
GCNAX: A Flexible and Energy-efficient Accelerator
for Graph Convolutional Neural Networks

Jiajun Li∗, Ahmed Louri∗, Avinash Karanth†, Razvan Bunescu‡

∗Department of Electrical and Computer Engineering, George Washington University, Washington, D.C.
†School of Electrical Engineering and Computer Science, Ohio University, Athens, Ohio

‡Department of Computer Science, University of North Carolina at Charlotte, Charlotte, North Carolina
Email: {lijiajun, louri}@gwu.edu, karanth@ohio.edu, rbunescu@uncc.edu

Abstract—Graph convolutional neural networks (GCNs) have
emerged as an effective approach to extend deep learning for
graph data analytics. Given that graphs are usually irregular,
as nodes in a graph may have a varying number of neighbors,
processing GCNs efficiently pose a significant challenge on the
underlying hardware. Although specialized GCN accelerators
have been proposed to deliver better performance over generic
processors, prior accelerators not only under-utilize the compute
engine, but also impose redundant data accesses that reduce
throughput and energy efficiency. Therefore, optimizing the
overall flow of data between compute engines and memory, i.e.,
the GCN dataflow, which maximizes utilization and minimizes
data movement is crucial for achieving efficient GCN processing.

In this paper, we propose a flexible and optimized dataflow
for GCNs that simultaneously improves resource utilization and
reduces data movement. This is realized by fully exploring the
design space of GCN dataflows and evaluating the number of exe-
cution cycles and DRAM accesses through an analysis framework.
Unlike prior GCN dataflows, which employ rigid loop orders and
loop fusion strategies, the proposed dataflow can reconfigure the
loop order and loop fusion strategy to adapt to different GCN
configurations, which results in much improved efficiency. We
then introduce a novel accelerator architecture called GCNAX,
which tailors the compute engine, buffer structure and size
based on the proposed dataflow. Evaluated on five real-world
graph datasets, our simulation results show that GCNAX reduces
DRAM accesses by a factor of 8.1× and 2.4×, while achieving
8.9×, 1.6× speedup and 9.5×, 2.3× energy savings on average
over HyGCN and AWB-GCN, respectively.

Index Terms—Graph Convolutional Neural Networks,
Dataflow Accelerators, Domain-specific Accelerators

I. INTRODUCTION

Deep learning has achieved great success in a broad range
of applications, such as object detection [1], [2] and machine
translation [3], [4]. The image and text data in these tasks
are typically represented as vectors in the Euclidean space.
However, there is an increasing number of applications where
data is relational, for which graphs provide a more natural
representation. Therefore, many studies have extended deep
learning approaches to graphical representations [5]–[8]. Graph
Convolutional Neural Networks (GCNs) [8], [9] are one such
category of models that re-define the notion of convolution
for graph data. Recently, GCNs have attracted substantial
efforts from both the industrial and academic communities
as a model of choice for applications including e-commerce
analysis [10], social network analysis [11], and molecular bio-
activity identification in medical research [12].

Inference in any modern GCN requires traversing hundreds
to thousands of vertices and edges, posing a major challenge
to the hardware platforms. Typically, the convolutional layers
occupy the majority of execution time in GCNs [13], [14]
through two primary phases: Aggregation and Combination.
The computation pattern of the combination phase is similar to
that of conventional neural networks. However, the aggregation
phase relies on the graph structure, which is often sparse
and irregular. This difference imposes new requirements on
the design of GCN architectures. Specifically, it requires the
GCN accelerators to simultaneously alleviate the irregularity
in the aggregation phase and exploit the regularity in the
combination phase. Unfortunately, existing graph analytic and
neural network accelerators [15], [16] cannot handle the hybrid
execution patterns because they are optimized to either alleviate
irregularity or exploit regularity in isolation, rather than to
simultaneously address both patterns.

To this end, a few dedicated GCN accelerators have been
recently proposed in the literature, delivering substantial gains
in performance and energy efficiency [17], [18]. HyGCN [17]
exploits two dedicated compute engines, i.e., an aggregation
engine and a combination engine, to accelerate the Aggregation
and Combination phases, respectively. However, by rigidly
following the two phases, HyGCN suffers from two main
drawbacks: (i) an inefficient execution order that results in
more computations and data accesses, and (ii) under-utilization
of compute engines because of workload imbalance between
the two engines. As some datasets have more computations
during the aggregation phase than the combination phase,
the early completing engine has to be idle waiting for the
slower engine to complete. On the other hand, AWB-GCN [18]
is an architecture for accelerating GCNs and Sparse-dense
Matrix Multiplication (SpMM) kernels, and addresses the
issue of workload imbalance in processing real-world graphs.
However, AWB-GCN incurs its own inefficiency because the
loop optimization techniques are not carefully tailored to the
GCN processing, resulting in redundant data accesses.

In this paper, we propose GCNAX, a novel accelerator
architecture whose dataflow is optimized for throughput and
energy efficiency for GCN acceleration. To find the optimal
dataflow with maximum utilization and energy efficiency, we
perform an extensive design space exploration that enumerates
the legal design variants of GCN dataflows. Although prior

GCN accelerators have demonstrated better performance over
generic processors, it is hard to compare the efficiency of
these implementations because of differences in technology,
hardware resources and system setup. To address this problem,
we first categorize these implementations into various dataflows
according to three optimization techniques: 1) loop interchange;
2) loop tiling; and 3) loop fusion. We then evaluate the
throughput and energy efficiency of these dataflows under
the same hardware resource constraints such as buffer size and
the number of ALUs.

We observed that different GCN configurations require
different design choices of the dataflow to achieve optimal
efficiency. Therefore, we design a flexible and optimized
dataflow that can reconfigure the loop order and loop fusion
techniques to adapt to different GCN configurations. We then
propose a hardware accelerator called GCNAX to support the
flexible dataflow. GCNAX employs an outer-product based
method for SpMM [19], which is the key computation pattern
in GCNs, to mitigate the workload imbalance caused by the
unbalanced distribution of zeros. Furthermore, the compute
engine, buffer size and structure are tailored according to the
execution order and tile sizes of the dataflow. We implement
the GCNAX accelerator in RTL targeting TSMC 40nm library.
We also build a cycle-accurate simulator that models the
microarchitectural behavior of each module while supporting
different dataflows. Evaluated on five real-world graph datasets,
our simulation results show that GCNAX reduces DRAM
accesses by a factor of 8.1× and 2.4× compared to HyGCN
and AWB-GCN. On average, GCNAX achieves 8.9×, 1.6×
speedup and 9.5×, 2.3× energy savings over HyGCN and
AWB-GCN, respectively.

This paper makes the following contributions:
• To find the optimal dataflow with maximum utilization

and energy efficiency, we perform an extensive design
space exploration that enumerates the legal design variants
by considering various optimization techniques.

• We propose a flexible and optimized dataflow that can
reconfigure the loop order and loop fusion strategy to
adapt to different GCN configurations, and we design
a novel accelerator architecture called GCNAX for the
proposed dataflow.

• We implement the proposed accelerator in both RTL and a
cycle-accurate simulator, and present a thorough evaluation
on real-world graph datasets.

II. BACKGROUND

A. GCN Basics

Recently, there is an increasing interest in extending deep
learning approaches for graph data. Graph Neural Networks
(GNNs) are deep learning models aiming at addressing graph-
related tasks in an end-to-end manner. GNNs can be categorized
into recurrent graph neural networks (RecGNNs) [20], graph
convolutional neural networks (GCNs), graph autoencoders
(GAEs) [21], and spatial-temporal graph neural networks
(STGNNs) [22]. Among these, GCNs have seen a rapid

F B

A

H C

E

G

D

Feature vector

Feature vector

B F

H G

D C

A

A
G

E
H

Feature vector

F
e

a
tu

re
 v

e
ct

o
r

F
e

a
tu

re
 v

e
ct

o
r

A

H

Feature vector

Input Graph Aggregation Combination

Fig. 1: Illustration of the GCN model.

TABLE I. Notations in GCNs.

Term Meaning
G graph G = (V,E)
V vertices of G
E edges of G
Dv degree of vertex v
e(i, j) edge between vertex i and j
N(v)(S(v)) (sampling subset of) neighbor set of v
A(Ai j) (element of) adjacency matrix
av aggregation feature vector of v
hv feature vector of v
b combination bias vectors
X feature matrix composed by feature vectors

development recently due to their attractive efficiency for neural-
network-based graph processing.

GCNs follow the neighborhood aggregation scheme, where
the feature vector of each vertex is computed by recursively
aggregating and transforming the representation vectors of its
neighbor vertices. Fig. 1 illustrates the main execution phases
of the convolutional layer in GCN models. Table I lists the
notations used in GCNs. In this work, we focus on undirected
graphs and the inference stage.

Typically, the layer-wise forward propagation of GCN is
formulated as:

ak
v = Aggregate(h(k−1)

u : u ∈ {N(v)}∪{v}),
hk

v =Combine(ak
v).

(1)

where hk
v is the representation feature vector of vertex v at the

k-th layer. Simply, the Aggregate function aggregates multiple
feature vectors from source neighbors to one single feature
vector, and the Combine function transforms the feature vector
of each vertex to another feature vector using a multi-layer
perceptron (MLP) neural network.

B. GCN Models

Here we introduce several typical GCN models as examples
to explain the above operations in detail.

GCN [8] is one of the most successful convolutional
networks for graph learning, which bridges the gap be-
tween spectral-based convolutions and spatial-based convo-

2

TABLE II. Structure and data density of the 2-layer GCN for the graph datasets.

Datasets Cora Citeseer Pubmed Nell Reddit

Structure
#Vertex 2,708 3,327 19,717 65,755 232,965
#Edge 10,556 9,104 88,648 266,144 114,615,892

Feature length 1433-16-7 3703-16-6 500-16-3 61,278-64-186 602-64-41

Data density
A 0.18% 0.11% 0.028% 0.0073% 0.21%
X 1.27%, 78.0% 0.85%, 89.1% 10.0%, 77.6% 0.011%, 86.4% 51.6%, 60.0%
W 100%, 100% 100%, 100% 100%, 100% 100%, 100% 100%, 100%

lutions. Its inference model can be described as Equation (2).
ak

v = ∑
u∈N(v)∪{v}

h(k−1)
u√

Du ·Dv
,

hk
v = ReLU(W kak

v +bk).
(2)


ak

v = ∑
u∈S(v)∪{v}

h(k−1)
u /r,

hk
v = ReLU(W kak

v +bk).
(3)

GraphSage [23] further adopts sampling to obtain a fixed
number of neighbors for each node. It performs graph con-
volution by Equation (3) where r is the number of neighbors
sampled for each node.

Graph Isomorphism Network (GIN) [24] adjusts the weight
of the central node by a learnable parameter εk. It performs
graph convolution by

ak
v = (1+ εk) ·hk−1

v + ∑
u∈N(v)

h(k−1)
u ,

hk
v = MLPk(ak

v,W
k,bk).

(4)

From the above analysis, the main computation of the GCN
models can be abstracted as:

X (k+1) = σ(ÂX (k)W (k)) (5)

For GCN, Â is the normalized adjacency matrix: Â = D−
1
2 ×

(A+ I)×D
1
2 , where I is the identity matrix, and D is a diagonal

matrix in which Dii equals the degree of vertex i, X is the
feature matrix where each row represents a feature vector of
a vertex. For GraphSage, Â is the sampled adjacency matrix
with a scaling factor of 1/r. For GIN, Â = (A+εk× I) where I
is the identity matrix. This abstraction will guide us to design
efficient GCN accelerators. Note that since Â can be computed
offline from A, we hereafter use A to denote the normalized Â.

C. Graph Datasets
As graph-structured data is ubiquitous, GCNs have a wide

variety of applications. Here we provide the benchmark
datasets frequently used in the literature [25]. Cora, Citeseer
and Pubmed are three popular datasets for paper citation
networks [26]. The Cora dataset contains 2708 machine
learning publications grouped into seven classes. The Citeseer
dataset contains 3327 scientific papers grouped into six classes.
The Pubmed dataset [23] contains 19717 diabetes-related
publications. In the social network domain, the Reddit dataset is
an undirected graph formed by posts collected from the Reddit
discussion forum. The Nell dataset [27] is a knowledge graph
obtained from the Never-Ending Language Learning project.
It consists of facts represented by a triplet which involves two
entities and their relation. Table II lists the structure and data
density of the datasets, which will be used as benchmarks in
this paper.

(A
X

)W

A
(X

W
)

(A
X

)W

A
(X

W
)

(A
X

)W

A
(X

W
)

(A
X

)W

A
(X

W
)

(A
X

)W

A
(X

W
)10

5

10
10

10
15

N
u

m
b

e
r

o
f

o
p

e
ra

ti
o

n
s

Cora Citeseer Pubmed Nell Reddit

Aggregation

Combination

Fig. 2: The number of operations for the five datasets (first
layer) using the two execution orders.

 for(n=0; n<N; n++) {
 for(c=0; c<C; c++) {
 for(k=0; k<K; k++) {
 B[n][c]+=X[n][k]*W[k][c];
 }}}

 for(m=0; m<M; m++) {
 for(c=0; c<C; c++) {
 for(n=0; n<N; n++) {
 O[m][c]+=A[m][n]*B[n][c];
 }}}

SpMM1:B=XW

SpMM2:O=AB

Fig. 3: Pseudo code of the chain SpMM in GCNs.

III. ACCELERATOR DESIGN EXPLORATION

In this section, we first introduce the design choices and
challenges of GCN dataflows, then we present the optimization
techniques and explore the design space. Finally, we present
the optimized dataflow based on the design space exploration.

A. Execution Order

As introduced in Section II, the key computation pattern
in GCNs is a two-phase matrix-matrix multiplication A×X×
W . There are two alternative execution orders: (A×X)×W
and A×(X ×W). The difference between the two orders is
significant because: 1) the matrix chain problem [28], which
indicates that the order in which the product is parenthesized
affects the number of simple arithmetic operations needed to
compute the product; and 2) the sparsity of the matrices also
affects the efficiency of different orders. As shown in Table II,
A is ultra-large and sparse, X is moderate sparse, while W is
generally small and dense.

To determine which execution order is better, we profiled the
number of effective operations for the five graph datasets under
the two orders, as shown in Fig. 2. Note that we only count the
operations with two non-zero operands. The results show that
using A(XW) reduces operations by a factor of 32× on average

3

On-chip computation

 for(n0=0; n0<N; n0+=Tn0) {
 for(c0=0; c0<C; c0+=Tc0) {
 for(k=0; k<K; k+=Tk) {
 // load elements of X
 // load elements of W
 // load elements of B
 for(tn0=n0; tn0<min(n0+Tn0,N); tn0++) {
 for(tc0=c0; tc0<min(c0+Tc0,C); tc0++) {
 for(tk=k; tk<min(k+Tk,K); tk++) {
 B[tn0][tc0]+=X[tn0][tk]*W[tk][tc0];
 }}}
 }
 // store elements of B
 }}

 for(m=0; m<M; m+=Tm) {
 for(c1=0; c1<C; c1+=Tc1) {
 for(n1=0; n1<N; n1+=Tn1) {
 // load elements of B
 // load elements of A
 // load elements of O
 for(tm=m; tm<min(m+Tm,M); tm++) {
 for(tc1=c1; tc1<min(c1+Tc1,C); tc1++) {
 for(tn1=n1; tn1<min(tn1+Tn1,N); tn1++){
 O[tm][tc1]+=A[tm][tn1]*B[tn1][tc1];
 }}}
 // store elements of O
 }}}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

SpMM1:B=XW

SpMM2:O=AB

On-chip computation

External data transfer

External data transfer

(a)

On-chip computation

On-chip computation

 for(n0=0; n0<N; n0+=Tn0) {
 for(c0=0; c0<C; c0+=Tc0) {
 for(k=0; k<K; k+=Tk) {
 // load elements of X
 // load elements of W
 // load elements of B
 for(tn0=n0; tn0<min(n0+Tn0,N); tn0++) {
 for(tc0=c0; tc0<min(c0+Tc0,C); tc0++) {
 for(tk=k; tk<min(k+Tk,K); tk++) {
 B[tn0][tc0]+=X[tn0][tk]*W[tk][tc0];
 }}}
 }
 // store elements of B

 for(m=0; m<M; m+=Tm) {
 // load elements of B
 // load elements of A
 // load elements of O
 for(tm=m; tm<min(m+Tm,M); tm++) {
 for(tc1=c0; tc1<min(c0+Tc0,C); tc0++) {
 for(tn1=n0; tn1<min(tn0+Tn0,N); tn0++){
 O[tm][tc1]+=A[tm][tn1]*B[tn1][tc1];
 }}}
 // store elements of O
 }
 }}}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

SpMM1:B=XW
External data transfer

SpMM2:O=AB

(b)

Fig. 4: Pseudo code of tiled chain SpMM: (a) without loop fusion (b) with loop fusion. < Tn0,Tc0,Tk,Tm,Tc1,Tn1 > is the tile
size tuple for the loop tiling.

compared to (AX)W . The results suggest that performing XW
first would potentially lead to higher throughput.

Moreover, performing XW first has another benefit that
the matrix-matrix multiplication will be both in sparse-dense
format, which enables us to design a unified processing
element (PE) architecture for the computations. By contrast,
AX requires sparse-sparse matrix multiplication and generates
a large and dense matrix, then (AX)W requires dense-dense
matrix multiplication. Therefore, it requires two individual PEs
for the computation, which is the design paradigm of HyGCN.
HyGCN exploits an Aggregation Engine which realizes the
efficient execution of irregular data accesses and computations
in sparse-sparse matrix multiplication, and a Combination
Engine to maximize the efficiency of regular data accesses and
computations in dense-dense matrix multiplication. Although
such a tandem-engine architecture is intuitive and effective
for specific datasets, it will incur under-utilization of either
Aggregation Engine or Combination Engine because of the
workload imbalance between the two engines. Specifically,
some datasets have more computations in Aggregation phase
while others have more in the Combination phase. As shown in
Fig. 2, when using the (AX)W order, there are more operations
in the Combination phase in Citeseer, Cora, Pubmed and Nell
than the Aggregation phase, which is opposite in Reddit. This
indicates that the former four datasets require a relatively
more powerful Aggregation Engine, but Reddit needs a more
powerful Combination Engine. Due to the fixed computational
capacity of the two engines in tandem-engine architectures, it
will inevitably be under-utilized for some datasets. Fortunately,
performing XW first and using a unified PE for both phases

will naturally avoid this workload imbalance problem.
Therefore, in our accelerator we will perform XW first to

1) reduce the total number of operations; and 2) use a unified
PE architecture to avoid under-utilization resulting from inter-
engine workload imbalance.

B. Chain Sparse-dense Matrix Multiplication

Overall, the key computation pattern of GCNs is abstracted
as chain sparse-dense matrix multiplication (chain SpMM).
Many previous papers have proposed specialized dataflows for
SpMM on various platforms, including GPUs [29], FPGAs [30],
and ASICs [19], [31]. However, due to differences in matrix
dimensions, sparsity levels, size of the chain, technology,
hardware resources and system setup, a direct comparison
between different implementations does not provide much
insight into the relative efficiency of different dataflows.
Therefore, to compare these implementations, we categorize
their dataflows based on their data handling characteristics.
Then, we build an analysis framework to analyze the throughput
and data accesses of these dataflows.

We start the analysis of the dataflows from the pseudo code
shown in Fig. 3. We assume that A ∈ RM×N , X ∈ RN×K , W ∈
RK×C. Matrix B ∈ RN×C is the intermediate result of X ×W
and O ∈RM×C is the final output matrix. The code in Fig. 3 can
be optimized using three techniques. First, loop tiling can be
applied for each SpMM to leverage data locality (Fig. 4), where
<Tn0,Tc0,Tk,Tm,Tc1,Tn1> is the tile size tuple. Second, loop
interchange [32] enables different types of data reuse to reduce
external memory traffic by exchanging the order of the nested
loops. Third, loop fusion optimization [33] can be leveraged

4

Inner

Product

Based

X (N*K) W (K*C) B (N*C)

// on-chip computation
for(tn0=n0; tn0<min(n0+Tn0,N); tn0++) {
 for(tc0=c0; tc0<min(c0+Tc0,C); tc0++) {
 for(tk=k; tk<min(k+Tk,K); tk++) {
#pragma HLS UNROLL
 L: B[tn0][tc0]+=X[tn0][tk]*W[tk][tc0];
}}}

(a)

Outer

Product

Based

B3

X (N*K) W (K*C)

B1

B2

// on-chip computation
for(tn0=n0; tn0<min(n0+Tn0,N); tn0++) {
 for(tk=k; tk<min(k+Tk,K); tk++) {
 if(X[tn0][tk]==0)
 continue;
 else
 for(tc0=c0; tc0<min(c0+Tc0,C); tc0++) {
#pragma HLS UNROLL
 L: B[tn0][tc0]+=X[tn0][tk]*W[tk][tc0];
 }
 endif
}}

(b)

Fig. 5: On-chip computation optimization: (a) Inner-product
based method (b) Outer-product based method.

to reduce data transfer of intermediate data. Specifically, since
the result of SpMM1 is then used as the input of SpMM2,
we can fuse the processing of SpMM1 and SpMM2 to enable
caching of the intermediate data and eliminate transferring
the intermediate data to off-chip DRAM. According to these
techniques, we present the taxonomy of dataflows according
to: 1) loop orders; 2) selection of tile size tuple; and 3) loop
fusion strategies of the chain SpMM. Notably, as shown in
Fig. 4(b), the tile size tuple when enabling loop fusion is
<Tn0,Tc0,Tk,Tm>, which doesn’t contain Tn1 and Tc1 because
of loop fusion. To keep consistency, we virtualize the tile sizes
Tn1 and Tc1 for loop fusion with the constraint Tn1 = Tn0,Tc1 =
Tc0, which facilitates the analysis for the dataflows.

C. Computation Optimization

Loop unrolling can be used to increase the utilization of
massive computation resources. Researchers have extensively
studied the methods to unroll SpMM for parallel computations.
Fig. 5 shows two of these methods taking the SpMM1 in
Fig. 4(a) as an example. The first one is inner-product based
methods [34], which uses the loop nest tn0 → tc0 → tk (the
leftmost iterator denotes the outermost loop) that maximizes
the reuse of output matrix. The tk dimension is unrolled
for parallel computation. Inner-product based method takes
advantage of data locality for large dense matrices, however, it
incurs inefficiency for SpMM since the run-time is dominated
by irregular memory accesses and index-matching in order
to perform the inner product operations. Furthermore, inner-
product based methods would also incur workload imbalance
problem with the increasing of multiplier numbers [31].

In this paper, we use outer-product based method [19] as
shown in Fig. 5(b). It employs the loop nest tn0→tk→tc0 and
unrolls the tc0 dimension. Although this method would ruin
the reuse of the output matrix, it has better input matrix reuse
compared to the inner-product based method. More importantly,
it well supports the elimination of zero computations and avoids
the workload imbalance problem. We store the sparse matrix
in Compressed Sparse Column (CSC) format, while the input
DenseMat is stored in dense format in row-major order. Since
X [tn0][tk] is the input operand for all the Tc0 multiplications,
these computations can be skipped simultaneously if X [tn0][tk]
is zero. Note that we keep the redundant ”if” statement in
Fig. 4(b) only for clarity, and we don’t need to implement
the “compare” logic in hardware because the zeros are already
removed by CSC format. Similarly, the corresponding loop
order for the computation int SpMM2 is tm→ tn1→ tc1.

Performance Modeling. Given a specific tile size tuple,
the total number of execution cycles for the chain SpMM is
modeled as follows.

Ncycles = Ncycle1 +Ncycle2 (6)

where

Ncycles1 = γX ×d
N

Tn0
e×d C

Tc0
e×dK

Tk
e×(Tn0×Tk)

Ncycles2 = γA×d
M
Tm
e×d C

Tc1
e×d N

Tn1
e×(Tm×Tn1)

(7)

γX and γA denote the density of the matrix X and A, respectively.

D. Memory Access Optimization

Fig. 4 also illustrates the external data transfer operations
of the chain SpMM. The data elements of input/output
matrices in each SpMM are loaded before the compute engine
starts computation and the generated output partial sums are
written back to main memory. There are two methods to
minimize the external data transfer. The first method is local
memory promotion. Specifically, if the innermost loop in the
communication part is irrelevant to a matrix, i.e., the loop
iterator does not appear in the access function of the matrix [35],
there will be redundant memory operations between different

5

loop iterations. Local memory promotion can be used to reduce
redundant operations. For example, in SpMM1 in Fig. 4(a), the
innermost loop dimension k in SpMM1 is irrelevant to matrix B,
so the memory accesses to matrix B can be promoted to outer
loops. Since the loops can be permuted, we can change the
loop order to reduce the memory accesses of the corresponding
matrices.

The second method to reduce memory transfer operations is
to fuse the processing of SpMM1 and SpMM2. As shown in
Fig. 4(a), the elements of matrix B are stored back to DRAM in
SpMM1 (line 14), and they are again fetched from DRAM in
SpMM2 (line 20). Therefore, we can reduce the data transfer of
these intermediate data by fusing the execution of SpMM1 and
SpMM2. As illustrated in Fig. 4(b), when SpMM1 finishes the
computation of loop k and generates a B chunk, we pause the
execution of SpMM1 and proceed to the execution of SpMM2
(line 17). By doing so, the data transfer of the intermediate
matrix (B) is eliminated. Notably, although loop fusion reduces
data transfer of intermediate results, it somehow sacrifices the
flexibility of loop order. Specifically, the iteration k in SpMM1
must be the innermost loop to ensure that matrix B finishes all
its computations (not a PartialMat) before being forwarded to
SpMM2. Moreover, as m becomes the innermost loop in the
communication part of SpMM2, matrix O has to be frequently
transferred between on-chip and off-chip. Since O is the result
matrix, the volume of data transfer is doubled compared to the
input matrix such as matrix A because the result matrix has
to be written back to the main memory when being replaced,
whereas the input matrix can be directly replaced without being
written back.

Off-chip Data Access Modeling. Since off-chip data ac-
cesses usually dominate the energy consumption of acceler-
ators [17], [36], reducing the number of data accesses will
improve energy efficiency. The number of data accesses is
analytically modeled using the design choices including the
tile size tuple, loop order and loop fusion strategy. Since the
design space is polyhedral, we use the design choices shown
in Fig. 4(a) as an example to illustrate our model. The total
number of off-chip accesses is calculated by:

Nd = αX ·SX +αW ·SW +αB1 ·SB1 +αB2 ·SB2 +αA ·SA +αO ·SO
(8)

where

SX = γX ×Tn0×Tk

SW = Tk×Tc0

SB1 = Tn0×Tc0

SB2 = Tn1×Tc1

SA = γA×Tm×Tn1

SO = Tm×Tc1
(9)



αX = αW =
N

Tn0
× C

Tc0
× K

Tk

αB1 =
N

Tn0
× C

Tc0

αB2 = αA =
M
Tm
× C

Tc1
× N

Tn1

αO =
M
Tm
× C

Tc1
(10)

Here αX ,αW ,αB,αA and SX ,SW ,SB,SA denote the trip counts
and buffer sizes of memory accesses to matrix X/W/B/A re-
spectively. Note that αB1,αB2,SB1,SB2 are used to differentiate
the accesses in SpMM1 and SpMM2 respectively. In this model,

we assume that the zeros in matrix X and A are distributed
evenly so we use the overall density of X and A (γX ,γA) to
represent the density of each chunk when estimating SX and
SA, as shown in Equation (9). Although it does not reflect
the actual distribution, we make this assumption for simplicity
since considering the sparsity distribution would significantly
increase the model complexity. Moreover, we found that the
estimated values from the model deviate little from the actual
values derived from a cycle-accurate simulation.

If changing the loop order in Fig. 4(a), we just need to
modify the equation of α ′s in Equation (10). The enumeration
of the loop orders and the corresponding equation of α ′s are
omitted for brevity. When enabling loop fusion as shown in
Fig. 4(b), the total number of off-chip accesses and the buffer
size are also calculated by Equation (8) and Equation (9), but
the trip counts are estimated as Equation (11).

αX = αW =
N

Tn0
× C

Tc0
× K

Tk

αB1 = αB2 = 0

αA =
M
Tm
× C

Tc0
× N

Tn0

αO = 2× M
Tm
× C

Tc0
× N

Tn0
(11)



0 < Tk ≤ (# o f MACs)

0 < Tc1 ≤ (# o f MACs)

0 < Tm ≤M, 0 < Tk ≤ K

0 < Tn0 ≤ N, 0 < Tn1 ≤ N

0 < Tc0 ≤C, 0 < Tc1 ≤C

SX +SW +SB1 <= GLBsize

SA +SO +SB2 <= GLBsize
(12)

We can see that the DRAM accesses of matrix B are
eliminated but αO is much larger than that in Equation (10).

E. Design Space Exploration

It is a non-trivial task to choose the best combination
of the design variables (Tm,Tn0,Tn1,Tc0,Tc1,Tk) and design
choices (loop order and loop fusion strategy) that maximize the
performance and minimize the number of off-chip data accesses,
which needs a systematic design space exploration methodology.
We use the performance and DRAM access models to build
an optimization framework for fast design space exploration.
We enumerate all possible loop orders, tile sizes, and fusion
strategies to generate a series of computational performance
and operation intensity pairs. Specifically, the space of all
legal tile sizes is constrained by Equation (12) where GBLsize
denotes the global buffer size constraint.

Fig. 6 depicts the legal solutions for the first layer of the
five datasets using the roofline model coordination system [37],
where GBLsize is set as 512 KB and the computational roof is
set as 32 GFLOPS. The “x” axis denotes the operation intensity,
or the ratio of floating point operation per DRAM byte access.
The “y” axis denotes the computational performance measured
by GFLOPS. The slope of the line between any point and the
origin point (0,0) denotes the minimum bandwidth requirement
for this combination of design choices.

As illustrated in Fig. 6, different datasets prefer different
design choices. For Cora, enabling loop fusion would achieve
optimal performance as well as operation intensity. By contrast,
Reddit prefers not to enable loop fusion. Table III shows the
optimal tile sizes, loop order and loop fusion strategy for the

6

0 0.5 1 1.5

Operation Intensity (Ops/Byte)

0

5

10

15

20

25

30

35

A
tt

a
in

a
b

le
 p

e
rf

o
rm

a
n

c
e
 (

G
F

L
O

P
S

)
Without loop fusion
With loop fusion

(a) Cora (b) Citeseer

0 0.5 1 1.5

Operation Intensity (Ops/Byte)

0

5

10

15

20

25

30

35

A
tt

a
in

a
b

le
 p

e
rf

o
rm

a
n

c
e
 (

G
F

L
O

P
S

)

Without loop fusion
With loop fusion

(c) Pubmed (d) Nell (e) Reddit

Fig. 6: Design space exploration for the first layer of the graph datasets: (a) Cora; (b) Citeseer; (c) Pubmed; (d) Nell; (e) Reddit.

TABLE III. Dataset specific optimal solution and cross-dataset optimization.

Dataset Layer Loop
fusion

Loop order Optimal Tile Size
Tuple

(Tn0,Tc0,Tk ,Tn1,Tc1,Tm)

DRAM
Accesses

Cross-dataset
Optimization

(Tn0,Tc0,Tk ,Tn1,Tc1,Tm)

Loop
fusion

Loop order DRAM
Accesses

Cora L1 Yes n0→c0→k→m (2708,16,1,2708,16,1) 172131 (2048,16,16,2048,16,16) Yes n0→c0→k→m 207446
L2 Yes n0→c0→k→m (2708,7,1,2708,7,1) 85084 Yes n0→c0→k→m 97338

Citeseer L1 Yes n0→c0→k→m (3000,16,5,3000,16,1) 300925 (2048,16,16,2048,16,16) Yes n0→c0→k→m 386351
L2 Yes n0→c0→k→m (3000,6,1,3000,6,1) 104243 Yes n0→c0→k→m 124874

Pubmed L1 No n0→c0→k, m→c1→n1 (3073,16,1,1,16,3073) 3800622 (2048,16,16,16,16,2048) No n0→c0→k, m→c1→n1 4839367
L2 No n0→c0→k, m→c1→n1 (3000,3,1,1025,3,3000) 860549 No n0→c0→k, m→c1→n1 1041408

Nell L1 No n0→c0→k, m→c1→n1 (4096,1,33,1,1,4096) 188541177 (2048,16,16,16,16,2048) No n0→c0→k, m→c1→n1 272550109
L2 No n0→c0→k, m→c1→n1 (257,186,1,1,17,2817) 320259165 No n0→c0→k, m→c1→n1 463651357

Reddit L1 No n0→c0→k, m→c1→n1 (641,64,1,1,9,4096) 1780902301 (2048,16,16,16,16,2048) No n0→c0→k, m→c1→n1 2479084738
L2 No n0→c0→k, m→c1→n1 (1153,41,1,1,17,2817) 1095478962 No n0→c0→k, m→c1→n1 1423139406

five datasets. The dataflows in existing designs, such as HyGCN
and AWB-GCN, stick to static loop order and loop fusion
strategy, which would inevitably incur inefficiency because of
the GCN configuration variance. To this end, we propose a
flexible dataflow to adapt to different GCN configurations.
The dataflow tailors the tile sizes based on cross-dataset
optimization, and can reconfigure the loop order and loop
fusion technique for given GCN configurations. Enabling this
flexibility for the dataflow will significantly improve the overall
efficiency across different GCN configurations.

The exploration results also show that the tile sizes should
be adaptive to different GCN configurations to further improve
efficiency. However, to support multiple dataflows with different
tile sizes would be challenging. Complex hardware structures
are required to reconfigure compute engines and interconnects.
Besides, different tile sizes may also require different buffer
sizes and structures, which further increases the complexity.
An alternative approach is to design a hardware architecture
with uniform tile sizes for all the datasets. We enumerate all
legal solutions to select the optimal tile sizes for cross-dataset
optimization, as shown in Table III. Notably, since SpMM1
and SpMM2 use the same compute engine, the tile sizes in
the two SpMMs share the same constraint of the hardware
characteristics. Therefore, the tile sizes in the two SpMMs
should be co-optimized to match the hardware characteristics.
Specifically, if loop fusion is not enabled, we constrain Tm = Tn0,
Tc1 = Tc0, Tn1 = Tk so that the buffer requirements of the two
SpMMs are the same. For the dataflow with loop fusion, we
constrain Tm = Tk so that the buffer requirements of the two

SpMMs are the same. Therefore, for cross-dataset optimization,
the search space are significantly simplified as the independent
variables are reduced from six to three (Tn0,Tc0,Tk). Although
we use uniform tile sizes, we have two sets of tile size
combinations, as shown in Table III, one set for the case
when loop fusion is enabled, and the other for the case
when loop fusion is disabled. GCN dataflow with uniform
tile sizes is simple to implement, but might be sub-optimal for
some datasets. Table III shows that using uniform tile sizes
increases the DRAM accesses by less than 50% compared to
that of dedicated tile sizes for each dataset, which is acceptable
considering the low complexity of implementation.

IV. GCNAX ARCHITECTURE

This section introduces the proposed accelerator architecture
called GCNAX to support the flexible dataflow, GCNAX
employs an outer-product based method for SpMMs to avoid
workload imbalance, and tailors buffer size and structures
according to the tile sizes.

A. Accelerator Overview
The system architecture of GCNAX is shown in Fig. 7. It

consists of a SparseMat Buffer (SMB), Input/Output DenseMat
Buffers (IDMB/ODMB), a Look-Ahead FIFO, a DenseRow
Prefetcher (DRP), a MAC Array, and a Control Unit. The
Software Scheduler is used to reconfigure the loop order
and loop fusion strategy for different datasets, and generates
corresponding commands to the Control Unit. The accelerator’s
state machine operates on the SpMM in the order defined by
the received commands.

7

Input DenseMat
Buffer

SparseMat
Buffer

Output DenseMat
Buffer

Look-Ahead FIFO

DenseRow Prefetcher

M
A

C
 a

rra
y

D
R

A
M

SparseMat
Element

DenseMat
Row

Old PartialMat
Row

New PartialMat Row

SparseMat
index

Row index

S
o

ftw
a

re

S
ch

e
d

u
le

r

Control
Unit

Fig. 7: The full GCNAX architecture.

To process the SpMM, a portion of the sparse matrix is
fetched from DRAM into SMB in CSC format, and a portion
of the input/output matrix is fetched into IDMB and ODMB
in dense format. First, an old PartialMat row is fetched from
ODMB to the MAC array waiting for accumulation. Meanwhile,
an element value from SMB is sent to the FIFO, while its row
index in the CSC format is sent to DRP. Then, the DRP fetches
the corresponding input DenseMat row from IDMB according
to the received index and the row index of the PartialMat
row. Since the required input DenseMat row is not known until
receiving the index of the SparseMat element, there is a latency
between the arriving time of the SparseMat element and the
input DenseMat row to the MAC Array. The look-ahead FIFO
is used to hide this latency. Instead of directly sending the
SparseMat element to MAC Array, it is sent to the FIFO. At
the same time, the DRP calculates the required row index and
prefetches rows to MAC Array. The MAC Array will then
conduct the outer product between the SparseMat element and
the DenseMat row and the generated row will be accumulated
with the Old PartialMat row.

When possible, the PartialMat row is held consistently in
the MAC Array until its related computations are finished.
Upon completion of the current PartialMat row, the generated
new PartialMat row is then flushed to ODMB, and it proceeds
to the next PartialMat row according to the execution order
defined by the dataflow. When the output DenseMat can serve
as the input DenseMat for the following SpMM, which is the
case when we enable loop fusion, the IDMB and ODMB are
logically swapped to the two SpMMs’ computation sequence.

B. GCNAX Architecture Configuration

Table IV lists the key parameters of the GCNAX design
according to the cross-dataset optimization shown in Section III.
The design employs a 1× 16 MAC Array using double-
precision floating point multipliers. The SMB/IDMB/ODMB
are sized according to the tile sizes. For example, since SMB is
used to store the matrix X and A in the two SpMMs, the size of
SMB should be large enough to hold the data chunk of X and
A defined by the tile sizes. Specifically, since the chunk size of
X is Tn0×Tc0 (32K) and the density of X varies from 0.011%
to 89.1%, the storage size of the non-zero values in each chunk

TABLE IV. GCNAX con-
figurations.

Design pa-
rameters

Value

Multiplier
width

64 bits

MAC Array 1×16
Look-ahead

FIFO
16 entries

SMB 320 KB
IDMB 4 KB
ODMB 256 KB
DRAM HBM@128GB/s

TABLE V. Hardware characteristics
of GCNAX.

GCNAX Area
(mm2)

Power(mW)

Total 6.51
(100%)

365.0
(100%)

MAC
Array

0.46
(7.1%)

86.2
(23.6%)

SMB 2.60
(39.9%)

83.4
(22.8%)

IDMB 0.10
(1.5%)

62.5
(17.1%)

ODMB 2.70
(41.5%)

74.3
(20.4%)

DRP 0.41
(6.3%)

46.2
(12.7%)

Control
Unit

0.24
(3.7%)

12.4
(3.4%)

will not exceed 32KB∗8 = 256KB as we use double precision-
floating point numbers (8 Bytes per data element). Besides, the
chunk size of A when not enabling loop fusion is Tn0×Tm (4M)
but the density of A does not exceed 0.21%, so the storage
size of the non-zero values in each chunk will not exceed 256
KB. Considering that the CSC format for the sparse matrix
introduces overhead for storage of row indices and column
pointers, and the non-zeros are not evenly distributed, we
offer the SMB an additional 64KB to cover this overhead,
which results in 320KB for the SMB. IDMB is used to store
the data chunk of W in SpMM1 (Tk ×Tc0×8B = 2KB). If
not enabling loop fusion, IDMB stores the data chunk of B
in SpMM2 (Tn1×Tc1×8B = 2KB). If enabling loop fusion,
IDMB stores the data chunk of O (Tm×Tc1×8B = 2KB) in
SpMM2. Therefore, the storage requirement for IDMB is 2KB,
which is the largest of the above three values. Since the DRP
will prefetch DenseMat rows, we doubled the IDMB size to be
4KB. Similarly, the size of ODMB is Tn0×Tc0×8B = 256KB.

V. EXPERIMENTAL METHODOLOGY

Hardware simulator. To evaluate the performance of our
design, we built a cycle-accurate simulator in C++ to model
the behavior of the hardware. The simulator models the
microarchitectural behaviors of each module, and supports
the dataflows shown in Fig. 4. The simulator counts the exact
amount of DRAM read and write, which is used to estimate
the DRAM access energy consumption according to [38].

ASIC synthesis. To measure the area and power consump-
tion, we model all the logic including the MAC Array, FIFOs,
DRP, and DRAM. We use the Synopsys Design Compiler
with the TSMC 40nm library for the synthesis, and estimate
the power using Synopsys PrimeTime PX. We set the clock
frequency at 1 GHz. We use Cacti [39] to estimate the area,
power, and access latency of the on-chip buffers and FIFOs.

Baselines. We compare GCNAX with two GCN accelerators
(HyGCN and AWB-GCN) and an SpMM accelerator (SpArch).
To evaluate the efficiency of the flexible dataflow of GCNAX,
we also compare it with GCNAX-F/GCNAX-NF, which
always/never enable loop fusion. Table VI summarizes the
characteristics of these baselines and GCNAX.

8

2
.2

e
+

0
6

3
.5

e
+

0
6

1
.5

e
+

0
5

1
.2

e
+

0
5

1
.0

e
+

0
5

1
.3

e
+

0
5

1
.1

e
+

0
5

8
.7

e
+

0
4

2
.3

e
+

0
6

3
.7

e
+

0
6

2
.6

e
+

0
5

2
.0

e
+

0
5

Layer1 Layer2 Total
104

105

106

107

N
u

m
b

e
r

o
f

c
y
c
le

s

HyGCN SpArchG AWB-GCN GCNAX

(a) Cora
2

.3
e

+
0

6 6
.2

e
+

0
6

2
.6

e
+

0
5

1
.7

e
+

0
5

1
.1

e
+

0
5

1
.2

e
+

0
5

1
.3

e
+

0
5

8
.5

e
+

0
4

2
.5

e
+

0
6 6

.3
e

+
0

6

3
.9

e
+

0
5

2
.5

e
+

0
5

Layer1 Layer2 Total
104

105

106

107

N
u

m
b

e
r

o
f

c
y
c
le

s

HyGCN SpArchG AWB-GCN GCNAX

(b) Citeseer

1
.1

e
+

0
7

9
.3

e
+

0
6

2
.2

e
+

0
6

1
.4

e
+

0
6

6
.8

e
+

0
5

7
.2

e
+

0
5

7
.1

e
+

0
5

4
.4

e
+

0
5

1
.2

e
+

0
7

1
.0

e
+

0
7

2
.9

e
+

0
6

1
.8

e
+

0
6

Layer1 Layer2 Total
105

106

107

108

N
u

m
b

e
r

o
f

c
y
c
le

s

HyGCN SpArchG AWB-GCN GCNAX

(c) Pubmed

1
.8

e
+

0
9

1
.2

e
+

0
9

5
.0

e
+

0
7

1
.7

e
+

0
7

1
.0

e
+

0
8

1
.4

e
+

0
8

1
.0

e
+

0
8

5
.9

e
+

0
7

1
.9

e
+

0
9

1
.4

e
+

0
9

1
.5

e
+

0
8

7
.6

e
+

0
7

Layer1 Layer2 Total
107

108

109

1010

N
u

m
b

e
r

o
f

c
y

c
le

s

HyGCN SpArchG AWB-GCN GCNAX

(d) Nell

3
.2

e
+

0
9

4
.3

e
+

0
9

1
.3

e
+

0
9

8
.4

e
+

0
8

6
.0

e
+

0
8

7
.8

e
+

0
8

6
.2

e
+

0
8

4
.1

e
+

0
8

3
.8

e
+

0
9

5
.1

e
+

0
9

1
.9

e
+

0
9

1
.3

e
+

0
9

Layer1 Layer2 Total
108

109

1010

N
u

m
b

e
r

o
f

c
y

c
le

s

HyGCN SpArchG AWB-GCN GCNAX

(e) Reddit

Fig. 8: Number of execution cycles for GCNAX and the baseline accelerators.

HyGCN

SpArchG

AWB-G
CN

GCNAX

0

5

10

15

20

D
R

A
M

 A
c

c
e

s
s

e
s

 (
M

B
) Layer1 Layer2

(a) Cora

HyGCN

SpArchG

AWB-G
CN

GCNAX

0

10

20

30

40

D
R

A
M

 A
c

c
e

s
s

e
s

 (
M

B
) Layer1 Layer2

(b) Citeseer

HyGCN

SpArchG

AWB-G
CN

GCNAX

0

100

200

300

400

D
R

A
M

 A
c

c
e

s
s

e
s

 (
M

B
) Layer1 Layer2

(c) Pubmed

HyGCN

SpArchG

AWB-G
CN

GCNAX

0

1

2

3

4

D
R

A
M

 A
c

c
e

s
s

e
s

 (
M

B
) 104

Layer1 Layer2

(d) Nell

HyGCN

SpArchG

AWB-G
CN

GCNAX

0

1

2

3

4

D
R

A
M

 A
c

c
e

s
s

e
s

 (
M

B
) 105

Layer1 Layer2

(e) Reddit

Fig. 9: DRAM accesses of GCNAX and the baseline accelerators.

TABLE VI. Characteristics of the accelerators.

Accelerator Execution
order

Compute
engine

Loop
fusion

Loop
order

Inner Spatial
Dataflow

HyGCN (AX)W † Tandem
engine

Yes Static Inner product

AWB-GCN A(XW) Uniform
engine

Yes Static Inner product

SpArchG§ (AX)W Uniform
engine

No Static Outer product

GCNAX-F A(XW) Uniform
engine

Yes Static Outer product

GCNAX-NF A(XW) Uniform
engine

No Static Outer product

GCNAX A(XW) Uniform
engine

Adaptive Adaptive Outer product

† HyGCN uses edge-centric programming model for the aggregation phase, so their
computation in the aggregation phase is not matrix multiplication. Nevertheless, the
result of the aggregation phase is a large matrix that is used as the input to perform
matrix multiplication in the combination phase.

§ SpArchG uses SpArch [31] (an SpGEMM accelerator) to process matrix multiplica-
tions in GCNs.

The baseline accelerators are scaled to be equipped with the
same number of multipliers and DRAM bandwidth as GCNAX.
Since HyGCN and AWB-GCN use single-precision floating
point numbers (32-bit) whereas SpArch uses double-precision
(64-bit), we uniformly use double-precision for all accelerators
to provide a fair comparison. As HyGCN uses a tandem-engine
architecture consisting of SIMD cores for the aggregation phase
and systolic modules for the combination phase, the multipliers
are divided to two groups in a ratio of 1:8 for the two engines
according to its original configuration. We also resized the
baseline accelerators to be equipped with the on-chip storage
capacity. For example, we simulated the HyGCN accelerator

with 580 KB on-chip storage rather than the original 16 MB.
The DRAM bandwidth for all the accelerators is scaled to
128GB/s. Note that as HyGCN uses edge-centric programming
model for the aggregation phase, their computation in the
aggregation phase is not matrix multiplication. Our simulator
takes this into account and estimates the execution cycles and
DRAM accesses according to HyGCN’s dataflow. Although
SpArch is not customized for GCNs, it is still selected as a
baseline since it supports the key computations in GCNs. As
SpArch does not mention how to support chain SpMM, we
assume that it processes the chain SpMM sequentially without
loop fusion. Hereafter we denote SpArchG as our simulated
accelerator that uses SpArch to process chain SpMM.

VI. EXPERIMENTAL RESULTS

A. Area and Power

We obtain the area and power consumption of GCNAX
accelerator under TSMC 40nm technology. Table V summarizes
the area and power of the major components. A significant
fraction of the PE area is contributed by memories (SMB,
IDMB and ODMB), which consume 82.9% of the total area,
while the MAC array only consumes 7.1%. IDMB and ODMB
heavily banked for parallelization so they consume more area
than SMB. As for power, the MAC Array and the buffers
consume 23.6% and 60.3% of the total power, respectively.

B. Performance

Fig. 8 compares the performance of GCNAX and the
baselines measured by the total number of execution cycles.

9

A
W

B
-G

C
N

G
C

N
A

X
-F

G
C

N
A

X
-N

F

G
C

N
A

X

A
W

B
-G

C
N

G
C

N
A

X
-F

G
C

N
A

X
-N

F

G
C

N
A

X

A
W

B
-G

C
N

G
C

N
A

X
-F

G
C

N
A

X
-N

F

G
C

N
A

X

A
W

B
-G

C
N

G
C

N
A

X
-F

G
C

N
A

X
-N

F

G
C

N
A

X

A
W

B
-G

C
N

G
C

N
A

X
-F

G
C

N
A

X
-N

F

G
C

N
A

X

0

20

40

60

80
D

R
A

M
 A

c
c
e
s
s
e
s
/O

p

(B
y
te

s
/o

p
)

1
.4

1

0
.8

3

0
.9

5

0
.8

3

1
.4

0

0
.8

2

0
.8

7

0
.8

2

3
.0

6

1
.6

6

1
.1

1

1
.1

1

6
4

.1
3

3
2

.1
9

2
1

.9
8

2
1

.9
8

2
.5

2

1
.3

8

0
.8

3

0
.8

3

Cora Citeseer Pubmed Nell Reddit

DRAM Reads

DRAM Writes

(a) Layer 1

A
W

B
-G

C
N

G
C

N
A

X
-F

G
C

N
A

X
-N

F

G
C

N
A

X

A
W

B
-G

C
N

G
C

N
A

X
-F

G
C

N
A

X
-N

F

G
C

N
A

X

A
W

B
-G

C
N

G
C

N
A

X
-F

G
C

N
A

X
-N

F

G
C

N
A

X

A
W

B
-G

C
N

G
C

N
A

X
-F

G
C

N
A

X
-N

F

G
C

N
A

X

A
W

B
-G

C
N

G
C

N
A

X
-F

G
C

N
A

X
-N

F

G
C

N
A

X

0

2

4

6

8

10

12

D
R

A
M

 A
c
c
e
s
s
e
s
/O

p

(B
y
te

s
/o

p
)

1
.7

9

1
.1

8

1
.3

4

1
.1

8 2
.1

1

1
.3

9

1
.4

7

1
.3

9

9
.9

4

5
.6

3

3
.9

3

3
.9

3

8
.7

7

4
.5

1

2
.5

1

2
.5

1 3
.6

8

1
.9

6

1
.1

2

1
.1

2

Cora Citeseer Pubmed Nell Reddit

DRAM Reads

DRAM Writes

(b) Layer 2

Fig. 10: DRAM access breakdown by read and write of AWB-
GCN, GCNAX-F, GCNAX-NF and GCNAX.

On average, GCNAX is 8.9×, 11.3×, and 1.6× faster than
HyGCN, SpArchG and AWB-GCN, respectively. GCNAX
outperforms the baselines on all the five datasets. The reasons
for the high performance of GCNAX are threefold. First, the
execution order of the chain-SpMM of GCNAX reduces the
number of operations compared to that of HyGCN. Second,
GCNAX uses a uniform-engine architecture that avoids the
workload imbalance incurred by tandem-engine architectures.
HyGCN can only achieve optimal performance by carefully
orchestrating the computational capacity of the combination
and aggregation engines for a given dataset, but it inevitably
incurs performance loss when accommodating different datasets
with different computational requirements for the aggregation
and combination engines. Finally, GCNAX achieves the lowest
DRAM accesses by adaptively configuring the dataflow for dif-
ferent datasets, which also explains why GCNAX outperforms
AWB-GCN and SpArch. The number of DRAM accesses has
a strong impact on performance since it might be the system
bottleneck. AWB-GCN uses the inner-product based method
for SpMM which incurs workload imbalance between PEs
thereby degrading the performance. AWB-GCN addresses this
inefficiency by a software scheduler and additional hardware
modules that increase hardware complexity and introduce
extra overhead. Since SpArchG is customized for sparse-
sparse matrix multiplication, it achieves high performance when
performing AX. However, the performance gain of SpArchG
is hindered because 1) its processing order results in larger

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Operation intensity (Ops/Byte)

0

10

20

30

40

50

60

P
e
rf

o
rm

a
n

c
e
 (

G
F

L
O

P
S

)

B
an

d
w

id
th

 r
o
o
f

Computational roof (32.0)

Cora
Citeseer

Pubmed

Nell

Reddit
Cora

Citeseer
Pubmed

Nell

Reddit

Fig. 11: Roofline Model for the AWB-GCN (triangles) and
GCNAX (circles) evaluated on the first layer of the five datasets.

computation volume; 2) SpArchG is not good at processing
dense-dense matrix multiplication.

As for the speedup for specific datasets, GCNAX per-
forms 3.0–25.6× better over HyGCN, 4.0–25.1× better over
SpArchG, and 1.3–2.0× better over AWB-GCN. The perfor-
mance gain on the Reddit dataset is not so significant because
the execution order reduces computations by only 2.9× which
is not that much compared to other datasets. Besides, the
density of feature vectors in Reddit (larger than 50%) is higher
than that of other datasets, which hinders the performance
gains of GCNAX because it still performs SpMM even though
the input matrix is not that sparse.

C. DRAM Accesses

Fig. 9 shows the number of DRAM accesses of the four
accelerators. Overall, GCNAX achieves on average 8.1×, 6.2×
and 2.4× reduction on DRAM accesses over HyGCN, SpArchG
and AWB-GCN, respectively. This benefits from the optimal
tile size tuple, the data reuse optimization and the adaptive
loop fusion strategy. The DRAM access reduction varies across
the datasets. Specifically, GCNAX reduces DRAM accesses by
a factor of 5.6–10.6× over HyGCN, 3.6–10.7× over SpArchG,
and 1.6–3.3× over AWB-GCN. Since HyGCN and SpArchG
use inefficient execution order, they involve more computations
that result in more DRAM accesses. AWB-GCN optimizes
the reuse of the intermediate matrix. However, it sacrifices the
reuse of the output matrix due to the limited on-chip storage
size. Moreover, the tile sizes are not carefully tailored in the
AWB-GCN accelerator.

We further look into the DRAM access breakdown by read
and write as shown in Fig. 10. We added GCNAX-F and
GCNAX-NF into comparison to evaluate the effects of the
adaptive loop fusion strategy. On the Cora and Citeseer datasets,
enabling loop fusion would lead to fewer DRAM accesses,
while the other three datasets prefer not enabling loop fusion
for the given tile sizes and hardware characteristics. The layer
1 in the Nell dataset induces more DRAM accesses than other
datasets because both the A and X matrix are ultra sparse in
this layer, which leads to irregular data accesses.

To understand how far our design is from the theoretically
optimal solution, we use the roofline model to analyze

10

9.3
8.4

1.6

13.2
12.6

1.6

7.2

6.3

2.7

8.7

6.7

3.3

10.3

6.1

3.0

Cora Citeseer Pubmed Nell Reddit
0

5

10

15
E

n
e

rg
y

 e
ff

ic
ie

n
c

y
Over HyGCN

Over SpArchG

Over AWB-GCN

Fig. 12: Energy savings of GCNAX over the baselines.

Cora Citeseer Pubmed Nell Reddit

100

102

104

N
o

rm
a
li
z
e
d

 E
D

P

HyGCN SpArchG AWB-GCN GCNAX

Fig. 13: Energy delay product (EDP) of the four accelerators.
It is normalized to the EDP of GCNAX.

our performance. Fig. 11 shows the result of the roofline
analysis. The theoretical computation roof is 32 GFlops in
our design since we use 16 MACs running in 1GHz. The
peak multiplication performance is 16 GFlops/s, and the
overall peak performance (multiplication and addition) is
32 GFlops/s. It is observed that GCNAX is in the right
and upper region compared to AWB-GCN, which indicates
that GCNAX achieves better performance with fewer DRAM
accesses. Notably, the performance on the Nell dataset is
bounded by the bandwidth roof.

D. Energy Consumption

Fig. 12 shows the normalized energy consumption of the four
accelerators. Overall, GCNAX achieves 9.5×, 7.7×, and 2.3×
energy savings compared to HyGCN, SpArchG and AWB-GCN.
This is because our proposed accelerator has fewer DRAM
accesses and better utilization of the computing resource.

Energy-delay product: Energy-delay product is used to
verify that a dataflow does not achieve high energy efficiency by
sacrificing processing parallelism. Fig. 13 shows the normalized
EDP of the four accelerators. The delay is calculated as the
reciprocal of the number of execution cycles. Compared with
the baseline accelerators, GCNAX is 115.9×, 120.7×, and
3.7× better in EDP averaged on the five datasets.

E. Sensitivity to Hardware Parameters

As mentioned in Section V, we scaled the baseline ac-
celerators to be equipped with the same hardware resources
as GCNAX, which would potentially hurt the efficiency of
the baseline accelerators. Therefore, we conduct a sensitivity
analysis to quantify the effects of the hardware parameter
variations on the accelerator performance. In Fig. 14(a), we

8 16 32 64 128 256

DRAM Bandwidth (GB/s)

0

2

4

6

8

10

12

14

16

18

N
u

m
b

e
r

o
f

c
y
c
le

s
 (

G
e
o

m
e
a
n

)

10
7

HyGCN

SpArchG

AWB-GCN

GCNAX

(a) Sensitivity to DRAM bandwidth

128 256 512 1024 2048 4096

On-chip global buffer size (KB)

0

2

4

6

8

10

12

N
u

m
b

e
r

o
f

c
y
c
le

s
 (

G
e
o

m
e
a
n

)

10
7

HyGCN

SpArchG

AWB-GCN

GCNAX

(b) Sensitivity to on-chip buffer size

Fig. 14: Performance of the accelerators w.r.t the variation of:
(a) DRAM bandwidth; (b) on-chip buffer size. The number of
cycles is the geometric mean of the five graph datasets.

sweep the DRAM bandwidth provisioning from 8 GB/s up
to 256 GB/s while fixing the other hardware parameters.
Clearly, GCNAX performs consistently better than the baseline
accelerators under different bandwidth provisioning because its
dataflow drastically reduces the DRAM traffic. Nevertheless,
the performance of GCNAX also decreases with the reduced
DRAM bandwidth provisioning. Specifically, GCNAX suffers
a 24.8% performance degradation when changing the DRAM
bandwidth from 128GB/s to 64 GB/s. In Fig. 14(b), we sweep
the on-chip buffer size from 128 KB up to 4 MB to investigate
how it influences the performance. HyGCN and SpArchG
are more likely to suffer from performance degradation with
reduced buffer size because their execution order of the chain
SpMMs generates more intermediate data, which requires extra
on-chip storage.

F. Comparison with GPUs

As GPUs are inherently optimized for compute-intensive
workloads, we also compare GCNAX with GPUs in terms
of speedup and energy consumption. We evaluate PyTorch
Geometric on an NVIDIA Tesla P40 GPU (denoted as PyG-
GPU), which has 3840 cores operating @1.3GHz with a
memory bandwidth of 480.4 GB/s. GCNAX achieves 18.3×
speedup and 25.9× energy savings over PyG-GPU.

VII. RELATED WORK

The most relevant works to ours are the two GCN infer-
ence accelerators, HyGCN and AWB-GCN, which have been
discussed in the paper. Beides, we also discuss other relevant
accelerator designs.

Graph analytics accelerators. With the emergence of
applications on graph analytics, many accelerators are proposed
to efficiently support these workloads [15], [40]–[53]. Hong
et al. [40], [54] propose a warp centric execution model for
graph applications. Ozdal et al. [15] propose a configurable
architecture template that is specifically optimized for iterative
vertex-centric graph applications with irregular access patterns
and asymmetric convergence. Graphicionado [44] exploits not

11

only data structure-centric datapath specialization, but also
memory subsystem specialization for efficient graph analytics
processing. Medusa [45] is a parallel graph processing system
on GPUs that enables developers to leverage the massive
parallelism and other hardware features. GraphR [46] is a
ReRAM-based graph processing accelerator that leverages the
near-data processing and explores the opportunity of performing
massive parallel analog operations with low hardware and
energy cost. GraphABCD [47] is an asynchronous hetero-
geneous graph analytic framework that offers algorithm and
architectural supports for asynchronous execution, without
undermining its fast convergence properties. Yan et al. [48]
propose a hardware/software co-design with decoupled datapath
and data-aware dynamic scheduling to alleviate irregularity in
graph analytics accelerators. Although these accelerators deliver
considerable performance and energy efficiency improvement,
they are inefficient when handling GCNs because even though
they are designed to alleviate irregularity of graph data, they
do not leverage the regularity in GCNs.

Neural Network Accelerators. There have been many
works devoted to accelerating neural networks [16], [55]–[60].
For dense neural networks, the accelerators mainly focus on
leveraging the massive parallelism to improve performance
and utilization, such as TPU [55] and Eyeriss [16]. Due to the
intrinsic sparsity structure, many accelerator [56]–[59] have
been proposed to reduce operations from sparsity. However,
GCNs contain two-phase matrix multiplications that enable
new kinds of parallelisms and data reuse patterns that are not
exploited in these neural network accelerators. Although we
can extend CNN accelerators to run SpMMs by equalizing the
input and filter dimensions, it weakens the advantages of CNN
accelerators since they are specialized for convolutions rather
than matrix multiplications.

GeMM, SpMV and SpMM Accelerators. Since the key
computation pattern in GCNs is matrix multiplication, we
would also like to mention the matrix multiplication ac-
celerators. They are categorized as general matrix matrix
multiplication (GeMM), sparse matrix-vector multiplication
(SpMV) and sparse matrix-matrix multiplciation (SpMM), with
implementations on GPUs [29], [40], [61], FPGAs [30] and
ASICs [19], [31], [62]. Lin et al. [30] presented the design
and implementation of a sparse matrix-matrix multiplication
architecture on FPGAs. OuterSpace [19] proposed outer product
based SpGEMM, which has perfect input reuse compared to
inner product based method. However, these works provide
little insight in how to efficiently support chain SpMMs.

We believe that the proposed approach can benefit other
applications that utilize matrix chain multiplications such as
the finite-element simulation [63]. Furthermore, the proposed
approach can also be extended to support other types of graph
neural networks such as Dense Graph Propagation Networks
[64] operating on directed graphs and previously used for zero-
shot learning, or Dual Graph Convolutional Networks [65] used
for semi-supervised classification. To support other applications,
e.g. finite-element simulation, the hardware parameters may
need to be changed to adapt to the corresponding matrix

dimensions and dataflow characteristics.

VIII. CONCLUSION

In this paper, we propose an energy-efficient and optimized
accelerator architecture for GCNs called GCNAX. The salient
features of the proposed architecture is that the dataflow
can reconfigure the loop order and loop fusion strategy to
adapt to different GCN configurations, and the tile sizes are
carefully tailored based on cross-dataset optimization, which
simultaneously improves resource utilization and reduces data
movement. The GCNAX accelerator tailors the compute engine,
buffer structure and size to support the optimized dataflow.
We evaluated our proposed architecture on five real-world
graph datasets, and the simulation results show that GCNAX
reduces DRAM accesses by a factor of 8.1× and 2.4×, while
achieving 8.9×, 1.6× speedup and 9.5×,2.3× energy savings
over HyGCN and AWB-GCN, respectively.

ACKNOWLEDGMENT

This research was partially supported by NSF grants CCF-
1702980, CCF-1812495, CCF-1901165, CCF-1703013 and
CCF-1936794. We sincerely thank the anonymous reviewers
for their excellent and constructive feedback.

REFERENCES

[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 779–788.

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, pp. 91–99.

[3] M.-T. Luong, H. Pham, and C. D. Manning, “Effective ap-
proaches to attention-based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

[4] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, and K. Macherey, “Google’s neural machine
translation system: Bridging the gap between human and machine
translation,” arXiv preprint arXiv:1609.08144, 2016.

[5] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,”
IEEE Transactions on Knowledge and Data Engineering, pp. 1–1, 2020.

[6] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data,” arXiv preprint arXiv:1506.05163, 2015.

[7] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances in
neural information processing systems, pp. 3844–3852.

[8] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[9] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” arXiv preprint arXiv:1312.6203,
2013.

[10] H. Yang, “Aligraph: A comprehensive graph neural network platform,”
in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery Data Mining, pp. 3165–3166.

[11] A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, and
A. Peysakhovich, “Pytorch-biggraph: A large-scale graph embedding
system,” arXiv preprint arXiv:1903.12287, 2019.

[12] N. De Cao and T. Kipf, “Molgan: An implicit generative model for small
molecular graphs,” arXiv preprint arXiv:1805.11973, 2018.

[13] M. Yan, Z. Chen, L. Deng, X. Ye, Z. Zhang, D. Fan, and Y. Xie,
“Characterizing and understanding gcns on gpu,” IEEE Computer
Architecture Letters, vol. 19, no. 1, pp. 22–25, 2020.

[14] Z. Zhang, J. Leng, L. Ma, Y. Miao, C. Li, and M. Guo, “Architectural
implications of graph neural networks,” IEEE Computer Architecture
Letters, vol. 19, no. 1, pp. 59–62, 2020.

12

[15] M. M. Ozdal, S. Yesil, T. Kim, A. Ayupov, J. Greth, S. Burns, and
O. Ozturk, “Energy efficient architecture for graph analytics accelerators,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 166–177,
2016.

[16] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in Com-
puter Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International
Symposium on, pp. 367–379, IEEE.

[17] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie, “Hygcn: A gcn accelerator with hybrid architecture,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 15–29.

[18] T. Geng, A. Li, T. Wang, C. Wu, Y. Li, A. Tumeo, and M. Herbordt,
“Uwb-gcn: Hardware acceleration of graph-convolution-network through
runtime workload rebalancing,” arXiv preprint arXiv:1908.10834, 2019.

[19] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti, H.-
S. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “Outerspace: An outer
product based sparse matrix multiplication accelerator,” in 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pp. 724–736, IEEE.

[20] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2008.

[21] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv
preprint arXiv:1611.07308, 2016.

[22] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured
sequence modeling with graph convolutional recurrent networks,” in
International Conference on Neural Information Processing, pp. 362–
373, Springer.

[23] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” in Advances in neural information processing systems,
pp. 1024–1034.

[24] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?,” arXiv preprint arXiv:1810.00826, 2018.

[25] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehen-
sive survey on graph neural networks,” arXiv preprint arXiv:1901.00596,
2019.

[26] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad,
“Collective classification in network data,” AI magazine, vol. 29, no. 3,
pp. 93–93, 2008.

[27] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka, and T. M.
Mitchell, “Toward an architecture for never-ending language learning,”
in Twenty-Fourth AAAI conference on artificial intelligence.

[28] S. S. Godbole, “On efficient computation of matrix chain products,” IEEE
Transactions on Computers, vol. 100, no. 9, pp. 864–866, 1973.

[29] Y. Nagasaka, A. Nukada, R. Kojima, and S. Matsuoka, “Batched sparse
matrix multiplication for accelerating graph convolutional networks,”
arXiv preprint arXiv:1903.11409, 2019.

[30] C. Y. Lin, N. Wong, and H. K. So, “Design space exploration for sparse
matrix-matrix multiplication on fpgas,” International Journal of Circuit
Theory and Applications, vol. 41, no. 2, pp. 205–219, 2013.

[31] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “Sparch: Efficient
architecture for sparse matrix multiplication,” in 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA),
pp. 261–274, IEEE.

[32] J. R. Allen and K. Kennedy, “Automatic loop interchange,” in Proceedings
of the 1984 SIGPLAN symposium on Compiler construction, pp. 233–246.

[33] W. Pugh, “Uniform techniques for loop optimization,” in Proceedings of
the 5th international conference on Supercomputing, pp. 341–352.

[34] S. Winograd, “A new algorithm for inner product,” IEEE Transactions
on Computers, vol. 100, no. 7, pp. 693–694, 1968.

[35] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in field programmable gate arrays, pp. 161–170.

[36] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” architectural support for programming languages and
operating systems, vol. 49, no. 4, pp. 269–284, 2014.

[37] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for floating-point programs and multicore archi-
tectures,” Communications of the Association for Computing Machinery,
2009.

[38] M. Horowitz, “Energy table for 45nm process,” 2012.

[39] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0: A
tool to understand large caches,” HP Laboratories, 2009.

[40] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating cuda
graph algorithms at maximum warp,” Acm Sigplan Notices, vol. 46, no. 8,
pp. 267–276, 2011.

[41] V. Balaji and B. Lucia, “Combining data duplication and graph reordering
to accelerate parallel graph processing,” in Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed
Computing, pp. 133–144.

[42] G. Dai, Y. Chi, Y. Wang, and H. Yang, “Fpgp: Graph processing
framework on fpga a case study of breadth-first search,” in Proceedings of
the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pp. 105–110.

[43] T. Oguntebi and K. Olukotun, “Graphops: A dataflow library for
graph analytics acceleration,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp. 111–
117.

[44] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi,
“Graphicionado: A high-performance and energy-efficient accelerator
for graph analytics,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 1–13, IEEE.

[45] J. Zhong and B. He, “Medusa: A parallel graph processing system on
graphics processors,” ACM SIGMOD Record, vol. 43, no. 2, pp. 35–40,
2014.

[46] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Graphr: Accelerating
graph processing using reram,” in 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pp. 531–543,
IEEE.

[47] Y. Yang, Z. Li, Y. Deng, Z. Liu, S. Yin, S. Wei, and L. Liu, “Graphabcd:
Scaling out graph analytics with asynchronous block coordinate descent,”

[48] M. Yan, X. Hu, S. Li, A. Basak, H. Li, X. Ma, I. Akgun, Y. Feng, P. Gu,
and L. Deng, “Alleviating irregularity in graph analytics acceleration: a
hardware/software co-design approach,” in Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 615–628.

[49] A. Abdolrashidi, D. Tripathy, M. E. Belviranli, L. N. Bhuyan, and
D. Wong, “Wireframe: Supporting data-dependent parallelism through
dependency graph execution in gpus,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 600–611.

[50] X. Ma, D. Zhang, and D. Chiou, “Fpga-accelerated transactional
execution of graph workloads,” in Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp. 227–
236.

[51] F. Sadi, J. Sweeney, S. McMillan, T. M. Low, J. C. Hoe, L. Pileggi,
and F. Franchetti, “Pagerank acceleration for large graphs with scalable
hardware and two-step spmv,” in 2018 IEEE High Performance extreme
Computing Conference (HPEC), pp. 1–7, IEEE.

[52] Y. Wang, J. C. Hoe, and E. Nurvitadhi, “Processor assisted worklist
scheduling for fpga accelerated graph processing on a shared-memory
platform,” in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 136–144,
IEEE.

[53] Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian,
“Graphq: Scalable pim-based graph processing,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 712–725.

[54] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis,
and X. Qian, “Graphp: Reducing communication for pim-based graph
processing with efficient data partition,” in 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA),
pp. 544–557, IEEE.

[55] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan,
G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance

13

analysis of a tensor processing unit,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, (3080246), pp. 1–12,
ACM.

[56] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in ACM SIGARCH Computer Architecture News, vol. 44,
pp. 1–13, IEEE Press.

[57] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-X: An accelerator for sparse neural networks,” in
Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International
Symposium on, pp. 1–12, IEEE.

[58] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An
accelerator for compressed-sparse convolutional neural networks,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, pp. 27–40, ACM.

[59] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. N. Vijaykumar,
“SparTen: A sparse tensor accelerator for convolutional neural networks,”
2019.

[60] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: Efficient inference engine on compressed deep
neural network,” in Proceedings of the 43rd International Symposium
on Computer Architecture, pp. 243–254, IEEE Press.

[61] R. Nath, S. Tomov, T. T. Dong, and J. Dongarra, “Optimizing symmetric
dense matrix-vector multiplication on gpus,” in Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–10.

[62] E. Montagne and R. Surós, “Systolic sparse matrix vector multiply in
the age of tpus and accelerators,” in 2019 Spring Simulation Conference
(SpringSim), pp. 1–10.

[63] G. F. Pinder and W. G. Gray, Finite element simulation in surface and
subsurface hydrology. Elsevier, 2013.

[64] M. Kampffmeyer, Y. Chen, X. Liang, H. Wang, Y. Zhang, and E. P.
Xing, “Rethinking knowledge graph propagation for zero-shot learning,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 11487–11496.

[65] C. Zhuang and Q. Ma, “Dual graph convolutional networks for graph-
based semi-supervised classification,” in Proceedings of the 2018 World
Wide Web Conference, pp. 499–508.

14

	Introduction
	Background
	GCN Basics
	GCN Models
	Graph Datasets

	Accelerator Design Exploration
	Execution Order
	Chain Sparse-dense Matrix Multiplication
	Computation Optimization
	Memory Access Optimization
	Design Space Exploration

	GCNAX Architecture
	Accelerator Overview
	GCNAX Architecture Configuration

	Experimental Methodology
	Experimental Results
	Area and Power
	Performance
	DRAM Accesses
	Energy Consumption
	Sensitivity to Hardware Parameters
	Comparison with GPUs

	Related Work
	Conclusion
	References

