

1
2
3 A serpin is specifically expressed in and functionally required for ectomesoderm, a
4 a hallmark of spiralian development
5
6

7 **Authors:**

8 Longjun Wu* (longjunwu@rochester.edu)

9 J. David Lambert** (dlamber2@mail.rochester.edu)

10

11

12 * Current email: longjun.wu@yale.edu

13 ** Corresponding author

14

15 **Author affiliations**

16 Department of Biology, University of Rochester, Rochester, NY 14627, USA

17

18

19 **Contact info**

20 Correspondence:

21 dlamber2@mail.rochester.edu

22

23

24 **Abstract**

25 Among animals, diploblasts contain two germ layers, endoderm and ectoderm, while triploblasts
26 have a distinct third germ layer called the mesoderm. Spiralia are a group of triploblast animals
27 that have highly conserved development: they share the distinctive spiralian cleavage pattern as
28 well as a unique source of mesoderm, the ectomesoderm. This population of mesoderm is distinct
29 from endomesoderm and is considered a hallmark of spiralian development, but the regulatory
30 network that drives its development is unknown. Here we identified ectomesoderm-specific genes
31 in the mollusc *Tritia* (aka *Ilyanassa*) *obsoleta* through differential gene expression analyses
32 comparing control and ectomesoderm-ablated embryos, followed by *in situ* hybridization of
33 identified transcripts. We identified a *Tritia* serpin gene (*ToSerp1*) that is specifically expressed
34 in the ectomesoderm of the posterior and head. Ablation of the 3a and 3b cells, which make most
35 of the ectomesoderm, abolishes *ToSerp1* expression. Morpholino knockdown of *ToSerp1*
36 causes ectomesoderm defects, most prominently in the muscle system of the larval head. This is the
37 first gene identified that is specifically implicated in spiralian ectomesoderm development.

38

39 **Introduction**

40 In gastrulation, diploblastic animals form two germ layers, endoderm and ectoderm, while
41 triploblastic animals generate a third germ layer, the mesoderm. The mesoderm is a defining trait
42 of bilaterians and makes tissues such as blood, bone and muscle. It has been proposed that the
43 mesoderm played a decisive role for the diversification of body plans and structures in bilaterian
44 evolution (Martindale et al. 2002; Technau and Scholz 2003).

45 In most bilaterians, at least some of the mesoderm is derived from a population of cells
46 called the *endomesoderm*, because it also makes endodermal structures like gut (Rodaway and
47 Patient 2001). In the large bilaterian clade called the Spiralia, mesoderm has a dual origin (Lillie
48 1895; Wilson 1898; Boyer et al. 1996). Like other bilaterians, spirilians have endomesoderm,
49 which gives rise to most mesodermal structures, which in molluscs include the heart, kidney and
50 main larval muscles. In spirilians, this cell lineage expresses some of the key factors known to be
51 involved with endomesoderm specification in other bilaterians, such as *FoxA*, *Brachyury* and
52 activated β -*catenin* (Perry et al. 2015), suggesting that spiralian endomesoderm is homologous with
53 endomesoderm of other bilaterians.

54 The second source of mesoderm in spirilians, *ectomesoderm*, derives from cell lineages that
55 otherwise give rise to ectoderm, and foregut in some systems (reviewed in Lambert 2008; Hejnol
56 2010). Ectomesoderm typically generates muscle, but the distinctive morphology of muscle cells
57 means that they are easier to identify than other cell types, which has probably contributed to the
58 impression that muscle is the dominant structure formed by ectomesoderm. It frequently includes
59 non-muscle mesenchymal cells, and it has also been reported to make pigment cells in the head in
60 the gastropod *Crepidula fornicata* (Osborne et al. 2018), and some non-muscle cells in the gut
61 epithelium of *Capitella telata* (Meyer et al. 2010). Ectomesoderm has been found in all spiralian
62 groups where it has been sought by lineage tracing, including molluscs, annelids, nemerteans,

63 flatworms and a phoronid (in molluscs: Dictus and Damen 1997; Render 1997; Hejnol et al. 2007;
64 Chan and Lambert 2014; Lyons et al. 2015; in annelids: Huang 2002, Meyer et al. 2010; in a
65 nemertean: Henry and Martindale 1996, 1998; in a flatworm: Boyer et al. 1996, 1998; in a phoronid:
66 Freeman and Martindale 2002). Its presence has also been inferred by following cell populations
67 using gene expression patterns in a brachiopod embryo (Passamaneck et al. 2015), and by
68 examining the expression of conserved mesodermal genes the embryo of a bryozoan (Vellutini et
69 al. 2017). This second source of mesoderm is considered a key aspect of the spiralian developmental
70 program and an important contribution to spiralian bodyplan diversity (Boyer et al. 1998; Nielsen
71 2004; Lyons and Henry 2014; Osborne et al. 2018). Despite its likely importance, very little is
72 known about the regulatory control of ectomesoderm development. The zinc finger protein *Tis11*
73 is required for ectomesoderm development in *Tritia*, but it is also required for esophagus—the
74 major non-ectomesoderm derivative of the lineages that generate ectomesoderm in this embryo, 3a
75 and 3b (Chan and Lambert 2011). Several genes with mesodermal roles in other taxa have been
76 reported in ectomesoderm, including orthologs of *Brachyury*, *Noggin*, *Goosecoid*, *FoxA*, *Twist*, and
77 *Snail* (Lartillot et al. 2002a,b; Lespinet et al. 2002; Nederbragt et al. 2002; Perry et al. 2015;
78 Passamaneck et al. 2015; Kozin et al. 2016). However, some of these genes are also expressed in
79 other cell types, like endomesoderm (discussed below). For those that have been reported to be
80 specific to ectomesoderm, this has not been conclusively determined. Many of the genes that are
81 involved in epithelial to mesenchymal transition in dueterostomes are expressed in ectomesoderm
82 cells in the mollusc *Crepidula fornicata*, suggesting that a similar gene regulatory network may
83 drive this process in spirilians as well (Osborne et al. 2018).

92 Spirilians have a unique pattern of early development, called spiral cleavage, which is
93 characterized by regularities in the proportion and direction of cell divisions. The regularity of spiral

94 cleavage allows the identification of all the cells in the blastula, including those that generate
95 ectomesoderm. In spiral cleavage, the first two cell divisions generate four cells, called macromeres
96 (named A, B, C and D). In the next three cleavage cycles, the macromeres then divide
97 synchronously and asymmetrically towards the animal pole to generate tiers of four daughter cells
98 with smaller size. Each set of these cells is called a quartet. In successive cleavages, the division
99 angle lies on alternate sides of the animal-vegetal axis, generating a spiral pattern of daughter cells,
100 which gives this mode of cleavage its name (Wilson 1898). Previous lineage-tracing and cell
101 ablation studies have shown that spiralian endomesoderm arises from the fourth quartet daughter
102 cell of the D quadrant, called 4d, while the ectomesoderm usually comes from 2nd and 3rd quartet
103 daughters; in molluscs it often derives from the third quartet daughters of the A and B quadrants,
104 3a and 3b (Dictus and Damen 1997; Render 1997; Hejnol et al. 2007; Chan and Lambert 2014;
105 Lyons et al. 2015).

106 The focus of this study is the gastropod *Tritia obsoleta* (a.k.a *Ilyanassa*). In this embryo,
107 most of the ectomesoderm comes from 3a and 3b (Chan and Lambert, 2011, 2014). Lineage tracing
108 and cell ablations (Clement 1986; Chan and Lambert 2011) indicate that anterior ectomesoderm
109 cells from these clones make part of the muscle system in the velar lobes, which are ciliated
110 structures on the side of the larval head used for swimming and feeding. The posterior
111 ectomesoderm cells from 3a contribute to part of the larval retractor muscle, which is inside the
112 shell but continuous with the velar musculature (see Figure 1, Chan and Lambert 2014; Lyons and
113 Henry 2014). However, the exact roles of 3a and 3b ectomesoderm in the muscle system are still
114 unclear. Two other cells contribute to ectomesoderm in this embryo. The 2b micromere contributes
115 a muscle cell to the center of the head, and the 2c micromere contributes to muscle cells in the heart
116 (Chan and Lambert 2014).

117 Here, we have determined the detailed structure of the velar musculature and examined the
118 effect on this structure after ablation of 3a and 3b. We then compared the transcriptomes of embryos
119 in which micromeres 3a and 3b had been ablated (“3a, 3b ablations”) with control embryos to search
120 for genes that are specifically expressed in ectomesoderm. 34 candidate ectomesoderm
121 development genes recovered from that screen were examined by *in situ* hybridization to search for
122 those with ectomesoderm-specific expression patterns. Further study of one of the candidate genes,
123 a member of the serpin family we named *ToSerp1*, showed that it is specifically expressed in
124 ectomesoderm and is necessary for normal ectomesoderm development.

125
126 **Results**

127 *The velar lobe musculature*

128 Previous studies reported that both ectomesoderm and endomesoderm contribute to velar lobe
129 muscles (Render 1997; Chan and Lambert 2014). Lineage tracing of 4d labels some muscles in the
130 head, including some that appear to be radiating out to the periphery of the lobes, while tracing of
131 3a or 3b labels more of the radial muscles and also circumferential muscles around the periphery.
132 The contribution of 3a, 3b and 4d to velar lobe muscle is also found in the gastropod *Crepidula*
133 *fornicata* (Hejnol 2007; Lyons et al. 2012). For this study, we examined the velar musculature in
134 detail with confocal microscopy (Figure 2). We observed two layers of muscle fibers radiating from
135 the middle of the head to the outer part of the velar lobes; one layer of these fibers is on the anterior
136 side of each velar lobe and one is on the posterior side. We call these radiating muscles. We also
137 observed two muscles around the outer edge of each velar lobe; the anterior is thicker than the
138 posterior one. We call these the anterior and posterior ring muscles (Figure 2A). Both sets of
139 radiating muscles extend to the velar lobe’s edge and connect to the corresponding ring muscle.
140 This dual-layer structure was not reported in a previous description of the larval muscle system

141 (Evans et al. 2009). This could be due to incomplete sampling of development stages or different
142 imaging approaches. From a functional morphology perspective, the two-layer structure makes
143 sense, because it could generate the complex angular velar movements that are observed during
144 swimming and feeding.

145

146 *3a, 3b ablation and ectomesoderm-deficient embryos*

147 To determine which parts of the velar lobe muscle require ectomesoderm, we ablated both of the
148 cells that give rise to ectomesoderm: 3a and 3b. All velar lobes were smaller and had less complete
149 muscle than wild-type and most were lacking both ring muscles (Table 1). In all but one, the anterior
150 ring muscle was lacking; in the remaining lobe the anterior ring muscle was incomplete. In all but
151 one lobe the posterior ring muscle was absent, and in the remaining lobe it was incomplete and
152 thinner. In all lobes, the anterior layer of radiating muscle was largely gone, and the posterior layer
153 was present but appeared disorganized. These results suggest that the 3a and 3b cell lineages are
154 required for both of the velar lobe's ring muscles and the anterior layer of the radiating muscles,
155 while the posterior radiating muscles can develop without the 3a or 3b derived ectomesoderm.
156 Given the known contribution of 4d endomesoderm to head muscle including some radiating
157 muscle fibers, this suggests that the posterior radiating muscles observed after 3a, 3b deletion are
158 derived from 4d (Chan and Lambert 2014).

159

160 *Screening for ectomesoderm-specific genes*

161
162 To find genes that might be important for ectomesoderm development, we targeted a stage when
163 the ectomesoderm lineages of 3a and 3b seem to be separating from the esophageal precursors and
164 actively migrating internally away from ectoderm (between 48 and 56 hours A.E.L.; Chan and

165 Lambert 2014); we surmised that ectomesoderm-specific gene expression might begin at this stage.
166 We reared 3a, 3b ablation and control embryos to this stage, and extracted RNA from three
167 replicates with ten experimental and ten control embryos each. After sequencing, we performed
168 differential gene expression analysis between experimental and control groups to search for
169 differentially expressed genes. From this analysis we chose 34 genes to examine further (see
170 Methods for details on how these were chosen).

171 To directly assay whether a putatively differentially regulated gene was specifically
172 expressed in ectomesoderm, we performed *in situ* hybridization. In *Tritia*, most ectomesoderm
173 comes from the 3a and 3b cell lineages, but these lineages also give rise to non-ectomesoderm
174 structures such as esophagus and ectodermal cells in the velar lobe. Additionally, ablating 3a and
175 3b results in deficient digestive glands, even though these structures are derived from different
176 lineages (Chan and Lambert 2011). Therefore, in this experiment, we not only expected to see
177 ectomesoderm-specific genes, but also genes specific to the esophagus and digestive gland. Of the
178 34 genes we examined, two were expressed in the esophagus, and one was in the digestive gland
179 and part of the esophagus (Figure 3A-C). As we had hoped, we also found three which appeared
180 to have expression that was at least partly specific to the ectomesoderm. An Apolipoprotein-like
181 gene was expressed in a pattern resembling the ectomesodermal components of the 3a and 3b
182 lineages, but it was also strongly expressed in an internal structure that is not ectomesodermal
183 (Figure 3D). A gene of unknown function was expressed in cells that appeared to be ectomesoderm,
184 but it was also expressed in cells that seemed to be derived from the endomesodermal lineage
185 (*ToMesoderm-expressed-1*; Figure 3E). Finally, we found a Serpin ortholog which appeared to be
186 indistinguishable from the 3a and 3b ectomesoderm population (Figure 3F-J); we characterized this
187 gene further below. We also recovered an ortholog of the transcription factor *Prospero*, which

188 appeared to be expressed in the developing nervous system (data not shown); all other transcripts
189 we examined were broadly expressed or ubiquitous (sequences of these transcripts are in
190 Supplemental Table 1).

191
192 ToSerp1 as a potential ectomesoderm gene
193

194 We named the gene that appeared to be specific to the ectomesoderm *ToSerp1*. Serpins are a
195 superfamily of proteins, originally named after their main function as **serine protease inhibitors**
196 (Huntington 2011). They share a conserved core domain consisting of three beta-sheets, 8-9 alpha-
197 helices and an exposed region called the reactive center loop which interacts with their target
198 protease (Gettins 2002; Huntington 2011). Their functions are not limited to the protease inhibition;
199 serpins also play roles as hormone transporters and molecular chaperones (reviewed in Law et al.
200 2006). Importantly, some serpins have regulatory functions in development. For example, a serpin
201 is required for normal dorsal-ventral axis patterning in *Drosophila* (Ligoxygakis et al. 2003). In
202 *Xenopus*, a serpin suppresses mesoderm and promotes anterior development under the control of
203 FGF signaling (Acosta et al. 2015).

204 The *ToSerp1*-positive cells look like ectomesoderm cells that are labeled by lineage
205 tracing of 3a or 3b, although their precise positions vary between embryos because they are
206 migrating (Chan and Lambert 2014; see also Figure 4). In the embryo's posterior epithelium
207 underlying the shell, the 3a and 3b-derived cells and *ToSerp1*-positive cells are both flat with a
208 mesenchyme morphology and similar distribution. With both labels, the anterior cells in the head
209 are more rounded than the posterior cells. In both regions they are subectodermal, consistent with
210 mesodermal identity.

211 To test if the *ToSerp1* positive ectomesoderm-like cells do indeed come from 3a and 3b
212 lineages, we ablated 3a and 3b and performed *ToSerp1* *in situ* hybridization. After 3a, 3b
213 ablation, both anterior and posterior *ToSerp1* positive ectomesoderm-like cells are not detected
214 by *in situ* hybridization (Figure 4A-C). This is consistent with the idea that *ToSerp1* is expressed
215 in the 3a and 3b derived ectomesoderm, but not the 2b or 2c ectomesodermal populations, or the
216 4d endomesoderm population. The simplest interpretation of the preceding ablation experiment is
217 that *ToSerp1* is only expressed in the 3a and 3b ectomesoderm, but there is an alternative
218 model: since the lineage tracing data indicate that the 4d-derived cells mix somewhat with the
219 ectomesodermal muscle progenitors in the head, it is possible that *ToSerp1* is marking a
220 population of cells that are derived from both of these lineages, but 3a and 3b-derived cells are
221 necessary to induce *ToSerp1* expression in the whole population. To examine this, we compared
222 the number of cells between 3a-derived ectomesoderm cells and *ToSerp1* positive cells,
223 doubling the cell numbers from 3a lineage tracing embryos to account for the symmetrical but
224 unlabeled 3b contribution (Chan and Lambert 2014). This takes advantage of the fact that the
225 other populations of cells in the 3a and 3b lineages are easy to distinguish from the
226 ectomesoderm: the small number of ectoderm cells that contribute to the back of the velum stay in
227 the ectoderm, and esophageal precursors stay in a compact column deeper in the midline of the
228 embryo (see Figure 4D-F). In both anterior and posterior subsets, the number of 3a lineage traced
229 cells and *ToSerp1* positive cell are indistinguishable statistically (Figure 4G). Together with the
230 ablation results, these data are consistent with the idea that *ToSerp1* is specifically labeling
231 ectomesoderm cells. The single muscle cell contributed by 2b is also mixing with the other head
232 ectomesoderm, but these cell counts do not rule out the contribution of single cell to the
233 *ToSerp1*-positive population.

234

235 ToSerp1 morpholino knockdown

236 To test if *ToSerp1* is required for ectomesoderm development, we injected a translation-blocking
237 morpholino oligo (*ToSerp1* MO1) into *Tritia* zygotes in a range of concentrations from 0.25mM
238 to 1mM. At concentrations higher than 0.75mM, the embryos developed normally until the mid-
239 organogenesis stage (3-4 day old) when they started to lose cells from the head and died within a
240 few days. This is an unusual phenotype, we have not observed this with any of the ~40 morpholinos
241 we have tested in this embryo previously (Lambert lab published and unpublished observations).
242 The organogenesis lethality phenotype is consistent, reproducible, and is also caused by a second
243 non-overlapping MO targeting *ToSerp1* (discussed below). Concentrations below 0.5mM
244 generated no detectable phenotype. We thus focused on injections at the 0.75mM concentration.
245 The muscle system in the head was impaired after *ToSerp1* MO1 injections compared to the
246 control MO group (Figure 5 and Table 1). We observed a series of phenotypes in the velar lobe
247 muscle system (Figure 5B, C), including smaller velar lobes, fewer radiating muscles, lack of
248 anterior or posterior ring muscles, incomplete extension to ring muscle, thinner ring muscle and
249 detachment of ring and radiating muscle. In addition, the distinct two-layer structure of radiating
250 muscle disappeared in some larvae, making it hard to distinguish the two layers (Figure 5D, E). In
251 sum, *ToSerp1* MO1 knockdown phenotypes are generally similar to the velar muscle phenotypes
252 generated by the 3a and 3b cell lineage ablation, though not as severe. Aside from the head defects,
253 the larvae were generally wild-type. We often observed mild defects in the retractor muscle, though
254 these were difficult to score conclusively. This is consistent with the contribution of 3a to a few
255 strands of the retractor, and the previous report of 3a, 3b ablations, where 18/31 (58%) of cases had
256 thinner or no retractor muscles (Chan and Lambert 2011, 2014).

257 To verify the specificity of the *ToSerp1* MO1, we did two more sets of experiments. First,
258 we co-injected *ToSerp1* MO1 along with a *ToSerp1* mRNA where the endogenous 5'UTR was
259 deleted so that the mRNA lacked the MO target site (Figure 5J and Table1). We found that the
260 overall phenotype was markedly less severe, indicating that the mRNA rescued the MO
261 knockdown. Second, we injected another non-overlapping *ToSerp1* morpholino oligo, *ToSerp1*
262 MO2. The phenotype of larvae injected with *ToSerp1* MO2 larvae was similar in the kind and
263 severity of the defects observed, compared to that of MO1 (Figure 5F-I and Table 1). Taken
264 together, these results indicate that *ToSerp1* is necessary for normal ectomesoderm development
265 in *Tritia*.

266

267 **Discussion**

268 Our approach, 3a, 3b ablation followed by RNA-seq and validation by *in situ* hybridization,
269 uncovered six genes specifically expressed in 3a and 3b-dependent structures. Three of these had
270 gene expression patterns consistent with ectomesoderm expression, including a gene of unknown
271 function, an apolipoporphin-like gene, and *ToSerp1*. Using 3a, 3b ablation, followed by *ToSerp1*
272 *in situ* hybridization, we showed that this gene is specific to the ectomesoderm. We characterized
273 the main derivative of the ectomesoderm—the velar musculature of the larval head, and showed
274 this is strongly disrupted after 3a, 3b ablation. Knockdown of *ToSerp1* has a similar, but less
275 severe effect than the ablations, indicating that this gene is required for normal development of the
276 ectomesoderm. This is the first gene that has been functionally implicated specifically in spiralian
277 ectomesoderm development.

278 Ectomesoderm has been considered one of the key aspects of the spiralian developmental
279 program, and a potentially important innovation for body plan diversification of this clade
280 (Boyer et al. 1996; Henry and Martindale 1999; Lambert 2008; Hejnol 2010; Osbourne et al.
281 2018). How and when did ectomesoderm evolve? It may have arisen in the spiralian common
282 ancestor, perhaps from an ancestral condition with only endomesoderm. Alternatively, it may
283 have evolved from a population of mesoderm in a protostome or bilaterian ancestor. Across
284 bilaterians, many animal groups which have endomesoderm also have additional sources of
285 mesoderm. In vertebrates, there is a population of anterior mesoderm called the prechordal plate,
286 which serves as an organizer and contributes to the head (Seifert et al. 1993; Harland and Gerhart
287 1997). In ascidians, there is a definitive endomesodermal population, but mesoderm arises from
288 other lineages as well (Nishida 1987; Hudson et al. 2016). In *C. elegans*, most of the mesoderm
289 derives from the MS blastomere, which is a classic example of endomesoderm (Maduro 2010).

290 However, a number of muscle cells are derived from the anterior ABa lineage, and form part of
291 the pharanx (Sulston et al. 1983; Good et al. 2004; Priess 2005). In the shrimp *Sicyonia ingentis*,
292 there are also two origins of mesoderm, one that is associated with endoderm and arises from
293 teloblasts, and another, that has been called naupliar (i.e. larval), and only generates muscle
294 (Hertzler 2005; other similar patterns in crustaceans are reviewed in Gerberding et al. 2002). As
295 more is learned about the molecular basis of these non-endomesodermal mesodermal populations,
296 it will be interesting to learn if there are commonalities that could support the existence of such a
297 population in an older common ancestor. The homology of the spiralian ectomesoderm with
298 vertebrate prechordal plate has been previously proposed (Lartillot et al. 2002a). Their argument
299 was based on anatomical position and gene expression patterns, but there is an additional level of
300 similarity that has become apparent with subsequent studies. In *Patella vulgata*, the mollusc
301 studied by Lartillot et al., the 3a and 3b cells do not form esophagus as they do in other
302 gastropods, because its non-feeding larva does not have an esophagus. As a consequence, they did
303 not appreciate another parallel: molluscan 3a and 3b-derived ectomesoderm, like prechordal plate
304 mesoderm, derives from a lineage that also makes anterior endoderm. Regardless of whether
305 spiralian ectomesoderm evolved from a non-endomesodermal population in a protostome
306 common ancestor or evolved *de novo* in the spiralian common ancestor, this character will remain
307 a key aspect of understanding the spiralian developmental program, because its presence is highly
308 conserved across the group, while its origins and developmental contributions evolve in interesting
309 ways.

310 Whenever ectomesoderm evolved, it likely evolved in an organism with endomesoderm.
311 One question about the origin of ectomesoderm is whether it was a co-option or redeployment of
312 an endomesodermal gene regulatory network or the origin of a novel network. Available evidence

313 suggests that there is broad overlap in the gene regulatory networks between ectomesoderm and
314 endomesoderm. For instance, a study in the gastropod *Crepidula fornicata*, surveyed the
315 expression of developmental regulatory genes that have been implicated in mesoderm
316 development in other animals (Perry et al. 2015). They found that eight conserved transcription
317 factors were expressed in the endomesoderm, and of these, seven were also expressed in the
318 ectomesoderm. In the ectomesoderm, they found expression of 12 genes, including 5 that were
319 not shared with the endomesoderm¹. While these similarities could have arisen by convergence,
320 the simplest explanation is that some portion of the endomesoderm regulatory network was
321 coopted to function in ectomesoderm, or that these were derived from a common ancestral type of
322 mesoderm (Perry et al. 2015). From this perspective, it will be particularly interesting to identify
323 the upstream components that initiate these two networks in spiralian, and perhaps other
324 bilaterians.

325 If indeed these two sources of mesoderm do share substantial parts of their regulatory
326 networks, then key questions become what aspects are different, and why? This is particularly
327 interesting because they are generating very similar structures. For instance, both the
328 ectomesoderm and endomesoderm are generating the larval retractor muscle, with no obvious
329 qualitative difference in their roles, although endomesoderm contributes more. Similarly, their
330 roles in head muscle are also very similar, despite that ectomesoderm has larger role. Genes like
331 *ToSerpin1*, which are specific to ectomesoderm, might point to regulatory or functional

¹ The transcription factors *bra*, *cdx*, *foxA*, *gsc*, *otp*, *otx*, *six3/6* are expressed in both, *nk2.1* is only in endomesoderm, and *snail*, *twist*, *hesA*, *hesB*, *notch2*, are only in ectomesoderm (Perry et al, 2015). We did not include *B*-catenin in this list because its mRNA is ubiquitous.

332 differences that are not clear from the lineage tracing of these populations. We note that the main
333 functions of serpin family proteins are in post-translational regulation. Finding a serpin gene that
334 plays a role in ectomesoderm development indicates that key regulatory events in this cell type
335 may not be reflected in transcriptional differences. This suggests the possibility that post-
336 translational regulation might have roles in the origin of evolutionary novelty.

337 Ablation of 3a and 3b mainly affects the anterior layer of radiating muscle, which is
338 consistent with a role for 4d in the posterior but not anterior layer. However, the *ToSerp1* MO
339 knockdowns impact both layers, even though we have shown that the *ToSerp1* expression is only
340 in the 3a and 3b-derived cells. Thus, the *ToSerp1* loss of function seems to have a stronger effect
341 on the posterior layer than the complete ablation of the 3a and 3b cells. One possible explanation
342 for this is that, in the 3a, 3b ablation (but not the *ToSerp1* knockdown), the absence of the
343 ectomesoderm cells causes 4d-derived cells to regulate, enabling them to better compensate for the
344 absence of the 3a and 3b cells in the development of the posterior layer.

345 A more speculative, but intriguing explanation for why the MO has a stronger effect on the
346 posterior layer than does the 3a, 3b ablation is that the *ToSerp1*-MO 3a and 3b cells could be
347 acting in a dominant negative fashion. In most animal systems that have been examined in detail,
348 myogenesis involves fusion of muscle precursor cells. We wonder whether *ToSerp1*-depleted
349 cells might be interfering with the 4d cells' ability to make the posterior layer by failing in cell
350 fusion events. This is one way that this apparently non-cell autonomous effect of the knockdown
351 might be explained. We note that the retractor defects observed after 3a, 3b ablation are more severe
352 than might be predicted from the relatively small contribution that 3a makes to this structure (Chan
353 and Lambert 2011, 2014); this may also be a case of a non-autonomous effect in the interactions
354 between ectomesoderm and endomesoderm.

355 Given the differences between spiralian endomesoderm and ectomesoderm, the latter
356 clearly represents the evolution of a distinct cell type, at some phylogenetic level. Going further,
357 since this population appears to have arisen as a novel gastrulation event, and that it can potentially
358 make multiple types of cells, we argue that ectomesoderm belongs to the very small set of
359 evolutionary novelties at the germ layer level of organization, including metazoan endomesoderm
360 and the neural crest (Martindale and Henry 1999; Martindale et al. 2004; Osborne et al. 2018), it
361 thus represents an important opportunity for comparative study of such events. The identification
362 of *ToSerp1*, and other ectomesoderm-specific factors should facilitate understanding the
363 evolution of the ectomesoderm. We note that such factors may help identify putative ectomesoderm
364 in spiralian embryos where cell lineage analysis remains challenging. This includes basal groups
365 like gnathisomulids and rotifers, which will be crucial for understanding the origin of
366 ectomesoderm and other possible spiralian innovations. In addition, analysis of orthologs of
367 ectomesoderm-specific factors in non-spiralian metazoans could provide insight into the
368 evolutionary origin of ectomesoderm.

369

370

371 **Materials and Methods**

372

373 Animal care and embryo collection

374 *Tritia* were collected near Woods Hole, MA, or ordered from the Marine Resources Center at the
375 Marine Biological Labs in Woods Hole, MA. Embryos and larvae were collected and reared as
376 previously described (Gharbiah et al. 2009a). The rearing temperature was 24 ° C (+/- 1).

377

378 Lineage tracing and cell ablation

379 Lineage tracing and cell ablation were adapted from previously described methods (Chan and
380 Lambert 2011, 2014). Briefly, ten percent of CF568 dextran 10,000 MW, anionic and fixable
381 (Biotium, CA, USA) was iontophoresed into cells using a current generator we built based on Hodor
382 and Ettensohn, 1998. For 3a, 3b cell ablation, we filled the 3a and 3b cell until the cell lysed (Render,
383 1997). We checked 1 hour and 24 hours later to ensure the fluorescent dye was entirely gone,
384 indicating successful ablation of the target cell lineages.

385

386 Transcriptome sequencing and differential gene expression analysis

387 RNA was extracted between 3a+48hrs and 3a+56hrs using NucleoSpin RNA XS (Macherey-Nagel,
388 Düren, Germany). Then low input libraries for each sample (six libraries in total) were constructed,
389 barcoded and then sequenced in one lane in a HiSeq 2500 by University of Rochester Genomics
390 Research Center. Then we performed a *de novo* transcriptome assembly with Trinity (Haas et al.
391 2013) using default settings. We then used bowtie2 (Langmead and Salzberg 2012) to map reads to
392 the assembly. After read mapping, we used two approaches for differential gene expressions. In the

393 first approach, we used RSEM (Li and Dewey 2011) to do read count and used Limma voom (Law
394 et al. 2014) to call significant genes. 39 candidate genes from the significant genes were chosen
395 from this analysis. These were chosen based on two criteria: 1) genes were down regulated 2) genes
396 that had previously been shown to have regulatory roles, e.g. transcription factors. In the second
397 approach, we first used a python script `fasta2togff3.py`
398 (https://github.com/GMOD/Chado/blob/master/chado/bin/gmod_fasta2gff3.pl) to convert our
399 transcriptome assembly to a gff file. Then we used HTseq (Anders et al. 2015) to do read counting,
400 and DEseq (Love et al. 2014) to call significant genes. Nine candidate genes were chosen from this
401 analysis for a total of 48 candidate genes. We designed primers for these 48 genes based on the
402 sequences in the assembly. For 14 genes, either PCR amplification or probe synthesis failed, so we
403 performed *in situ* hybridization for the remaining 34 out of 48 genes. For the seven genes that
404 showed specific expression pattern, their GenBank accession numbers are: *ToSerp1* (MT380182),
405 *ToDachsous-like* (MT380183), *ToDigestive-gland-expressed-1* (MT380184), *ToApolipoprot-like*
406 (MT380185), *ToUbiquitin-ligase-like* (MT380186), *ToMesoderm-expressed-1* (MT380187) and
407 *ToProspero-like* (MT380188). For the other genes, their sequences are listed in Supplemental Table
408 1. We note that none of the ectomesoderm-expressed genes from Osborne et al. 2018 were found
409 in our most differentially regulated genes from the RNA-seq experiment, or in our 48 candidate
410 genes. This could be because they were not entirely specific to ectomesoderm, or perhaps because

411 the low-input RNA-seq we performed was not optimized to measure differences in low-copy
412 transcripts like those of transcription factors.

413

414 *In situ hybridization, phalloidin staining and imaging*

415 We performed *in situ* hybridization on these 34 genes with a mix of stages from early cleavage to
416 larval stages. *In situ* probe synthesis followed Kingsley et al. 2007 and *in situ* hybridization was
417 performed as previously described (Lambert and Nagy, 2002). Embryos were fixed in fresh Pipes-
418 EGTA-Magnesium (PEM) fixation buffer (10mM EGTA, 100mM PIPES (pH 6.9) and 1mM
419 MgSO₄) (Gharbiah et al. 2009b), and stained with Phalloidin Alexa Fluor 488 (Molecular Probes,
420 OR, USA) overnight and then washed 3 times with PBTw before being stored in mount (80%
421 glycerol; 1x PBS) for imaging. *In situ* hybridization was imaged on a Zeiss Axioplan 2 microscope.
422 The imaging of lineage tracing and Phalloidin actin staining was performed on a Leica SP5 confocal
423 microscope. The Z-projections of the confocal stacks were calculated by standard deviation method
424 in ImageJ (Abràmoff et al. 2004).

425

426 *MO design and injection*

427 *ToSerp1* MO1 was designed by the vendor (Gene Tools, OR, USA). The sequence of *ToSerp1*
428 MO1 and MO2 are 5'ATGCCAGCCAAAAATCTATCGCAGT 3' and 5'
429 ACGCAAAACTATTTGACTTGCA 3'. The sequence of control MO is
430 5' TTCAGTCCATGTCAGTGTCCAAGCC 3'. Zygote injection was performed as described
431 previously (Rabinowitz et al. 2008), and injected animals were reared until they depleted their yolk
432 for scoring. The indicated concentrations for injected solutions are the concentrations in the pipette.

433

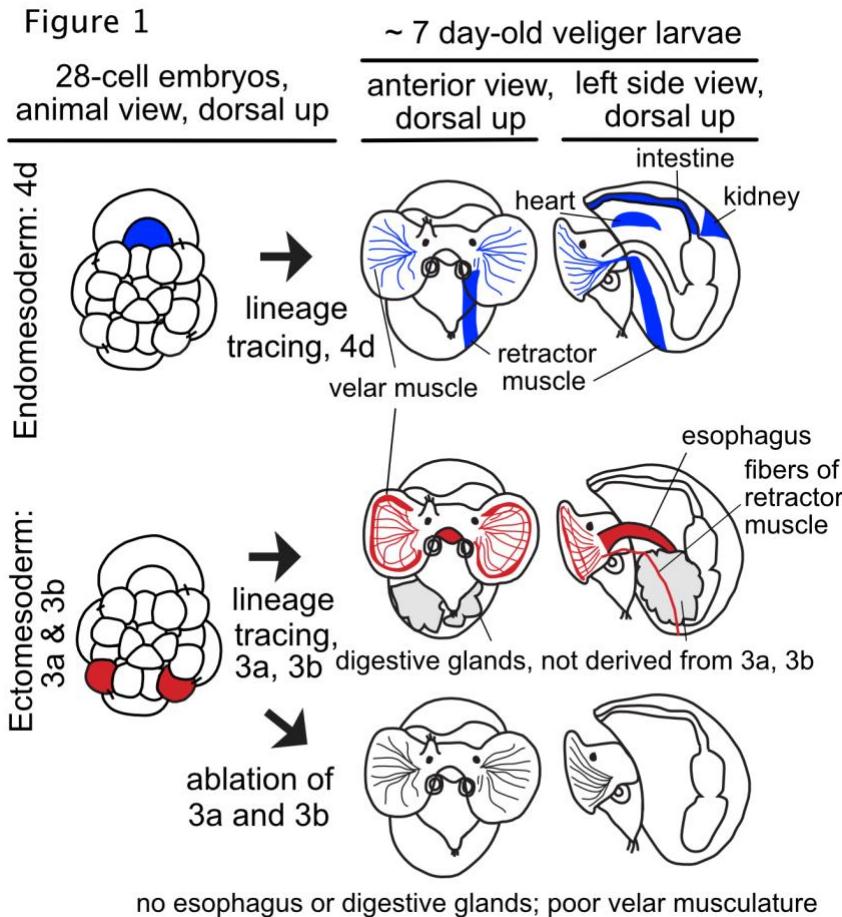
434 **Acknowledgements**

435 The authors thank Ryan Bickel, Jennifer Brisson, Brad Davison and Adam Johnson's constructive
436 comments and suggestions. This study was supported by two grants by the National Science Foundation
437 to J.D.L. (grant numbers IOS-1146782 and IOS-1656558).

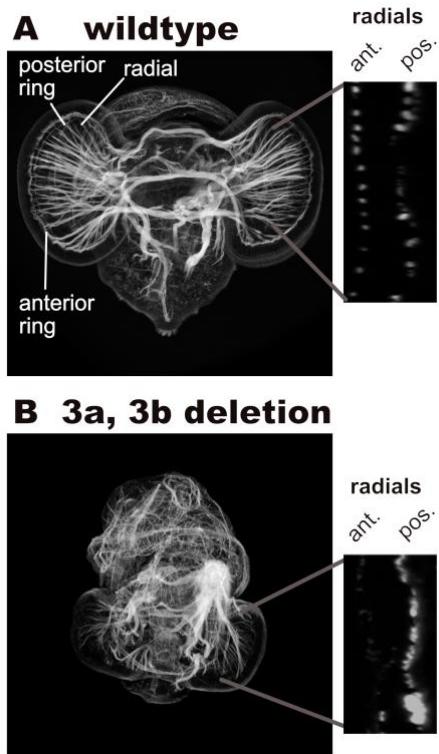
438

Table 1: The phenotypes of ablation and MO injection.

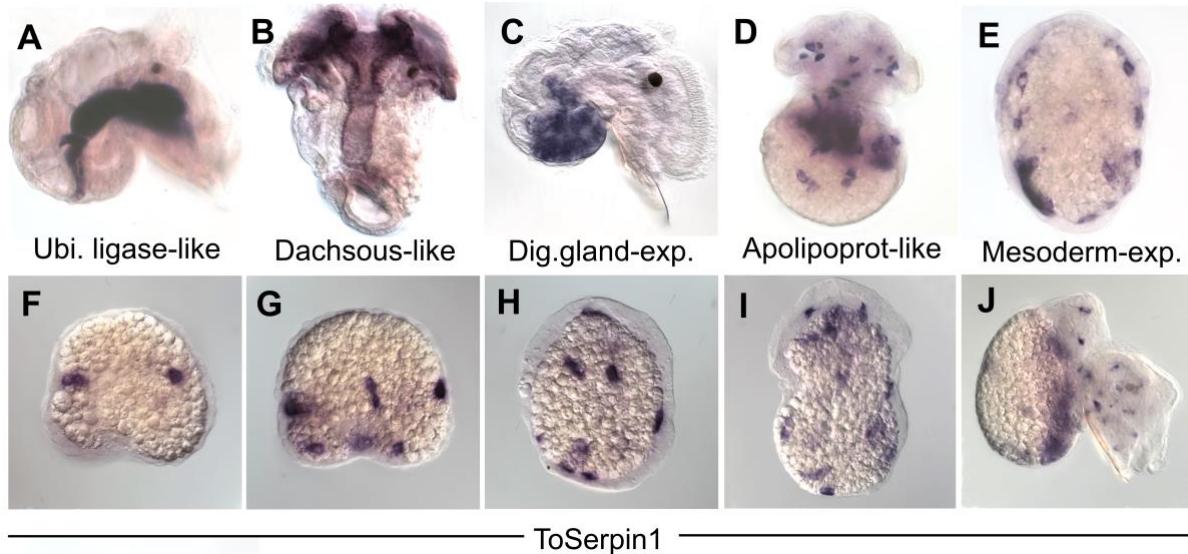
	Velar lobes normal size	Anterior ring muscle present	Posterior ring muscle present	Anterior ring muscle normal	Posterior ring muscle normal	Normal amount of radiating muscle	Anterior radiating muscles complete ⁽¹⁾	Posterior radiating muscles complete ⁽¹⁾
Control MO 0.75 mM	24/24	24/24	24/24	24/24	24/24	24/24	11/12	11/12
3a, 3b ablation	0/18	1/18 ⁽²⁾	1/18 ⁽²⁾	0/18	0/18	0/18	0/9	9/9
ToSerpin MO1 0.75 mM	2/40	35/40	19/40	15/40	10/40	19/40	4/20	8/20
MO1 with Serpin mRNA-5' UTR ablation ⁽³⁾	36/40	40/40	38/40	34/40	31/40	38/40	19/20	17/20
ToSerpin MO2 0.85 mM ⁽⁴⁾	15/26	26/26	8/26	8/26	5/26	22/26	8/13	2/13

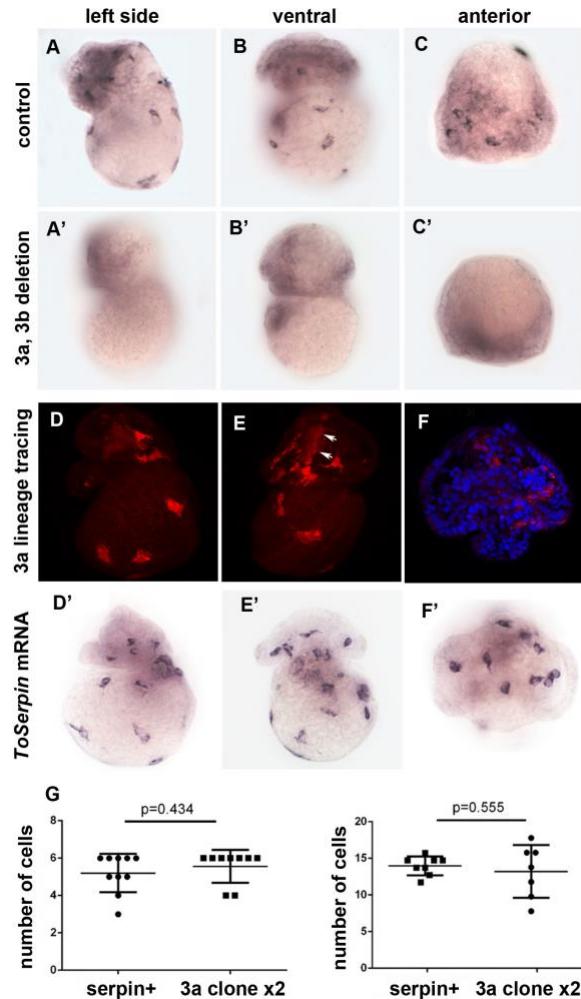

(1) For both of these columns we only scored one velar lobe per animal because it was generally not possible to successfully orient both velar lobes in one larva for confocal microscopy.

(2) In the cases where an anterior and posterior ring muscles were present, they were incomplete; the partial ring muscles were in different larvae.


(3) The MO was injected at 0.75mM and the mRNA was injected at 150 ng/ul.

(4) MO2 had a similar dose dependency to MO1, with no effects around 0.5 mM, and lethality during organogenesis around 1 mM. For this MO the concentration with the strongest effect on velar muscle morphology but essentially no lethality was at 0.85 mM, slightly higher than MO1.


Figures and legends


Figure 1: Mesoderm comes from two sources in the snail *Tritia*, and both sources contribute to the same muscles in the larva. The cell 4d (blue) generates endomesoderm: the intestine, and most of the mesoderm in the larva, including the heart, kidney, main larval retractor muscle, and some of the muscle in the velar lobes of the head. The other source of mesoderm is ectomesoderm, which mainly derives from the cells 3a and 3b, but also includes smaller contributions from 2b and 2c (see text for details). 3a and 3b (red) generate most of the ectomesodermal muscle in the head (velar muscle), and make a small contribution to the main larval retractor. These cells also make the esophagus. Ablating both 3a and 3b results in the loss of the esophagus and much of the head musculature. These animals also generally lack the digestive glands, even though these cells do not contribute to them, and often have defects in the larval retractor (Chan and Lambert, 2014; this study).

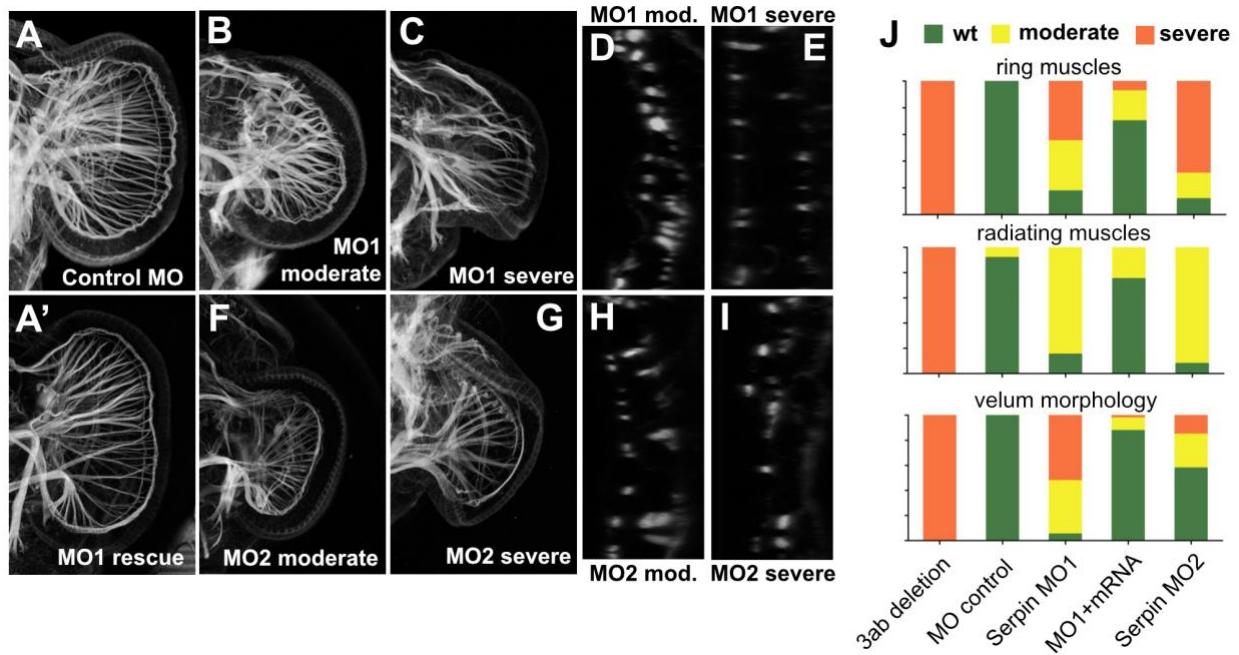

Figure 2: The muscle system in the velar lobe, and the results of 3a, 3b ablation. A) Anterior view of a control veliger, around 7 day-old (dorsal up, ventral down). Muscles are stained with phalloidin (white). The anterior and posterior ring muscles are visible, as are the radiating muscles that run from the center of the head out to the ring muscles. The panel to the right shows a confocal cross section of a control left velar lobe, at approximately the location indicated by the lines. There are two layers of radiating muscles, the anterior is closer to the surface of the velum (towards the viewer in A), and posterior is behind that (from the perspective of the viewer in A). B) Anterior-dorsal view of a larva after ablation of 3a and 3b (Because these animals are somewhat misshapen we cannot mount them in a full anterior view like the control). Both ring muscles are absent, and there are fewer radiating muscles. The panel on the right shows a cross section of a 3a, 3b ablation velar lobe, at approximately the location indicated by the lines. The anterior layer is mostly gone, and the posterior layer is present, but is disorganized compared to control.

Figure 3: *In situ* hybridization showing expression of transcripts whose levels go down after ablation of 3a and 3b. Top row (A-E): Transcripts with specific patterns consistent with 3a, 3b ablation, that were not further characterized. (A-C are in hatchling-stage larva, around 7 days after egg laying. A and C are right side views, B is dorsal with anterior up.) A) *ToUbiquitin-ligase-like* is specific to the esophagus and the anterior wall of the stomach. B) *ToDachsous-like* is expressed in the esophagus and the velar lobes. C) *ToDigestive-gland-expressed-1* is expressed in the digestive glands, which are lost after 3a, 3b ablation. D) *ToApolipoprotein-like* is expressed in scattered mesodermal cells that appear to be ectomesoderm, as well as an unidentified region in the center of the embryo. This is a 5 day-old larva, dorsal view, anterior up. E) *ToMesoderm-expressed-1* is a gene with only weak homology outside of molluscs and no predicted function. It is expressed in scattered internal cells that appear to be ectomesoderm, as well as other internal cells that are probably endomesodermal, especially in the left posterior (compare to I). This is a three-day-old embryo, dorsal view, anterior is up. Bottom row, F-J, shows a developmental series of expression for *ToSerpin1*, the focus of this report. F) In a 48-hour embryo, at the end of gastrulation, *ToSerpin1* is expressed in 2-3 internal cells; this embryo has a cluster of two on the left side and one on the right side (dorsal view, anterior up). G) In an embryo at ca. 60 hours, there are 8-10 *ToSerpin1*-positive cells (dorsal view, anterior up). During organogenesis, at around 3 days (H) and 4 days (I), there are increasingly more scattered internal cells expressing *ToSerpin1* (dorsal views, anterior up). J) In an early veliger (ca. 6 days), *ToSerpin1* cells are present in the head, foot and body (right side view).

Figure 4: *ToSerp1* is specific to ectomesoderm. A-C') Internal *ToSerp1* cell stained by *in situ* hybridization in control embryos (A-C) are not observed in embryos after 3a, 3b ablation (A'-C'). These larvae are synchronously developing siblings from one egg capsule. The diffuse staining remaining in (A'-C') is apparently a result of extended culture outside of the egg capsule that is necessitated by the ablation protocol; we were unable to remove it, and did not observe it with the same probe on embryos that were fixed shortly after being removed from egg capsule, e.g. Figure 3, F-J, so we do not think it is a component of the normal *ToSerp1* expression pattern, which is the scattered distinct cells in A-C. (D-F') 3a lineage tracing (D-F; red stain) reveals ectomesodermal cells in head and posterior. *In situ* staining for *ToSerp1* in synchronously developing sibling embryos is shown in D'-F'. Note that the 3a traced and *ToSerp1* positive cells are morphological similar. The non-ectomesoderm cell of 3a and 3b cell lineages (non-muscle cells), such as the tube-like esophagus in the midline of the larva (indicated with white arrows in E) and cells in the edge of the velum are excluded from the analysis. These cells are spatially and morphologically distinct from ectomesoderm cells. G) Counts of *ToSerp1*-positive cells, versus counts of 3a labeled cells, which are doubled to account for the bilaterally symmetrical 3b contribution to ectomesoderm population (Chan and Lambert 2014). Anterior head region is on the left, posterior region is on the right. In both regions, there is no significant difference between the number of ectomesoderm cells and *ToSerp1*-positive cells.

Figure 5: *ToSerp1* knockdown disrupts velar muscle development. A-C, A', F, G are anterior views of left velar lobes, with muscle stained with phalloidin. D, E, H, and I are confocal cross sections, as in Figure 2, with anterior up. A) After injection of a control morpholino at 0.75 mM, velar morphology is wildtype. A') A *ToSerp1* mRNA without the MO1 binding site, injected along with the MO, largely rescues velar development (compare to B and C). Injection of *ToSerp1*MO1 disrupts velar musculature; (B) shows a moderate example with a smaller lobe and disorganized radiating muscles, while (C) shows a severe example with a smaller lobe, fewer radiating muscles and only the anterior ring muscle which is poorly developed. Cross sections (D, E) show defects in both the anterior and posterior radiating layers. Injection of the non-overlapping MO2 has similar effects (F-I). J) Comparison of velar muscle phenotypes after various treatments. Embryos were considered “wildtype” if no abnormality was detected; if any structure was missing, embryos were assigned into the “severe” category; all other embryos were assigned into the “moderate” category.

References

Abràmoff, Michael D., Paulo J. Magalhães, and Sunanda J. Ram. "Image processing with ImageJ." *Biophotonics international* 11, no. 7 (2004): 36-42.

Acosta, Helena, Dobromir Iliev, Tan Hooi Min Grahn, Nadège Gouignard, Marco Maccarana, Julia Griesbach, Svende Herzmann, Mohsen Sagha, Maria Climent, and Edgar M. Pera. "The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation." *Development* 142, no. 6 (2015): 1146-1158.

Anders, Simon, Paul Theodor Pyl, and Wolfgang Huber. "HTSeq—a Python framework to work with high-throughput sequencing data." *Bioinformatics* 31, no. 2 (2015): 166-169.

Boyer, Barbara C., Jonathan Q. Henry, and Mark Q. Martindale. "Dual Origins of Mesoderm in a Basal Spiralian: Cell Lineage Analyses in the Polyclad Turbellarian *Hoploplana inquilina*." *Developmental biology* 179, no. 2 (1996): 329-338.

Boyer, Barbara C., Jonathan J. Henry, and Mark Q. Martindale. "The cell lineage of a polyclad turbellarian embryo reveals close similarity to coelomate spiralian." *Developmental biology* 204, no. 1 (1998): 111-123.

Chan, Xin Yi, and J. David Lambert. "Patterning a spiralian embryo: a segregated RNA for a Tis11 ortholog is required in the 3a and 3b cells of the *Ilyanassa* embryo." *Developmental biology* 349, no. 1 (2011): 102-112.

Chan, Xin Yi, and J. David Lambert. "Development of blastomere clones in the *Ilyanassa* embryo: transformation of the spiralian blastula into the larval body plan." *Development genes and evolution* 224, no. 3 (2014): 159-174.

Clement, Anthony C. "The embryonic value of the micromeres in *Ilyanassa obsoleta*, as determined by deletion experiments. III. The third quartet cells and the mesentoblast cell, 4d." *International journal of invertebrate reproduction and development* 9, no. 2 (1986): 155-168.

Dictus, Wim JAG, and Peter Damen. "Cell-lineage and clonal-contribution map of the trochophore larva of *Patella vulgata* (Mollusca)." *Mechanisms of development* 62, no. 2 (1997): 213-226.

Evans, Carol CE, Amanda JG Dickinson, and Roger P. Croll. "Major muscle systems in the larval caenogastropod, *Ilyanassa obsoleta*, display different patterns of development." *Journal of morphology* 270, no. 10 (2009): 1219-1231.

Freeman, Gary, and Mark Q. Martindale. "The origin of mesoderm in phoronids." *Developmental biology* 252, no. 2 (2002): 301-311.

Gerberding, Matthias, William E. Browne, and Nipam H. Patel. "Cell lineage analysis of the amphipod crustacean *Parhyale hawaiensis* reveals an early restriction of cell fates." *Development* 129, no. 24 (2002): 5789-5801.

Gettins, Peter GW. "Serpin structure, mechanism, and function." *Chemical reviews* 102, no. 12 (2002): 4751-4804.

Gharbiah, Maey, James Cooley, Esther M. Leise, Ayaki Nakamoto, Jeremy S. Rabinowitz, J. David Lambert, and Lisa M. Nagy. "Obtaining Ilyanassa snail embryos." *Cold Spring Harbor Protocols* 2009, no. 4 (2009a): pdb-prot5183.

Gharbiah, Maey, James Cooley, Esther M. Leise, Ayaki Nakamoto, Jeremy S. Rabinowitz, J. David Lambert, and Lisa M. Nagy. "Fixation of Ilyanassa snail embryos and larvae." *Cold Spring Harbor Protocols* 2009, no. 4 (2009b): pdb-prot5186.

Good, Kathryn, Rafal Ciosk, Jeremy Nance, Alexandre Neves, Russell J. Hill, and James R. Priess. "The T-box transcription factors TBX-37 and TBX-38 link GLP-1/Notch signaling to mesoderm induction in *C. elegans* embryos." *Development* 131, no. 9 (2004): 1967-1978.

Haas, Brian J., Alexie Papanicolaou, Moran Yassour, Manfred Grabherr, Philip D. Blood, Joshua Bowden, Matthew Brian Couger et al. "De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis." *Nature protocols* 8, no. 8 (2013): 1494.

Harland, R., and Gerhart, J. "Formation and function of Spemann's organizer." *Annual review of cell and developmental biology* 13, no. 1 (1997): 611-667.

Hejnol, Andreas. "A twist in time—the evolution of spiral cleavage in the light of animal phylogeny." *Integrative and comparative biology* 50, no. 5 (2010): 695-706.

Hejnol, Andreas, Mark Q. Martindale, and Jonathan Q. Henry. "High-resolution fate map of the snail *Crepidula fornicata*: the origins of ciliary bands, nervous system, and muscular elements." *Developmental biology* 305, no. 1 (2007): 63-76.

Henry, Jonathan Q., and Mark Q. Martindale. "The establishment of embryonic axial properties in the nemertean, *Cerebratulus lacteus*." *Developmental biology* 180, no. 2 (1996): 713-721.

Henry, Jonathan J., and Mark Q. Martindale. "Conservation of the spiralian developmental program: cell lineage of the nemertean, *Cerebratulus lacteus*." *Developmental biology* 201, no. 2 (1998): 253-269.

Henry, Jonathan J., and Mark Q. Martindale. "Conservation and innovation in spiralian development." *Hydrobiologia* 402 (1999): 255-265.

Hertzler, Philip L. "Cleavage and gastrulation in the shrimp *Penaeus (Litopenaeus) vannamei* (Malacostraca, Decapoda, Dendrobranchiata)." *Arthropod Structure & Development* 34, no. 4 (2005): 455-469.

Huang, Françoise Z., Dongmin Kang, Felipe-Andres Ramirez-Weber, Shirley T. Bissen, and David A. Weisblat. "Micromere lineages in the glossiphoniid leech *Helobdella*." *Development* 129, no. 3 (2002): 719-732.

Hudson, Clare, Cathy Sirour, and Hitoyoshi Yasuo. "Co-expression of Foxa, a, Foxd and Fgf9/16/20 defines a transient mesendoderm regulatory state in ascidian embryos." *Elife* 5 (2016): e14692.

Huntington, J. A. "Serpin structure, function and dysfunction." *Journal of thrombosis and haemostasis* 9 (2011): 26-34.

Kingsley, Evan P., Xin Yi Chan, Yingli Duan, and J. David Lambert. "Widespread RNA segregation in a spiralian embryo." *Evolution & development* 9, no. 6 (2007): 527-539.

Kozin, Vitaly V., Daria A. Filimonova, Ekaterina E. Kupriashova, and Roman P. Kostyuchenko. "Mesoderm patterning and morphogenesis in the polychaete *Alitta virens* (Spiralia, Annelida): Expression of mesodermal markers Twist, Mox, Evx and functional role for MAP kinase signaling." *Mechanisms of development* 140 (2016): 1-11.

Lartillot, Nicolas, Martine Le Gouar, and André Adoutte. "Expression patterns of fork head and goosecoid homologues in the mollusc *Patella vulgata* supports the ancestry of the anterior mesendoderm across Bilateria." *Development genes and evolution* 212, no. 11 (2002a): 551-561.

Lartillot, Nicolas, Olivier Lespinet, Michel Vervoort, and André Adoutte. "Expression pattern of Brachyury in the mollusc *Patella vulgata* suggests a conserved role in the establishment of the AP axis in Bilateria." *Development* 129, no. 6 (2002b): 1411-1421.

Lambert, J. David, and Lisa M. Nagy. "Asymmetric inheritance of centrosomally localized mRNAs during embryonic cleavages." *Nature* 420, no. 6916 (2002): 682-686.

Lambert, J. David. "Mesoderm in spirilians: the organizer and the 4d cell." *Journal of Experimental Zoology Part B: Molecular and Developmental Evolution* 310, no. 1 (2008): 15-23.

Langmead, Ben, and Steven L. Salzberg. "Fast gapped-read alignment with Bowtie 2." *Nature methods* 9, no. 4 (2012): 357.

Law, Charity W., Yunshun Chen, Wei Shi, and Gordon K. Smyth. "voom: Precision weights unlock linear model analysis tools for RNA-seq read counts." *Genome biology* 15, no. 2 (2014): R29.

Law, Ruby HP, Qingwei Zhang, Sheena McGowan, Ashley M. Buckle, Gary A. Silverman, Wilson Wong, Carlos J. Rosado et al. "An overview of the serpin superfamily." *Genome biology* 7, no. 5 (2006): 216.

Lespinet, Olivier, Alexander J. Nederbragt, Michel Cassan, Wim J. Dictus, André E. van Loon, and André Adoutte. "Characterisation of two snail genes in the gastropod mollusc *Patella vulgata*. Implications for understanding the ancestral function of the snail-related genes in Bilateria." *Development genes and evolution* 212, no. 4 (2002): 186-195.

Lillie, Frank R. "The embryology of the unionidae. A study in cell-lineage." *Journal of morphology* 10, no. 1 (1895): 1-100.

Li, Bo, and Colin N. Dewey. "RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome." *BMC bioinformatics* 12, no. 1 (2011): 323.

Ligoxygakis, Petros, Siegfried Roth, and Jean-Marc Reichhart. "A Serpin regulates dorsal-ventral axis formation in the *Drosophila* embryo." *Current biology* 13, no. 23 (2003): 2097-2102.

Love, Michael I., Wolfgang Huber, and Simon Anders. "Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2." *Genome biology* 15, no. 12 (2014): 550.

Lyons, Deirdre C., and Jonathan Q. Henry. "Ins and outs of Spiralian gastrulation." *International Journal of Developmental Biology* 58, no. 6-7-8 (2014): 413-428.

Lyons, Deirdre C., Kimberly J. Perry, and Jonathan Q. Henry. "Spiralian gastrulation: germ layer formation, morphogenesis, and fate of the blastopore in the slipper snail *Crepidula fornicata*." *EvoDevo* 6, no. 1 (2015): 24.

Lyons, Deirdre C., Kimberly J. Perry, Maryna P. Lesoway, and Jonathan Q. Henry. "Cleavage pattern and fate map of the mesentoblast, 4d, in the gastropod *Crepidula*: a hallmark of spiralian development." *EvoDevo* 3, no. 1 (2012): 21.

Maduro, Morris F. "Cell fate specification in the *C. elegans* embryo." *Developmental dynamics: an official publication of the American Association of Anatomists* 239, no. 5 (2010): 1315-1329.

Martindale, Mark Q., John R. Finnerty, and Jonathan Q. Henry. "The Radiata and the evolutionary origins of the bilaterian body plan." *Molecular phylogenetics and evolution* 24, no. 3 (2002): 358-365.

Martindale, Mark Q., and Jonathan Q. Henry. "Intracellular fate mapping in a basal metazoan, the ctenophore *Mnemiopsis leidyi*, reveals the origins of mesoderm and the existence of indeterminate cell lineages." *Developmental biology* 214, no. 2 (1999): 243-257.

Martindale, Mark Q., Kevin Pang, and John R. Finnerty. "Investigating the origins of triploblasty:mesodermal gene expression in a diploblastic animal, the sea anemone *Nematostella vectensis* (phylum, Cnidaria; class, Anthozoa)." *Development* 131, no. 10 (2004): 2463-2474.

Meyer, Néva P., Michael J. Boyle, Mark Q. Martindale, and Elaine C. Seaver. "A comprehensive fate map by intracellular injection of identified blastomeres in the marine polychaete *Capitella teleta*." *EvoDevo* 1, no. 1 (2010): 8.

Nederbragt, Alexander J., Olivier Lespinet, Sake Van Wageningen, André E. Van Loon, André Adoutte, and Wim JAG Dictus. "A lophotrochozoan twist gene is expressed in the ectomesoderm of the gastropod mollusk *Patella vulgata*." *Evolution & development* 4, no. 5 (2002): 334-343.

Nielsen, Claus. "Trochophora larvae: cell-lineages, ciliary bands, and body regions. 1. Annelida and Mollusca." *Journal of Experimental Zoology Part B: Molecular and Developmental Evolution* 302, no. 1 (2004): 35-68.

Nishida, Hiroki. "Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme: III. Up to the tissue restricted stage." *Developmental biology* 121, no. 2 (1987): 526-541.

Osborne, C. Cornelia, Kimberly J. Perry, Marty Shankland, and Jonathan Q. Henry. "Ectomesoderm and epithelial–mesenchymal transition-related genes in spiralian development." *Developmental Dynamics* 247, no. 10 (2018): 1097-1120.

Passamanek, Yale J., Andreas Hejnol, and Mark Q. Martindale. "Mesodermal gene expression during the embryonic and larval development of the articulate brachiopod *Terebratalia transversa*." *Evodevo* 6, no. 1 (2015): 10.

Perry, Kimberly J., Deirdre C. Lyons, Marta Truchado-Garcia, Antje HL Fischer, Lily W. Helfrich, Kimberly B. Johansson, Julie C. Diamond, Cristina Grande, and Jonathan Q. Henry. "Deployment of regulatory genes during gastrulation and germ layer specification in a model spiralian mollusc *Crepidula*." *Developmental Dynamics* 244, no. 10 (2015): 1215-1248.

Priess, James R. "Notch signaling in the *C. elegans* embryo." In *WormBook: The Online Review of C. elegans Biology [Internet]*. WormBook (2005).

Rabinowitz, Jeremy S., Xin Yi Chan, Evan P. Kingsley, Yingli Duan, and J. David Lambert. "Nanos is required in somatic blast cell lineages in the posterior of a mollusk embryo." *Current Biology* 18, no. 5 (2008): 331-336.

Render, J. A. "Cell Fate Maps in the *Ilyanassa* obsolete Embryo beyond the Third Division." *Developmental biology* 189, no. 2 (1997): 301-310.

Rodaway, Adam, and Roger Patient. "Mesendoderm: an ancient germ layer?." *Cell* 105, no. 2 (2001): 169-172.

Seifert, R., M. Jacob, and H. J. Jacob. "The avian prechordal head region: a morphological study." *Journal of anatomy* 183, no. Pt 1 (1993): 75.

Sulston, John E., E. Schierenberg, John G. White, and J. N. Thomson. "The embryonic cell lineage of the nematode *Caenorhabditis elegans*." *Developmental biology* 100, no. 1 (1983): 64-119.

Technau, Ulrich, and Corinna B. Scholz. "Origin and evolution of endoderm and mesoderm." *International Journal of Developmental Biology* 47, no. 7-8 (2003): 531-539.

Vellutini, Bruno C., José M. Martín-Durán, and Andreas Hejnol. "Cleavage modification did not alter blastomere fates during bryozoan evolution." *BMC biology* 15, no. 1 (2017): 33.

Wilson, Edmund Beecher. *Considerations on Cell-lineage and Ancestral Reminiscence: Based on a Re-examination of Some Points in the Early Development of Annelids and Polyclades*. Vol. 11 (1898).