change of geometry of the
moving boundary, namely, the fluid and structure are nonlinearly coupled . In the
latter case the fluid domain is a function of time, and additionally, it is not known
a priori since it depends on the unknowns in the problem, namely, the displacement
of the fluid-structure interface.

The geometric nonlinearity, associated with the fluid domain motion not known
a priori, presents one of the major, new difficulties in studying this class of problems
mathematically.
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2.1. FSI benchmark problem with no-slip. The simplest example of a moving
boundary problem with nonlinear coupling involving a deformable (elastic) struc-
ture, is a benchmark problem deriving from modeling blood flow in a segment of an
artery. The fluid domain is a cylinder, with an elastic (viscoelastic) lateral bound-
ary. For simplicity, we present the problem in 2D, although 3D versions of the
problem have been studied in e.g., [103]. In this benchmark problem, we will be
assuming that the lateral boundary is thin, with small thickness h << 1, and with
the reference configuration Γ corresponding to a straight cylinder of length L and
radius R:

Γ = {(z,R)|z ∈ (0, L)}.
In most literature involving FSI with thin structures, except for the recent results in
[23, 106], the lateral boundary is assumed to displace only in the vertical (normal,
transverse) direction, rendering longitudinal displacement negligible. By using η
to denote the vertical component of displacement, the fluid domain Ωη(t) can be
described by:

Ωη(t) = {(z, r) ∈ R2|z ∈ (0, L), r ∈ (0, R+ η(t, z)},

where R is the radius of the reference cylinder. The reference fluid domain will be
denoted by Ω = (0, L)× (0, R).

Figure 2. Left: A sketch of the fluid domain and the moving
lateral boundary. Right: Pressure wave propagation in elastic
tube.

The fluid flow is modeled by the Navier-Stokes equations for an incompressible,
viscous fluid, defined on a moving domain Ωη(t), not known a priori:

(2.1)
ρf
(
∂tu + (u · ∇)u

)
= ∇ · σ

∇ · u = 0

}
in Ωη(t), t ∈ (0, T ),

where σ is the Cauchy stress tensor, ρf is the fluid density, and u = u(x, t) =
(uz, ur) is the fluid velocity. For Newtonian fluids

σ = −pI + 2µD(u),

where µ is the dynamic viscosity coefficient, and D(u) = 1
2 (∇u + ∇τu) is the

symmetrized gradient of u.
In this benchmark problem the flow is driven by the inlet and outlet dynamic

pressure data, and the flow is normal to the inlet and outlet boundary Γin =
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{0} × (0, R) and Γout = {L} × (0, R):

(2.2)
p+

ρf
2
|u|2 = Pin/out(t),

ur = 0,

}
on Γin/out,

where Pin/out ∈ L2
loc(0,∞) are given. At the bottom boundary Γb = (0, L) × {0}

the symmetry boundary conditions are prescribed:

(2.3) ur = ∂ruz = 0, on Γb.

See Fig. 2 left.
Different inlet/outlet boundary conditions have been used in numerical simula-

tions, including Dirichlet data given in terms of the prescribed fluid velocity, and
Neumann data given in terms of the prescribed normal stress. Prescribing the “cor-
rect” boundary conditions, especially at the outflow boundary, is very important
in correctly capturing the physiological flow conditions within a sub-region of the
cardiovascular system that is being modeled [117]. From the analysis point of view,
it is now known that some of the “numerically convenient” outlet boundary con-
ditions, such as the Neumann, or “do nothing” outlet boundary conditions, may
produce instabilities [132] or ruin well-posedness by producing multiple solutions
to the steady flow, as was recently shown in [77]. In this paper we consider dy-
namic pressure data (2.2) both at the inlet and at the outlet, which is a boundary
condition “consistent” with the energy of the coupled problem.

Under the fluid loading, and possibly some external loading, the elastic cylinder
deforms. See Fig 2. We denote by:

(2.4) Γη(t) = {(t, z, R+ η(t, z))|z ∈ (0, L)}

the location of the deformed cylinder lateral boundary at time t. The elastic prop-
erties of the cylinder’s lateral wall can be described by an operator Le, so that the
elastodynamics problem, in Lagrangian formulation, can be written as:

ρsh∂ttη + Leη = f, on Γ, t ∈ (0, T ),(2.5)

where ρs is the structure density, h is the thin structure thickness, and f is the
vertical component of the external loading (force density) experienced by the elastic
structure. The loading f in the coupled problem will come from the jump in
the normal stress across the structure, i.e., from the fluid load experienced by
the structure (assuming that the external loading is zero). The operator Le is
associated with the elastic energy of the structure, such as the membrane or shell
energy, see [102], and is typically continuous, positive-definite, and coercive on some
Hilbert space χ.

The coupling. The fluid flow influences the motion of the structure through
traction forces, i.e., by the normal stress exerted onto the structure at Γη(t), while
the structure influences the fluid through its inertial and elastic forces due to the
structure motion and stretching/recoil. Additionally, the fluid and structure “feel”
each other through the continuity of the fluid and structure velocities at the inter-
face. Thus, the kinematic and dynamic coupling conditions, respectively, are:

(∂tη(t, z), 0) = u(t, z, R+ η(t, z)),(2.6)

ρsh∂
2
t η + Leη = −J (σn)|(t,z,R+η(t,z)) · er,(2.7)



MOVING BOUNDARY PROBLEMS 7

where J =

√
1 +

(
∂η
∂t

)2

, is the Jacobian of the transformation from Eulerian coor-

dinates to Lagrangian coordinates, and er is the unit vector in the vertical direction.
Here, we have assumed that the external forcing onto the structure is zero. Gener-
alizations to include external forcing due to the presence of another elastic structure
or other types of forcing can be found in [104].

The geometric nonlinearity due to the fluid domain motion, described by the
composite function u(t, z, R+η(t, z)), is generally handled by introducing a family of
mappings, parameterized by time, called the Arbitrary Lagrangian-Eulerian (ALE)
mappings, discussed below in Sec. 3. In terms of ALE mappings, the trace of the
fluid velocity on Γη(t) is described by a composite function between the velocity
and the ALE mapping.

Equations (2.1)–(2.7) define a nonlinear moving-boundary problem for the un-
known functions u and η. The problem is supplemented with initial conditions:

(2.8) u(0, .) = u0, η(0, .) = η0, ∂tη(0, .) = v0,

satisfying the compatibility conditions:

(2.9)
u0(z,R+ η0(z)) = v0(z)er, z ∈ (Γ),
η0(0) = η0(L) = v0(0) = v0(L) = 0,

R+ η0(z) > 0, z ∈ [0, L].

Thus, the benchmark nonlinear moving-boundary problem, which exempli-
fies the main difficulties associated with studying moving boundary problems with
nonlinear coupling, can be summarized as follows: Find u = (uz(t, z, r), ur(t, z, r)), p,
and η(t, z) such that:

ρf
(
∂tu + (u · ∇)u

)
= ∇ · σ(u, p)

∇ · u = 0

}
in Ωη(t), t ∈ (0, T ),

u|Γη(t) = ∂tηer,
ρsh∂

2
t η + Leη = −Jησn|Γη(t) · er,

}
on (0, T )× Γ,

ur = 0,
∂ruz = 0,

}
on (0, T )× Γb,

p+
ρf
2 |u|

2 = Pin/out(t),
ur = 0,

}
on (0, T )× Γin/out,

η(t, 0) = ∂zη(t, 0) = η(t, L) = ∂zη(t, L) = 0 on (0, T )

u(0, .) = u0,
η(0, .) = η0,

∂tη(0, .) = v0.

 at t = 0.

The energy. This benchmark problem satisfies the following formal energy
inequality:

(2.10)
d

dt
E(t) +D(t) ≤ C(Pin(t), Pout(t)),

where E(t) denotes the sum of the kinetic energy of the fluid and of the structure,
and the elastic energy of the membrane shell:

(2.11) E(t) =
ρf
2
‖u‖2L2(Ωη(t)) +

ρsh

2
‖∂tη‖2L2(Γ) + 〈Leη, η〉 ,
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where 〈Leη, η〉 corresponds to the elastic energy of the structure, which for the
cylindrical Koiter shell allowing only radial displacement reads:

〈Leη, η〉 :=
1

2

(
C0‖η‖2L2(Γ) + C1‖∂zη‖2L2(Γ) + C2‖∂2

zη‖2L2(Γ)

)
.

The term D(t) captures dissipation due to fluid viscosity:

(2.12) D(t) = µ‖D(u)‖2L2(Ωη(t))),

and C(Pin(t), Pout(t))) is a constant which depends only on the inlet and outlet
pressure data, which are both functions of time.

2.2. FSI benchmark problem with Navier-slip. While the assumption on the
continuity of normal velocity components is reasonable for impermeable boundaries:

(2.13) (∂tη − u) · n = 0 (non− penetration condition),

the continuity of the tangential velocity component in the no-slip condition is jus-
tified only when molecular viscosity is considered [99]. Navier contested the no-slip
condition for Newtonian fluids [109] when he claimed that the tangential, slip veloc-
ity should be proportional to the shear stress. For moving boundary problems this
means that the jump in the tangential components of the fluid and solid velocities
at the moving boundary is proportional to the shear stress:

(2.14) (∂tη − u) · τ = ασn · τ (Navier slip),

where n and τ to denote the unit normal and tangent to the fluid domain bound-
ary, respectively, σ is the fluid Cauchy stress tensor, and α is the proportionality
constant known as the slip length; 1/α has the units of friction.

The benchmark problem defined on the domain shown in Fig. 2, incorporating
the Navier-slip condition as the kinematic coupling condition, can be summarized
as follows: Find (u, p,η) such that the following holds
The fluid equations:

ρF (∂tu + u · ∇u) = ∇ · σ(u, p),
∇ · u = 0,

}
in Ωη(t), t ∈ (0, T );

The elastic structure (Navier-slip coupling on (0, L)× (0, T )):

ρSh∂ttη(t, z) + Leη(t, z) = −J(t, z)σ
(
ϕ(t, z)

)
n(t, z),

∂tη(t, z) · n(t, z) = u(ϕ(t, z)) · n(t, z),

(∂tη(t, z)− u(ϕ(t, z)) · τ (t, z) = ασ
(
ϕ(t, z)

)
n(t, z) · τ (t, z),

with

η(t, 0) = ∂zη(t, 0) = η(t, L) = ∂zη(t, L) = 0, t ∈ (0, T );

Boundary data at the inlet/outlet boundary Γin/out × (0, T ):

p+ ρF
2 |u|

2 = Pi, u · τ = 0.

Boundary data at the bottom, symmetry boundary Γb × (0, T ):

u · n = 0, ∂nuτ = 0.

with uτ denoting the tangental component of velocity u.

Initial conditions:

(2.15) u(0, .) = u0, η(0, .) = η0, ∂tη(0, .) = v0.
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Figure 3. Hydrophilic vs. hydrophobic surfaces: no-slip vs. slip con-
dition. Left: Classical Ketchup flow. Right: Ketchup flowing in a bottle
treated with a no-stick coating. Bottom: Numerical simulation (by
Čanić and Wang) of flow with the Navier slip boundary condition. The
three snap-shots were taken at the same time after the bottled had been
tilted downwards. The colors in the third panel denote magnitude of
fluid velocity: red is high, green is low velocity.

The following energy estimate holds:

(2.16)

1

2

d

dt

(
ρF ‖u‖2L2(Ωη(t)) + ρSh‖∂tη‖2L2(Γ) + c‖η‖2χ(Γ)

)
+µ‖D(u)‖2L2(Ωη(t)) +

1

α
‖uτ − ∂tητ‖2L2(Γη(t)) ≤ C,

where C depends on the initial and boundary data, and constant c in front of the
χ-norm of η is associated with the coercivity of the structure operator Le. The
reference configuration of the lateral boundary Γ is Γ = (0, L)× {R}.

The no-slip condition is reasonable for a great variety of problems for which
the slip length α is indeed very close to zero. However, in many cases of practi-
cal significance no-slip is not adequate. Examples include flows over hydrophobic
surfaces or surfaces treated with a no-stick coating, see Fig. 3, flows over “rough”
surfaces such as those of, e.g., grooved vascular tissue scaffolds, and problems in-
volving contact of smooth solids immersed in a viscous, incompressible fluid. More
precisely, for flows over “rough” (rigid and fixed) surfaces it has been shown that
the Navier slip boundary condition is the appropriate “effective boundary condi-
tion” [99, 100]. Instead of using the no-slip condition at the small groove scale, the
effective Navier slip boundary condition is applied at the corresponding “groove-
free” smooth boundary [99, 100]. Regarding contact of smooth bodies immersed
in a viscous, incompressible fluid, recent studies have shown that contact is not
possible if the no-slip boundary condition is considered [81, 82, 122]. A resolution
to this no-collision paradox is to employ a different boundary condition, such as the
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Navier slip boundary condition, which allows contact between smooth rigid bodies
[112]. Problems of this type arise, e.g., in modeling elastic heart valve closure where
different kinds of ad hoc “gap” conditions with the no-slip boundary condition have
been used to get around this difficulty.

3. The Arbitrary Lagrangian-Eulerian (ALE) mappings.

To deal with the problems associated with the motion of the fluid domain, dif-
ferent approaches have been taken. One approach is to consider the entire moving
boundary problem written in Lagrangian coordinates, as was done in [91, 30, 29].
This is possible to do when the fluid domain is contained in a ”closed container”
and no fluid escapes the fluid domain, which is not the case with the benchmark
problem, considered above. Another approach is to map the problems from the
moving domain onto a fixed reference domain, using a family of mappings, known
as the Arbitrary Lagrangian-Eulerian (ALE) mappings.

The Arbitrary Lagrangian-Eulerian mapping is a family of (diffeomorphic) map-
pings, parameterized by t, such that

(3.1) A η(t) : Ω→ Ωη(t).

ALE mappings have been extensively used in numerical simulations of moving
boundary problems, see e.g. [41, 42, 131]. Recently, they have proven to be useful
in mathematical analysis as well [102, 23, 103]. In numerics, one of the reasons
for the introduction of ALE mappings is the calculation of the the discretized time
derivative ∂tu since a finite difference approximation of the time derivative, e.g.,
(un+1 − un)/∆t, contains the functions un+1 and un which are defined on two
different domains, one corresponding to the time tn+1 = (n + 1)∆t, and the other
to tn = n∆t. A way to calculate the time derivative of the fluid velocity is then to
map the fluid velocities at times tn+1 and tn onto a fixed domain Ω via the ALE
mappings corresponding to tn+1 and tn, evaluate the time derivative there, and
then map everything back to the physical domain Ωn := Ωη

n

(tn) to solve the fluid
equations on the “current” domain Ωn. This introduces an extra advection term
in the Navier-Stokes equations, describing the contribution due to the fluid domain
motion, so that the Navier-Stokes equations in ALE form become:

(3.2)
ρf
(
∂tu + ((u−wηn) · ∇)u

)
= ∇ · σ,

∇ · u = 0,

}
in (tn, tn+1)× Ωn,

where wηn = ∂tA ηn(tn) describes the fluid domain velocity, defined by the time
derivative of the ALE mapping. In numerical solvers, the ALE mapping is often
defined by the harmonic extension of the boundary data onto the fluid domain, i.e.,
as a solution to the following elliptic problem:

∆A η(t) = 0 on Ω,
A η(t) = η(t) on Γ,
A η(t) = 0 on ∂Ω \ Γ,

calculated at every time step t = tn. Other elliptic (elastic) operators have also
been used.

In addition to numerical solvers, the ALE approach has recently been used to
study the existence of solutions to moving boundary problems by either mapping
the entire fluid problem onto the fixed domain Ω via an ALE mapping and analyzing
the problem there, as in [102, 103, 104], or by mimicking the approach described
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above, used in numerical simulations, and working on the “current” domain Ωn, as
in [23]. In the former case, an additional set of nonlinearities is introduced because
the gradient operator ∇ in physical space is mapped into an operator ∇η, defined
on the fixed, reference domain. The mapped fluid velocity is no longer divergence-
free in terms of the operator ∇, which presents some difficulties when trying to use
known results that hold for divergence-free functions.

Using ALE mappings in analysis requires assumptions on its regularity, which,
of course, depends on the regularity of the fluid-structure interface η, not known
a priori. In most works that use ALE mappings, an assumption on the regularity
of the ALE mapping is made a priori, which is then justified a posteriori, after a
proof showing existence of a solution with sufficient regularity of η is obtained.

For the benchmark problem with no-slip coupling presented above in Sec. 2.1,
one can introduce a family of ALE mappings, parameterized by η, given explicitly
by:

(3.3) A η(t) : Ω→ Ωη(t), A η(t)(z̃, r̃) :=

(
z̃

(R+ η(t, z̃))r̃

)
, (z̃, r̃) ∈ Ω,

where (z̃, r̃) denote the coordinates in the reference domain Ω = (0, L) × (0, R).
Mapping A η(t) is a bijection, and its Jacobian is given by

(3.4) JA η = |det∇A η(t)| = |R+ η(t, z̃)|.
Composite functions with the ALE mapping will be denoted by

(3.5) uη(t, .) = u(t, .) ◦A η(t) and pη(t, .) = p(t, .) ◦A η(t).

The derivatives of composite functions satisfy:

∂tu = ∂tu
η − (wη · ∇η)uη, ∇u = ∇ηuη,

where the ALE domain velocity, wη, and the transformed gradient, ∇η, are given
by:

(3.6) wη = ∂tηr̃er, ∇η =

 ∂z̃ − r̃
∂zη

R+ η
∂r̃

1

R+ η
∂r̃

 .

Note that

(3.7) ∇ηv = ∇v(∇Aη)−1.

The following notation will also be useful:

ση = −pηI + 2µDη(uη), Dη(uη) =
1

2
(∇ηuη + (∇η)τuη).

The resulting problem, defined entirely on the fixed, reference domain, in ALE
framework now reads: find u(t, z̃, r̃), p(t, z̃, r̃) and η(t, z̃) such that

(3.8)
ρf
(
∂tu

η + ((uη −wη) · ∇η)uη
)

= ∇η · ση,
∇η · uη = 0,

}
in (0, T )× Ω,

uη = ∂tηer,
ρsh∂

2
t η + Leη = −Jσηn · er,

}
on (0, T )× Γ,

uηr = 0,
∂ru

η
z = 0

}
on (0, T )× Γb,
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p+
ρf
2 |u

η|2 = Pin/out(t),
uηr = 0,

}
on (0, T )× Γin/out,

uη(0, .) = uη0 , η(0, .) = η0, ∂tη(0, .) = v0.

A review of the recent result on existence theory related to this benchmark
problem is presented next.

4. Recent results and open problems in FSI with elastic structures

The development of existence theory for moving boundary, fluid-structure inter-
action problems started in the late 1990’s/early 2000’s. The first existence results
were obtained for the cases in which the structure is completely immersed in the
fluid, and the structure was considered to be either a rigid body, or described by
a finite number of modal functions. See e.g., [15, 31, 36, 37, 39, 48, 57, 122], and
the references therein. The analysis of the coupling between the 2D or 3D Navier-
Stokes equations and 2D or 3D linear elasticity started in the early 2000’s with the
works in which the coupling between the fluid and structure was assumed across
a fixed fluid-structure interface (linear coupling) as in [45, 10, 11, 93], and then
extended to problems with nonlinear coupling in the works [14, 69, 96, 68, 25, 70,
102, 103, 95, 34, 35, 91, 30, 29]. More precisely, concerning nonlinear FSI models,
the first FSI existence result, locally in time, was obtained in [14], where a strong
solution for an interaction between an incompressible, viscous fluid in 2D and a
1D viscoelastic string was obtained, assuming periodic boundary conditions. This
result was extended by Lequeurre in [96], where the existence of a unique, local
in time, strong solution for any data, and the existence of a global strong solution
for small data, was proved in the case when the structure is modeled as a clamped
viscoelastic beam. D. Coutand and S. Shkoller proved existence, locally in time,
of a unique, regular solution for an interaction between a viscous, incompressible
fluid in 3D and a 3D structure, immersed in the fluid, where the structure was
modeled by the equations of linear [34], or quasi-linear [35] elasticity. In the case
when the structure (solid) is modeled by a linear wave equation, I. Kukavica et al.
proved the existence, locally in time, of a strong solution, assuming lower regularity
for the initial data [91, 88]. A similar result for compressible flows can be found
in [92]. In [116] Raymod et al. considered a FSI problem between a linear elastic
solid immersed in an incompressible viscous fluid, and proved the existence and
uniqueness of a strong solution. Most of the above mentioned existence results for
strong solutions are local in time. In [89] a global existence result for small data
was obtained by Ignatova et al. for a moving boundary FSI problem involving a
damped linear wave equation with some additional damping terms in the coupling
conditions, showing exponential decay in time of the solution. In the case when the
structure is modeled as a 2D elastic shell interacting with a viscous, incompressible
fluid in 3D, the existence, locally in time, of a unique regular solution was proved
by Shkoller et al. in [30, 29]. We mention that the works of Shkoller et al., and
Kukavica at al. were obtained in the context of Lagrangian coordinates, which were
used for both the structure and fluid subproblems.
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In the context of weak solutions, the first existence results came out in 2005
when Chambolle et al. showed the existence of a weak solution for a FSI prob-
lem between a 3D incompressible, viscous fluid and a 2D viscoelastic plate in [25].
Grandmont improved this result in [70] to hold for a 2D elastic plate. A construc-
tive existence proof for the interaction between an incompressible, viscous fluid and
a linearly elastic Koiter shell with transverse displacement was designed in [102].
The first constructive existence proof for moving boundary problems was presented
by Ladyzhenskaya in 1970 where the interaction between an incompressible, viscous
fluid and a given moving boundary was constructed using a time-discretization ap-
proach, known as Rothe’s method, assuming high regularity of the given interface
[94]. Muha and Čanić designed a Rothe’s-type method in the context of moving
boundaries that are not known a priori in 2013 [102]. To deal with a moving
boundary not known a priori they introduced the time discretization via Lie op-
erator splitting, which has been used in numerical schemes, described in [66]. The
FSI problem studied in [102] is split into a fluid and a structure subproblem, with
the coupling designed so that the resulting scheme is stable. This was achieved by
using the results about the “added mass effect”, published in [24], which showed
the importance of implicit treatment of the fluid and structure inertia in loosely
coupled partitioned schemes. The splitting of the coupled problem in [102] was then
done in such a way that the fluid and structure inertia terms are kept implicitly
together, which provided uniform energy estimate, not otherwise attainable using
the “classical” Dirichlet-Neumann” partitioned schemes [115, 118]. A compactness
argument, discussed below in Section 5 was used to show that subsequence of ap-
proximate solutions converge to a weak solution to the coupled problem. After 2013
similar approaches were used to prove existence of a weak solution for a nonlinear
FSI problem involving a nonlinear Koiter shell [105], a multi-layered structure [104],
and a Koiter shell with the Navier slip condition [106].

To complete the discussion of well-posedness, we mention here a result on con-
tinuous dependence of weak solutions on initial data, obtained in [79] for a fluid
structure interaction problem with a free boundary type coupling condition.

In all these works existence of a weak solution was proved for as long as the
elastic boundary does not touch ”the bottom” (rigid) portion of the fluid domain
boundary. Recently, Grandmont and Hillairet showed that contact between a rigid
bottom of a fluid container, and a viscoelastic beam, is not possible in finite time
[71]. The finite-time contact involving thin and thick elastic structures interacting
with an incompressible, viscous fluid is still open.

We conclude this section with a few general remarks related to the geometric non-
linearity in FSI problems for which the coupling across the current location of the
moving interface is needed to describe the physical problem. The strong exchange of
energy between the fluid and structure motion in the nonlinearly coupled problems
gives rise to the various difficulties in the study of mathematical well-posedness. In
particular, the functional spaces based on the finite energy considerations may not
provide sufficient regularity of the moving interface to even define the trace of the
fluid velocity at the fluid-structure interface, and additionally, may lead to various
fluid domain degeneracies, as shown in Fig. 4. These problems are particularly ev-
ident when elastic structures are thin (modeled by the reduced membrane or shell
equations) and the structure model accounts for both transverse and tangential
components of displacement, and the structure is interacting in 3D with the flow of
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Figure 4. Two ways the fluid domain can degenerate. Top: loss
of injectivity of the ALE mapping A η(t). Bottom: loss of injectiv-
ity of the ALE mapping A η(t) and loss of strict positivity of the
Jacobian A η(t).

an incompressible viscous fluid. In those cases, the weak solution techniques based
on finite energy spaces are often times insufficient to guarantee even the Lipschitz
regularity of the fluid-structure interface, see [23]. This is one of the reason why
most literature on the existence of (weak) solutions to moving boundary problems
involving thin elastic structures assumes only the transverse component of displace-
ment to be different from zero [14, 96, 68, 25, 70, 102, 103, 95]. Recently, a 3D
FSI problem allowing transverse and tangential displacements of a mesh-supported
shell was studied in [23] where an existence of a weak solution in 3D was obtained
under an extra assumption on the uniform Lipschitz property for the fluid-structure
interface. FSI problems with elastic structures that are slightly more regular than
the Koiter shell, such as, e.g., tripolar materials studied in [16, 119], do not suffer
from this difficulty.

The issues related to non-zero transverse displacement cannot be avoided in
FSI problems with the Navier-slip coupling. This is the reason why the existence
result in 2D for a FSI problem involving a Koiter shell interacting with the flow
of an incompressible, viscous fluid via the Navier-slip condition [106], holds only
until the fluid domain remains regular, in the sense that degeneracies of the type
shown in Fig. 4 do not occur. In problems with slip, compactness may be an
additional problem since the regularizing effects by fluid viscosity are transferred to
the structure only via the non-penetration condition holding in the normal direction
to the boundary. Never the less, the friction effects in the tangential direction can
be used to compensate for the lack of regularization provided by the fluid viscosity.
More details about compactness for problems on moving domains are presented
next.

5. Compactness

Compactness results similar to the classical Aubin-Lions-Simon lemma [7, 124]
that hold for moving boundary problems are difficult to obtain because, among
other things, the function spaces depend on time via the fluid domain motion, and
the fluid domains are not known a priori . A compactness result in generalized
Bochner spaces L2(0, T ;H(t)), where H(t) is a family of Hilbert spaces which de-
pend on time, is needed to deal with the fluid flow nonlinearities and with the
geometric nonlinearities associated with the fluid domain motion. Such a compact-
ness result should include conditions on the dynamic change of the fluid domain
geometry that would contribute to the compactness argument.
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To the best of our knowledge, there is no general compactness theory similar to
Aubin-Lions-Simon lemma [7, 124] for spaces L2(0, T ;H(t)), where H(t) depends
on time. There are several compactness results for particular, specific problems for
which the spatial domain depends on time, but they were proved using assumptions
that hold for that particular problem at hand. The first result of this type was pre-
sented in Sather’s PhD thesis [120], and then by Fujita and Sauer in [53], where they
studied the Navier-Stokes equations in a given, non-cylindrical domain, namely, in
a domain which depends on time, and whose motion is given a priori. Similarly, in
[33], the authors used a compactness result to study a fluid-rigid body interaction
problem, where an assumption on high regularity of the domain motion had to be
used to obtain an existence result (see also [50, 122]). In the case of fluid-elastic
structure interaction problems, the assumption on high regularity of the interface
is typically not satisfied, thus different approaches need to be employed.

In the context of fluid-elastic structure interaction problems, we mention [39, 70]
where the authors considered a fluid-elastic structure interaction problem between
the flow of a viscous, incompressible fluid and an elastic/viscoelastic plate, in which
a compactness argument based on Simon’s theorem was used to show L2-strong con-
vergence of approximate solutions. We also mention [85] where this approach was
used in the case of a non-Newtonian fluid. A similar problem, but in a more general
geometrical setting, was studied in [95], where compactness of a set of approximate
weak solutions, based on a particular linearization and regularization of the prob-
lem, was proved by using a modification of the ideas from the proof of Aubin-Lions
lemma. Both approaches used the fluid viscosity and kinematic coupling condition
to control high frequency oscillations of the structure velocity. Recently, a version
of Aubin-Lions lemma for a moving domain problem was proved in the context of
compressible fluids, see [18], where an existence of a solution to an FSI problem
between a compressible fluid and a linearly elastic shell was obtained. The lack of
the fluid incompressibility constraint simplifies the compactness argument for the
velocity field.

Compactness results in more general frameworks were studied in [110, 111], where
the authors developed a functional framework based on the flow method and the
Piola transform for problems in smoothly moving domains, where the flow causing
domain motion was given a priori. In those works a version of the Aubin-Lions
lemma was obtained within this framework. A different version of Aubin-Lions
lemma, in a more general form, was also considered in [101]. The approach in [101]
was based on negative Sobolev space-type estimates, defined on non-cylindrical,
i.e., time-dependent domains. The latter approach did not require high degree of
smoothness of the domain motion.

We also mention the results obtained in [12, 28, 101], where generalizations of the
Aubin-Lions-Simon lemma in various types of nonlinear settings were obtained, and
the work in [43] where a version of Aubin-Lions-Simon result was obtained in the
context of finite element spaces. We also mention the works by Elliott at al. where
compactness arguments were developed and used to study parabolic problems on
moving surfaces [4, 5, 2, 6, 3].

Most of the works mentioned above were obtained for continuous time, i.e., the
time variable was not discretized, and most of them were tailored for a particular
application in mind. Working with discretized time brings some additional diffi-
culties in terms of the uniform bounds for the time-shifts (translations in time).
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In the time-discretized case, namely, for the approaches based on Rothe’s semi-
discretization method, the uniform bounds on the time-shifts need to be somewhat
stronger to guarantee compactness, see Proposition 2 in [44]. In particular, the
work in [44] addresses a version of Aubin-Lions-Simon result for piecewise constant
functions in time, obtained using Rothe’s method, but for a problem defined on a
fixed Banach space.

The work presented in [107] concerns a generalization of the Aubin-Lions-Simon
result involving Hilbert spaces that are solution dependent, and not necessarily
known a priori. This is a significant step forward, since the result can be applied
to a large class of moving boundary problems, including numerical solvers. To
account for the time dependence of the function spaces associated with the motion
of the fluid domains, the authors identified a new set of conditions, which quantify
the dependence of the Hilbert spaces on time so that an extension of Aubin-Lions-
Simon result can be applied to a sequence of approximate solutions constructed
using Rothe’s method.

More precisely, the compactness result in [107] is designed for problems which
can be described in general as evolution problems:

(5.1)
du

dt
= Atu, t ∈ (0, T ),

u(0) = u0,

where At : V (t)→W (t) is a family of (nonlinear) spatial differential operators that

depend on time as a parameter. For example,
du

dt
= Atu may correspond to the

Navier-Stokes equations for an incompressible, viscous fluid defined on a moving
domain Ω(t). In this case, At is a spatial differential operator that associates to
each u the function ∇ · σ − u · ∇u, where σ is the fluid Cauchy stress tensor, and
u is divergence free, satisfying certain boundary conditions on Ω(t).

A way to “solve” this class of problems is to semi-discretize the problem in time
by sub-dividing the time interval (0, T ) into N sub-intervals of width ∆t = T/N ,
and introduce the piecewise constant approximate functions

(5.2) u∆t = un∆t for t ∈ ((n− 1)∆t, n∆t], n = 1, . . . , N,

which satisfy, e.g., a backward Euler approximation of the problem on (tn, tn+1):

un+1
∆t − un∆t

∆t
= At

n+1

un+1
∆t or

un+1
∆t − un∆t

∆t
= At

n

un+1
∆t ,

where the choice of At
n+1

or At
n

depends on the problem at hand. For example, if

the motion of the domain Ω(t) is specified a priori, At
n+1

is typically used, where

At
n+1

describes an approximation of the spatial differential operator defined on the
”current” domain Ω(tn+1). If the motion of the domain Ω(t) is not know a priori,
but it depends on the solution of the underlying problem, then At

n

is typically used,
where At

n

describes an approximation of the spatial differential operator defined
on the ”previous” domain Ω(tn).

Functions u∆t are defined for all t ∈ (0, T ) and they are piecewise constant on the
interval ((n − 1)∆t, n∆t], where the constant is defined by its value at n∆t. This
approach to solving the evolution problem (5.1) is sometimes called the Rothe’s
method.

Rothe’s method provides a constructive proof which uses semi-discretization of
the continuous problem with respect to time to design approximate solutions {u∆t}
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where ∆t = T/N , for every N ∈ N. It was first used by Ladyzhenskaya in [94],
for a moving-boundary problem in which the motion of a smooth moving boundary
was known a priori . The aim is to prove the existence of a sub-sequence of {u∆t}
which converges to a weak solution of (5.1) as ∆t→ 0, or equivalently, as N →∞.
Since the problem is nonlinear, weak convergence is not sufficient to show that
the limit is a weak solution of the underlying problem. This is why compactness
arguments need to be employed to conclude that there exists a sub-sequence {u∆t},
which is precompact in a certain generalized Bochner space L2(0, T ;H(t)). This will
allow passage to the limit in nonlinear terms and show that the limit, as ∆t → 0,
of approximate weak solutions satisfies the weak formulation of the continuous
problem.

Employing this strategy to prove the existence of weak solutions to this class of
problems is highly nontrivial, and is at the center of the current research in this
area [102, 105, 104, 106]. The main source of difficulties is associated with the
fact that for every N ∈ N and n ∈ {1, . . . , N}, the approximate weak solutions
un∆t, which are functions of the spatial variables, belong to different solution spaces

V n∆t, which are associated with the operators At
n

: V n∆t → Wn
∆t, and are defined

on different domains Ω(tn∆t), thus V n∆t = V (Ω(tn∆t)). We would like to find the
conditions under which {u∆t} is precompact in some L2(0, T ;H(Ω∆t(t))), where
the definition of L2(0, T ;H(Ω∆t(t))) needs to be made precise. Namely, we want
to find the conditions under which there exists a sub-sequence, also denoted by
{u∆t}, which converges in L2(0, T ;H(Ω∆t(t))) to a function in L2(0, T ;H(Ω(t))),
as ∆t→ 0.

There are two ways how to make the notion of convergence in L2(0, T ;H(Ω∆t(t)))
precise. One way is to introduce a family of mappings, which map the domains
Ω(tn∆t) onto a fixed domain Ω, and work in the space L2(0, T ;H(Ω)). The other
approach is to extend the functions un∆t onto a larger, fixed domain ΩM , and work
in the space L2(0, T ;H(ΩM )). In both cases, certain conditions describing the regu-
larity in time of the domain motion need to be satisfied, in order for a compactness
argument to hold. In [107] those conditions are identified, and a generalization
of the Aubin-Lions-Simon compactness result was obtained, which can be used in
both approaches, mentioned above.

The compactness result from [107] was applied to study existence of solutions to
FSI with Koiter shell [102, 105], to FSI involving multi-layered structures [104], and
to FSI with Koiter shell and Navier-slip coupling [106]. Since the result is based
on the backward Euler time discretization approaches to the coupled FSI problem,
the compactness result from [107] is a promising tool for proving convergence of
numerical schemes that use the backward Euler scheme to discretize the problem
in time [19, 20, 21, 22].

6. FSI with rigid bodies

The study of the motion of rigid bodies immersed in an incompressible, viscous
fluid started almost fifty years ago with the works of Weinberger [130] and Sauer
[121], who investigated the stationary problems. The study continued by the works
of Galdi et al. who studied both the stationary and dynamic problems [58, 59, 61,
60], which paved a way for the most recent results in this field, which we survey
below. Before we give a more detailed account of the recent developments, we
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first present a mathematical formulation of a benchmark problem in fluid-structure
interaction between a rigid body and an incompressible, viscous fluid.

6.1. FSI benchmark problem with rigid bodies. We consider an FSI problem
between an incompressible, viscous fluid and a motion of a solid in a fluid container,
as shown in Fig. 5.

Figure 5. A sketch of a falling rigid ball in a fluid container.

We denote by Ω the region corresponding to the fluid container, and by S0 ⊂ Ω
the solid (rigid structure) in the container, with the center of mass q0. The motion
of a rigid body is fully described by the translation of its center of mass, and by
the (rigid) rotation about the center of mass, described by the functions

q : [0, T ]→ R3 and Q : [0, T ]→ SO(3),

where SO(3) is the group of rotations in 3D, and q describes the translation of the
center of mass. The trajectory of all the points in the rigid body is described by:

x = B(t,y) = q(t) +Q(t) (y − q(0)), y ∈ S0, t ∈ [0, T ].

At time t, the solid occupies the set

S(t) = {x ∈ Ω0| x = B(t,y),y ∈ S0 = B(t, S0),

defining the fluid domain at time t, ΩF (t) = Ω \ S(t). As in the case of elastic
structures, the fluid domain is not known a priori since it depends on the structural
unknowns in the problem, namely the location of the rigid solid at time t.

As before, the fluid flow is described by the Navier-Stokes equations for an
incompressible, viscous Newtonian fluid (2.1), while the equations of motion of
the rigid body are given by a system of six ordinary differential equations (Euler
equations) describing the conservation of linear and angular momentum:

(6.1)
m
d2q

dt2
= f ,

d(Jω)

dt
= g,

where m is the mass of the rigid body, ω corresponds to angular velocity, J is the
inertial tensor, and f and g are the total force and torque acting on the rigid body,
respectively. The inertial tensor is defined by:

J =

∫
S(t)

ρS
(
|x− q(t)|2I − (x− q(t))⊗ (x− q(t))

)
dx,

where ρS is the structure density.
The coupling. The fluid and structure are coupled through two sets of coupling

conditions: the kinematic and dynamics coupling conditions. For the kinematic
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coupling condition we take the no-slip, which says that the trace of the fluid velocity
u at the rigid body boundary is equal to the velocity uS of the rigid body itself:

u(t,x) = uS(t,x), x ∈ ∂S(t), t ∈ (0, T ),

where uS is given by:

uS =
dx

dt
=

d

dt
(q(t) +Q(t) (y − q(0))) = q′(t) + ω(t)× (y − q(0)).

The dynamic coupling condition describes the balance of forces and torque. It says
that the motion of the rigid structure in the fluid is driven by the contact force
exerted by the fluid onto the structure. More precisely, the force and torque f and
g in (6.1) are replaced by:

f = −
∫
∂S(t)

σnds(x), g = −
∫
∂S(t)

(x− q(t))× σnds(x).

Thus, the benchmark nonlinear moving-boundary problem, describing
fluid-structure interaction between an incompressible, viscous fluid and a rigid solid
immersed in the fluid, can be summarized as follows: Find (u, p, q,ω) such that

ρf
(
∂tu + (u · ∇)u

)
= ∇ · σ(u, p)

∇ · u = 0

}
in ΩF (t), t ∈ (0, T ),

u = q′(t) + ω(t)× (x− q(0)) on (0, T )× ∂S(t),

m
d2q

dt2
= −

∫
∂S(t)

σnds(x)

d(Jω)

dt
= −

∫
∂S(t)

(x− q(t))× σnds(x)

 in (0, T ),

u = 0 on ∂Ω

u(0, .) = u0, in Ω, q(0, .) = q0, q
′(0, .) = a0, ω(0, .) = ω0.

Weak solutions. A weak solution is a function (u,B) which satisfies the fol-
lowing two conditions:

1. The function B(t, ·) : R3 → R3, which defines the time-dependent set S(t) =
B(t, S) and the corresponding Eulerian velocity uS , is an orientation preserving
isometry;

2. The function u ∈ L2(0, T ;V (t)) ∩ L∞(0, T ;L2(Ω) satisfies:∫ T

0

∫
Ω\∂S(t)

{u · ∂tψ + (u⊗ u) : D(u) : D(ψ)} dx dt−
∫

Ω

u(T )ψ(T )dx

= −
∫

Ω

u0ψ(0)dx,

for all test functions ψ ∈ H2(0, T ;V (t)), where

V (t) = {v ∈ H1
0 (Ω) | div v = 0,D(v) = 0 in S(t)}.
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7. Recent results and open problems in FSI with rigid solids

Existence of a unique, local-in-time (or small data) strong solution is now known
in both two and three space dimensions, and for both the slip [1, 128] and the no-slip
coupling [36, 67, 97, 126].

In terms of weak solutions of Leray-Hopf type, existence up to collision was
obtained by Gérard-Varet and Hillairet in [64] for the slip coupling, and more
recently by Chemetov and Nečasová in [26], where they showed global-in-time exis-
tence including collision, assuming the Navier slip condition prescribed at the solid
boundary, and no-slip at the container boundary. Global existence with the no-slip
coupling was established in [32, 37, 38, 80, 122].

The question of uniqueness of weak solution is still largely open. Even for the
classical case of the 3D Navier-Stokes equations the uniqueness of the Leray-Hopf
weak solution is an outstanding open problem (see e.g. [56]). However, there are
classical results of weak-strong uniqueness type (see e.g. [56, 123, 127]) which
state that the strong solution (defined in an appropriate way) is unique in a larger
class of weak solutions. For the Navier-Stokes equations the weak solutions that
satisfy Serrin’s conditions are regular [123]. In the most recent paper by Muha,
Nečasová and Radošević [108], these classical weak-strong uniqueness type results
are extended to the case of a fluid-rigid body system under the condition that the
rigid body does not touch the boundary of the container. Namely, in the case of
contact it has been shown that weak solutions are not unique, see [49, 125], because
there are multiple ways of extending the solution beyond the contact.

While these results discuss uniqueness of strong solutions, the results on unique-
ness of weak solutions are sparse. The principal difficulty lies in the fact that
different solutions are defined on different domains, so comparison between solu-
tions is difficult. Usually, to handle this difficulty, the problem is mapped onto a
fixed domain using a mapping that depends on the regularity of solutions, so strong
solutions are easier to deal with. In 2015, however, uniqueness of weak solution for
a fluid-rigid body system in the 2D case was obtained by Glass and Sueur in [65]
for the no-slip case, and by Bravin in 2019 for the slip case [17], while uniqueness
results of weak-strong type were recently published in [27, 40, 54]. In [40] the au-
thors studied a rigid body with a cavity filled with fluid, while in [27] a rather high
regularity for strong solutions was required for the uniqueness result to hold (the
time derivative and second spatial derivatives of the fluid velocity were required
to be in L2). In [54] the authors studied a rigid body with a cavity filled with a
compressible fluid, and showed a weak-strong uniqueness property using a relative
entropy inequality. The most resent result by Muha, Nečasová and Radošević [108]
generalizes these results, since they prove, for both slip and the no-slip case, a gen-
eralization of the well-known weak-strong uniqueness result for the Navier-Stokes
equations to the fluid-rigid body system. More precisely, they prove that weak
solutions which additionally satisfy the Prodi-Serrin Lr − Ls condition are unique
in the class of Leray-Hopf weak solutions.

8. Finite-time contact

As already addressed in the works related to global-in-time existence of weak
solutions mentioned above, global existence of solutions to FSI problems involving
incompressible, viscous fluids is affected by the possibility of contact: either the
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contact between rigid bodies immersed in the fluid, a contact between elastic struc-
tures immersed in the fluid, or the contact between an elastic structure with the
fluid container (rigid) boundary. While in the case of compressible fluids, contact of
rigid bodies is possible in finite time [48], the incompressible, viscous case is differ-
ent since contact in finite time between rigid bodies is not possible for the scenarios
studied in [98, 32, 72, 80, 83, 62, 64, 63]. In a pioneering work in 2009 Nestupa and
Penel showed that contact in finite time between rigid bodies immersed in a viscous,
incompressible fluid is possible if the Navier-slip boundary condition is used, which
became a precursor for a number of existence results involving a slip condition and
FSI with rigid solids, described above.

Finite time contact involving elastic structures remains to be an outstanding
open problem, although a recent result by Grandmont and Hillairet in 2016 [71],
indicates that finite time contact with the no-slip condition and deformable struc-
ture is impossible. More precisely, Grandmont and Hillairet studied the interaction
between a 1D viscoelastic beam and a 2D viscous, incompressible fluid, assuming
the no-slip coupling, and showed (1) that contact in finite time is not possible,
and (2) that strong solutions exist globally in time. Their result is the first no-
contact result involving deformable solids, and the first global existence result for
FSI problems with an incompressible, viscous fluid and deformable structures.
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P. Kaplický and J. Málek), 5:103–134, 2009.
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107. B. Muha and S. Čanić A Generalization of the Aubin-Lions-Simon Compactness Lemma for

Problems on Moving Domains. Journal of Differential Equations, 266(12):8370–8418, October
2019.



26 SUNČICA ČANIĆ
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