
CSCNN: Algorithm-hardware Co-design for CNN
Accelerators using Centrosymmetric Filters

Jiajun Li∗, Ahmed Louri∗, Avinash Karanth†, Razvan Bunescu‡

∗Department of Electrical and Computer Engineering, George Washington University, Washington, D.C.
†School of Electrical Engineering and Computer Science, Ohio University, Athens, Ohio

‡Department of Computer Science, University of North Carolina at Charlotte, Charlotte, North Carolina
Email: {lijiajun, louri}@gwu.edu, karanth@ohio.edu, rbunescu@uncc.edu

Abstract—Convolutional neural networks (CNNs) are at the
core of many state-of-the-art deep learning models in computer
vision, speech, and text processing. Training and deploying such
CNN-based architectures usually require a significant amount
of computational resources. Sparsity has emerged as an effec-
tive compression approach for reducing the amount of data
and computation for CNNs. However, sparsity often results in
computational irregularity, which prevents accelerators from
fully taking advantage of its benefits for performance and
energy improvement. In this paper, we propose CSCNN, an
algorithm/hardware co-design framework for CNN compression
and acceleration that mitigates the effects of computational ir-
regularity and provides better performance and energy efficiency.
On the algorithmic side, CSCNN uses centrosymmetric matrices
as convolutional filters. In doing so, it reduces the number of
required weights by nearly 50% and enables structured com-
putational reuse without compromising regularity and accuracy.
Additionally, complementary pruning techniques are leveraged
to further reduce computation by a factor of 2.8-7.2× with
a marginal accuracy loss. On the hardware side, we propose
a CSCNN accelerator that effectively exploits the structured
computational reuse enabled by centrosymmetric filters, and
further eliminates zero computations for increased performance
and energy efficiency. Compared against a dense accelerator,
SCNN and SparTen, the proposed accelerator performs 3.7×,
1.6× and 1.3× better, and improves the EDP (Energy Delay
Product) by 8.9×, 2.8× and 2.0×, respectively.

Index Terms—Convolutional Neural Networks, Dataflow Accel-
erators

I. INTRODUCTION

Convolutional neural networks (CNNs) have achieved un-
precedented performance on many machine learning appli-
cations, ranging from image classification [1]–[3] to text
classification [4], [5] and speech recognition [6]–[8]. Perfor-
mance improvements are generally correlated with increases
in both depth and the number of parameters. For example,
Microsoft’s ResNet [3] can reach up to 152 layers and
over 20 million parameters, which improves performance,
but also results in excess computation and memory accesses.
Numerous customized accelerators for CNNs that can deliver
high computational throughput have been proposed in the
literature [9]–[29]. However, given the current trend towards
deeper and larger models for higher accuracy, it remains a
significant challenge to efficiently process large-scale CNNs.

Sparsity has emerged as an effective approach to reduce data
and computation in CNNs [30]. Researchers have proposed

many effective techniques to make CNNs sparse without
compromising accuracy [30]–[35]. In recent work [30], weights
that are below a small threshold are pruned to zero, followed
by a retraining process to preserve the original accuracy. Such
weights can be removed because their contribution to the
final output is negligible, thereby significantly reducing the
amount of data accesses and computation. However, the data
and computation reduction does not necessarily translate into
performance improvements for existing accelerators. Sparsity
often results in computational irregularity, which prevents
accelerators from fully realizing their potential in terms of
performance and energy improvement [36]. Dense accelera-
tors [37]–[39] cannot benefit from sparsity due to lack of
dedicated support for irregular and sparse models. Sparse
accelerators [40]–[43] cannot fully leverage the computation
reduction for performance improvement, incurring load imbal-
ance and indexing overhead [44]. As reported in prior work [36],
[40]–[43], the reduction in execution time is much lower than
the reduction in computation.

To avoid the drawbacks of computational irregularity re-
sulting from sparsity, some approaches directly represent the
network with structured matrices to reduce weight storage
cost [44]–[46]. For example, CirCNN [44] represents neural
networks using block-circulant matrices. However, CirCNN
requires complicated FFT hardware and involves operations on
complex numbers that incur much higher cost than operations
on real numbers. PermDNN [46] partially addresses the
drawbacks of CirCNN but is not applicable for convolutional
layers, limiting its performance benefits since convolutional
layers dominate the computations in CNNs [20].

In this paper, we propose CSCNN, an algorithm/hardware
co-design framework for CNN compression and acceleration
that mitigates the effects of computational irregularity and effec-
tively exploits computational reuse and sparsity for increased
performance and energy efficiency. On the algorithmic side,
CSCNN replaces convolutional filters with centrosymmetric
matrices to reduce model size. As shown in Figure 1, every
weight (except the center point if the dimension is odd) shares
the same value with the weight at its centrosymmetric position
(the dual-weight), effectively decreasing the number of weights
by nearly 50%. More importantly, centrosymmetric filters
can translate the weight reduction to structured computation
reduction because the multiplication between an input activation
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Fig. 1. Centrosymmetric matrix for convolutional filter representation.

and a weight can be regularly reused for the multiplication
between the same activation and the dual-weight. As a result,
CSCNN maintains locality and regularity in both computations
and data accesses. Moreover, CSCNN employs a retraining
process to preserve the original accuracy and can work
cooperatively with pruning schemes to further reduce data and
computation. Experimental evaluations show that combining
centrosymmetric filters with weight pruning schemes leads to
an overall reduction in computation by a factor of 2.8× to
7.2×, with only a marginal impact on accuracy. For example,
the amount of computation in VGG16 is reduced by a factor
of 4.3× (not considering zero activations), with less than 0.3%
loss in both top-1 and top-5 accuracy.

On the hardware side, we propose a CSCNN accelerator,
which exploits structured multiplication reuse and eliminates
computations from both zero activations and weights to boost
performance and energy efficiency. The multiplication reuse
is efficiently exploited by augmenting the Processing Element
(PE) in SCNN accelerator [43] with low hardware overhead.
The CSCNN PE contains a multiplier array that accepts a
vector of non-zero input activations and a vector of non-zero
weights to perform Cartesian Product which naturally removes
ineffective computations related to zero input activations and
weights. Because the multiplication results also contribute to
another group of output activations corresponding to the dual-
weight, they are immediately reused by delivering them to
an additional accumulator buffer. Given that multiply-and-
accumulation (MAC) is the major arithmetic operation in CNNs
and one multiplication consumes substantially more energy than
one addition, the multiplication reuse significantly improves
the performance and energy efficiency. The CSCNN accelerator
employs a PE array organized into a 2D mesh topology to
increase performance and capacity beyond a single PE. The
mixed tiling strategy alleviates the impacts of both the inter-PE
barrier and intra-PE fragmentation problems.

We evaluate the CSCNN accelerator on a set of representative
CNN models. We design a cycle-level simulator and an RTL
implementation of the CSCNN accelerator. Experimental eval-
uations show that the CSCNN accelerator achieves speedups
of 3.7×, 1.6×, 1.3×, and energy savings by a factor of 2.4×,
1.7×, 1.5×, over a dense accelerator, SCNN, and SparTen,
respectively. RTL synthesis results show that the CSCNN
accelerator requires moderate area overhead (17.7%) when
compared with the SCNN accelerator, demonstrating that data
and computation reduction can be efficiently leveraged to speed

up CNN processing.
In summary, this paper makes the following contributions:
• Centrosymmetric Filters: We propose a novel CNN com-

pression method that replaces convolutional filters with
centrosymmetric matrices, which significantly reduces
data and computation while maintaining computational
regularity and accuracy.

• Hardware Accelerator: We propose a novel accelerator
that exploits the computational reuse enabled by cen-
trosymmetric filters and eliminates zero computations, for
increased throughput and energy efficiency.

• Detailed Evaluation: We thoroughly evaluate the pro-
posed accelerator by an RTL prototype and a cycle-level
simulator, demonstrating its superior performance and
energy efficiency on a wide range of CNN models.

II. THE CSCNN MODEL

This section presents the CSCNN model, including the train-
ing procedure, pruning, and the corresponding computational
reuse, as well as compression results.

A. Centrosymmetric Filters

A convolutional layer applies K 3-dimensional (R×S×C) fil-
ters to 3-dimensional (W×H×C) input feature maps (IFMaps)
to create output feature maps (OFMaps). We denote hereafter
W/H as the width/height of IFMaps, R/S as width/height of
filters, C/K as number of input/output channels, respectively.
Table I lists the notation used in CNNs.

TABLE I
NOTATION FOR CONVOLUTIONAL NEURAL NETWORKS.

Term Meaning

a(l)j jth channel of lth layer

W (l)
i j ith channel of the jth filter at lth layer

f (·) element-wise non-linear operator

? convolution function

J overall loss function

δ l
j(u,v)

∂J
∂ z(l)j (u,v)

, backpropagation error

The convolutional operation can be defined as follows:

z(l)j = ∑
i

a(l−1)
i ?W (l−1)

i j , a(l)j = f (z(l)j ) (1)

In CSCNN models, the filters are centrosymmetric across the
R×S dimension. As shown in Figure 1, every weight shares
the same value with the weight at its centrosymmetric position
in each R× S filter slice. More precisely, every convolution
kernel satisfies:

W (l)
i j (u,v) =W (l)

i j (R−1−u,S−1− v)

∀ 0≤ u≤ R−1,0≤ v≤ S−1.
(2)

We refer to the weights located in centrosymmetric positions
as dual-weights. Because of the centrosymmetric structure, the
filters can be easily compressed by about 2× as we only need
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to record a single value for the dual-weights. Moreover, it does
not impose indexing overhead.

Besides reducing the weight storage, centrosymmetric filters
also enable a significant reduction in computations through
computational reuse. Consider dual-weights W (l)

i j (u,v) and

W (l)
i j (R−1−u,S−1− v) in an R×S kernel, which convolves

an activation map of size W ×H with unit stride. For each
input activation a(l)i (w,h), the computations related to the given
dual-weights are as follows:

z(l+1)
j (w−u,h− v)+ = a(l)i (w,h)×W (l)

i j (u,v)

z(l+1)
j (w+u−R+1,h+ v−S+1)+ =

a(l)i (w,h)×W (l)
i j (R−1−u,S−1− v)

(3)

Note that we use convolutions in full mode here because the
results in other modes (valid or same) can be also obtained by
cropping the results in full mode. When evaluated on hardware,
the computation in Equation (3) entails reading activations
and weights from memory, and performing a MAC operation
on the activation-weight pair. It needs six memory reads (two
input activations, two weights, two output activations), two
multiplications and two additions. In conventional CNNs, the
amount of memory reads can be reduced to five if data reuse is
enabled, i.e. one memory read for the input activation can be
saved. In CSCNN models, the amount of memory reads can be
further reduced to four since the dual-weights share the same
value. More importantly, the number of multiplications can be
reduced to one because the two multiplications share the same
input operands so that the result can be reused. Specifically,
the computation in Equation (3) can be optimized as:

tmp = a(l)i (w,h)×W (l)
i j (u,v)

z(l+1)
j (w−u,h− v)+ = tmp

z(l+1)
j (w+u−R+1,h+ v−S+1)+ = tmp

(4)

Given that MACs dominate the arithmetic operations in CNNs
and one multiplication consumes significantly more energy
than one addition, e.g. one 32bit-int-MULT consumes 31×
more energy than one 32bit-int-ADD [47], the computational
reuse can be leveraged to significantly improve the performance
and energy efficiency of CNN accelerators. Meanwhile, the
multiplication reduction ratio is identical to the weight reduction
ratio, revealing that the sparsity created by centrosymmetric
filters can be completely translated into performance and energy
benefits. The details on how the proposed accelerator supports
computational reuse will be presented in Section III-B. It should
be noted that the computational reuse is not applicable for fully-
connected layers since an individual weight in such layers
is only multiplied by a single input activation. Besides, the
computational reuse might not be applicable for convolutions
with non-unit stride. For example, in the first layer of AlexNet
(stride of 4, filter size of 11× 11), an activation may not
simultaneously multiply with a given pair of dual-weights
because the non-unit stride skips one or both dual-weights.
Therefore, centrosymmetric filters are not applied to fully-
connected layers and convolutional layers with non-unit stride
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Fig. 2. CSCNN training and pruning.

since it does not introduce computational benefits. Fortunately,
CSCNN can be combined with prior pruning methods that
work well with these layers, e.g., Deep Compression, which
will be discussed in Section II-C.

B. CSCNN Training

We employ a two-step process to obtain a CSCNN model
from a pre-trained conventional model, as illustrated in Figure 2,
which begins by generating centrosymmetric filters based on
original filters. We then employ a retraining process to retain
the network accuracy.

In conventional CNNs, the original values of the dual-weights
are usually not identical. There are several ways to initialize
centrosymmetric filters, for example, retain the top-left weights
and duplicate them to the bottom-right. We find it is better to
initialize the dual-weights using the mean value of their original
values before retraining. Specifically, the centrosymmetric
filters are generated as follows:

W̃ (l)
i j (u,v) = W̃ (l)

i j (−u,−v) =
W (l)

i j (u,v)+W (l)
i j (−u,−v)

2
(5)

where W (l)
i j (u,v) and W̃ (l)

i j (u,v) denote the weights in original

and new kernels, respectively. We denote W (l)
i j (−u,−v) to

represent W (l)
i j (R−1−u,S−1−v) hereafter for simplicity.

Unsurprisingly, the accuracy drops drastically after the
weight initialization. For example, the accuracy of LeNet-5 [48]
drops from 99.2% to 71.6%. Therefore, a retraining process is
required to reattain the original accuracy.

The gradient of J with respect to weight W (l−1)
i j (u,v) is:

∂J

∂W (l−1)
i j (u,v)

= ∑
u′

∑
v′

∂J

∂ z(l)j (u′,v′)
·

∂ z(l)j (u′,v′)

∂W (l−1)
i j (u,v)

(6)

Given W̃ (l)
i j (u,v) = W̃ (l)

i j (−u,−v) because of the centrosym-
metric constraint , the gradient with respect to the combined
weight is as follows:

∂J

∂W̃ (l−1)
i j (u,v)

=
∂J

∂W̃ (l−1)
i j (−u,−v)

= ∑
u′

∑
v′

∂J

∂ z(l)j (u′,v′)
·

∂ z(l)j (u′,v′)

∂W (l−1)
i j (u,v)

+∑
u′

∑
v′

∂J

∂ z(l)j (u′,v′)
·

∂ z(l)j (u′,v′)

∂W (l−1)
i j (−u,−v)

(7)
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To implement training, we use the conventional CNN class in
PyTorch where the dual-weights are still considered as separate
weights, however before each gradient update during training
their gradients are set to half the value derived from Equa-
tion (7). This gives the gradient a centrosymmetric structure
and is theoretically equivalent to using a tied weight for the two
dual-weights. This is because updating the tied weight gradient
with the sum of the two gradients (as obtained using the chain
rule of differentiation) is equivalent to updating it twice with
the average sum in our implementation. In future work, we will
implement a customized PyTorch class for CSCNN models
where each pair of dual-weights are implemented as one tied
weight, which will also reduce the amount of memory during
training. We use a vectorized implementation (using “flip”
function in PyTorch) for the centrosymmetric filters, so the
training speed overhead compared with original training is
negligible. We use the default training configuration (learning
rate, momentum, etc.) in PyTorch for these models. We set the
total number of epochs at 30, and the learning rate decays by
a factor of 5 every 5 epochs.

C. CSCNN Pruning

Pruning techniques [30]–[33] are complementary to cen-
trosymmetric filters and can be applied to further reduce data
and computation. As a case study, we present the procedure of
combining CSCNN with the weight pruning technique in Deep
Compression [30]. As shown in Figure 2, the pruning method
typically follows three steps: 1) train a normal network to
learn the connectivity; 2) gradually prune the weights below a
threshold to zeros; and 3) retrain the network to maintain
accuracy. The first two steps are similar to conventional
pruning, while the third step employs the CSCNN retraining
procedure to maintain the centrosymmetric structure. Since
the dual-weights will be pruned together or not given that
they share the same value, the pruned network will maintain
the centrosymmetric structure. The pruning method is applied
to all layers including FC layers and convolutional with
non-unit stride, which complements the CSCNN method as
centrosymmetric filters are not applied in these layers. In our
pruning experiments, we apply the same hyper-parameters and
fine-tuning techniques as those in Deep compression [30].

D. Compression Results

We compare our method with prior arts on CNN com-
pression, including unstructured pruning [30], structured
pruning [49]–[53], [55], [58], and other pruning methods
customized for hardware [56], [57]. Table II and Table III
list the weight sparsity, multiplication reduction and accu-
racy of these techniques for Cifar-10 and Imagenet, respec-
tively. For Cifar-10, we evaluate on ConvNet [59], VGG-
16 [60] and WideResNet [61]. For ImageNet, we evaluate
on ResNet-18/ResNet-50/ResNet/152 [3], VGG-16, AlexNet,
SqueezeNet [62], ResNeXt101 [63], ShuffleNet-V2 [64], and
EfficientNet-B7 [65]. The multiplication reduction listed in
the tables only considers the effect of reduced weights, not
taking the zero activations into account for a fair comparison.

TABLE II
COMPARISON OF ACCURACY AND THE COMPUTATION REDUCTION OF THE

COMPRESSION METHODS FOR CIFAR-10.

Baseline Models Top-1
Accu.

Baseline
(%)

Top-1
Accu.
(%)

Top-1
Accu.
Drop
(%)

Multipli-
cation

Reduction‡

ConvNet
Deep compression 75.8 75.7 0.1 3.8×

CSCNN 75.8 75.8 0.0 1.7×
CSCNN+Pruning 75.8 75.6 0.2 5.8×

VGG-16

Deep compression 92.8 92.8 0.0 5.3×
CGNet 92.8 92.4 0.4 5.1×

CSCNN 92.8 92.8 0.0 1.8×
CSCNN+Pruning 92.8 92.5 0.3 7.2×

WideResNet CSCNN 95.8 95.4 0.4 1.6×
‡ The multiplication reduction only considers the effect of reduced weights, not taking

the zero activations into account to provide a fair comparison.

For ResNet18, CSCNN individually offers comparable multi-
plication savings with less accuracy drop compared to all the
structured pruning techniques. CSCNN with pruning further
achieves the highest multiplication reduction (2.8×) with
less than 1% accuracy loss. CSCNN also offers considerable
multiplication reduction for other CNN models with marginal
accuracy losses.

Further empirical evidence for the effectiveness of CSCNN
is provided by comparisons with other filter parameterization
schemes. The first one is using smaller filters with the same
number of parameters as centrosymmetric filters. For example,
if the original filter size is 3×3, we replace it with 2×2 filters
(4 effective parameters), and compare it with centrosymmetric
filters in which the central entry is constrained to be zero (also
4 effective parameters). The results show that CSCNN provides
better accuracy than the models using smaller filters. For
example, we changed the filter size of VGG11/VGG13/VGG16
from 3x3 to 2x2, and observed an accuracy drop of over
4% for all the models. The reason is that a 2x2 filter has
a smaller receptive field, which implies that it recognizes
features that are constrained to be more local compared with
a 3x3 centrosymmetric filter, which can recognize features
over a larger size input. Another scheme is using upper/lower
triangular matrices as filters, which reduces the same number of
parameters as centrosymmetric filters. We found that CSCNN
also shows better accuracy than this kind of filter designs.

Even though the experimental results already demonstrate
that CSCNN is promising in network compression, we would
also like to mention the theoretical foundation of CSCNN. In
the theory of neural networks, the universal approximation
property states that a neural network should be able to
approximate any continuous or measurable function with
arbitrary accuracy provided that an enough large number of
parameters are available. We have proved that CSCNNs have
this property. Detailed proof procedure is omitted because of
space limitation.

III. CSCNN ACCELERATOR

In this section, we propose an accelerator architecture
for CSCNN models. Our proposed architecture extends a
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TABLE III
COMPARISON OF ACCURACY AND THE COMPUTATION REDUCTION OF THE COMPRESSION METHODS FOR IMAGENET.

Baseline Compression Techniques Top-1 Accu.
Baseline (%)

Top-1
Accu. (%)

Top-1 Accu.
Drop (%)

Top-5 Accu.
Baseline (%)

Top-5
Accu. (%)

Top-5 Accu.
Drop (%)

Multiplication
Reduction†

ResNet-18

Deep compression [30] 69.2 69.0 0.2 88.8 88.5 0.3 2.0×
Soft Filter Pruning [49] 70.3 67.1 3.2 89.6 87.8 1.8 1.7×
Network Slimming [50] 69.0 67.2 1.8 88.7 87.4 1.3 1.4×

Discrimination-aware Pruning [51] 69.6 67.3 2.3 89.0 87.6 1.4 1.9×
Low-cost Collaborative Layers [52] 70.0 66.3 3.7 89.2 87.0 2.2 1.5×
Feature Boosting& Suppression [53] 70.7 68.2 2.5 89.7 88.2 1.5 2.0×

CGNet [31] 69.0 67.4 1.6 88.8 87.8 1.0 1.6×
CSCNN 69.2 68.6 0.6 88.8 88.1 0.7 1.7×

CSCNN+ Pruning 69.2 68.4 0.8 88.8 87.9 0.9 2.8×

VGG-16

Deep compression 68.5 68.8 -0.3 88.7 89.1 -0.4 3.0×
Cambricon-S [54] 68.5 68.7 -0.2 88.7 - - 2.8×

Network Slimming [50] 63.3 63.3 0 - - - 1.4×
Eigendamage [55] 68.5 65.6 2.9 88.7 85.5 3.2 2.9×

Balanced Sparsity [56] - - - 90.3 90.3 0.0 3.0×
CSCNN 68.5 68.6 -0.1 88.7 88.7 0.0 1.8×

CSCNN+ Pruning 68.5 68.4 0.1 88.7 88.4 0.3 4.3×

AlexNet

Deep compression 57.2 57.2 0.0 80.3 80.3 0.0 2.2×
Cambricon-S [54] 57.2 57.3 -0.1 80.3 - - 1.9×

CGNet 57.2 42.9 14.3 80.3 80.0 0.3 2.6×
CirCNN [44] 57.2 - 1∼2‡ - - - -

Viterbi-based pruning [57] 57.2 57.3 -0.1 80.3 80.2 0.1 2.2×
CSCNN 57.2 57.2 0.0 80.3 80.1 0.2 1.5×

CSCNN+ Pruning 57.2 57.0 0.2 80.3 79.9 0.4 2.9×

SqueezeNet
Deep compression 57.5 57.5 0.0 80.3 80.3 0.0 4.2×

CSCNN 57.5 57.2 0.3 80.3 80.1 0.2 1.7×
CSCNN+ Pruning 57.5 57.0 0.5 80.3 79.9 0.4 5.9×

ResNeXt-101 CSCNN 80.9 80.1 0.8 95.6 94.5 1.1 1.6×

ResNet-50
Deep compression 75.3 74.9 0.4 92.2 91.7 0.5 2.2×

CSCNN 75.3 75.1 0.2 92.2 92.0 0.2 1.6×
CSCNN+ Pruning 75.3 74.8 0.5 92.2 91.5 0.7 2.8×

ResNet-152
Deep compression 77.0 76.8 0.2 93.3 93.0 0.3 2.3×

CSCNN 77.0 76.9 0.1 93.3 93.1 0.2 1.5×
CSCNN+ Pruning 77.0 76.6 0.4 93.3 92.8 0.5 2.7×

ShuffleNet-V2
Deep compression 77.2 76.7 0.5 93.3 92.6 0.7 2.2×

CSCNN 77.2 76.9 0.3 93.3 92.7 0.6 1.8×
CSCNN+ Pruning 77.2 76.5 0.7 93.3 92.4 0.9 3.2×

EfficientNet-B7
Deep compression 84.3 84.0 0.3 97.0 96.8 0.2 3.1×

CSCNN 84.3 84.1 0.2 97.0 96.8 0.2 1.7×
CSCNN+ Pruning 84.3 83.8 0.5 97.0 96.6 0.4 4.3×

† The multiplication reduction only considers the effect of reduced weights, not taking the zero activations into account to provide a fair comparison.
‡ CirCNN does not provide specific accuracy values. The code of CirCNN is also unavailable.

Cartesian-product based architecture to handle the structured
multiplication reuse introduced by CSCNN, and supports two-
sided (both activations and weights) sparse execution and
storage. We further employ a mixed spatial tiling strategy to
spread the work across multiple PEs for increased performance,
which alleviates the impacts of the inter-PE barrier and intra-
PE fragmentation problems incurred by rigid tiling strategies.
Then, we introduce the complete dataflow of the accelerator
and discuss how it supports FC layers.

A. Architecture Overview
Figure 3 shows the overall architecture of the CSCNN

accelerator, which consists of the following main components:
a PE array for computation, two buffers for input activations
and output activations (IBUF and OBUF), a buffer for weights
(WBUF), and a control processor (CP). The PE array consists
of multiple PEs connected via simple interconnections. The CP
controls the data and execution flow of all the modules. The
accelerator is connected to off-chip DRAM that stores the input

D
R
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IBUF

OBUF

WBUF

Control 

processor

Global buffer

PE PE PE PE

PE PE PE PE

PE PE PE PE

Fig. 3. The CSCNN accelerator.

activations and weights of a network model. To accomplish the
execution of a convolutional layer, the activations and weights
are fetched from off-chip DRAM to on-chip buffers. Each PE
receives weights and input activations from dedicated channels
and performs convolutions with centrosymmetric filters, which
is referred as centrosymmetric convolution hereafter for brevity.
The result output activations are stored locally in the buffers
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of each PE for further accumulation, or transferred to neighbor
PEs for halo value exchange [66]. When a layer contains
multiple OFMaps and IFMaps, each PE continuously performs
the computations of an OFMap, and will not move to the
next OFMap until the current map has been constructed.
When computations are completed, the output activations of
intermediate layers are buffered on-chip if possible to minimize
off-chip data transfers.

B. Processing Element (PE) Architecture

Our PE architecture is based on the SCNN PE [43]
that exploits both activation and weight sparsity to improve
performance and energy. Since SCNN PE cannot exploit the
structured multiplication reuse, the computation reduction
introduced by centrosymmetric filters cannot be translated into
practical speedup. Therefore, we augment the SCNN PE to
efficiently exploit the multiplication reuse in centrosymmetric
convolutions.

1) Baseline PE Architecture: Figure 4 (non-blue modules)
shows the CSCNN PE architecture, including a weight buffer
(WB), input/output activation buffers (IB/OB), a multiplier
array, an accumulator buffer (AB), a Coordinate Computation
Unit (CCU) and a Post Processing Unit (PPU).

The workflow of the baseline PE is further illustrated by the
example in Figure 5 (ignoring Accumulator buffer 1). Both
weights and input activations are stored in compressed format
that records the non-zero values and the number of zeros
between adjacent non-zero values [43]. The multiplier array
of size Px×Py accepts a vector of Px weights (W00,W01,W20
in Fig. 5(a)) from WB and a vector of Py input activations
(I22, I25, I33) from IB. Then the multiplier array performs a
full Cartesian product of the two vectors and generate Px×
Py multiplier outputs (Xi j in Fig. 5(b)). At the same time,
the CCU computes the coordinates of the multiplier outputs.
Then, the multiplier outputs are sent to the AB to update
the corresponding partial sums at the matching coordinates
((Pi j, marked blue in OFMap)). Each multiplier output is
accumulated with its corresponding partial sum with the same
output coordinates. The number of banks in AB0 is 2×Px×Py
to reduce accumulator bank contention [43]. The non-linear
activation and/or compression are performed in the PPU if
necessary before writing the output activations to the OB.
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Fig. 5. CSCNN PE dataflow. (a) Sparse encoding of weights; (b) Duplication
of multiplier outputs; (c) Accumulation of multiplier outputs.

Since only non-zero weights and non-zero input activations are
delivered to the multiplier array, the baseline PE can exploit
both weight and activation sparsity.

2) CSCNN PE Architecture: The baseline PE cannot lever-
age computational reuse due to lack of dedicated support. We
now describe how to augment it to leverage the performance
and energy benefits of CSCNNs. The CSCNN PE retains the
basic design and components of the baseline PE along with its
dataflow (will be described in Section III-D), and only imposes
an additional accumulator buffer as shown in Fig. 4.

Multiplication reuse. As described in Equation (4), the
multiplications in CSCNNs can be reused to reduce the overall
operations. Figure 5(b) and 5(c) presents an example of the
multiplication reuse. When multiplying the weight W00 (value:
1, C-S-R index: 0-0-0) with the input activation I22, the
multiplier outputs contribute to the corresponding partial sums
(P22), which is the same in baseline PEs. Because of the
centrosymmetric structure, it is the same as the multiplication
of the input activation with the dual weight W22 (C-S-R index:
0-2-2), so the multiplier output also contribute to another partial
sum P00 (marked red in Fig. 5(c)). Similarly, other multiplier
outputs also contribute to another group of partial sums (marked
red in Fig. 5(c)). Therefore, the CSCNN PE also sends the
multiplier outputs (denoted as X̃i j) to accumulator buffers
for the additional accumulation. Notably, the CCU needs to
compute the coordinates for the X̃i js. If the dimension of the
filters is odd numbers, the dual-weight of the central weight
is itself. In this case, the CCU will generate nil coordinates
for the multiplier output generated by central weights to not
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enable multiplication reuse.
If the multiplier outputs along with their duplicates are

delivered to AB0 for accumulation of both partial sum groups
(both blue and red elements in OFMap), it will cause buffer
bank conflicts. In particular, because the number of partial sums
waiting for accumulation equals the number of accumulator
banks in AB0 (both are 2×Px×Py), the multiplier outputs
and their duplicates may hash to the same accumulator bank
with a high probability. One solution is to double the number
of banks in AB0. However, since the multiplier outputs are
routed to the accumulator banks using a crossbar switch,
doubling the number of banks will significantly increase the
complexity of the scatter network. Therefore, instead of using
one single accumulator buffer, we employ an additional and
independent accumulator buffer to relieve the bank contention.
However, there is a data hazard between the two accumulator
buffers because they are operating on the same partial sums.
Specifically, the overlapped partial sums of the blue and red
elements in OFMap should be accumulated with two multiplier
outputs. For example, both X12 and X̃12 should be accumulated
to P12. If not eliminating the data hazard, both accumulator
buffers will access O12 (original partial sum generated by
other input channels) and perform accumulation. As a result,
the original value of the partial sums is accumulated twice,
causing wrong output results. To resolve data hazard, we delay
the accumulation of P12 and P̃12 to O12. Specifically, both
accumulator buffers do not access the partial sums generated
by other input channels. They accumulate the multiplier outputs
to its local partial sums generated by input channels assigned
to them. The results in AB0 and AB1 will be merged and
accumulated with the partial sums generated by input channels
in the PPU when they are flushed out from their accumulator
buffers, respectively.

Computation order. We employ an input-stationary compu-
tation order in the multiplier array in which the input activations
are held stationary as it is multiplied by all the non-zero weights
in a single filter to make all of its contributions to the current
OFMap. After finishing the computations in an IFMap related
to the current OFMap, we hold the partial sums stationary in
the accumulator buffers and move on to the next IFMap. This
order minimizes the data movement of input activations inside
a PE and minimized the data movement of output activations
between PEs and global buffer.

C. Mixed Spatial Tiling

As described in Figure 3, the CSCNN accelerator consists of
multiple PEs connected to a shared global buffer (GLB). These
PEs run in parallel to increase performance and capacity. There
are multiple strategies to spread the work across the PE array.
For example, SCNN [43] employs planar tiling that partitions
the activation plane (W×H dimension) into smaller planar tiles
(Tw×Th) and distributes them to the PEs. However, the rigid
planar tiling incurs two forms of inefficiency. One is intra-PE
fragmentation when the layers do not have enough useful work
to fully populate the multiplier array. Another is the inter-PE
global barrier that leads to load imbalance among the PEs

because PEs with denser workload would lag behind those
with sparser workload. Specifically, using less but powerful
PEs (each PE has a large multiplier array) can better alleviate
the inter-PE global barrier but will exacerbate the intra-PE
fragmentation problem, and vice versa. Besides, layers with
small feature maps are more likely to suffer from intra-PE
fragmentation problem, because the size of planar tiles would
be very small in these layers, making it hard to fully populate
the multiplier array.

In the CSCNN accelerator, we employ a mixed spatial tiling
that combines local planar tiling and global output channel
tiling to alleviate both forms of inefficiencies. The PE array is
logically partitioned into smaller PE sub-arrays. For example,
an 8×8 PE array can be partitioned into 4 PE sub-arrays,
each containing 4×4 PEs. The output channel dimension
is partitioned into K/Tk channel groups of size Tk that are
distributed across the PE sub-arrays, resulting in a workload
of size Tk×C×W ×H×R×S for each PE sub-array to operate
individually. Since all the input activations will be delivered
to each PE sub-array, the load-balancing among PE sub-arrays
depends solely on the density of the assigned filter groups
(a Tk×C×R×S volume of weights) for each PE sub-array.
Because filters do not change during inference, we sort offline
a layer’s filters by density so that the filter groups for each PE
sub-array are similar in density. The Tk output channels for a
PE sub-array is no longer assigned according to the channel id
but the filter density. In doing so, the density of the workload
Tk×C×W ×H×R×S for each PE sub-array will be similar,
removing the barrier among PE sub-arrays.

Furthermore, we employ planar tiling for the PEs inside a
PE sub-array. The W ×H activation plane is partitioned into
smaller Tw×Th planar tiles that are distributed across the PEs,
resulting in an input activation volume of Tk×Tw×Th assigned
to each PE. Because the PEs inside a PE sub-array share the
same size of planar tiles and the same filter weights, they
will finish their workload simultaneously, removing the barrier
among PEs in a PE sub-array. Additionally, since the number
of PEs in a PE sub-array is significantly reduced compared to
the total number of PEs, the size of the planar tiles (Tw×Th)
could be larger so that each PE has a greater opportunity
to fully utilize the multiplier array. Therefore, the intra-PE
fragmentation problem is also significantly alleviated. Note
that the partitioning of the input activation plane introduces
data halos between adjacent PEs [43]. The PE accommodates
the output halos by exchanging incomplete partial sums with
neighbors through the PPU. Similar to prior work [67], the
tile size Tk,Tw,Th may change layer to layer to fully populate
PEs and multiplier array. The detailed tiling factor setting
mechanism is omitted for brevity.

In summary, rigid tiling strategies incur inefficiency because
of the variance of the layers. By combining local planar tiling
and global output channel tiling and change the tile size
layer to layer, our strategy is adaptive for different layers
and significantly alleviates the inefficiency incurred by rigid
tiling strategies.
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    // PE array level
(A) parallel_for k3=[0:K/Tk){
      // PE sub-array level
(B)   parallel_for w2=[0:W/Tw){
        parallel_for h2=[0:H/Th){
          // PE level
          BUFFER wt_buf[C][Tk*R*S/Px][Px]
          BUFFER in_buf[C][Tw*Th/Py][Py]
          BUFFER acc0_buf[Tk][Tw+R-1][Th+S-1]
          BUFFER acc1_buf[Tk][Tw+R-1][Th+S-1]
          BUFFER out_buf[Tk][Tw+R-1][Th+S-1]
          for k1=[0:Tk){
            for c=[0:C){
              for a=[0:Tw*Th/Px){
                in[0:Px-1]=in_buf[c][a][0:Py-1]
                for w=[0:Tk*R*S/Px){
                  wt[0:Py-1]=wt_buff[c][w][0:Px-1]
(C)                 // Multiplier array level
                    parallel_for w0=[0:Px){
                      parallel_for a0=[0:Py){
                        k=Kcoord(w,Px);
                        x0=Xcoord0(a,a0,w,w0,R,S);
                        y0=Ycoord0(a,a0,w,w0,R,S);
                        x1=Xcoord1(a,a0,w,w0,R,S);
                        y1=Ycoord1(a,a0,w,w0,R,S);
(D)                     tmp=in[a0]*wt[w0];
                        acc0_buf[k][x0][y0]+=tmp;
                        acc1_buf[k][x1][y1]+=tmp;
                    } }
            } } }
(E)         out_buf[k1][0:Tw+R-1][0:Th+S-1]+=
              acc0_buf[k1][0:Tw+R-1][0:Th+S-1]
             +acc1_buf[k1][0:Tw+R-1][0:Th+S-1];
          }
    } } }  

Fig. 6. The complete CSCNN dataflow.

D. CSCNN Dataflow

Figure 6 shows the pseudo-code for the complete CSCNN
dataflow, which is summarized as follow:

1) Global output channel tiling: each PE sub-array produces
Tk output channels (A).

2) Local planar tiling: each PE accommodates planar tiles
(Tw×Th) of the input activation plane (B).

3) Removal of computations related to zero input activations
and weights using Cartesian product based dataflow (C).

4) Enable the the multiplication reuse introduced by cen-
trosymmetric filters (D).

The Kcoord(), Xcoord0(), Xcoord1(), Y coord0() and
Y coord1() functions compute the k, x, and y coordinates of the
uncompressed output activations using a de-linearization of the
temporal loop indices a and w, the spatial loop indices Px and
Py, and the known filter width and height [43]. The dataflow
doesn’t show the DRAM memory accesses assuming that all the
data resides in the on-chip global buffer. When the data exceeds
the on-chip storage, the input and output channel dimension
can be temporarily tiled so that the PEs operate on a portion of
activations at a time, like other accelerator architectures [43].
This temporal tiling may lead to frequent data transfer between
on-chip and off-chip. Fortunately, researchers have extensively
explored optimization techniques to reduce the off-chip memory
accesses [12], [20], [68]. Since these techniques are orthogonal
to our on-chip dataflow, we omit the discussion for brevity.

E. Support for Fully-connected Layers

In fully-connected (FC) layers, an individual weight is
not reused across multiple input activations. Therefore, using

Cartesian product based dataflow would lead to significant
performance loss for these layers. Although it would make
the proposed accelerator unattractive for networks that are
dominated by FC layers such as BERT [69], it is not a
significant limitation as these layers are memory-hungry [20],
[43]. To achieve optimal efficiency for both CONV and FC
layers, we believe designers should consider using both CSCNN
and an architecture optimized for FC layers (such as EIE [42]).

IV. EXPERIMENTAL METHODOLOGY

We evaluate the CSCNN accelerator using a combination of
a cycle-level simulator and RTL implementation.

Simulator. Our simulator is built based on the open-sourced
TimeLoop simulator [70]. We made customization to the
simulator to support CSCNN dataflow. The simulator is
combined with DRAMSim2 [71] to evaluate the performance
of the CSCNN accelerator. The simulator takes the weights and
activations extracted from Pytorch as input and processes one
layer at a time. It models the dataflow as well as the memory
hierarchy and PE configurations, and collects the counts of
arithmetic operations and memory accesses of different levels.
The simulator estimates the compute time based on the number
of arithmetic operations, while DRAMSim2 estimates the
memory access latency. Then the results are combined to
obtain overall execution time. Meanwhile, these statistical
data are also used to build an energy model to estimate the
energy consumption of the accelerator. For the energy model,
energy numbers of arithmetic units and DRAM accesses are
taken from [47], while SRAM energies are taken from CACTI
6.0 [72]. Additionally, the simulator can be configured to act as
accelerators with other dataflows. For example, the ineffective
computations with zero operands still consume computing
cycles to mimic the execution flow of dense accelerators.

RTL implementation. We implement CSCNN PE in RTL
and synthesize it with Synopsys Design Vision using the 45 nm
technology FreePDK45 library, assuming an 800 MHz clock.
We use 16-bit fixed-point arithmetic units as it has been proved
to be effective in CNN computation. We also implement the
RTL of the SCNN PE (described in Section III-B1) to evaluate
the overhead of the CSCNN accelerator, and the RTL of the
major components in SparTen to compare the area efficiency.

Baselines. We compare our design with a dense CNN acceler-
ator (DCNN) and seven sparse CNN accelerators: Cnvlutin [40],
Cambricon-X [41], SCNN [43], SparTen [73], CGNet [74],
Cambricon-S [54], CirCNN [44]. The characteristics of the
CNN accelerators are listed in Table IV. The DCNN accelerator
adopts the PE architecture described in [11]. We mimic their
dataflow in our simulator taking their design details as input,
including partitioning, sparsity support, data reuse pattern,
and load-balancing mechanisms. We profile their arithmetic
operation and memory accesses and use these statistics to
estimate their energy consumption. SparTen employs an offline
software scheme called greedy balancing which groups filters
by density to balance the workload among the PEs. Since
this software technique doesn’t require hardware modifications,
we also apply this technique to other accelerators to provide
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TABLE IV
COMPARISON OF THE CNN ACCELERATORS.

Accelerators Compression Sparsity Inner spatial dataflow

DCNN - - Matrix-scalar product

Cnvlutin Deep compression A Vector-scalar product

Cambricon-X Deep compression W Vector dot product

SCNN Deep compression A+W Cartesian product

SparTen Deep compression A+W Vector dot product

Cambricon-S Coarse-grained pruning A+W Vector dot product

CGNet Fine-grained channel gating A Vector dot product

CirCNN Block-circulant matrices W FFT

CSCNN Centrosymmetric filters A+W Cartesian product

a fair comparison. Since GEMM accelerators have shown
promising results on accelerating deep learning workloads, we
also compare the proposed accelerator against two GEMM
accelerators: SIGMA [75] and SpArch [76]. They are also
scaled to be equipped with the same number of multipliers.
Because SIGMA/SpArch are specialized for GEMMs rather
than CNNs, we remap the convolution operation into a GEMM
via the Im2Col operation [77]. Note that the experimental
results will not include CGNet and CirCNN because: 1) the
layer-wise characteristic of CGNet is not available since it’s
not described in the original paper; 2) CirCNN transforms
convolution to FFT computation and utilizes FFT-based multi-
plications whose computing block is completely different from
that of other accelerators. Our simulator currently does not
support cycle-level simulations for CirCNN.

Architectural configuration. The CSCNN accelerator is
equipped with a 2× 2 PE array, with each PE containing
an 4× 4 multiplier array. In each PE, the input and output
buffer size is 40 KB in total. The weight buffer size is 10
KB for CSCNN PE, while 16 KB for SCNN PE. CSCNN
PE uses smaller weight buffer because the centrosymmetric
structure of filters can reduce the storage requirements of
weights. The accumulator buffer in CSCNN PE is 12 KB,
while in SCNN PE is 6 KB. The SCNN PE is equipped with a
scatter crossbar of 16×32, while CSCNN PE employs two such
scatter crossbars since it has an additional accumulator buffer.
All the baseline accelerators are also equipped with the same
number of multipliers so that we can compare the performance
with almost identical computational resources. Additionally,
the working frequency of the CSCNN accelerator and the
baselines are kept the same at 800 MHz. Because of significant
differences in buffer sizing/organization and implementation
choices, our evaluated architectures may not precisely represent
the prior proposals.

Benchmarks. We use the CNN models listed in Ta-
ble II and Table III as the benchmarks to evaluate
these accelerators, including ConvNet for Cifar10, AlexNet,
VGG16, ResNet18/ResNet50/ResNet152, ShuffleNet-V2, and
EfficientNet-B7 for ImageNet. We also evaluate on LeNet-
5 for MNIST dataset. CSCNN accelerator runs the pruned

TABLE V
AREA ANALYSIS OF SCNN AND CSCNN PES.

SCNN PE CSCNN PE
Capacity Area(mm2) Capacity Area(mm2)

Total - 1.07 (100%) - 1.26 (100%)
MulArray 16 0.05 (4.20%) 16 0.05 (3.57%)
IB+OB 40 KB 0.41 (38.66%) 40 KB 0.41 (32.86%)
WB 16 KB 0.22 (20.17%) 10 KB 0.14 (11.43%)
AB 6 KB 0.14 (12.61%) 12 KB 0.27 (21.43%)
Scatter
Network

16×32
crossbar

0.11 (10.08%) 16×32
crossbar ×2

0.22 (17.14%)

CCU - 0.03 (2.52%) - 0.05 (3.57%)
PPU - 0.13 (11.76%) - 0.13 (10.00%)
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Fig. 7. Speedup over DCNN accelerator.

CSCNN models while the other accelerators except Cambricon-
S run the model pruned by Deep compression. Since the CNN
models for Cambricon-S is not open-sourced, we use the model
characteristics described in their original papers to build the
models with similar sparsity. The CSCNN models are extracted
from Pytorch after applying our compression method. The CNN
models for deep compression is obtained from Github [78].

V. EXPERIMENTAL RESULTS

A. Hardware Characteristics

Table V presents the area of the major components in SCNN
and CSCNN PE. Area numbers for the logic components, e.g.,
MulArray and PPU, are obtained from synthesis, while the
area for the buffers is obtained using CACTI 6.0 [72]. Under
the same computing resources, CSCNN PE increases the total
area by 17.7% over SCNN, with 1.26 mm2 vs. 1.07 mm2. The
main area overhead of CSCNN PE stems from the additional
Accumulator buffer and the scatter network, which consumes
an extra area of 0.13 mm2 and 0.11 mm2, respectively. In both
PEs, the memories (IB, WB, OB, AB) contribute more than
65% of the PE area, while the multiplier array consumes no
more than 5%. Although the size of AB is small, it consumes
21.43% of the CSCNN PE area because it’s heavily banked for
the parallel accumulation. In summary, CSCNN PE only incurs
a moderate area overhead in exchange for a more efficient
multiplication reuse.

B. Performance

We first compare the performance of the proposed accelerator
with the dense and sparse accelerators. Figure 7 summarizes
the speedups delivered by these accelerators over DCNN.
Overall, the CSCNN accelerator consistently outperforms the
baselines and achieves an average speedup of 3.7×, 2.8×,
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Fig. 8. Layer-wise speedup over DCNN accelerator.

2.1×, 1.6×, 1.3×, 1.5×. 1.6×, 1.6× over DCNN, Cnvlutin,
Cambricon-X, SCNN, SparTen, Cambricon-S, SIGMA and
SpArch, respectively. In the following texts, “CSCNN” refers to
the CSCNN accelerator for brevity, unless otherwise specified.
The performance improvement of CSCNN varies across the
neural networks. Specifically, CSCNN improves the perfor-
mance by 2.9–5.5× over DCNN, 2.3–4.1× over Cnvlutin,
1.6–2.9× over Cambricon-X, 1.4–2.0× over SCNN, 1.0–1.6×
over SparTen, 1.1–1.8× over Cambricon-S, 1.2–2.6× over
SIGMA, and 1.1–2.7× over SpArch.

CSCNN outperforms them because 1) CSCNN supports two-
sided sparsity; and 2) our compression technique removes
more computations by enabling computational reuse. The
performance of Cambricon-X and Cnvlutin are left behind
because they only exploit one-sided sparsity, i.e., Cambricon-
X for weight sparsity while Cnvlutin for activation sparsity.
Although SCNN exploits two-sided sparsity, its performance
benefit is hindered by its overheads, including both intra-
PE fragmentation and inter-PE global barrier as described
in Section III-C. Moreover, SCNN cannot support the multi-
plication reuse. Cambricon-S and SparTen are two state-of-
the-art accelerators that address the irregularity problem in
sparse CNNs. Cambricon-S employs a coarse-grained pruning
technique to reduce irregularity and exploits both activation
and weight sparsity to further reduce computations. SparTen
employs auxiliary hardware modules for load balancing and
sparse index computation, alleviating the problems incurred by
SCNN. Because the remaining MACs of Deep compression is
less than the pruning technique used in Cambricon-S, SparTen
performs 1.17× better on average than Cambricon-S. Even so,
CSCNN still outperforms SparTen due to the superior reduction
on computation. Since SIGMA and SpArch are specialized
for GEMMs rather than CNNs, they cannot efficiently exploit
the parallelism and data locality that are available in CNNs.
They have to transform convolutions to GEMMs via reordeing
operations, which drastically increases the storage requirements
and memory traffic thereby negatively affecting their efficiency
of processing CNNs.

The performance results are better understood by looking at
the layer-wise performance of SCNN, SparTen, and CSCNN on
AlexNet and VGG16 in Figure 8. For C1 in AlexNet, because
the input activations and weights are very dense (more than
80% density), SCNN and CSCNN are left behind because
their Cartesian product based dataflow introduces unnecessary

computations since the stride in C1 is larger than one. For
C2, CSCNN significantly outperforms SCNN and SparTen
in C2 because the density of activations and weights are
moderate, whereas computational reuse contributes about 2×
to the performance gains of CSCNN. For the top layers where
activations and weights are both very sparse (rightmost layers),
CSCNN performs comparably with SparTen but much better
than SCNN. VGG16 also follows the same trend.

C. Energy Consumption

In Figure 9, we report the energy comparison of the
architectures which has been normalized to the energy of
DCNN. It should be noted that the energy consumption shown
in Figure 9 does not include main memory accesses which
usually dominates the total energy consumption. On average,
CSCNN improves energy efficiency by 2.4×, 2.1×, 1.9×, 1.7×,
1.5×, 1.6×, 2.1× and 2.0× over the baseline accelerators,
respectively. The improvement of energy efficiency varies
widely across the models depending on the sparsity and the
structure of the networks. We separate the energy into three
parts: 1) compute includes energies from arithmetic operations;
2) memory includes the on-chip memory access energies;
and 3) others contains the rest energies from control and
auxiliary modules for each accelerator. All sparse accelerators
significantly reduce compute energy since they eliminate
computations related to zeros. Although they also save energy
by eliminating the on-chip memory accesses of zeros, the
benefit is weakened by the memory accesses of indices, which
stores the locations of non-zeros. Because the dual-weights
in CSCNN models don’t need to be indexed, the energy
consumption of CSCNN on index storage and accessing is less
than other accelerators. SIGMA and SpArch consume 2.5×
more energy on memory accesses than CSCNN because the
transformation from convolutions to GEMMs increases the
storage requirements and memory traffic.

We further show the energy breakdown by components of the
SCNN and CSCNN accelerators. The energy consumption of
the multiplier array in CSCNN reduces by a factor of 1.5× on
average compared to SCNN. The IB+OB and WB in CSCNN
consume 1.9× and 3.4× less energy respectively, which benefits
from the reduction of weights. The energy benefits of AB
in CSCNN is hindered by the additional accumulator buffer,
achieving a reduction of 1.3× on average compared to SCNN.

D. Impact of Mixed Spatial Tiling

The PE tiling strategies affect intra-PE fragmentation and
inter-PE barrier, two important factors for performance. We
evaluate the impact of our mixed tiling strategy by comparing
it with two rigid strategies: planar tiling only (used in SCNN)
and output channel tiling. Figure 11(a) shows the performance
of CSCNN using the three tiling strategies. The mixed tiling
improves performance by 1.28× and 1.07× over planar tiling
and output channel tiling. The output channel tiling performs
as good as mixed tiling on AlexNet and VGG16, but incurs
performance loss on LeNet-5 and ConvNet because the latter
two don’t have sufficient output channels to feed the PEs,

10



D
C

N
N

C
n
v
lu

ti
n

C
a
m

b
ri
c
o
n
-X

S
C

N
N

S
p
a
rT

e
n

C
a
m

b
ri
c
o
n
-S

S
IG

M
A

S
p
A

rc
h

C
S

C
N

N

D
C

N
N

C
n
v
lu

ti
n

C
a
m

b
ri
c
o
n
-X

S
C

N
N

S
p
a
rT

e
n

C
a
m

b
ri
c
o
n
-S

S
IG

M
A

S
p
A

rc
h

C
S

C
N

N

D
C

N
N

C
n
v
lu

ti
n

C
a
m

b
ri
c
o
n
-X

S
C

N
N

S
p
a
rT

e
n

C
a
m

b
ri
c
o
n
-S

S
IG

M
A

S
p
A

rc
h

C
S

C
N

N

D
C

N
N

C
n
v
lu

ti
n

C
a
m

b
ri
c
o
n
-X

S
C

N
N

S
p
a
rT

e
n

C
a
m

b
ri
c
o
n
-S

S
IG

M
A

S
p
A

rc
h

C
S

C
N

N

D
C

N
N

C
n
v
lu

ti
n

C
a
m

b
ri
c
o
n
-X

S
C

N
N

S
p
a
rT

e
n

C
a
m

b
ri
c
o
n
-S

S
IG

M
A

S
p
A

rc
h

C
S

C
N

N

D
C

N
N

C
n
v
lu

ti
n

C
a
m

b
ri
c
o
n
-X

S
C

N
N

S
p
a
rT

e
n

C
a
m

b
ri
c
o
n
-S

S
IG

M
A

S
p
A

rc
h

C
S

C
N

N

D
C

N
N

C
n
v
lu

ti
n

C
a
m

b
ri
c
o
n
-X

S
C

N
N

S
p
a
rT

e
n

C
a
m

b
ri
c
o
n
-S

S
IG

M
A

S
p
A

rc
h

C
S

C
N

N

D
C

N
N

C
n
v
lu

ti
n

C
a
m

b
ri
c
o
n
-X

S
C

N
N

S
p
a
rT

e
n

C
a
m

b
ri
c
o
n
-S

S
IG

M
A

S
p
A

rc
h

C
S

C
N

N

D
C

N
N

C
n
v
lu

ti
n

C
a
m

b
ri
c
o
n
-X

S
C

N
N

S
p
a
rT

e
n

C
a
m

b
ri
c
o
n
-S

S
IG

M
A

S
p
A

rc
h

C
S

C
N

N

D
C

N
N

C
n
v
lu

ti
n

C
a
m

b
ri
c
o
n
-X

S
C

N
N

S
p
a
rT

e
n

C
a
m

b
ri
c
o
n
-S

S
IG

M
A

S
p
A

rc
h

C
S

C
N

N

0

0.2

0.4

0.6

0.8

1

1.2
N

o
rm

a
li

z
e

d
 e

n
e

rg
y

 (
D

C
N

N
=

1
)

LeNet-5 ConvNet AlexNet VGG16 ResNet18 ResNet50 ResNet152 ShuffleNetV2 EfficientNetB7 Amean

Compute Memory Others

Fig. 9. Energy consumption of accelerators for various CNN architectures.
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Fig. 10. Energy breakdown by components in the DCNN and CSCNN
accelerators.

causing PE under-utilization. We also apply the mixed spatial
tiling to SCNN and SparTen to investigate if they could
benefit from such tiling optimization, as shown in Fig. 11(b)
and (c). We observed that SparTen benefits only marginally
from the tiling optimizations, as SparTen already employs
a hardware/software balancing mechanism to balance the
workload for the PEs, which attempts to solve the same problem
as tiling optimizations. SCNN gains 1.2X speedup from the
tiling optimizations over its original tiling strategy. CSCNN still
performs 1.4x better than SCNN without tiling optimizations.

VI. RELATED WORK

A. Pruning techniques

Weight pruning can be classified into unstructured and
structured pruning. Unstructured pruning does not follow a
specific geometry or constraint but prunes as more weights as
possible [30]. However, unstructured pruning will inevitably
cause irregular sparsity, which prevents accelerators from fully
leveraging the performance and energy benefits. Structured
pruning techniques [31], [32], [58], [79], [80] have been pro-
posed to maintain the computational regularity and accelerate
the decoding of sparse matrices, which can be categorized as
channel-wise [58], filter-wise [32], and shape-wise pruning [79].
In filter-wise pruning, for example, all of the weights in a filter
are pruned or not together. A recent work is CGNet [31],
which provides structured sparsity by pruning contiguous input
channels at a predetermined decision point. This kind of

constraint enables accelerator to easily exploit computational
savings. However, structured pruning exhibits relatively lower
pruning rates compared to unstructured pruning [80].

B. Structured Weight Matrices

Another approach for model compression is to represent
networks with structured matrices. Cheng et al. [81] uses
circulant matrices to represent the weights of fully-connected
layers to save storage space and enable the use of FFT to
speed up computation. CirCNN [44] extends this idea by using
block-circulant matrices, and applies to convolutional layers
for further computation reduction. Since they are based on FFT
computations, they both involve high-cost arithmetic operations
and require FFT hardware to reap the benefits of redundant
weights. PermDNN [46] transforms sparse filters into permuted
diagonal matrices but only for fully-connected layers.

C. Neural Network Accelerators

Although many neural network accelerators have been
proposed to optimize computation [14]–[19], [82], memory [9],
[11], [21]–[26], [83]–[88] and data reuse [12], [27], [28],
[68], [89], [90], they cannot benefit from sparsity due to
lack of dedicated support. To this end, sparse accelerators
have been proposed to process sparsity efficiently [40]–[43],
[91]–[94]. Cnvlutin [40] stores sparse activations in a com-
pressed format and skips computation cycles for zero-valued
activations to improve both performance and energy efficiency.
Cambricon-X [41] exploits sparsity by compressing the pruned
weights, skipping computation cycles for zero-valued weights.
SCNN [43] leverages the sparsity in both weights and activa-
tions, exploiting an algorithm-based dataflow that eliminates
ineffective computations from both zero-valued weights and
activations simultaneously. EIE [42] performs inference on the
compressed fully-connected layers and accelerates the resulting
sparse matrix-vector multiplication. MASR [92] is a modular
accelerator for sparse RNNs. However, irregularity caused
by sparsity prevents accelerators from fully leveraging the
computation and data reduction.

Regarding the irregularity problem, Mao et al. [95] shows
that coarse-grained sparsity is more hardware-friendly and
energy-efficient for sparse CNN accelerators. Scalpel [36] cus-
tomizes DNN pruning for different hardware platforms based
on their parallelism. Cambricon-S [54] employs coarse-grained
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Fig. 11. The impact of different tiling strategies.

pruning to reduce the irregularity of weights. SparTen [73]
employs efficient inner-join and tackles load-imbalance by
software/hardware hybrid approach. Stitch-X [96] stitches
sparse weights and input activations together for parallel
execution. However, due to the intrinsic irregularity, these
approaches incur overhead for sparse matrix representation.

Exploiting computational reuse can also reduce CNN compu-
tation. Winograd style of convolution [97] factors out multiplies
in convolution by taking advantage of the predictable filter
slide. UCNN [67] exploits weight repetition to reuse CNN
sub-computations and to reduce CNN model size. Riera et
al. [98] reuses some results of the previous execution instead
of computing the entire DNN to reduce computation. This line
of research focuses on unstructured computational reuse, which
is potentially complementary to our approach.

VII. CONCLUSIONS

This paper proposes CSCNN, an algorithm/hardware co-
design framework for CNN compression and acceleration which
explores the redundancy of parameters by replacing convolution
filters with centrosymmetric matrices. The centrosymmetric
structure substantially reduces the number of weight and
computation with negligible accuracy loss while maintaining
computational regularity. Additionally, pruning techniques are
complementary to centrosymmetric filters and are leveraged
to further reduce computation by a factor of up to 7.2× with
a marginal accuracy loss. The CSCNN accelerator effectively
exploits the structured computational reuse, and eliminates zero
computations for increased performance and energy efficiency.
Compared against a dense accelerator, SCNN and SparTen,
the proposed accelerator performs 3.7×, 1.6× and 1.3× better,
and improves the EDP by 8.9×, 2.8× and 2.0×, respectively.
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