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ABSTRACT: A general catalytic methodology for 1,2-RF/Y-difunc-
tionalization of conjugated alkenes is reported. Diverse functionalized
carbon radicals (RF•), which are generated through copper(I)-
initiated selective halogen atom abstraction via a tert-butyl hydro-
peroxide-induced α-amino radical process, undergo regiocontrolled
addition to carbon−carbon double bonds. The newly formed carbon
radicals combine with Y = CN, N3, or NCS from TMSY in a
copper(I)-promoted process to form a broad spectrum of α-cyano-, α-
azido-, and α-thiocyano-β-substituted products with additional
functionalities in RF in high yields. Conversion of the reaction
products to functionalized cyclopropane, amide, amine, triazole, thiol,
and tetrazole highlights the potential utility of this method.
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Radical-mediated difunctionalization of alkenes provides
powerful and attractive strategies to increase molecular and

functional complexity.1 As with their oxidative ionic counter-
parts, bromination and dihydroxylation, these reactions add two
new functional groups to the reactant alkene (Scheme 1A).
Organic halides are important and versatile compounds whose
addition to alkenes provides wide applications in synthetic
organic chemistry. Different reaction modes involving organic
halides have been developed, such as classical nucleophilic
substitution and metal-catalyzed cross-coupling reactions. Their
activation through halogen-atom transfer (XAT), generating
various carbon radicals, represents another powerful method to
construct target molecules. In one of the most notable examples
of these reactions, Kharasch et al. reported the addition of
carbon tetrachloride and chloroform to olefins in the presence of
acetyl peroxide.2 In addition, tin and silicon reagents combining
with initiators are also often utilized to convert organic halides
into their corresponding carbon radicals.3 In particular, silyl
radicals have been used in the activation of halides in
metallaphotoredox catalysis as reported by MacMillan.4

Apart from these powerful halogen-abstracting reagents, our
group and Leonori and Julia  ’s group demonstrated that α-amino
radicals are another type of powerful and alternative XAT
reagents based on their strong nucleophilicity similar to tin and
silyl radicals.5 Previously we reported the TBHP-induced
formation of an α-amino radical that abstracted a halide atom
(I > Br > Cl), producing the carbon radical which selectively
undertwent addition to carbon−carbon double bonds and
terminated in the formation of α-peroxy-β-substituted ethyl-
benzene products (Scheme 1B, right).5a Leonori, Julia  , and co-
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Scheme 1. Radical-Mediated 1,2-Difunctionalization of
Alkenes and Activation of Alkyl Halides by α-Amino Radical
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workers presented the deuteration, cross-electrophile coupling,
Heck-type olefination, and aromatic C−H alkylation reactions
of the alkyl radicals, generating from the XAT of halides.
(Scheme 1B, down).5b Both methodologies provided efficient
XAT with the TBHP-induced transformation allowing difunc-
tionalization. Considering the strong affinity between silane and
oxygen, we questionedwhether other functional groups could be
introduced instead of the tert-butyl peroxy group by adding the
TMSY (Y = CN, N3, or NCS) reagents.
Though TMSY reagents (Y = CN, N3, or NCS), especially

TMSCN, have been used to trap the radical intermediate
genarated from the addition of •CF3 or a nitrogen radical to C
C bonds,6 methodologies in which two Y functionalities are
introduced have been rare, and a general methodology for 1,2-
RF/Y difunctionalization with three Y functional groups has not
been reported. Inspired by these reports and our previous work,
we sought a broad catalytic methodology for 1,2-difunctional-
ization and focused on the formation of C−C, C−N, C−S
bonds, instead of the C−O bond of a mixed peroxide to provide
a greater diversity of compounds.
The dichloromethyl group widely exists in a variety of

biologically active compounds including antibiotics, antineo-
plastics, and analgesics.7 In addition, C−Cl bonds are easily
cleaved to facilitate the synthesis of amines,8 alcohols,9 carbonyl
compounds,10 heterocycles,11 cyclopropanes, and other valuable
compounds.12 In this investigation of 1,2-difunctionalization, we
begin our report with three dichloromethyl/Y difunctionaliza-
tions of alkenes to synthesize α-cyano-, α-azido-, and α-
thiocyano-β,β-dichloropropylarene products in high yields
(Scheme 1C). After the selective addition of the CHCl2 radical
to the carbon−carbon double bond, C−C, C−N, and C−S
bonds are formed instead of the C−O bond from TBHP by
combining appropriate Cu(I) catalysts with amine and TMSY
(Y =CN,N3 or NCS), utilizing the strong affinity between silane
and oxygen. Expansion of this study to fragments beyond
dichloromethyl demonstrates that this is a broad methodology
for the addition of diverse functional groups to alkenes.
The cyano group is an unique functional group that is not only

found abundantly in bioactive natural products and pharma-
ceuticals, but is also a versatile precursor to many other
functional groups.13 We began our studies by examining the 1,2-
dichloromethylcyanation of p-methylstyrene (1a) with TMSCN
as the cyanation reagent. Our concern was whether cyano group
transfer could compete with the known trapping by tBuOO•.
We added TMSCN under our previous reaction conditions,5a

and cyanide product 2awas obtained in 30% yield along with 5%
of peroxide byproduct 2a′ (Table 1, entry 1). The number of
equivalents of TMCN and TBHP had a great influence on the
ratio of desired product 2a and byproduct 2a′, and the best
equivalent ratio was recognized as 5.0/2.0 after careful
investigation of the feed ratio (Table S1, entries 1−8).
Optimization of the reactants and determination that the most
effective catalyst was [Cu(CH3CN)4]PF6 increased the yield of
2a to 93% (Table 1, entries 2−5). Further optimization of the
reaction conditions found that byproduct 2a′ could be
completely avoided by decreasing the reaction temperature
from 50 °C to room temperature (99% isolated yield of 2a,
Table 1, entries 6−7). A photocatalytic system to generate the α-
amino radical produced only a trace amount of product (for
more details, see Supplementary Table S1).
Considering the balance of yield and reaction time, we

examined the scope of alkenes 1 under the conditions of Table 1,
entry 6 (Scheme 2). Styrenes bearing electron-rich and electron-

deficient substituents at the para-, meta-, and ortho positions of
the phenyl moiety provided products in good to excellent yields
(2a−2j), although 2,4,6-trimethylstyrene gave a lower yield with
20% of the starting material recovered (2k). In addition, 1-
vinylnaphthalene and 2-vinylnaphthalene were also compatible
with this methodology (2l−2m). Reactions with vicinal
disubstituted alkenes were also investigated, and they afforded
products in good yields (2n−2o), albeit only a 1.8:1 dr value was
obtained with trans-β-methylstyrene.
Organic compounds that contain nitrogen are of great

importance in natural products and pharmaceuticals,14 and
azido transfer is an efficient method to construct the C−N
bond.15 Based on our success in the use of TMSN3 in radical-
mediated functionalization of alkenes with diazo compounds,16

we next sought to develop reaction conditions for the
dichloromethylazidation of p-methylstyrene 1a. This reaction
was found to be sensitive to air, which may due to the undesired
oxidation of styrene as we elaborated before.17 Using the

Table 1. Optimization of Reaction Conditions for
Dichloromethylcyanationa

entry [Cu] x (mol %) y/z (equiv) yield (%)b 2a/2a′
1 CuI 1.0 3.0/1.0 30/5
2 CuI 1.0 5.0/2.0 61/9
3 CuI 2.5 5.0/2.0 72/8
4 [Cu(CH3CN)4]BF4 2.5 5.0/2.0 83/6
5 [Cu(CH3CN)4]PF6 2.5 5.0/2.0 93 (90)c/5
6d [Cu(CH3CN)4]PF6 2.5 5.0/2.0 97 (93)c/0
7e [Cu(CH3CN)4]PF6 2.5 5.0/2.0 99 (99)c/0

aReaction conditions: unless indicated otherwise, 1a (0.4 mmol),
[Cu] (x mol %), TMSCN (y equiv), DIPEA (5.0 equiv), TBHP (70%
in H2O, z equiv) in CHCl3/acetone (1:1, 2.0 mL) at 50 °C for 12 h
under N2 atmosphere. bThe yields of 2a/2a′ were determined by 1H
NMR spectroscopic analyses of the reaction mixture using CHBr3 as
the internal standard. cIsolated yield in parentheses. dAt 40 °C, for 24
h. eAt rt, for 5 d.

Scheme 2. Substrate Scope of Alkenes for
Dichloromethylcyanation

†General conditions: 1 (0.4 mmol), TMSCN (2.0 mmol), [Cu-
(CH3CN)4]PF6 (2.5 mol %), DIPEA (2.0 mmol), TBHP (70% in
H2O, 0.8 mmol), CHCl3/acetone (1:1, 2.0 mL), N2, 40 °C, 24 h.
a20% starting material was recovered. bThe anti:syn ratio was
determined by 1H NMR spectroscopy. cThe dr value was determined
by 1H NMR spectroscopy.
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optimized conditions from dichloromethylcyanation with [Cu-
(CH3CN)4]BF4 as the catalyst, product 3a was obtained in 94%
isolated yield (for more details, see Supplementary Table S2).
The scope of applicable alkenes was then evaluated for this

dichloromethylazidation process (Scheme 3). Both electron-

donating (3a, 3c, 3d, and 3k) as well as electron-withdrawing
(3e−3j) substituents on the aromatic ring of styrene offered the
products in good to excellent yields. Pentafluorostyrene and
heteroaromatic alkenes, 2-vinylpyridine and 4-vinylpyridine
styrene, were also compatible with this reaction and provided
dichloromethylazidation products in moderate to high yields
(3l−3n). Substitution at the α-position was also examined.
While α-methylstyrene delivered the product in excellent yield
(3o), the reaction of 1,1-diphenylethylene offered the desired
product 3p along with α-peroxy-β,β-dichloropropylarene 3p′ in
1:1 ratio. Furthermore, substrates containing exocyclic CC
bonds delivered the corresponding products in excellent yields
(3q−3s).
Inspired by the present results, we explored the dichlor-

omethylthiocyanation reaction using TMSNCS as the source of
thiocyanide. The desired dichloromethylthiocyanation product
4a was obtained in 29% yield when TMSNCS was used instead
of TMSN3. After extensive screening of reaction parameters, the
highest yield (83%) was obtained in reactions with anhydrous
TBHP in decane using NCy2Me with catalytic amounts of CuI
(for details, see Supplementary Table S3). The structure of the
amine has proven to be important in this process (Table S3,
entries 6 and 9−13). This may be due to the rate matching effect
between the halide abstraction by the α-amino radical and the
terminating step of the benzyl radical. The substrate scope of this
protocol was then investigated (Scheme 4). Diverse alkenes
were reacted with TMSNCS according to this methodology,
affording the corresponding products in moderate to excellent
yields (4a−4h) with higher yields obtained when the aryl
substituent was electron-donating. Pentafluorostyrene and 2-

vinylpyridine were also compatible, although their yields were
lower (4i−4j). Additionally, reaction with 2-vinylnaphthalene
smoothly delivered product 4k, and its X-ray structure was
obtained for full characterization. To our surprise, the
isothiocyanate products of three α,α-disubstituted alkenes
(1,1-diphenylethylene and substrates containing exocyclic C
C bonds) 4m−4o were obtained instead of the expected
thiocyanates. The X-ray structure of product 4m was also
obtained for full characterization. Though isomerization
between thiocyanates and isothiocyanates had been reported,18

we did not detect initial thiocyanate products when the reactions
were monitored by NMR spectroscopy. The formation of the
isothiocyanate products may be due to steric effects in the
capture of SCN at sulfur versus nitrogen.19 In addition to 4n and
4o, we also obtained alkene byproducts 4n′ and 4o′ (18% and
14%, respectively) which suggest the involvement of benzylic
carbocations. 1-Indene underwent dichloromethylthiocyanation
with moderate yield but low diastereoselectivity (4p).
To further examine the generality of this protocol, we

investigated reactions with other halogenated compounds and
diverse alkylcyanation, alkylazidation and alkylthiocyanation of
alkenes were achieved (Scheme 5). When mixed halogenated
compounds were used, selectivity for Br > Cl > F removal was
observed (Scheme 5, 2c, 2q, 3t, and 4u). α-Halogenated esters
were also competent and provided the corresponding
carboxylate products in moderate to good yields (Scheme 5,
2p, 2s, 3x, and 4s). Furthermore, iodine could also be efficiently
removed from ICH2CF3 to produce products 2r, 3w, and 4t in
moderate to high yields (Scheme 5). Finally, carbon
tetrachloride and bromoform were also compatible and

Scheme 3. Substrate Scope of Alkenes for
Dichloromethylazidationa

aGeneral conditions: 1 (0.4 mmol), TMSN3 (1.2 mmol), [Cu-
(CH3CN)4]BF4 (1.0 mol %), DIPEA (2.0 mmol), TBHP (70% in
H2O, 1.2 mmol), CHCl3/acetone (1:1, 2.0 mL), N2, rt, 48 h.

Scheme 4. Substrate Scope of Alkenes for
Dichloromethylthiocyanationa

aGeneral conditions: 1 (0.4 mmol), TMSNCS (1.2 mmol), CuI (2.5
mol %), NCy2Me (2.0 mmol), TBHP in decane (1.2 mmol), CHCl3/
acetone (1:1, 2.0 mL), N2, rt, 24 h.
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furnished the corresponding products in good yields (2t, 3u, 3v,
4q, and 4r).
The synthetic utility of this difunctionalization methodology

was then investigated (Scheme 6). Three gram-scale reactions

were performed to obtain starting materials, and all of them
furnished their corresponding products in satisfying yields.
Functionalized cyclopropane derivative 5 was obtained when 2a
was simply treated with base. Owing to the versatility of the
nitrile group, 2a could also be easily transformed to N-tert-butyl
amide 6 in excellent yield under modified Ritter reaction
conditions.20 Furthermore, the azide group was reduced to
amine 7 in high yield under standard hydrogenation conditions,
and 1,2,3-triazole 8 was produced through classical Click
reaction with phenylacetylene.21 Moreover, the thiocyanate
group was smoothly reduced to thio 9 with LiAlH4, and it could

also be converted to thiotrifluoromethyl group when treated
with TMSCF3 with base Cs2CO3, which further suggests the
utility of this methodology. Finally, tetrazole 11, which can act as
a bioisostere for carboxylate groups because of their similar pKa
values, was produced in the presence of NaN3 and ZnBr2.

22

Radical trapping experiments were performed with TEMPO,
and the reactions were terminated leaving only unreacted
starting materials, which suggest the radical nature of these
transformations. The discovery that isothiocyanates 4m−4o
were obtained instead of their corresponding thiocyanates
suggests a different pathway for these substrates that would also
have to be consistent with elimination products 4n′ and 4o′. On
the basis of these results and previous reports,5a,6,23 a possible
mechanism is proposed in Figure 1. The reaction is initiated by

the Cu(I) catalyzed decomposition of TBHP, delivering the
Cu(II) species B and the tert-butoxy radical. The Cu(II) species
B undergoes ligand transfer with TMSY (Y =N3, CN, and NCS)
forming the Cu(II)-Y species C. The tert-butoxy radical reacts
with another molecule of TBHP to provide the tert-butylperoxy
radical, which further undergoes the HAT process with the
amine affording the key α-amino radical G intermediate. α-
Amino radical G selectively abstracts a halogen atom from RFX
generating the RF radical and iminium salt H which was
identified in our earlier study.5a Addition of RF• to the CC
produces benzyl radical E. There are three possible pathways for
the formation of the final products. In Path a, the benzyl radical
E reacts with Cu(II)-Y C to form Cu(III) species D that,
followed by reductive elimination, regenerates the Cu(I) catalyst
and produces product 2, 3, or 4. Alternatively, product could be
formed through the outer-sphere ligand transfer between
Cu(II)-Y and radical E (Path b). Finally, radical E could be
oxidized by Cu(II) through a single electron transfer (SET)
process providing carbocation F that is trapped by azide,
cyanide, or thiocyanate. Experimental data provides support for
the radical-polar crossover23 Path c from the isothiocyanation of
1-methylene-2,3-dihydro-1H-indene and 1-methylene-1,2,3,4-
tetrahydronaphthalene, accompanied by alkene byproducts 4n′
and 4o′, that indicate carbocation involvement in these cases.
However, the other two pathways for the formation of other
products could not be excluded.
In conclusion, we have developed copper catalyzed

carbocyanation, carboazidation and carbothiocyanation of
alkenes utilizing the selective abstraction of a halogen atom

Scheme 5. Substrate Scope of Alkyl Halide for
Difunctionalization of Alkenesa

aGeneral conditions: 1 (0.4 mmol), alkyl halides (2.0 mmol) TMSY
(Y = CN, N3 or NCS), copper catalyst, amine, TBHP, acetone (2.0
mL), N2, rt, 24 h.

Scheme 6. Gram-scale Reactions and Synthetic
Transformations

Figure 1. Plausible mechanism for α-amino radical-mediated diverse
difunctionalization of alkenes.
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(X) by α-aminoalkyl radicals. A diverse set of β,β-dichloroni-
triles, β,β-dichloroazides, and β,β-dichlorothiocyanates using
CHCl3 as the precurser of •CHCl2, as well as corresponding
products from alkyl halides, were obtained in good to excellent
yields. The incorporation of dichloromethyl group and other
functionalities with nitrile, azide, or thiocyanate into alkenes
expands possibilities for further transformations, and some of
these have been demonstrated by the synthesis of chlorocyclo-
propanenitrile, amide, amine, triazole, thiol, and tetrazole
products. Further applications utilizing α-aminoalkyl radicals
to activate alkyl halides for radical addition reactions are ongoing
in our laboratory.
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