e
ER

ELSEVI

Available online at www.sciencedirect.com

ScienceDirect

Current Opinion in

Insect Science

Nutritional symbiosis and ecology of host-gut microbe

systems in the Blattodea

Check for

Benjamin C Jahnes' and Zakee L Sabree'*

Cockroaches and termites (Order: Blattodea) have been the
subject of substantial research attention for over a century due,
in part, to a subset of them having a strong propensity to
cohabitate with humans and their structures. Recent research
has led to numerous insights into their behavior, physiclogy,
and ecology, as well as their ability to harbor taxonomically
diverse microbial communities within their digestive systems,
which include taxa that contribute to host growth and
development. Further, recent investigations into the
physiological and behavioral adaptations that enable
recalcitrant polysaccharide digestion and the maintenance of
microbial symbionts in cockroaches and termites suggests that
symbionts contribute significantly to nutrient provisioning and
processing.
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Gut microbial diversity

Cockroaches and termites exhibit a wide range of dietary
strategies that include omnivory, xylophagy, detritovory,
humivory and coprophagy, which are influenced by the
diverse, largely uncharacterized microbes inhabiting their
digestive tracts. Recent experimental work suggests that
host taxonomy [1,2°,3], gut compartmentalization [4°,5]
and diet [6,7] significantly impact gut bacterial commu-
nity composition. Blattodea species host stable core
microbiota whose relative abundances respond to differ-
ent diets and they are consistently dominated by mem-
bers of the Firmicutes, Bacteroidetes and Proteobacteria,
with Spirochetes being distinctively abundant in some

termites [7-9,10°]. Micro-eukaryotes (i.e. protists) are
more diverse and abundant in ‘lower termites’ than in
cockroaches [11%12], yet they are prevalent in wood-
feeding cockroaches [13°]. Wood-feeding ‘lower termites’
(e.g. Mastotermitidae, Termopsidae, and Rhinotermiti-
dae) maintain microbial communities with increased
protozoan diversity relative to cockroaches and ‘higher
termites’, and they are enriched with Spirochetes and
Bacteroidetes that live within or on the surfaces of
endemic protists [1,2°%,14,15]. Bacterial diversity increases
in ‘higher termites’ (e.g. Macrotermitinae, Termitinae,
Apicotermitinae and Nasutitermitinae) that feed on
diverse diets and are characterized by a notable abun-
dance of Spirochetes and other poorly defined taxa
[1,2%,6]. Diet strongly correlates with gut microbiota
composition within the ‘higher’ termites, where fun-
gus-cultivating Macrotermitinae resemble that of omniv-
orous cockroaches, dominated by Firmicutes, Bacteroides
and Proteobacteria, and relatively few Spirochetes. The
inverse is observed in wood-feeding Nausitermitinae and
Termitinae gut microbiota [1,6]. Interestingly, gut micro-
biota composition in litter-feeding, soil-feeding and
humus-feeding Nausitermitinae and Termitinae are
more similar to omnivorous cockroaches, except for the
increased abundance of Spirochetes, which further illus-
trates the relationship between diet and gut microbial
diversity [1,6].

Comprehensive surveys of viruses, Amoebozoa, fungi,
protozoans, and helminths within Blattodea gut microbial
communities using nucleic acid sequencing approaches are
sparse. Metagenomic profiling of the Coptotermes formosanus
gut bacteriophage community identified ~566 phage
phylotypes/colony with 960 unique phylotypes across three
colonies [16°], which hints at considerable bacteriophage
diversity within C. formosanus and perhaps the Blattodea in
general. A survey of Entamoeba from Periplaneta americana,
Blaptica dubia, and Gromphadorkina oblongonota cock-
roaches identified 134 unique tDNA sequences from nine
new Entamoeba clades, which greatly expands the known
diversity of cockroach-dwelling Entamoeba [17°], yetlittle is
known about their biology and ecological roles. 18S rDNA
metagenomic profiling of Blattella germanica hindguts
detected a diverse array of fungi, nematodes, Candidia,
flagellates and ciliates across both lab-reared and wild-
caught individuals [18°°]. While fungal and nematode
sequences were ubiquitous, flagellates and ciliates were
restricted to insects from a few locations and were low to
absent in lab-reared insects [18°°]. Oxymonad flagellates
are abundant in the gut microbiota of wood-feeding
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cockroachesand termites [19,20] and several new species of
Monocercomonoides and Blattamonas were cultivated from
several omnivorous cockroaches [21°]. Thelastomatid
nematodes (Nematoda: Oxyurida: Thelastomatidae) are
common inhabitants of the cockroach hindgut where they
graze on gut microbiota, and their feeding impacts both host
growth and developmentand hindgut bacterial community
diversity [22,23]. In contrast, few gut-dwelling nematodes
have been identified in termites, with isolated reports of
Thelastomatid nematodes [24] and the species description
of Stomachorkabditis fastidiosa [25].

Host insect/microbe interactions

The expanded hindgut paunch of Blattodea [26,27] and
specific subcompartmentalization of termite hindguts
[28] reflect dramatic adaptations to their abundant gut
microbiota. Distinct bacterial communities have been
demonstrated within subcompartments of the termite
hindgut, with greater similarity between homologous
subcompartments of different taxa of soil and humus
feeding higher termites than among different subcom-
partments of an individual taxon [4°]. The recent avail-
ability of several Blattodea genomes and transcriptomes
reveal additional possible adaptations to harboring
diverse gut microbiota. In particular, gene families asso-
ciated with the innate immune system, including PGRP
and GNBP pattern recognition molecules within IMD
and Toll pathways [29,30°] and antimicrobial peptide
genes, have expanded through multiple duplication
events [31°,32]. These data suggest that they may employ
a high-resolution taxon recognition system to manage
their diverse gut microbiota.

Early studies eliminating or suppressing gut bacteria using
germ-free methods and antibiotics demonstrated positive
effects of bacterial colonization on cockroach and termite
growth and development [33-35,36"°]. Furthermore, dras-
tic reduction of fat body endosymbionts (Blattabacterium
spp.) of cockroaches using antibiotics led to high mortality,
slow growth, and severely reduced reproductivity [37].
Depletion of gut bacteria and Blattabacterium spp.
using antibiotics decreased exogenous glucose-U-"*C or
Na,*S0, incorporation into insect-extracted amino acids,
[38,39] and increased urate accumulation in fat bodies [40],
suggesting a microbial participation in amino acid provi-
sioning and nitrogen cycling. Recent *C stable isotope
analysis in Periplaneta americana and Reticulitermes flavipes
supported this by demonstrating that insect-assimilated
essential amino acids were likely of bacterial origin
[41,42]. Additionally, antibiotic suppression of gut micro-
biota decreased the standard metabolic rate in P. americana,
suggesting that gut microbiota contribute significantly to
energy expenditure of the cockroach [43°].

Omnivorous cockroach gut bacteria can degrade dietary
polysaccharides like cellulose [44,45], and cellulolytic
symbionts are important for termite and wood-feeding

cockroach diet assimilation. While wood-feeding cock-
roaches and lower termites rely upon cellulolytic protists
(and their bacterial mutualists) for lignocellulose feeding
[46], polysaccharide-degrading bacteria are important
cellulolytic components of the higher termite gut micro-
biota [47°]. Beyond contributing to dietary digestion, gut
microbiota can also degrade and detoxify xenobiotics.
Antibiotic depletion of gut microbiota in insecticide-
resistant Blattella germanica cockroaches increased indox-
acarb insecticide sensitivity and partial resistance was
conferred upon indoxacarb-susceptible strains following
coprophagy of feces, and the microbes within, from
insecticide-resistant B. germanica [48°]. A complementary
study reported that several endosulfan-degrading bacteria
were isolated from Blatta orientalis digestive tracts, yet
host protection against this insecticide was not examined
[49]. Finally, antibiotic-treated B. germanica that were
infected with the entomopathogenic fungus Metarkizium
anisopliae exhibited 50% greater mortality than untreated,
infected insects, which suggests that gut bacteria reduced
entomopathogen susceptibility [50°].

In addition to providing host protection, gut bacteria and
their products can impact host behavior. Volatile carboxylic
acids (VCA) present in frass (feces) are among fecal aggre-
gation agents used by B. germanica to attract nestmates,
facilitating several beneficial outcomes (i.e. predator avoid-
ance, mate location, access to nutrient-rich feces). Choice-
based assays revealed that frass from wild-type B. germanica
was more attractive than frass from antibiotic-treated
insects to 1st-instar nymphs [51]. Several VCAs were absent
in frass from antibiotic-treated insects and inoculation of
frass with aerobic bacteria cultivated from untreated insects
rescued the aggregation response, strongly suggesting bac-
terial origins of aggregation agents.

Microbe/microbe interactions

Diverse interspecies symbioses exist in Blattodea diges-
tive tracts that include protist-bacterial endo-symbiosis
and ecto-symbiosis, nematode-bacterial ectosymbioses,
and nematode and protist predatory behaviors that too
can shape the gut microbial community.

Protist-Endosymbiont Interactions. Methanogenic archaea-
bacteria, delta-protobacterial sulfate-reducers and spiro-
chete acetogens are common endosymbionts of cellulo-
lytic ciliates and flagellates native to cockroach and
termite guts [52°°,53,54°]. Recent genomic analyses have
confirmed the potential for these organisms to act as H;
sinks within their hosts and hint at the importance of
syntrophy in promoting endosymbiont acquisition
[52°°,53,54°]. Trichonympha spp. protists are abundant in
several termite lineages and they harbor bacterial endo-
symbionts that belong to several distinct bacterial phyla.
Members of the Elusimicrobia phylum, namely the
‘Endomicrobia’ spp., reside within Trichonympha spp.
and have been detected in the gut lumens of termites,
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cockroachesand otheranimals [55]. Genome annotations of
five Candidatus ‘Endomicrobium trichonymphae’ phylo-
type Rs-D17 genomovars revealed highly similar genome
content and structure, including amino acid and vitamin
provisioning capabilities and intact CRISPR/Cas systems,
suggesting a persistent defense against foreign DNA
[56,57]. Given the nitrogen demands of amino acid provi-
sioning, it is notable that these endosymbionts lacked
diazotrophic genes observed in the cultivated Endomicro-
bium proavitum, which also inhabits Reticulitermes hindguts,
but do not always physically associate with Trichonympha
protists [58°]. Extensive genome sequence sampling of the
Elusimicrobia is underway, with >130 projects (as of Octo-
ber 2019) registered with GenBank, which can reveal how
members of this taxon have evolved across diverse hosts.
The trichonymphid endosymbiont Candidatus ‘Ancillula
trichonymphae’ (Actinobacteria:Bifidobacteriales) lacks
nitrogen-fixing genes yet can potentially provision amino
acids and vitamins using ammonia assimilation and
completely fermentative energy metabolic pathways
[59]. The Bacteroidetes trichonymphid endosymbiont
Candidatus ‘ Azobacteroides pseudotrichonymphae’ resides
in Rhinotermitidae and has nitrogen-fixation genes that
likely support the mutualism through metabolite provi-
sioning [60]. The detection of a circularly permuted bac-
teriophage genome encoding a glutamine-tRNA absent in
the bacterial chromosome in the related Can. A
pseudotrichonymphae’ phylotype ProJPt-1adds an intrigu-
ing additional layer to symbioses in these organisms [61°].

Ectosymbionts of Gut Microbes and Microbial Grazing. Protist
ectosymbionts are abundant in termite guts, with Spir-
ochetes and ‘Synergistes’ species associated with and
propelling Mixotricha paradoxa [62] and Caduceia versatifis
[63], respectively, through coordinated movements. T'G2
‘Margulisbacteria’ attach to Treponema spirochetes who
are themselves attached to termite flagellates, exhibiting
a multilevel symbiosis [64°]. Hydrogenesis via cellulosic
fermentation by ‘Margulisbacteria’ is thought to benefit
their acetogenic spirochete partner. The Bacteroidales
ectosymbiont of Barbulanympha protists within the cock-
roach C. punctulatus can fix >N, which the protist also
assimilates [65], while, in contrast, the Candidatus
‘Symbiothrix dinenymphae’ (order: Bacteroidales) ecto-
symbiont of Dinenympha spp. protists from the lower
termite Reficulitermes speratus lacks nitrogen fixation
genes, yet it encodes lignocellulose degradation enzymes
[66]. Bacterial ectosymbionts of nematodes belonging to
the Bacteroidales termite cluster V, Rikennellaceae and
Ruminococcaceae groups have been observed in two the-
lastomatid species residing in Panesthia angustipennis
woodroach digestive tracts [67°]. Microbe grazing by
Leidynema appendiculatum nematodes within P. americana
and P. fuliginosa hindguts altered gut community compo-
sition, increasing overall taxonomic diversity and enrich-
ing the community with Proteobacteria [22]. Finally,
sympatric bacterivorous ciliates in Panesthia cockroaches
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exhibited distinct grazing preferences amongst available
bacterial species, suggesting long-term ciliate-bacterial
food web associations that likely impact gut community
composition [13°].

Microbial community assembly

Coprophagy, trophallaxis, exuvium consumption, canni-
balism, and necrophagy are common behaviors observed
across Blattodea and hypothesized to aid in the transfer
and retention of gut symbionts [20,68-70], including
protozoa [71], nematodes [72] and methanogens [12].
Recent 16S rRINA gene sequencing studies have demon-
strated how gut bacterial communities are acquired [73°],
change over time [74] and across different gut environ-
ments [4°,5,75]. Gut and frass microbial diversity in
B. germanica significantly overlap, but 13-20% of gut taxa
were absent from frass, suggesting that coprophagy is not
the only means for gut microbial community acquisition
[18°°]. Rifampicin treatment of B. germanica gut commu-
nities over two generations depleted gut community
diversity to nearly 10% of untreated cockroaches, and
coprophagy of frass from untreated insects resulted in the
gut community rebounding to ~50% of the untreated
species diversity [73°]. Single exposure conventionaliza-
tion of germ-free P. americana cockroaches resulted in
intermediate growth and morphological phenotypes
between germ-free and wild-type cockroaches, suggest-
ing that multiple exposures to frass and its associated
microbiota are necessary for normal growth and develop-
ment [36°°]. Inoculations of germ-free Shelfordellz lateralis
cockroaches with gut microbiota from termite and mouse
guts resulted in colonization of bacteria congeneric to
those of a §. lateralis-nativegut bacterial community,
suggesting that the cockroach gut could select for specific
taxa [76]. Work with germ-free cockroaches has also
demonstrated how culturable bacteria that are native to
the gut can impact gut oxygen levels, which in turn can
affect gut community membership that includes taxa that
are oxygen-sensitive (i.e. Bacteroidetes) [77].

Conclusions and future perspectives

Our expanding recognition of the diversity of life found
within Blattodea digestive tracts will provide the basis for
extended study of more specific interactions within this
environment. Gut microbes participate in polysaccharide
digestion, xenobiotic degradation, and amino acid and
vitamin provisioning, and further detailing of the
functional contributions of individual taxa to symbiotic
digestion warrants attention. Likewise, newly discovered
protist-bacterial symbioses provide opportunities to dis-
sect interspecies interactions. Finally, the Blattodea,
especially cockroaches, are amenable to cultivation under
both conventional and germ-free conditions, which high-
lights them as an excellent platform for future efforts to
identify the mechanisms underlying host-microbe and
microbe-microbe interactions.
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