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Asymmetric rectified electric fields generate flows that can dominate
induced-charge electrokinetics
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We derive a generalized induced-charge electrokinetic (ICEK) velocity around a con-
ducting object placed in an arbitrary multimodal electric field. The generalized model
allows consideration of asymmetric rectified electric fields (AREFs), which have recently
been established to occur in liquids where the ions present have unequal mobilities.
Including the AREF yields fluid velocities in which both the direction and the magnitude
depend sensitively on the applied potential, frequency, ionic type and strength, and even
the exact placement of the object between parallel electrodes. The results provide an
explanation for the long-standing question of flow reversals observed in ICEK systems.
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I. INTRODUCTION

Nonlinear electroosmotic flows around colloidal particles, also known as electrokinetic phe-
nomena of the second kind, were first formulated theoretically by Dukhin and co-workers in the
1980s [1–3]. They demonstrated that application of an external electric field induces a charge cloud
near the surface of a polarizable object; the field then creates a body force on the charge cloud,
creating an electroosmotic fluid flow. In contrast to standard electroosmosis, the fluid velocity
scales as the square of the electric field, so that flow results from both steady and oscillatory
applied fields. One early application of nonlinear electroosmotic flows was liquid pumping via
asymmetric electrodes subject to AC electric potentials, also known as AC electroosmosis (ACEO)
[4–7]. More recently, Bazant and Squires [8,9] unified nonlinear electrokinetic phenomena around
polarizable objects (particles, electrodes, etc.) under the name induced-charge electrokinetics
(ICEK) [10–13]. The general theoretical approach has been to solve either the Laplace equation or
the standard electrokinetic model (Poisson-Nernst-Planck) to predict the electric field distribution
and polarization of the charge layer around the objects, and then determine the induced flow. The
archetypal example of ICEK theory is the quadrupolar fluid flow around a conducting sphere
or cylinder in response to steady or time varying electric fields [8,9], a system which has been
experimentally observed in a number of studies using metallic spheres [14,15] and wires [16–18].

Despite extensive research, however, there are several unresolved discrepancies between the-
oretical predictions and experimental observations [10,11]. In particular, extant theories fail to
predict the observed reversal in the direction of fluid flow in ACEO pumps at sufficiently high
frequencies [7,19–22]. Similarly, experimental work revealed that the flow direction in ACEO
pumps also depends on the identity of the electrolyte present; for example, at particular voltages
and frequencies, simply swapping KCl with KOH caused the flow to reverse direction. Because
neither the frequency nor electrolyte dependence are explicable in terms of the standard ICEK
theory, much work focused on whether the continuum approximation incorrectly neglected ion-ion
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interactions and steric effects, thus yielding unrealistically high ion concentrations near the
electrodes [21,23–26]. By introducing the effective ion size as a fitting parameter, Bazant and
co-workers qualitatively predicted a fluid flow reversal in AC electroosmosis pumps upon changing
the applied frequency. However, an unrealistically large ion size (several nanometers) was found to
be necessary, casting doubt on this approach.

Notably, all theoretical studies on ICEK to date have assumed that the dissolved ions have
equal mobilities, an assumption that considerably simplifies the modeling but rarely pertains to
real electrolytes. Recent work by Hashemi Amrei et al. [27,28] has demonstrated that application
of a perfectly sinusoidal oscillating potential generates a highly multimodal, long-range electric
field between parallel electrodes. Furthermore, if the ions present have unequal mobilities, the
multimodal field has a nonzero time average, i.e., the sinusoidal applied potential generates a steady
field component. This phenomenon, referred to as an asymmetric rectified electric field (AREF),
acts like a dc field and induces electrophoretic motion consistent with experimental observations
of particle levitation against gravity [29]. These findings suggest that AREFs will also generate a
net fluid flow around a charged object placed in the field via electroosmosis, and thus affect ICEK
flows. It remains unclear, however, under what conditions AREFs play a significant role in ICEK
flows, and whether they are associated with the flow reversals observed experimentally.

In this work, we analyze theoretically the impact of AREFs on ICEK flows. Because extant
theories only consider unimodal electric fields, we begin by deriving a generalized ICEK model
valid for arbitrary, multimodal electric fields. We then insert numerical solutions to the fully
nonlinear standard electrokinetic model to assess the impact of AREFs on the ICEK flow. Focusing
on the flow around a conductive cylinder, we demonstrate that under many conditions the higher
order modes and the zeroth mode (the AREF) dominate the overall flow velocity around the cylinder.
In particular, the calculations predict significant flow reversals with respect to frequency, electrolyte
type, and even the exact placement of the cylinder between conducting electrodes. Our results point
toward a resolution of the long-standing discrepancies between ICEK theory and experiments.

II. GENERALIZED ICEK FOR ARBITRARY ELECTRIC FIELD

The central idea of ICEK is that the electric field induces a charge cloud (or an equivalent zeta
potential) immediately adjacent to a conductive surface. The tangential component of the same
electric field then acts on the induced charge cloud, creating an electroosmotic fluid flow with a
slip velocity given by Smoluchowski’s formula. Bazant and Squires [8,9] showed that for a steady
electric field of magnitude E , i.e., E (t ) = E , the angular slip velocity around a conductive cylinder
of radius a is

us
θ = 2

εaE2

μ
sin (2θ ) + 2

εζ0E

μ
sin (θ ), (1)

where θ is the polar angle (cf. Fig. 1), ε and μ are the permittivity and viscosity of the electrolyte,
respectively, and ζ0 is the intrinsic zeta potential of the cylinder surface. The first term on the right-
hand side is the quadrupolar flow due to the action of the tangential component of the electric field
on the surface of the cylinder (Eθ |r=a) on the induced zeta potential, while the second term is the
dipolar flow due to the same field acting on the intrinsic zeta potential. Depending on the relative
strength of these two terms, various net flows of different shapes that are more or less quadrupolar
occur for a steady applied electric field.

In contrast, for a sinusoidal electric field of amplitude E and angular frequency ω0, i.e.,
E (t ) = E cos (ω0t ), the time average of the slip velocity is [8,9]

〈
us

θ

〉 = εaE2

μ

sin (2θ )

ω2
0τ

2
c + 1

. (2)

Here τc = κ−1a/D̂ is the charging time scale of the ionic cloud around the cylinder, where κ−1

is the Debye length scale and D̂ is a characteristic diffusivity of the dissolved ions. Importantly,
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FIG. 1. Schematic diagram of the problem. Left: a conducting cylinder of radius a is immersed in
an electrolyte between two parallel electrodes at height h. An oscillatory electric potential is applied on
one electrode while the other is grounded. Right: problem in cylindrical coordinates with scalar velocity
components in r and θ directions.

the electroosmotic flow due to the action of the sinusoidally varying electric field on the constant
intrinsic zeta potential has zero time average, and hence the dipolar component is identically zero
for a unimodal applied field. Note also that the velocity is expected to decay monotonically as
frequency increases or the electrolyte diffusivity decreases, i.e., no reversals in the flow direction
are predicted to occur as frequency changes or for different electrolytes.

We now ask, what happens if the applied field is multimodal? We follow the same basic
framework proposed by Bazant and Squires [8,9], but we generalize it to find the slip velocity when
E (t ) is an arbitrary function of time. Assuming a thin double layer limit (κa � 1), the solution to
the Laplace equation for the electric potential around the cylinder is

ψ = −E (t )r cos (θ )

(
1 + g

a2

r2

)
, (3)

where g is the induced dipole strength, and (r, θ ) are the cylindrical coordinates (cf. Fig. 1). The
induced surface charge on the cylinder, q, obeys charge conservation such that conduction of ions
from the bulk in the radial direction are balanced by charge accumulation, such that

∂q

∂t
= σEr |r=a = σE (t ) cos (θ )(1 − g). (4)

Here σ is the effective electrolyte conductivity and Er = − ∂ψ

∂r is the radial component of the electric
field. Simultaneously, the induced zeta potential is

ζ = −ψ |r=a = E (t )a cos (θ )(1 + g), (5)

where we assumed that electric potential of the perfectly conducting cylinder remains zero at all
times. The induced zeta potential is then related to the surface charge with q = εκζ . Note that
this equality is justified only at low voltages and is used for simplicity; use of more sophisticated
models is straightforward but complicates interpretation. Substituting this equality into Eq. (5) and
differentiation with respect to time yields

∂q

∂t
= εκa cos (θ )

[
dE (t )

dt
(1 + g) + E (t )

dg

dt

]
. (6)
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Combining Eqs. (4) and (6) yields an ordinary differential equation for g that can be solved for an
arbitrary electric field E (t ),

g = 2

∫
et̂ E (t̂ ) dt̂

et̂ E (t̂ )
− 1, (7)

where t̂ = t/τc is a dimensionless time, normalized on the charging time scale τc = κ−1a/D̂ =
εκa/σ [30,31], and the term

∫
et̂ E (t̂ ) dt̂ is an indefinite integral. Substituting the obtained induced

dipole g into Eq. (3) yields the potential distribution, which is subsequently used to find the induced
zeta potential and tangential component of the electric field (Eθ = − 1

r
∂ψ

∂θ
) on the cylinder surface.

Finally, Smoluchowski’s formula for electroosmosis gives the induced slip velocity for an arbitrary
field,

us
θ = −ε(ζ + ζ0)Eθ |r=a

μ
= 2εa

μ

[∫
et̂ E (t̂ ) dt̂

et̂

]2

sin (2θ ) + 2εζ0

μ

[∫
et̂ E (t̂ ) dt̂

et̂

]
sin (θ ). (8)

If the product et̂ E (t̂ ) is simply integrable, then analytical simplifications are straightforward. For
a steady (time invariant) applied field, Eq. (1) is immediately recovered. Likewise, for a unimodal
oscillating field E (t ) = E cos (ω0t ), the instantaneous slip velocity is

us
θ = 2εaE2

μ

[
ω0τc sin (ω0t ) + cos ω0t

1 + ω2
0τ

2
c

]2

sin (2θ ) + 2εζ0E

μ

[
ω0τc sin (ω0t ) + cos ω0t

1 + ω2
0τ

2
c

]
sin (θ ),

(9)

which upon time averaging reduces to the classic ICEK flow velocity for oscillatory fields
[cf. Eq. (2)],

〈
us

θ

〉 = ω0

2π

∫ 2π
ω0

0
us

θ dt = εaE2

μ

sin (2θ )

ω2
0τ

2
c + 1

. (10)

III. SOLUTION TO THE ELECTROKINETIC MODEL

With a generalized ICEK model for arbitrary electric fields in hand, we now ask what happens
for the multimodal fields that occur in electrolytes at sufficiently high applied voltages. The details
of these fields have been elaborated elsewhere [27,28]; here we provide a brief summary. We focus
on 1-1 binary electrolytes between parallel electrodes separated by a distance H (cf. Fig. 1), and we
assume that the presence of the cylinder and any resulting flows do not appreciably alter the electric
field between parallel electrodes. In other words, we assume that both a/H � 1 and a/h � 1 so
that we can use the electric field solution E (t, z) in the absence of the cylinder, and we then take
E (t, h) (the electric field at the cylinder height, z = h) as the field to implement the generalized
ICEK velocity. We emphasize that this approach is approximate since it neglects the impact of the
cylinder itself on the applied electric field, but our goal is to examine the limiting case of “small”
cylinders to shed light on the influence of AREFs on the ICEK flow and to serve as a limiting case
for more detailed future calculations.

To obtain the multimodal electric field (in the absence of the cylinder), the Poisson equation
relates the free charge density to the electric field gradient,

−ε
∂2φ

∂z2 = e(n+ − n−), (11)

while the transport of ions is governed by Nernst-Planck equations,

∂n±
∂t

= D±
∂2n±
∂z2 ± e

D±
kBT

∂

∂z

(
n±

∂φ

∂z

)
. (12)
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Here the symbols stand for permittivity of the electrolyte, ε; electric potential, φ; elementary charge,
e; number concentration of ion, n±; diffusivity, D±; Boltzmann constant, kB; absolute temperature,
T ; location with respect to the lower electrode, z; and time, t . The terms on the right-hand side of
the Nernst-Planck equation represent diffusive (thermal) motion and electromigration of the ions;
the nonlinearity of the problem stems from the latter term. To close the problem we apply the initial
conditions

n±(0, z) = n∞
± , (13a)

φ(0, z) = 0, (13b)

and specified potential and no-flux boundary conditions,

−D±

(
∂n±
∂z

± en±
kBT

∂φ

∂z

)
z=0,H

= 0, (14a)

φ(t, 0) = φ0 sin(ω0t ), φ(t, H ) = 0. (14b)

Note that we assume blocking electrodes where no electrochemistry occurs, such that the flux of
ions through the electrodes is identically zero [Eq. (14a)]. In addition, we neglect the formation of
a compact Stern layer at the electrodes. A sinusoidal electric potential of amplitude φ0 and angular
frequency ω0 = 2π f0 is applied on the lower electrode at z = 0 while the upper electrode at z = H
is kept grounded [Eq. (14b) and Fig. 1]. Here we use the approach outlined by Hashemi Amrei et al.
[28] to nondimensionlize the system of equations. The electrode spacing H and inverse frequency
1/ f0 are taken as the characteristic length and timescales, while φ0/H is used to normalize the
electric field:

z̃ = z

H
, t̃ = f0t, Ẽ = EH

φ0
. (15)

Moreover, for binary 1-1 electrolytes, there are four dimensionless parameters that uniquely describe
the system:


0 = φ0e

kBT
, δ = D−

D+
, κH =

√
n0e2

εkBT
H, LD =

√
D̂/ f0

H
. (16)

Here n0 = 2n∞, where n∞ is the bulk electrolyte concentration, and we have defined D̂ = √
D+D−

as the characteristic diffusivity [28]. Alternatively, we could use the ambipolar diffusivity [32];
however, Hashemi Amrei et al. [28] showed that choosing D̂ = √

D+D− yields accurate predictions
of the AREF length scale and its spatial structure, which are key elements of the present study
(cf. Sec. III B).

A. Linear solution

A linearized approximate solution to the problem was derived by Hollingsworth and Saville
for low applied voltages and equal ionic mobilities (i.e., 
0 � 1 and δ = 1) [33]. The linearized
solution is necessarily unimodal, albeit with phase lag and amplitude that depend on the system
properties and location:

Ẽ = Im

[
α cosh (αỹ) csch (α)+iαν2 coth (α)

1+iαν2 coth (α)
ei2π t̃

]
, (17)

where ỹ ≡ 2z̃ − 1 and the coefficients are

α2 ≡ 1

4

[
(κH )2 + i

2π

L2
D

]
, ν2 ≡ 2π

(κH )2L2
D

. (18)
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FIG. 2. Representative examples of the one-dimensional AREF. (a) Effect of the applied voltage on time
variations of the harmonic electric field (Ẽ ) at z̃ = 0.04 for δ = 1 (dashed) and δ = 3 (solid), at applied
potentials of 
0 = 1 (red) and 
0 = 15 (blue). (b) Spatial distribution of the time average electric field
(Ẽ0 = 〈Ẽ〉, AREF) for δ = 1 (dashed) and δ = 3 (solid). Note that for δ 	= 1, at locations very close to the
electrodes (z̃ → 0 or 1), the AREF reaches a maximum magnitude before sharply decaying toward zero (not
discernible here; cf. Refs. [27,28]). (c) and (d) FFT analysis of the harmonic electric field for δ = 1 (c) and
δ = 3 (d). Parameters: 
0 = 15 (b)–(d), LD = 0.2, κH = 2600.

Note that only two dimensionless groups, κH and LD, contribute to the approximate linear electric
field solution because low applied potential and equal mobilities are assumed. In these limits, then
Eq. (17) can be written in the form

Ẽ (t̃ ) = Ẽ1 cos (2π t̃ + γ1), (19)

where the amplitude Ẽ1 and phase lag γ1 are functions of both position and the system properties
(i.e., κH and LD). The subscript 1 denotes the frequency mode of the solution; for this unimodal
field, there is only one mode corresponding to the applied frequency f0.

B. Nonlinear solution

As reported by Hashemi Amrei et al. [27,28], numerical calculations show that the full nonlinear
electrokinetic model yields an electric field with much more complicated spatial and temporal
structures than the linearized result. See Refs. [27,28] for details on the numerical methodology
and solutions; here we focus on the results and how they pertain to ICEK. Figure 2(a) shows
representative examples of the numerically calculated instantaneous electric field versus time at
z̃ = 0.04 for low and high dimensionless applied voltages and for electrolytes of equal or nonequal
ionic mobilities. At the low voltage 
0 = 1 and for δ = 1 [Fig. 2(a), dotted red curve, 
0 = 1],
the electric field solution is a simple unimodal sinusoid consistent with the linearized prediction;
indeed, the linearized result in Eq. (17) is not distinguishable from the nonlinear result at this
scale. At a higher applied voltages, the contribution from the nonlinear electromigrative terms yield
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multimodal peaks [Fig. 2(a), dotted blue curve, 
0 = 15]. Qualitatively similar results are obtained
for δ 	= 1; the electric field is close to a sinusoid at low voltages and develops nonlinear behavior
upon increasing voltage [Fig. 2(a), solid red (
0 = 1) and blue (
0 = 15) curves, respectively].

The time average of the electric field (E0 = 〈E〉), however, shows a significant difference
between the cases of δ = 1 and δ = 3 [Fig. 2(b)]. For δ = 1 the electric field time average is
identically zero everywhere. In contrast, there is a significant nonzero time average electric field
(i.e., a DC field) generated for δ 	= 1. The first peak location of this AREF outside the Debye layer
closely follows a diffusive length scale, z̃peak ≈ 0.83LD (cf. Fig. 10 of Ref. [28]). Also note that
the peak occurs far away from the electrode [≈5 μm in Fig. 2(b)]; this behavior, along with the
spatially nonuniform AREF, stem from a nonzero time average free charge density far outside
the Debye layer. While the magnitude of AREF appears small when compared to the magnitude
of the harmonic electric field, the AREF-induced electrophoretic force was shown to be several
order of magnitudes larger than gravitational and colloidal forces [27]. Although indiscernible from
Fig. 2(b), as z → 0 or 1, within a few Debye lengths from the electrodes, AREF reaches to a peak
and then drops toward zero (cf. Refs. [27,28]).

An FFT analysis of the electric field modes shows that for δ = 1 [Fig. 2(c)] the field has
frequency components at odd integer multiples of the applied frequency. In other words, the
multimodal electric field can be modeled by a sum of sinusoids with frequencies of f0, 3 f0, 5 f0, . . .

and amplitudes that depend on system properties and location. For δ 	= 1 [Fig. 2(d)], in contrast, the
electric field has frequency components at all integer multiples of the applied frequency, including
zero (i.e., a steady field). In this case the electric field includes a sum of sinusoids with frequencies
of f0, 2 f0, 3 f0, . . . plus a steady contribution. Note that the effect of δ on these frequency modes is
consistent with a simpler toy model of just two ionic oscillators (see Ref. [27] for details).

Based on these numerical results, the instantaneous nonlinear electric field at any location can be
expressed as

Ẽ (t̃ ) = Ẽ0 +
∞∑
j=1

Ẽ j cos (2π jt̃ + γ j ), (20)

where Ẽ j and γ j are the z-dependent amplitude and phase lag of the frequency component j f0,
respectively. Note that there are two key differences compared to the linearized result [Eq. (19)].
First, the full nonlinear expression has a steady component, Ẽ0, whereas the linearized solution
does not. Second, the nonlinear expression has an infinite series of all the multiple modes of the
imposed frequency, whereas the linear solution is unimodal. In the limit where δ → 1, the steady
component Ẽ0 and the even modes Ẽ2 j = 0 for any integer j all vanish. The higher order odd modes,
however, are retained even when δ → 1.

IV. ICEK FLOW WITH AREFs

The sinusoidal nature of the linearized solution [Eq. (19)] indicates that the induced fluid flow
pattern is quadrupolar and symmetrical. Substitution of Eq. (19) into Eq. (8) and subsequent time
averaging gives the linear ICEK slip velocity as

〈
ũs

θ

〉 = 〈uθ 〉
εaφ2

0

/
(μH2)

= Ẽ2
1

sin (2θ )

ω2
0τ

2
c + 1

. (21)

Inserting the nonlinear electric field solution from Eq. (20) into Eq. (8) and time averaging gives
the nonlinear ICEK slip velocity:

〈
ũs

θ

〉 =
∞∑
j=1

[
Ẽ2

j

sin (2θ )

j2ω2
0τ

2
c + 1

]
+ 2Ẽ2

0 sin (2θ ) + 2ζ̃0Ẽ0 sin (θ ), (22)
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where ζ̃0 = ζ0H
aφ0

. Note that Eq. (22) has three contributions: (1) an ICEK quadrupolar flow due to the
first and all higher order modes of the nonlinear field, (2) an ICEK quadrupolar flow due to the steady
AREF, and (3) an electroosmotic dipolar flow due to the action of the steady AREF on the intrinsic
charge on the cylinder. For δ = 1 (Ẽ0 = 0), as voltage goes to zero Ẽ j 	=1 → 0, and the nonlinear
and linear slip velocities asymptotically converge. Unlike the linear slip velocity which predicts an
invariably quadrupolar and symmetrical fluid flow, the nonlinear one is in general asymmetrical due
to the dipolar electroosmotic term stemming from the steady field component. In other words, any
mismatch in the mobilities of the dissolved ions breaks the symmetry and induces net fluid flow
around a charged cylinder under AC polarization.

As discussed in detail by Hashemi Amrei et al. [28], Ẽ0 and Ẽ j are complicated functions
of the four dimensionless parameters 
0, LD, δ, and κH . Equation (22) introduces two more
dimensionless groups, ζ̃0 and ω0τc, that also affect the flow behavior. Under typical experimental
conditions, however, ω0τc � 1 and its impact is negligible; we do not consider it further here. A
parameter that is important, however, is the location of the cylinder between the two electrodes (i.e.,
h), which is included in the dimensionless group h̃ = h/H . In other words, the flow structure and
magnitude is governed by the six dimensionless parameters 
0, LD, δ, κH , ζ̃0, and h̃.

Using the slip velocity given by Eq. (22) for nonlinear ICEK, we find the radial velocity, angular
velocity, and corresponding stream function around the charged cylinder are, respectively,

ũr =
(

1

r̃2
− 1

)
ζ̃0Ẽ0 cos (θ ) + 2

(
1 − r̃2

r̃3

)
Ẽ2

0 +
∞∑
j=1

(
1 − r̃2

r̃3

)
Ẽ2

j(
ω2

0τ
2
c + 1

) cos (2θ ), (23a)

ũθ =
(

1

r̃2
+ 1

)
ζ̃0Ẽ0 sin (θ ) + 2

r̃3
Ẽ2

0 sin (2θ ) +
∞∑
j=1

1

r̃3

Ẽ2
j(

ω2
0τ

2
c + 1

) sin (2θ ), (23b)

�̃ =
(

1

r̃
− r̃

)
aζ̃0Ẽ0 sin (θ ) +

(
1

r̃2
− 1

)
aẼ2

0 sin (2θ ) +
∞∑
j=1

(
1

r̃2
− 1

)
aẼ2

j

2
(
ω2

0τ
2
c + 1

) sin (2θ ).

(23c)

Here �̃ = �μH2/(εa2φ2
0 ) is the dimensionless stream function and r̃ = r/a. (Please refer to the

Appendix for detailed derivation.) For linear ICEK, note that the velocity and stream function are
simply expressed by the first series terms on the right-hand side of Eq. (23) (i.e., Ẽ j = 0 for j 	= 1).

The streamlines for the linearized solution are invariably quadrupolar, i.e., the shape of the flow
never changes in the linearized field limit (although the flow velocity varies). In contrast, the flow
structure for the full nonlinear solution is highly sensitive to the system parameters. Representative
streamlines for the induced fluid flows from the nonlinear solution are provided in Fig. 3. Focusing
first on the mobility mismatch [Fig. 3(a)], the fluid flow pattern for an electrolyte with δ = 1 is
perfectly quadrupolar. In contrast, electrolytes with an ionic mobility mismatch (δ 	= 1) generate a
net fluid flow as a result of the dipolar contribution of the slip velocity (i.e., standard electroosmosis
due to the AREF). Note that the direction of the fluid flow depends sensitively on the magnitude of
δ; in other words, swapping out an electrolyte with δ < 1 (e.g., HCl) with an electrolyte that has
δ > 1 (e.g., NaOH) and holding all other parameters constant will result in a reversal in the direction
of flow.

A similar flow reversal also occurs for different magnitudes of the frequency-dependent diffusive
length scale, LD [Fig. 3(b)]. For sufficiently large values of LD, i.e., sufficiently low frequencies,
the fluid flow is dominated by the dipolar steady AREF-driven electroosmosis. For LD = 0.55 and
h̃ = 0.2 the flow is directed downward (in the negative z direction). This particular directionality
stems from the direction of the steady field component at this specific frequency and location. As
discussed by Hashemi Amrei et al. [28], the direction of the steady field at a given location depends
sensitively on the applied frequency; note in Fig. 2(b) that the direction of the field is negative
for 0 < z̃ < 0.1, positive for 0.1 < z̃ < 0.5, and antisymmetric for z̃ > 0.5. The precise positions
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FIG. 3. Effects of (a) mobility mismatch, (b) frequency-dependent diffusive length scale, and (c) cylinder
position on the induced fluid flow pattern around the cylinder, as calculated using Eq. (21) and the nonlinear
solution to the standard electrokinetic model [cf. Eq. (19)]. Parameters: 
0 = 10, δ = 3 (b), (c), LD = 0.2 (a),
(c), κH = 2600, ζ̃0 = −10, h̃ = 0.22 (a), (b).

where the field direction changes depend on frequency, with more zeros in the field strength
(i.e., reversals in the field direction) as frequency increases (LD decreases). The corresponding
flow thus changes dramatically, with the direction of the steady dipolar flow switching as LD

decreases to 0.33 [Fig. 3(b)]. Further decreases in LD (increases in frequency) further diminish the
dipolar contribution, and the fluid flow pattern becomes increasingly quadrupolar because Ẽ0 at this
particular location tends to decrease as LD decreases. The effect of cylinder location, with all other
parameters fixed, is shown in Fig. 3(c). At the midplane (i.e., h̃ = 0.5) where AREF necessarily
vanishes due to symmetry, the fluid flow is entirely quadrupolar. Away from the midplane (any
location h̃ 	= 0.5), there can be a net dipolar flow induced with direction dependent on the sign of
AREF.

We emphasize that the exact conditions upon which the flow reversal occurs is a sensitive
function of all six dimensionless parameters governing the system behavior and the location of
the cylinder, due to the complicated spatial structure of AREF [28]. Linearized theories with slip
velocity given by Eq. (21) will not capture these flow reversals, which are a direct result of ionic
mobility mismatch and the consquent AREF. In other words, solutions to the full nonlinear problem
with δ 	= 1 will yield flow reversals, whereas more sophisticated solutions to the electrokinetic
model at high voltages [26,34,35], but with the assumption of equal ionic mobilities, will not.

To further quantify the induced flow behavior, the effects of the dimensionless parameters on the
scalar component of the fluid velocity in θ direction (ũθ ) at a fixed location of r = 2a and θ = π/6
are shown in Fig. 4. We stress that these results are not general; the curves and critical values of flow
reversal are crucially dependent on the system properties and complicated spatial structure of the
AREF. Figure 4(a) shows the effect of mobility mismatch (δ) on ũθ at three different applied poten-
tials. Changes in δ have no impact on the linear solution, but δ dramatically affects the predictions of
the nonlinear solution. As expected, at a low voltage of 
0 = 1, the linear and nonlinear solutions
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FIG. 4. Influence of the six dimensionless parameters that govern ũs
θ , evaluated at r = 2a and θ = π/6.

In all figures, dashed black lines represent the velocity calculated using the linearized electric field, while
solid colored lines represent the velocity calculated using the full nonlinear solution for various parametric
values. Parameters: 
0 = 10 (d)–(f), δ = 3 (c), (d), LD = 0.2 (a), (b), (e), (f), κH = 2600 (a)–(c), (e), (f),
ζ̃0 = −10 (a)–(d), (f), h̃ = 0.22 (a)–(e). The inset of (d) shows a magnification of the nonlinear solution for
LD = 0.17.

converge at δ = 1. At higher voltages, however, even when the steady AREF component is zero
for δ = 1, there is a considerable difference between the linear and nonlinear predicted velocities,
stemming from the contribution of the higher order frequency modes. Furthermore, changing the
mobility mismatch alters the fluid flow both qualitatively and quantitatively. For instance, at 
0 =
10, the fluid velocity varies from ũθ ≈ 4.5×10−4 at δ = 1.04 (e.g., KCl) to ≈ −2×10−4 at δ=3.95
(e.g., NaOH).

An important point to consider, as discussed in Ref. [28], is that the effect of δ is nonmonotonic.
The AREF is always identically zero at δ = 1, and vanishes as δ → ∞. Where the peak AREF
magnitude occurs as a function of δ, however, depends on the applied voltage. At low voltages, the
peak occurs near δ ≈ 5 (or δ ≈ 1/5). Thus in the representative examples shown in Fig. 4(a), the
absolute magnitude of the velocity tends to peak near δ ≈ 5 and δ ≈ 1/5; for the range of 
0 shown
here, these are the specific values of δ where the field strength is greatest. As the applied voltage
increases, however, the AREF peaks in magnitude at values of δ closer to 1. In other words, at
higher voltages, AREF in electrolytes with δ close to 1 (e.g., KCl with δ ≈ 1.04) might be stronger
than that in electrolytes with a significant ionic mobility mismatch (e.g., NaOH with δ ≈ 3.95).
Indeed, many of the peculiar experimental observations such as fluid flow reversal upon changing
the frequency and voltage were reported for KCl electrolyte at relatively large voltages [7,10,20,36].

The effect of the applied potential 
0 is shown in Fig. 4(b) for different values of δ. Again,
the linearized dimensionless solution is insensitive to changes in 
0; dimensionally, the flow is
predicted to increase as φ2

0 [cf. Eq. (21)]. At low applied voltages and regardless of δ, the nonlinear
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solution approaches the linear solution (dashed black curve). As 
0 increases, however, the velocity
increases rapidly, i.e., the velocity increases faster than quadratically. For δ = 1/2, the increase is
even steeper. Interestingly, for δ = 2, increasing the applied voltage sufficiently will alter the fluid
flow direction. In contrast, for cases of δ = 1 and δ = 1/2 it is only the magnitude of ũθ that is
affected by 
0 and no change in direction is observed.

Figure 4(c) illustrates the effect of LD on the fluid velocity. The linear solution predicts an
exponential decay in ũθ with no direction change. In contrast, the nonlinear solution predicts
multiple direction changes upon varying LD. Recalling that the dimensionless parameter LD has
an inverse frequency dependence [Eq. (16)], increasing LD can be seen as deceasing the applied
frequency f0. Therefore, the results indicate how solutions to the full nonlinear electrokinetic model
are capable of capturing the fluid flow reversal by changing the applied frequency.

The effect of κH on the induced fluid velocity is depicted in Fig. 4(d) for two different values
of LD. The results are presented only for high κH values, where the assumption of ω0τc � 1
holds. Note that for the most part the linear and nonlinear solutions predict the fluid flow in
opposite directions, which is a consequence of δ 	= 1 [cf. Fig. 4(a)]. The magnitudes of both the
linear and nonlinear solutions drop by increasing κH , which corresponds to increasing the ionic
concentration. At higher concentrations, the Debye layer shrinks and it becomes less effective
in micron scale electrokinetic phenomena. Likewise, some experimental studies have reported a
strong concentration dependence of the fluid velocity magnitude in ACEO micropumps that tends
to strongly suppress the flows [7,20]. Hence, any future interpretation of the concentration effect in
ACEO pumps and similar systems should take into account the potentially confounding impact
of AREFs. Also, a peculiar direction change in the nonlinear solution happens for the case of
LD = 0.17 at κH ≈ 500. This result is qualitatively similar to a flow reversal with electrolyte
concentration that was reported in a different geometry of ACEO experiments [20].

Figure 4(e) demonstrates the effect of dimensionless zeta potential ζ̃0 on the fluid velocity. The
linear solution prediction has no electroosmotic contribution, making it insensitive to ζ̃0. Regarding
the nonlinear solution, for δ = 1, AREF is zero and again the cylinder charge has no impact on the
fluid velocity. When δ 	= 1 however, the fluid velocity linearly depends on the zeta potential, but
with direction that depends on the sign of the AREF.

Finally, the location of the cylinder h̃ has a significant impact on the fluid velocity distribution.
As shown in Fig. 4(f), the linear solution has no dependency on h̃, at least when, like in all practical
examples, the cylinder is placed far outside the Debye layer (κHh̃ � 1 and κH (1 − h̃) � 1 for h̃ <

1/2 and h̃ > 1/2, respectively). For the nonlinear solution and for δ = 1, again the cylinder location
does not affect the model predictions. This location independence is due to the fact that AREF, which
is responsible for the spatial nonuniformity of the electric field, is zero when δ = 1. Therefore, we
conclude that for electrolytes with δ = 1, regardless of the cylinder location, the fluid flow pattern
would be quadrupolar. When δ 	= 1, interesting behavior is observed [Fig. 4(f), δ = 1/2 and 2].
Changing the location dramatically alters both the magnitude and direction of the fluid velocity.
Moreover, the cases of δ = 1/2 and 2 predict the same fluid velocity at the midplane. Knowing
that AREF is always zero at the midplane, the fluid flow pattern would again be quadrupolar there,
regardless of the precise value of δ.

V. CONCLUSIONS

A key implication of the results presented here is that they point toward a resolution of
long-standing shortfalls of the ICEK theory, in particular the reversals in fluid flow direction
upon changes in the applied frequency and electrolyte type in AC electroosmosis pumps. To our
knowledge, the model presented here is the first to predict a flow reversal in an ICEK system that
retains the continuum approximation, i.e., without invoking finite ion size or crowding effects. The
model predicts that the flow structure will depend sensitively on several dimensionless parameters,
including ionic mobility mismatch (δ = D−/D+), diffusive length scale (LD, defined based on the
applied frequency), and even the location of cylinder between the electrodes, all of which complicate
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experimental interpretation. To date, all reported experiments on ICEK around charged cylinders
or spheres have placed the object exactly at the midplane between the two electrodes, or used an
electrolyte solution with δ ≈ 1 (e.g., KCl). In both of these cases, the results provided here predict
a quadrupolar fluid flow pattern, in qualitative agreement to the experiments. We are unaware of
published experimental results where the object is placed at a location other than the midplane in an
electrolyte with δ 	= 1.

A key limitation of our model is that it pertains only in the limits a/h � 1 and a/H � 1, so
that the presence of the cylinder has negligible impact on the electric field distribution obtained
from the one-dimensional solution. An improved model would take into account the effect of the
cylinder presence on the electric field itself, and how that alters the consequent flow. Such a full
two-dimensional numerical simulation for the electrokinetic equations will remove the necessity of
the above assumptions and will provide a better understanding of the phenomena. Likewise, ACEO
pumps intrinsically involve two-dimensional electrode arrays, so the influence of AREFs in these
systems will also require more sophisticated numerical techniques. Furthermore, we focused here
on the consequence of asymmetries in the ionic mobility and cylinder position, but the symmetry
of the system can be broken in other ways, including in the shape and/or surface chemistry of the
object or the applied electric field gradient, all of which have been shown to generate net fluid flows
and electrophoretic motion of conducting particles [8,37–39]. Finally, we focused here on dilute
solutions, but transport in more concentrated solutions will require consideration of Stefan-Maxwell
coupled ionic fluxes [32,40]. The influence of AREFs on ICEK flows in two-dimensional systems
with these more complicated broken symmetries is deferred to future studies.
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APPENDIX: VELOCITY PROFILES AND STREAMLINES

Given the time average slip velocity in θ direction around the surface of a cylinder (〈us
θ 〉), the

time average fluid flow profile [ur (r, θ ) and uθ (r, θ )] is derived. We consider two different cases of
standard electroosmosis (EOS) and induced-charge electrokinetics (ICEK).

1. Standard electroosmosis (EOS)

For a cylinder of radius a and intrinsic surface zeta potential of ζ0 subject to a far-field E (t ) = E ,
the slip velocity due to standard electroosmosis is given by

〈
us

θ

〉 = −εζ0Eθ |r=a

μ
= 2

εζ0E

μ
sin (θ ) = 2U sin (θ ). (A1)

We use stream function to solve this axisymmetric flow problem [41]. For a steady, creeping
flow, the stream function equation is[

1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂θ2

]2

� = 0, ur = 1

r

∂�

∂θ
, uθ = −∂�

∂r
, (A2)

subject to the following boundary conditions at r = a:

ur (a, θ ) = 0, uθ (a, θ ) = 〈us
θ 〉. (A3)

In addition, as r → ∞ the velocities must remain finite.
We now guess a solution of the form

� = f (r) sin θ. (A4)
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On substitution into Eq. (A2) we get

r4 f ′′′′ + 2r3 f ′′′ − 3r2 f ′′ + 3r f ′ − 3 f = 0. (A5)

Inserting f = crn, we find the roots as n = −1, 3 and a double root for n = 1. The latter yields
r ln (r) as another linearly independent solution. Therefore, the general solution to the stream
function equation [Eq. (A2)] becomes

� =
[

c1

r
+ c2r + c3r ln (r) + c4r3

]
sin (θ ), (A6)

which subsequently yields the velocity distributions as

ur =
[

c1

r2
+ c2 + c3 ln (r) + c4r2

]
cos (θ ), uθ =

{
c1

r2
− c2 − c3[ln (r) + 1] − 3c4r2

}
sin (θ ).

(A7)

For velocities to remain finite far from the cylinder, c3 and c4 must be zero. Finally, applying the
boundary conditions at r = a from Eq. (A3), we find the velocity distributions and stream function
as

ur =
(

1

r̃2
− 1

)
U cos (θ ), (A8a)

uθ =
(

1

r̃2
+ 1

)
U sin (θ ), (A8b)

� =
(

1

r̃
− r̃

)
aU sin (θ ), (A8c)

where r̃ = r/a.

2. Induced-charge electrokinetics (ICEK)

The slip velocity for ICEK is given by

〈
us

θ

〉 = 2
εaE2

μ
sin 2θ, (A9)

for a steady field E (t ) = E , and

〈
us

θ

〉 = εaE2

μ
(
ω2

0τ
2
c + 1

) sin 2θ, (A10)

for an oscillatory electric field E (t ) = E cos (ω0t + γ ). For generality, we write〈
us

θ

〉 = 2U sin 2θ, (A11)

where the U expression depends on the electric field type.
This time we guess � = f (r) sin (2θ ) and insert into Eq. (A2) to get

r4 f ′′′′ + 2r3 f ′′′ − 9r2 f ′′ + 9r f ′ = 0. (A12)

Substituting f = crn, the roots are obtained as n = −2, 0, 2, 4; therefore the general solution is

� =
(

c1

r2
+ c2 + c3r2 + c4r4

)
sin (2θ ). (A13)

The scalar velocity components are therefore

ur = 2

(
c1

r3
+ c2

r
+ c3r + c4r3

)
cos (2θ ), uθ =

(
2c1

r3
− 2c3r − 4c4r3

)
sin (2θ ). (A14)

013702-13



HASHEMI AMREI, MILLER, AND RISTENPART

Again, the condition of finite velocities as r → ∞, eliminates c3 and c4 terms. Applying the
boundary conditions at r = a [Eq. (A3)], the final forms of the velocity and stream function profiles
are obtained as

ur = 2

(
1 − r̃2

r̃3

)
U cos (2θ ), (A15a)

uθ = 2

r̃3
U sin (2θ ), (A15b)

� =
(

1

r̃2
− 1

)
aU sin (2θ ). (A15c)

3. Superposition

Now consider an electric field of the form

E (t ) = E0 +
∞∑
j=1

Ej cos ( jω0t + γ j ). (A16)

By superposition one can find the distributions of scalar velocity components and stream function
as given in Eq. (23).
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