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Abstract—Network-on-chips (NoCs) continues to be the choice
of communication fabric in multicore architectures because the
NoC effectively combines the resource efficiency of the bus
with the parallelizability of the crossbar. As NoC suffers from
both high static and dynamic energy consumption, power-gating
and dynamic voltage and frequency scaling (DVFS) have been
proposed in the literature to improve energy-efficiency. In this
work, we propose DOZZNOC, an adaptable power management
technique that effectively combines power-gating and DVFS
techniques to target both static power and dynamic energy
reduction with a single inductor multiple output (SIMO) voltage
regulator. The proposed power management design is further
enhanced by machine learning techniques that predict future
traffic load for proactive DVFS mode selection. DozZzZNoC
utilizes a SIMO voltage regulator scheme that allows for fast,
low-powered, and independently power-gated or voltage scaled
routers such that each router and its outgoing links share the
same voltage/frequency domain. Our simulation results using
PARSEC and Splash-2 benchmarks on an 8 x 8 mesh network
show that for a decrease of 7% in throughput, we can achieve
an average dynamic energy savings of 25% and an average static
power reduction of 53%.

I. INTRODUCTION

The combined impact of technology scaling (14 nm and
beyond) and the insertion of new transistor designs (tri-
gate) have enabled a rapid increase in the number of both
central processing units (CPUs) and graphical processing
units (GPUs). As Network-on-Chips (NoCs) are the glue
that connects heterogeneous multicores, memory hierarchies
and I/O, the design and implementation of the NoC can
significantly impact the power consumption and performance
of multicores. Aggressive transistor scaling has resulted in
unique power challenges for NoC, particularly the increase
in static power due to leakage current and dynamic energy
due to switching, storing and routing of packets. Therefore,
there is a need for adaptable power management where the
NoC consumes energy which is proportional to the multicore
bandwidth demands.

Dynamic Voltage and Frequency Scaling (DVFS) is a well-
known technique to scale voltage and frequency of the NoC
components (routers, links) in proportion to the network load
without degrading the throughput of the application [1], [2],

[3], [4]. The supply voltage is decreased at low network
load and any marginal loss in performance is tolerated in
order to save dynamic energy. At medium to high network
load, a loss in performance would lead to saturation, dropped
packets, and increased network contention, and therefore, the
supply voltage is proportionally increased. Recent work has
also shown that machine learning techniques can be applied to
select the optimal voltage level through proactive predictions
of future network parameters which more accurately addresses
future network needs than reactive techniques that rely on stale
network parameters. [5], [6], [7], [8], [9].

On the other hand, static power may be targeted through
power-gating, a technique that switches off the supply voltage
to various NoCs components (routers, links) [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19] to reduce leakage
current. Power-gating is used to maximize static power savings
by completely powering off unused or lightly used network
components without causing a significant impact on perfor-
mance. This can be challenging to achieve since there is a
large wake-up delay (7-Wakeup) and a minimum break-even
time (7-Breakeven) to power back on components that were
switched off!. A smart power-gating model will ensure that
(1) only unused or lightly used components will be switched
off, (ii) switched off components are woken before they cause
blocking in the network, and (iii) powered-off components
meet or exceed their break-even times in order to ensure that
static power savings are maximized.

In this paper, we propose DOZZNOC, an adaptable power
management technique that uses single-input multiple-output
(SIMO) voltage regulators to target both static and dynamic
energy savings. Our scheme effectively combines power-gating
(to target low-network activity) and DVFES (to target variability
in network load) with supervised machine learning algorithms
in order to create a more energy proportional NoC. Each
router in DOzzZNOC has three operational states - active,

I'T-Wakeup is the wake-up delay in cycles that a router needs to fully charge
local voltage levels up to Vdd. This differs from T-Breakeven which refers
to the minimum time that the router, link, or network component must be
switched off before powering it back on in order to ensure a net savings in
static power.



inactive and wakeup states; while in an active state, the
router selects the appropriate DVFS voltage mode. While
in the inactive state the router is power-gated. While in the
wakeup state the routers’ local voltage level is charged up
to Vdd. DozzNoC implements DVFES by capturing several
router/NoC features locally (without any global coordination)
and predicts the future buffer utilization to proactively select
the router’s optimal voltage mode. Machine learning (ML)
models have been shown to improve prediction accuracy while
minimizing model error [20], [21], [22], therefore we use
an offline trained linear regression-based ML algorithm to
calculate the label (future buffer utilization) that will be used
to predict the voltage level of the router. DOZzZNOC utilizes
a SIMO voltage regulator scheme that allows for fast, low-
powered, and independently power-gated or voltage scaled
routers such that each router and its outgoing links share the
same voltage/frequency domain. When applied to an 8§ x 8
mesh network, D0ZZNOC achieves an average reduction of
25% in dynamic energy and 53% in static power for a loss of
7% in throughput. The major contributions of this work are
as follow:

o Power-Gating+DVFS:D0zzNOC simultaneously com-
bines partially non-blocking power-gating technique with
DVES. This allows power-gating of NoC routers during
periods of low network activity to save static power and
dynamic voltage scaling during periods of medium to
high network activity to reduce dynamic energy consump-
tion.

o SIMO/LDO Voltage Regulator: The novelty behind the
voltage regulator scheme used in D0ZzZNOC is the com-
bined use of SIMO and low-dropout (LDO) regulator for
voltage scaling and power-gating. This allows DozzNoC
to not only switch between different voltage levels with
low latency, but also to improve the power and area-
efficiency.

e Machine Learning: Do0zzNoOC applies linear
regression-based ML techniques that enable proactive
DVES using fewer router features so as to maximize
energy savings with minimal impact on throughput.
Offline training and local router features ensure minimal
overhead and design scalability.

II. RELATED WORK

DVEFS: DVEFES has been applied at different levels of granular-
ity (fine-grain versus coarse-grain) to various NoC components
(input ports, routers, buffers, crossbars). The design trade-off
usually involves balancing the performance loss (throughput,
latency) with improved energy savings. Prior works have used
various parameters to measure network traffic to decide when
to switch voltage modes such as round-trip time (RTT) [4],
VEFI utilization [23], network slack [24], buffer utilization
[2], cache-coherence properties [25] or greedy/proportional-
integral models [23]. Recent work has begun to incorporate
machine learning algorithms that can predict future network
parameters to select the optimum voltage mode [5], [6], [26].

By training the model offline, the overhead of ML can be
restricted to only runtime overhead.

Power-Gating: Power-gating maximizes static power savings
by switching off individual NoC components. One of the
critical challenges with power-gating is maintaining network
connectivity when individual routers are powered off. Catnap
[14] breaks the NoC into multiple sub-networks and individ-
ually powers down different sub-networks, thereby allowing
one sub-network to maintain full connectivity at all times al-
leviating deadlock and live-lock complications. Another work
seeks to leverage the amount of dark-silicon on a chip in
order to create multiple NoCs that allow for the selection of
the most energy efficient version that meets the performance
demands [11]. Others have focused on maximizing the time
that a router is switched off by re-routing around powered-off
routers [27], while others seek to minimize router blocking
by sending wake up signals to power-up downstream routers
before packets are ready to hop across them [10]. The key goal
for all of these papers is to ensure that static power savings is
achieved without a significant loss in performance by meeting
the break-even time requirement.

Voltage Regulator: In order to maintain low latency switching
in the nanosecond range [28], [29] for NoC, each router is
powered on by single low dropout linear regulator (LDO).
The main drawback with using LDO is that power efficiency
deteriorates drastically when the output of the LDO has large
voltage variations as is the case with most DVFS designs.
When an LDO is scaled down from 1.1 V to 0.8 V' we
see a power efficiency decrease from 92% to 67%, thereby
negating the gains achieved by DVFS. To mitigate this drop
in power efficiency, a switching regulator can be employed
that bridges the power supply and the LDO. However, this
is unfeasible for the NoC as it would increase the latency to
the micro second range. In [30], a hierarchical power delivery
system is reported that optimizes system performance with
reinforcement learning. Multiple switching regulators form an
array of LDOs where the voltage drop at each LDO is kept low
enough to avoid a large drop in power efficiency. The downside
to this approach is the increased area overhead caused by the
addition of switching components.

D0zzZNOC: In this paper we propose D0zzZNOC, wherein we
implement both power-gating (with a different approach for
securing downstream routers) and DVFS using offline trained
regression model simultaneously with low-latency and high
power-efficiency SIMO voltage regulator. Each router and its’
outgoing links are supplied with an LDO for lower switching
latencies while the inputs to each LDO are provided by a
single-inductor multi-output (SIMO) voltage regulator, thereby
enabling a scalable and power-efficient design. Our approach
applies an offline trained Ridge regression algorithm in order
to save run-time overhead while still enabling proactive mode
selection.
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Topology: We apply D0zzZNOC to both (a) concentrated mesh with 16 routers and 64 cores and (b) mesh with 64 routers and 64 cores. (c) The

microarchitecture with the addition of three extra components that enable ML-based feature extraction and label generation.

III. DoZzZNOC ARCHITECTURE
A. D0zzNoOC Topology and Microachitecture

Network Topology : DozzNOC is built with enough ver-
satility to be applicable to multiple network topologies; we
specifically apply D0zzNoOC to a concentrated mesh (cmesh)
and a mesh network topology as shown in Figure 1(a,b). As
the proposed approach does not require global coordination
to select voltage level, we can scale to large number of
routers and apply to different topologies. Each router and
its outgoing links operate at the same frequency/voltage in
DozzNoC. Varying router frequencies causes different packet
latencies per network hop, and only affect the sending router
(upstream) and not the receiving router (downstream). If the
upstream router is faster, then the hop latency is lower and
packets will traverse that router faster. If the upstream router
is slower, then the hop latency is larger and packets will take
longer to traverse that router. Thus, if there is a difference in
router frequencies, it will simply lead to the slower routers
input buffer utilization rising faster as more packets will be
arriving into the router than departing the router. Moreover, our
proposed SIMO voltage regulator is well suited since we can
apply different voltage levels on a per-router basis to switch
on/off a router and its’ outgoing links with low latency and
high power-efficiency (explained later). We use XY dimension
order routing (DOR) to select the output ports. We also use
this information to ensure that downstream routers are not
allowed to be powered-off, and if they are off, to wake them
up for a partially non-blocking power-gated scheme. While it
would be difficult to design a partially non-blocking power-
gated scheme without XY routing, it would still be possible
if the downstream router can be determined in advance and
woken up. Our proposed router microarchitecture is shown in
Figure 1(c).

Router Microarchitecture: We implement proactive DVFS
with predictive machine learning models by adding three key

Fig. 2.

(a) Power Punch States [10], (b) LEAD-7 States [26], (c)
DozzNOC States.

components to the router microarchitecture as shown in Figure
1(c). The first additional unit is called Feature Extract which
gathers local and global router parameters. This data is then
supplied to the next unit called Label Generate. This unit
multiplies each gathered feature by its’ corresponding weight
and sums the results in order to generate the label. This weight
vector is trained offline and is imported before the simulation
begins. The last unit is called Model Select and it selects the
optimal voltage mode based on the value of the predicted label.
In our design, routers and links operate in any of the three
states of operation as shown in Figure 2. These three states
include an inactive state, an active state, and a wakeup state.
Inactive State: In this state, the power supply to an individual
router and its’ outgoing links is reduced to 0 V' and the router
cannot operate. While in an inactive state, the router may not
send/receive packets and cannot be used to hop packets across



it. The router can transition from an active state to an inactive
state in a single cycle, but it must satisfy specific conditions
before it is allowed to switch off. For this work we ensure that
the routers’ buffers have been empty for several consecutive
cycles and that it is not a downstream router before we allow
the router to be switched off.

Wakeup State: A router that is in the process of transitioning
from an inactive to an active state goes into a wakeup state
(intermediate state). While in the wakeup state, the router
consumes the same amount of power as if it were in active
state. However, it may not be used to send/receive packets and
it may not be used to hop packets across it until the wake-
up delay has been satisfied [14]. A router can transition from
an inactive state to a wakeup state in a single cycle, but the
router must wait in the wakeup state for a set amount of cycles
before it can be considered fully on and functional. In a power
delivery system this is called the wake-up time (T-wakeup),
and it is defined as the interval from the instant of a voltage
change until the local voltage level settles to meet the supply
voltage level. We have already accounted for the overshoot
and undershoot of the power supply during this period and
have determined our T-Wakeup to be 8.80 nsec when using
our SIMO/LDO voltage regulator design.

Active State: A router that is in an active state can operate
in one of five different voltage levels. These different V/F
pairs are referred to as various modes of operation in which
the supply voltage and clock frequency are proportionally
increased/decreased. The V/F pairs our model uses in this work
are {0.8 V/1 GHz, 09 V/1.5 GHz, 1.0 V/I1.8 GHz, 1.1 V/2
GH~z and 1.2 V/2.25 GH z} which correspond to being in the
active state in modes 3-7. We start the numbering at mode 3
because we consider mode 1 to be the inactive state and mode
2 to be the wakeup state. These V/F pairs are similar to those
used in other works [25], [26] and we have maintained the
same for fair comparison. A key difference in our work is that
we use real valued switching delays obtained from our SIMO
voltage regulator design.

B. D0zzNoC Models

In this subsection, we describe the various combinations of
DVFS and PG models considered with and without machine
learning (ML). We consider 5 models, baseline (with neither
any power management nor ML implemented), PG (power-
gating model with neither DVFS nor ML implemented),
DVFS+ML (DVFS and ML implemented with no power-
gating), DozzNoC (DVFS+PG+ML) and DozzNoC (ML-
TURBO). ML+TURBO was added to see the impact on static
power and dynamic energy when the highest mode is chosen
instead of a lower predicted mode. All three machine learning
models use the same threshold based DVFS mode selection
logic. This logic looks at the current input buffer utilization
and compares it to a theoretical maximum to determine
what mode should be selected for the next epoch. The state
transition logic for all three ML models is shown in Figure
3, where D0zzZNOC and ML+TURBO use the state selection
logic from 3(a), and when the router is in the active state, all

three comparative ML models use the logic in 3(b) to select
the optimal voltage mode.

Baseline: The baseline model starts with all routers operating
in the active state at the highest voltage level, mode 7. The
Baseline does not allow the transition of a router into any other
state. This model will always have the highest throughput and
the lowest latency as it incurs no router wake-up delay and
no voltage level switching delay. However the baseline offers
neither static power savings nor dynamic energy savings.
Power-Gated (PG): We selected Power Punch model [10]
for our power-gated design as shown in 2(a). It must be
noted that the model is not an exact implementation of Power
Punch, however it behaves similarly with look-ahead routing
to wakeup downstream routers. This model operates routers
in one of three states - inactive, waking up or active - as
explained in section 3.1. If a router is active, then it will
operate at the highest mode of operation, mode 7. In order for
a router to transition from an active state to an inactive state,
it must be idle for at least T-Idle consecutive cycles. A router
is considered idle only if its’ input buffers are empty and it is
not a downstream router. The second condition was developed
in order to make this model non-blocking in nature so that
a fairer comparison to Power Punch can be made. We use
XY DOR routing with a look-ahead routing algorithm which
allows us to easily know the next router in a packets’ path so
that downstream routers can be secured. When a router is in
a secured state, it can not be switched off. If it is currently
off, it will immediately transition into a wakeup state where
it will stay until the wake-up delay has been met. The main
purpose of this model is to compare the static power savings
of a state-of-the-art power-gating technique against a design
that combines power-gating and DVFS.

D0zzZNOC (ML+PG+DVFS): The proposed D0zzNoOC de-
sign uses the same underlying partially non-blocking power-
gated design proposed earlier wherein all routers may be in one
of three states as shown in Figure 2(c). The algorithm utilized
in DO0ZzZNOC to decide how to transition from different state
is shown in Figure 3(a). DOZZNOC measures router idleness
(R-Idle) every cycle. If a router has been idle for more a
certain number of consecutive cycles (T-Idle) and it is not
a downstream router and input buffer utilization (IBU) = 0,
it will transition to the inactive state. T-Idle was based on
previous work which found that T-Idle = 4 had the best
performance [14]. While [14] is a multi-NoC architecture,
DozzNoC is a single-NoC architecture and we use similar
T-Idle value. It must be noted that a small T-idle will cause
congestion since traffic will be blocked due to router being
switched-off and less power savings due to T-breakeven. If T-
Idle is too large, then we will not save enough power. Since
our lowest voltage level has a T-wakeup of 9 cycles and T-
breakeven of 8 cycles (see next subsection), our conservative
estimate of T-Idle of 4 cycles will provide the correct balance.
From the inactive state it will transition to the wakeup state
where it must wait the full duration of the wake up delay
(T-Wakeup). This delay will vary with the voltage level of
the active state. When the router has been switched on it will
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for DVFS with low switching latency and high power efficiency.

operate at one of five different voltage levels similar to the
DVFS model described in [26]. This differs from the Power
Punch model which may only be active in the highest mode
of operation, mode 7. D0OzzZNOC uses predictive machine
learning techniques to determine the optimal voltage level for
a router that is in an active state and dynamically adjusts
the supply voltage to select it as shown in 3(b). In order to
do this, we predict future input buffer utilization of a router
and then compare this to the theoretical maximum utilization
to determine the optimal voltage level that meets network
performance demands while still ensuring dynamic energy
savings. This DVES design relies on aggressive voltage scaling
that minimizes potential loss in throughput. For epoch size of
100 cycles, if we predict the buffers to be less than 5% of the
maximum over the next epoch, we select the lowest voltage
level for the active state to operate at, mode 3. If the buffers

are predicted to be between 5% and 10% of the maximum
we select mode 4, if the buffers are predicted to be between
10% and 20% we select mode 5, if the buffers are between
20% and 25% we select mode 6, and finally if the buffers are
predicted to be more than 25% full we select mode 7. This
scheme allows for switching between different voltage levels
due to our proposed SIMO voltage regulator design.

(DVFS+ML): LEAD-7 [26] is used to compare against our
proposed D0zzNOC since LEAD-7 implements DVFS+ML
in NoC architectures. In this scenario, the router can only be
in an active state and use the same mode selection logic as
DozzNoC where future input buffer utilization is predicted
and an optimal active voltage level is calculated as shown in
Figure 3(b). This model may transition from any voltage level
to any other voltage level within the range of 0.8V to 1.2V.
The main purpose behind including this model is to compare



how a stand-alone machine learning DVFS design performs
against a machine learning design that has DVFS and power-
gating.

ML+TURBO: This model seeks to apply power-gating and
DVES to the NoC in a similar fashion to DozzNOC. It uses
three states of operation, the inactive state, the wakeup state,
and the active state. When a router and its’ links are active,
a prediction of the future input buffer utilization is used to
govern the voltage level. The key difference between this
model and D0zZzZNOC is that every three times we predict that
a router should be at any active mode other than mode 3 or
mode 7, we instead select the highest voltage level for the next
epoch. The key goal of this model is to improve throughput at
the cost of dynamic energy since we opt for the highest mode
even if we predict a lower mode to be more optimal in the
hopes of saving more static power.

C. SIMO/LDO Voltage Regulator

Prior work on designing hierarchical power delivery system
to optimize system performance and latency has been reported
[30] and is shown in Figure 4(a). However, the downside is
extra power to switch components. Our proposed D0zzZNOC
is built upon a unique SIMO/LDO voltage regulator design
shown in Figure 4(b). Each router and its’ outgoing links are
supplied with an LDO for lower switching latencies while
the inputs to each LDO are provided by a single-inductor
multi-output (SIMO) voltage regulator [31]. It is critical that
we use SIMO regulators to enable variable supply voltages
because without them the input voltage is a fixed battery
voltage. Our DVFS models can use this SIMO/LDO design
to select different operating voltages within the 0.8V to 1.2V
range. The input voltage of the LDO dynamically selects the
MUX for different voltage levels of 0.9V, 1.1V, and 1.2V.
This design also allows for power-gating when both the input
and output of the LDO are switched to ground. This allows
us to design power-gated models that can save static power.
Another advantage to our SIMO regulator scheme is that there
is very low area overhead cost compared to conventional power
delivery systems such as the switching regulator/LDO array.
There is a single inductor that can provide three different
output voltages simultaneously. To regulate the three voltages
to the desired values respectively, the SIMO regulator adopts
time-multiplexing control scheme. Our SIMO design reduces
the number of power switches from 6 to 5 which leads
to an overall decrease in on-chip and off-chip components
for reduced area overhead. We show in Figure 6 that the
overall power efficiency of the proposed system is higher than
87%. Compared to the baseline where the LDO is supplied
with 1.2V, our design achieves an average power efficiency
improvement of 15% at four various points of comparison
with a maximum efficiency increase of almost 25% at 0.9V.

In Table I we show how the voltage dropout of the LDO
can be made equivalent to a 100 mV drop leading to much
higher power-efficiency than similar designs that would need
much higher dropouts in order to be able to provide voltages
in the 0.8V to 1.2V range. This is because the SIMO regulator

TABLE I
LDO VOLTAGE DROPOUT RANGE FOR THREE DYNAMICALLY SELECTED
INPUT VOLTAGES.

[ LDO Vin [ LDO Vout Range [ Dropout Range ]

0.9V 0.8V - 0.9V 0V - 0.1V

1.1V 1.0V - 1.1V 0V - 0.1V

1.2V 1.2V ov
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Fig. 5. Real-Valued Delay: (a) T-Wakeup: The real-valued wake-up delay
for a router to transition from an inactive state to an active state during power-
gating where the switching starts at 30 psec. (b) T-Switch: The real-valued
voltage switching delay for a router to switch between voltage levels when
using DVFS.

supplies three Vy,’s at the same time. The change in latency
and output voltage of the SIMO regulator are small enough
that they can be ignored. Thus the overall latency is determined
only by the LDO. In Figure 5 we show the waveforms from
power-gating a router from OV to 0.8V as well as switching
from 0.8V to 1.2V. Vo_rpo, Irp and Vin_1po represent
the output of the LDO, the equivalent load current, and the
input of the LDO. The input of the LDO changes with the
output such that the maximum dropout remains between 0
and 100 mV. LDOs have high bandwidth, thus the latencies
are still within the nsec range. The real valued latency to
perform power-gating and DVFS from any voltage within the
range of 0.8V to 1.2V is listed in Table II. These costs need
to be converted to cycles so that they can be simulated in our
cycle accurate network simulator. The cycle cost of these real
valued delays are shown in Table III. We apply the worst case
power-gating/voltage level switching latency to every case.
For instance, the worst case power-gating delay (T-Wakeup)
is 8.8ns, thus we apply T-Wakeup cost to every router that
wants to switch from OV to any voltage level in the range of
0.8V to 1.2V (inactive state to active state). The worst case
voltage switching delay (T-Switch) is 6.9ns, thus we apply that
switching cost to every router that wants to switch from any
active mode to any other active mode. The break-even time
(T-Breakeven) is applied according to the mode that a router
wants to switch on into. According to other work, the value
of T-Breakeven is around 10 cycles [13]. We conservatively
estimate our T-Breakeven to be 12 cycles for the highest mode
and proportionally less for lower modes.

D. Machine Learning-based Mode Selection

Machine Learning enables us to use proactive mode
selection techniques for all three ML models (D0zzNoC,
DVFS+ML and ML-TURBO). Our feature set corresponds
to relevant network throughput parameters such as buffer
utilization, link utilization, or router idle time while our



TABLE II
MEASURED DELAY TO SWITCH BETWEEN ANY MODE IN THE VOLTAGE
RANGE OF 0.8V - 1.2V.

[ Latency [ PG [ 0.8V [ 0.9V [ 1.0V [ 1.1V [ 1.2V ]
PG Ons 8.5ns | 8.7ns | 8.7ns | 8.7ns | 8.8ns
0.8V 8.5ns | Ons 42ns | 5.5ns | 6.2ns | 6.7ns
0.9V 8.7ns | 4.2ns | Ons 4.4ns | 5.5ns | 6.3ns
1.0V 8.7ns | 5.5ns | 4.4ns | Ons 43ns | 5.5ns
1.1V 8.7ns | 6.3ns | 5.4ns | 43ns | Ons 4.3s
1.2V 8.8ns | 6.9ns | 6.3ns | 54ns | 4.1ns | Ons
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Fig. 6. Power Efficiency:The power efficiency of our SIMO design versus
a baseline regulator switching array.

weight vector corresponds to the impact that each feature has
in determining the overall label. We use Ridge Regression
and perform supervised learning using the following equation:

N M
E(w) = % En:l{y(xny w) - tn}z + % Ej:l w]2

The core of the Ridge Regression equation is the minimization
of the sum of square errors. This means that the error between
the actual value of the label and the predicted value of the
label will be made as small as possible during the training
phase. Our training phase takes place outside of our network
simulator as it is done offline in Matlab. The predicted
label (y(x,,w)) is the routers’ predicted future input buffer
utilization, and this is minimized with respect to the actual
label (t,,). The routers’ actual future input buffer utilization is
supplied durin% training along with the features. We tune the
equation % jil w? with different lambda hyper parameter
values until the best-fitting solution is found. This is exported
in the form of a weight array and used by the network
simulator during testing. We used 14 trace files in total - 6
trace files for testing, 3 for validation, and the remaining 5 for
testing the generalized performance of each trained model.

Feature Set: The feature set is carefully crafted such that
prediction accuracy is maximized while overhead is kept
to a minimum. This is accomplished by selecting local
router features that gives the greatest insight into network
performance while minimizing features that may require
global coordination or communication. Each additional
feature equates to more computational overhead because the
number of additions and multiplications necessary to generate

the label increases. The original feature set proposed in prior
work [26] contained 41 features in total as well as a label,
however we have reduced this to only five critical features.
These five features are listed in detail in Table IV and this
will be further discussed in results section.

TABLE IIT
MEASURED DELAY COSTS FOR T-WAKEUP, T-SWITCH, T-BREAKEVEN.

Volt. | Freq. T-Switch | T-Wake T-Break
up even
0.8V | 1 Ghz 7 cycles 9 cycles 8 cycles
0.9V | 1.5 Ghz 11 cycles | 12 cycles | 9 cycles
1.0V | 1.8 Ghz 13 cycles | 15 cycles | 10 cycles
1.1V | 2 Ghz 14 cycles | 16 cycles | 11 cycles
1.2V | 225 Ghz | 16 cycles | 18 cycles | 12 cycles
TABLE IV

REDUCED FEATURE SET USING ONLY LOCAL ROUTER FEATURES.

[ Feature Set: |

Feature 1: | Array of 1’s

Feature 2: | Requests Sent by 4 Cores Connected to Router
Feature 3: | Requests Received by 4 Cores Connected to Router
Feature 4: | Router Total Off Time

Feature 5: | Current Input Buffer Utilization

Label: Future Input Buffer Utilization

Label: In order to generate the training features and their
corresponding labels, we must first design reactive versions of
each machine learning model that uses current or past network
parameters to govern mode selection. We run the training
traces with these reactive mode selection models and export
the features as well as the label every epoch. The label that all
models are supplied with is the future input buffer utilization
of the router. This value is tacked onto the feature set at the
end of the simulation since it is not actually known until the
next epoch. This data must be collected separately across all
training/validation benchmarks for each of the various models
such that each model will use unique training/validation data.
Once the models have been trained, they are exported back to
the network simulator where they are used to generate labels
that allow proactive mode selection, thus each ML model is
trained offline and is ready to use at test time.

Machine Learning Overhead: After a model has been
trained, the weight vector is exported to the network simulator
where it can be used to select voltage levels when routers
are active. The additional overhead incurred from machine
learning can be broken down into the timing, area, and energy
cost to execute a series of additions and multiplications as
this is how a label is calculated. Each feature is multiplied
by its equivalent weight and then the results are summed in
order to generate a label. Prior work [32] has already estimated
the cost to do these operations. The energy cost of a single
16 bit floating point add is 0.4 pJ and the area cost is 1360
um?. To execute a multiply would consume an estimated 1.1
pJ with an area overhead of 1640 um?. Prior work that used
41 features calculated the total energy overhead cost to be
61.1pJ, the total area overhead cost to be 0.122 mm?2, and



the total timing cost to be 3-4 cycles. We have shown that
the feature set can be reduced down to 5 features without
causing a significant impact on model performance. Therefore
the overhead to generate a label can be reduced to only 5
multiplications and 4 additions. This equates to a total energy
overhead cost of 7.1pJ, a total area overhead cost of 0.013
mm?, and a total timing cost of 3-4 cycles per router. Our
epoch size is 500 cycles and a label only needs to be calculated
by a router once per epoch.

IV. PERFORMANCE EVALUATION

A. Simulation Setup

We use a cycle accurate full system simulator to gather
trace files from real industry standard benchmarks[33]. This
allows us to run both PARSEC 2.1 [34] and SPLASH2 [35]
benchmarks in order to generate trace files which contain
per core network traffic. When a packet is injected into the
network, the source, destination, type (request/response) and
injection time are all saved as a single entry. These traces are
then supplied to our network simulator and used as input for
real traffic patterns in order to gather training and validation
data for our various models. We developed reactive versions
of each machine learning model (D0zzNoOC, LEAD-7, and
ML+TURBO) which rely on current buffer utilization to select
voltage levels while the router is in an active state. This
allows us to run our network simulator and export features
and a label every epoch. This data is used to train our various
mode selection models using supervised learning with Ridge
Regression.

From a total of 14 trace files, we use a total of six trace files
for training purposes, three for validation, and then the final
five for testing. During validation the lambda hyper parameter
is tuned until the best-fitting solution is found, meaning the
array of weights that produced the smallest error between the
predicted label and the supplied label. After training and val-
idation we test the trained algorithm by exporting the trained
weights for use in our network simulator where they are used
to generate labels (future input buffer utilization). This future
input buffer utilization is then used to govern mode selection
allowing proactive models based on accurate predictions of
future network parameters. This is repeated for all three ML
models, D0ozzNoC, LEAD-7, and ML+TURBO. The test
traces are not used for training or validation ensuring that the
performance of each model can be measured as accurately as
possible. Dsent [36] is used to model the router and the links as
well as to obtain their respective static power/dynamic energy
costs. The static power cost as well as the dynamic energy cost
of the router and it’s outgoing links for a concentrated mesh
are shown in Table V. The latency and power/energy costs of
a concentrated mesh are higher than a mesh because they have
more components and larger crossbars, thus they are used as
a worst case for any latency/power/energy costs. These delays
were gathered for the five different modes of operation at a
technology size of 22nm with 128-bit flit width [36].

B. Results

The results section will be divided up into two subsections.
The first section will discuss trade-off studies such as compar-
ing the mode selection accuracy of multiple individual features
as well as mode prediction breakdown of each ML model.
The second section will discuss throughput and dynamic and
static energy savings for compressed and uncompressed traffic
traces.

1) Trade-Off Studies: In Figure 7, we show the distribution
of predicted DVFS modes for all three ML models. This means
that when a D0zzNOC router is in the active state, it will
operate at M3-M7 proportionally. These active state voltage
levels are updated every epoch but a router may transition
between active, waking up, and inactive at any point within an
epoch. Both LEAD-7 and ML+TURBO do not apply power-
gating, thus these routers will always be active in the mode
that was determined optimal for that epoch according to the
generated label. The baseline and the Power Punch scheme are
not shown as they do not use DVFS logic to select optimal
active modes. From the results, we observe that the mode
switching for DVFS with ML models appear to be similar.

TABLE V
STATIC POWER AND DYNAMIC ENERGY COST TO HOP ACROSS THE
ROUTER AND A LINK AT 22NM TECHNOLOGY [36].

Volt. | Freq. Static | Static Dynamic
Power | Power Energy
WJ/s) (Cycle) | (pJ/hop)
0.8V | 1 Ghz .036 .667 25.1
0.9V | 1.5 Ghz .041 750 31.8
1.0V | 1.8 Ghz .045 .833 39.2
1.1V | 2 Ghz .050 917 47.5
1.2V | 2.25 Ghz | .054 1.0 56.5

In Figure 11, we show how we determined which features
had the best correlation to accurate predictions of future input
buffer utilization by comparing mode selection accuracies.
Mode selection accuracy is defined as the total number of
accurate mode selections divided by all accurate and inaccu-
rate mode selections. We record the labels every epoch and
compare them to the real value of the buffer utilization at
the next epoch. As long as both would lead to the same mode
being selected, the selection was considered to be accurate.For
our trade-off study in Fig. 11 we trained and validated our
Do0zzNoC model using only a single feature plus an array of
1’s for normalization. Each weight is trained/validated/tested
individually so we can analyze the mode selection accuracy
using that particular feature. This will help us weed out
features that do not predict the label (future input buffer
utilization). Weights are trained such that when a weight is
multiplied with its’ respective feature it generates a label.
This predicted label is subtracted from a supplied label (future
buffer utilization) and the error between the two is brought as
close to zero as possible. Once each single feature weight has
been trained it is exported for use in our network simulator
where it can be used at runtime to generate labels that are
subsequently used to govern mode selection.
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Fig. 8. (a) shows the throughput for compressed MESH architecture for Baseline, Power Punch (PG), LEAD-tau (ML+DVES), DozzNoC (ML+DVFS+PG),
and ML in TURBO mode (ML+TURBO) for a window size of 500 cycles. The static and dynamic energy normalized to the baseline for 8§ x 8 MESH for
a window size of 500 with (b) compressed traces, and (c) uncompressed traces is shown.
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Fig. 9. Shows the mode selection accuracy of using only a single feature for DOZZNOC model training and testing. The mode selection accuracy across all
5 test traces is shown with the average value given above each benchmark for each individual feature.

From the results, we observe that input buffer utilization top 5 features, we observed that there is almost no impact
has the most impact on mode selection accuracy (80%). Then on throughput, latency, dynamic energy savings, static power
the total router off time and traffic in all directions provides savings, or EDP between our D0zzZNOC model that was
accurate mode selection 40% of the time. Using only the trained and validated with 41 features (D0zZzZN0C-41) and



a model that used only the top 5 best performing features
from our feature test in 11 as well as an array of 1’s for
normalization (D0zzZNOC-5). The main reason is that the
current input buffer utilization predicts almost 80% in mode
selection accuracy and the remaining top 4 features provide
40% in mode selection accuracy.

Therefore, by combining the top 5 features, we obtain no
loss in performance. Moreover, we also tested across multiple
epoch sizes (100 - 1000) and determined that 500 allowed us
to maintain increased model performance while still allowing
us to maintain a healthy amount of training and validation
data. Since the predictive model has an impact on the future
buffer utilization, we specifically train/test/validate our model
on different epoch sizes so that the offline-sampled labels learn
the model by considering the inter-epoch dependencies. There-
fore, each epoch size has a separately trained model which
retains all inter-epoch dependencies when frequency/voltage
are changed.

2) Model Performance: For traditional DVFS designs the
main focus is the trade-off between performance loss and
dynamic energy savings, while traditional power-gated designs
focus on the trade-off between performance loss and static
power savings. For our work, our final results must focus
on the trade-off between performance loss and both dynamic
energy savings and static power savings. This is why we
compare a baseline model that has neither power-gating nor
DVEFS implemented against four other models in order to
show case the numerous trade-offs we seek to highlight. The
baseline model is always active and always operates routers
and links at the highest voltage level while the power-gated
design operates routers and links at mode 7 when turned on.

For a mesh topology at an epoch size of 500 cycles our
version of power-gated design can achieve an average of 47%
static power savings for an increase of 5% in latency and a
throughput loss of 9%. For a mesh topology at an epoch size of
500 cycles LEAD-tau model can achieve an average of 25%
dynamic energy savings and 25% static power savings for a
1% latency increase and a 3% loss in throughput. We note that
static power savings are obtainable while only using DVFS
because lower voltage levels will consume proportionally less
static power than the baseline which always operates at the
highest voltage level. Our D0ozZNOC model highlights our
novel design which seeks to save both static power and
dynamic energy. For a mesh topology with an epoch size of
500 cycles, our D0ZZNOC model can save on average 53%
static power and 25% dynamic energy while only increasing
latency by 3% and decreasing throughput by 7%. For a cmesh
network D0zzZNOC can save on average 39% static power
and 18% dynamic energy for a latency increase of 2% and
a throughput loss of 5%. Our ML+TURBO model is an
experimental model designed to show the trade-off between
dynamic energy savings and static power savings. Every three
epochs that our ML+TURBO model determined a router
should operate in a mode other than the lowest or highest
mode, we instead forced that router to operate in the highest
mode with the goal of losing some dynamic energy savings

to see if we could obtain a greater increase in static power
savings through faster simulations. For a mesh topology with
an epoch size of 500 cycles, ML+TURBO saved on average
52% static power and 21% dynamic energy for a latency
increase of 3% and a throughput loss of 7%. When compared
to our D0zzNOC model we note that not only did we have
a slight loss in static power savings, but we also had a slight
loss in dynamic energy savings. This is because the highest
mode of operation consumes the most dynamic energy and
it has the highest static power cost. Also, just because we
operate in the highest mode does not necessarily mean that the
simulation will end sooner because packet injection is based
on real valued cycle times.

V. CONCLUSIONS

This paper discusses techniques to save both static power
and dynamic energy by combining partially non-blocking
power-gating and smart proactive DVFS. The power-gated por-
tion of the design can be operated on a fine-grain timescale to
ensure that break-even times, wakeup times, and idle counters
are accounted for while the DVFS portion can be operated
on a coarse-grain timescale to ensure switching delays can be
minimized. The LEAD-7 model as well as the power-gated
model were used for comparative purposes and highlighted
the individual trade-offs associated with using either a modern
partially non-blocking power-gated scheme or a smart proac-
tive mode selection model for DVFS. Our novel DozzNoC
model showed how we can combine the underlying ideas
behind these two key models in order to save both dynamic
energy and static power for minimal loss in performance with
only 5 critical features for reduced computational run-time
overhead. We also show that there are several key benefits
of using LDO’s to reduce voltage switching and wakeup up
delays.
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