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A perturbation solution to the full Poisson–
Nernst–Planck equations yields an asymmetric
rectified electric field†

S. M. H. Hashemi Amrei,a Gregory H. Miller,a Kyle J. M. Bishop b and
William D. Ristenpart *a

We derive a perturbation solution to the one-dimensional Poisson–Nernst–Planck (PNP) equations

between parallel electrodes under oscillatory polarization for arbitrary ionic mobilities and valences.

Treating the applied potential as the perturbation parameter, we show that the second-order solution

yields a nonzero time-average electric field at large distances from the electrodes, corroborating the

recent discovery of Asymmetric Rectified Electric Fields (AREFs) via numerical solution to the full

nonlinear PNP equations [Hashemi Amrei et al., Phys. Rev. Lett., 2018, 121, 185504]. Importantly, the

first-order solution is analytic, while the second-order AREF is semi-analytic and obtained by numerically

solving a single linear ordinary differential equation, obviating the need for full numerical solutions to

the PNP equations. We demonstrate that at sufficiently high frequencies and electrode spacings the

semi-analytical AREF accurately captures both the complicated shape and the magnitude of the AREF,

even at large applied potentials.

1 Introduction

The dynamic response of a fluid to an applied oscillatory
electric potential is of fundamental importance in many
electrokinetic systems, including induced-charge electro-
kinetics (ICEK),1–5 ac electroosmosis,6–9 electrohydrodynamic
manipulation of colloids,10–15 electroconvection,16 and ionic
winds in atmospheric plasmas.17,18 In continuum theory, ana-
lysis of such systems is based on the Poisson–Nernst–Planck
(PNP) equations, also referred to as the standard electrokinetic
model.19 The Poisson equation relates the free charge density
to the Laplacian of the electric potential via Gauss’s law, and
the transport of dissolved ions is governed by the electromi-
grative and diffusive fluxes.

The PNP equations are nonlinear and coupled; as a result,
researchers have often invoked simplifying assumptions to
solve them. The most common of these assumptions is that
the applied potential (f0) is less than the thermal potential, i.e.,
f0 { kBT/e where kB, T, and e are the Boltzmann constant,
absolute temperature, and elementary charge, respectively.
This assumption allows linearization of the problem via a

perturbation expansion, written in terms of F0 = f0e/(kBT) { 1.
In most cases, the solution is assumed to include an equilibrium
contribution (unperturbed) plus a perturbation linear in the
applied potential (i.e., first-order expansion, O(F0)). White and
coworkers20–22 and Hinch et al.23 were among the firsts to follow
this procedure in their analysis of dilute colloidal suspensions,
obtaining information about the dipole coefficient and electro-
phoretic mobility of spherical colloids subject to an oscillating
electric field.

Researchers have also focused on finding the dynamic
response of quiescent electrolytes (no colloids) between parallel
electrodes. Hollingsworth and Saville24 used a first-order per-
turbation expansion to derive an analytical approximate
solution to the electric potential. Note that for a sinusoidal
applied potential, a first-order perturbation expansion invari-
ably yields a single-mode sinusoidal solution, albeit with a
phase lag and amplitude that depend on location and system
properties. It was later shown, however, that the nonlinear
terms in the PNP equations yield multimodal solutions for
F0 4 1.25–27 Olesen et al.25 numerically solved the PNP equations
to show the significance of nonlinear terms at high potentials.
This multimodal behavior, which was later corroborated by
analytical solutions at asymptotically high26 and moderate
potentials,27 casts doubt on the common interpretation of
electrokinetic systems based on linearized theories.

Even more counterintuitively, recent work has revealed that
electrolytes with non-equal mobilities generate multimodal
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electric fields with a long-range, nonzero time-average.28,29

In other words, an oscillatory electric potential can induce
a steady electric field within the liquid. Referred to as an
Asymmetric Rectified Electric Field (AREF), the steady field in
essence results from the mismatch in the ionic mobilities; the
uneven magnitudes of the oscillatory motion of the ions
give rise to a net free charge density, in turn creating a steady
field component. The spatial distribution and magnitude of
the AREF depends sensitively on the applied frequency and
magnitude of the ionic mobility mismatch. Notably, the
induced AREF persists several microns away from the electro-
des, with a characteristic diffusive length scale ‘D B 1–10 mm.
This long-range behavior of AREF is at odds with the common
assumption that most of the important electrokinetic phenomena
are governed solely by the Debye length scale (k�1 B 1–100 nm).
Importantly, the calculated AREF is consistent with observations
of colloidal levitation against gravity,30 and is potentially respon-
sible for the otherwise unexplained observations of flow reversal
in ICEK systems.31

Hashemi Amrei et al. demonstrated that even a toy model of
two ions undergoing asymmetric harmonic oscillation could
yield an AREF.28 Consider two ions, one positive and one
negative, oscillating (as x�(t)) in response to an external sinu-
soidal electric field as illustrated in Fig. 1. When the two ions
have equal diffusivities (D+ = D�), they oscillate with the same
amplitude in response to the external electric field. However,
when there is a mismatch between the ion diffusivities, the fast
moving ion undergoes an oscillation with a higher amplitude
compared to the slow moving one. Then one can use Coulomb’s
law to evaluate an induced electric field (DE) due to the ion
oscillations at an arbitrary point xf 4 |x�|. It turns out that

when D+ = D�, the induced electric field is symmetrical in time
with a zero time-average. However, for D+ a D�, a non-zero
time-average electric field is induced. One can illustrate that
this non-zero steady field component varies to leading order as
the square of the applied field, i.e., DE p E0

2 (cf. Hashemi
Amrei et al.28).

The two-ion model serves as a toy model only to provide
some intuition about the importance of ionic mobility
mismatch. As such, it lacks some fundamental aspects of an
electrokinetic system such as the ion–ion interactions and the
influence of thermal energy. To capture these effects, one
must invoke the PNP equations. Consequently, all quantitative
predictions to date have depended on complicated and time-
consuming numerical solutions to the PNP equations. Progress
assessing the impact of AREFs on other systems has been
hindered by the lack of analytical insight. Note that AREF is
necessarily a nonlinear effect; therefore, first-order perturba-
tion schemes cannot capture AREF, even when considering the
asymmetry of electrolytes.20–23 Additionally, Hashemi Amrei
et al. demonstrated that AREF is identically zero for symmetric
electrolytes;28,29 as a result, prior studies considering the non-
linear effects at high potentials but neglecting the asymmetry of
ions could not predict the AREFs either.25–27 In short, only
solutions to the full nonlinear PNP equations for asymmetric
electrolytes predict AREF.

In this work, we provide a new, simpler, solution to the PNP
equations for a 1-D system with arbitrary ionic mobilities and
valences. We use a perturbation approach for small applied
oscillatory potentials to find an exact analytical solution
accurate to first-order. The first-order solution provides insight
on how mobility mismatches alter the charge and potential
distributions versus time and position. Furthermore, we derive
a governing ordinary differential equation (ODE) for the time-
average second-order solution, i.e., the AREF. We demonstrate
that in the limit of small applied potentials this analytical
AREF asymptotically converges in both spatial dependence
and magnitude to numerical solutions of the full PNP equa-
tions. This approach yields the first independent theoretical
corroboration of the existence of AREFs, and furthermore
provides researchers with a rapid means of calculating the
AREF without requiring a numerical solution to the full PNP
system of equations.

The paper is organized as follows. We start by reviewing the
PNP equations in Section 2. A detailed derivation of the
approximate perturbation solution is provided in Section 3.
The results for the first and second order solutions are pre-
sented and discussed in Section 4. We finish with some
concluding remarks on the key results and implications for
the electrokinetics community in Section 5.

2 Theory
2.1 Poisson–Nernst–Planck equations

We consider a binary electrolyte confined by two parallel
electrodes separated by distance 2‘ as depicted in Fig. 2.

Fig. 1 Two-ion model illustrating AREF. Top row: Oscillation of a pair
of ions (x� vs. time) with diffusivities D� in response to an electric field
E(t) = E0 cos(ot) for D+ 4 D�, D+ = D�, and D+ o D�. The dotted curves show
the oscillation of the center of charge. Bottom row: Induced electric field
(DE) at an arbitrary point xf 4 |x�| due to the ion oscillations vs. time. The
horizontal dashed lines show the time-average electric field hDEi.
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The Laplacian of the electric potential f(x,t) is related to the
free charge density r(x,t) by the Poisson equation

�e@
2f
@x2 ¼ r ¼ e(z+n+ + z�n�). (1)

Here subscripts � stand for positive and negative ions and the
symbols denote liquid permittivity, e; elementary charge, e;
charge numbers, z�; and ion concentrations, n�. The transport
of ions is governed by the Nernst–Planck equation

@n�
@t
þ @j�
@x
¼ 0, (2)

where the ion flux j�(x,t) accounts for transport due both to
diffusion and electromigration in the electric field:

j�(x; t) ¼ �D�
@n�
@x
� z�eD�

kBT
n�
@f
@x

, (3)

where D� and kBT are the ion diffusivities and thermal energy,
respectively.

Initially, no electric potential is applied and the electrolyte is
spatially homogeneous,

n�(x,0) ¼ nN

� ¼ �z�nN, (4)

where nN is the bulk number concentration of the electrolyte.
An oscillatory potential of amplitude f0 and angular frequency
o is applied across the electrodes such that

f(�‘,t) ¼ �f0 sin(ot). (5)

Note that field-induced ion motion depends only on the
potential gradient (not the potential itself). We can therefore
measure the potential from any time-dependent reference we
choose without altering the system dynamics. For example, we
can add f0 sin(ot) to the applied potential at �‘ in eqn (5) to
describe the common experimental scenario of a grounded
electrode at one boundary (namely, x = ‘). However, this
antisymmetric boundary condition, along with placing the
origin at the midplane and electrodes at x = �‘ (cf. Fig. 2),
significantly simplifies the analytical analysis.

To close the problem, we assume no ion flux at the electro-
des (i.e., no electrochemistry),

j�(�‘,t) ¼ 0. (6)

We acknowledge the fact that the assumption of negligible
electrochemistry is justified only at low applied potentials.
Additionally, we neglect the possible creation of a compact
Stern layer at the electrodes which is known to cause a
considerable potential drop between the electrode and
electrolyte.25 Also note that we focus on dilute electrolytes
where the system dynamics is governed solely by the transport
of the dissolved ions. For concentrated solutions, Stefan–Max-
well equations are required to account for the transport of all
components including the solvent.32,33

2.2 Dimensionless form

The diffusivities D+ and D� can be expressed by two parameters
characterizing the diffusivity magnitude D and the diffusivity
difference b as

D ¼ 2D+D�
D+ + D�

and b ¼ D+ � D�
D+ + D�

, (7)

where �1 r br 1. Similarly, the charge numbers z+ and z� can
be expressed by a magnitude parameter z and a difference
parameter g:

z ¼ 1
2

(z+ � z�) and g ¼ z+ + z�
z+ � z�

, (8)

where �1 r g r 1. Note that the charge numbers z� are signed
quantities and g = 0 for equal-valence (z+ = �z� = z) electrolytes.
The two difference parameters b and g will play a central role in
characterizing asymmetries in the binary electrolyte.

We nondimensionalize the governing equations using the
following characteristic scales. Lengths are scaled by the
Debye length

k�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ekBT

2e2z2n0

s
, (9)

where the concentration n0 is defined as

n0 ¼
1

2z2(z+
2n1+ + z�

2n1� ) ¼ 1
2z2(z+z�

2 � z+
2z�)n1. (10)

All concentrations are scaled by n0. The electric potential is
scaled by kBT/(ze), and time is scaled by 1/(k2D). Using these
scalings, the dimensionless variables are obtained as

~x ¼ kx, ~t ¼ tk2D, ~n� ¼
n�
n0

, ~f ¼ fze
kBT

. (11)

There are also five dimensionless parameters b, g, k‘, F0 =
f0ze/(kBT), and O = o/(k2D) that uniquely describe the system.

Using the above dimensionless groups, the dimensionless
governing equations become

@~n�
@~t
¼ 1

1� b
@2~n�
@~x2

� ð1� gÞ @
@~x

~n�
@ ~f
@~x

 !" #
, (12)

Fig. 2 Schematic diagram of the problem and not-to-scale comparison
of different characteristic length scales, i.e., Debye length (k�1), diffusive
length scale (‘D), and electrode spacing (‘). A single-mode oscillatory
electric potential of �f0 sin(ot) is applied on the parallel electrodes
at x = �‘.
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�@
2 ~f
@~x2 ¼ ~r ¼ 1

2
(1þ g)~n+ �

1
2

(1� g)~n�. (13)

The dimensionless initial and boundary conditions are

~n�(~x,0) ¼ 1
1� g

, (14)

~f(�k‘,t~) ¼ �F0 sin(Ot~), (15)

j~�(�k‘,t~) ¼ 0. (16)

Here the dimensionless ion flux is

~j� ¼
j�

kDn0
¼ � 1

1� b
@~n�
@~x
� (1� g) ~n�

@ ~f
@~x

 !" #
. (17)

3 Approximate solution

As discussed before, the system of equations given by eqn (12)–
(16) is coupled and nonlinear with significant disparity of
length and time scales. In particular, accounting for ionic
mobility and valence mismatches complicates the numerical
solution to the problem.28,29 Alternatively, using a perturbation
expansion, we can derive an approximate analytical solution
that captures the system behavior, especially for asymmetric
cases (i.e., b a 0 and/or g a 0).

3.1 Perturbation expansion in U0

In the limit of small potentials (F0 { 1), the solution can be
approximated by the power series

n~�(x~,t~) ¼ n~(0)
� (x~,t~) + F0n~(1)

� (x~,t~) + F2
0n~(2)
� (x~,t~) + . . . (18)

~f(x~,t~) ¼ ~f(0)(x~,t~) + F0
~f(1)(x~,t~) + F2

0
~f(2)(x~,t~) + . . . (19)

We substitute these expansions into the governing equations
and initial/boundary conditions, and collect like powers of F0.
Below, we solve for the zeroth-order solution, the first-order
solution, and the time-average second-order electric field.

3.1.1 Zeroth-order. One can show that the zeroth-order
solution is simply

~n(0)
� (~x,~t ) ¼ 1

1� g
, (20)

~f(0)(x~,t~) ¼ 0. (21)

Here, we have neglected the intrinsic zeta potential of the
electrodes for simplicity. Therefore, the zeroth-order solution
is specified by the initial conditions of the problem. However,
inclusion of a zeta potential is straightforward; the zeroth-order
solution can be replaced by an analytical solution to the
equilibrium problem with constant potential boundary condi-
tion. Nonetheless, we should emphasize that this assumption
affects only the solution at the Debye scale (close to the
electrodes), while we are particularly interested in the behavior
of the system at the micron scale (several Debye lengths to
microns away from the electrodes).

3.1.2 First-order. Using the zeroth-order solution, the first-
order system of equations can be expressed as

@~n(1)
�
@~t

+
@ ~j (1)
�

@~x
¼ 0, (22)

�@
2 ~f(1)

@~x2 ¼
1
2

(1 + g)~n(1)
+ �

1
2

(1� g)~n(1)
� , (23)

subject to the following boundary conditions:

~f(1)(�k‘,t~) ¼ �sin(Ot~), (24a)

j~(1)
� (�k‘,t~) ¼ 0. (24b)

Here, the first-order ion flux j~(1)
� (x~,t~) is

~j (1)
� (~x; ~t ) ¼ � 1

1� b
@ ~n(1)
�
@~x
� @

~f(1)

@~x

" #
. (25)

We consider solutions of the form

n~(1)
� (x~,t~) ¼ Im[n̂(1)

� (x~)eiOt~], ~f(1)(x~,t~) ¼ Im[f̂(1)(x~)eiOt~]. (26)

The complex amplitudes n̂(1)
� (x~) and f̂(1)(x~) are governed by

iOn̂(1)
� ¼

1
1� b

@2n̂
(1)
�

@~x2 �
@2f̂(1)

@~x2

" #
, (27)

�@
2f̂(1)

@~x2 ¼
1
2

(1þ g)n̂(1)
+ �

1
2

(1� g)n̂(1)
� . (28)

The corresponding boundary conditions are

f̂(1)(�k‘) ¼ �1, (29a)

� 1
1� b

@n̂(1)
�
@~x
� @f̂

(1)

@~x

" #
�k‘

¼ 0. (29b)

Note that this problem has odd symmetry about
x~¼ 0 (n̂(1)

� (0) ¼ f̂(1)(0) = 0). Substituting eqn (28) for the potential
into eqn (27) for the ion concentrations, we obtain an eigen-
value problem from which one can derive the following solution
for n̂(1)

� (x~)

n̂(1)
+ (x~) ¼ A(�g + s)sinh(l�x~) + B(1 � g)sinh(l+x~), (30)

n̂(1)
� (x~) ¼ A(1 + g)sinh(l�x~) � B(�g + s)sinh(l+x~), (31)

with

s ¼ 2ibOþ
ffiffiffiffi
D
p

, (32a)

D ¼ 1 � 4bO(ig + bO). (32b)

The eigenvalues l� are

l� ¼
1ffiffiffi
2
p (1 + 2iO�

ffiffiffiffi
D
p

)1=2
. (33)
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Substituting the solutions from eqn (30) and (31) for the
ion concentrations into eqn (28) and subsequent integration
yields

f̂(1)(~x) ¼ Cx� A(1 + g)(s� 1)
sinh(l�~x)

2l�2

� B(1� g)(s + 1)
sinh(l+ ~x)

2l+2 . (34)

The constants A, B, and C are determined by the boundary
conditions at x~ = k‘:

A ¼ s� 1
l�k‘cosh(l�k‘)G

, B ¼ s + 1
l+k‘cosh(l+k‘)G

, (35)

C ¼ 1
k‘
�1 + A(1 + g)(s� 1)

sinh(l�k‘)
2l�2

�

þ B(1� g)(s + 1)
sinh(l+k‘)

2l+2

�
.

(36)

Here the parameter G is

G ¼ s2 � 2gs + 1� 1
2k‘

(g + 1)(s� 1)2(l�k‘� tanh(l�k‘))
l�3

�

� (g� 1)(s + 1)2(l+k‘� tanh(l+k‘))
l+3

�
. (37)

Finally, having the zeroth and first order perturbation terms, the
overall first-order solution (denoted by superscript [1]) becomes:

n~[1]
� (x~,t~) ¼ n~(0)

� (x~,t~) + F0n~(1)
� (x~,t~), (38)

~f[1](x~,t~) ¼ ~f(0)(x~,t~) + F0
~f(1)(x~,t~). (39)

One can show that for the special case of symmetric electro-
lytes (i.e., b = g = 0), this first-order solution becomes identical
to the solution provided by Hollinsworth and Saville.24

Note that many electrolytes have z+ = |z�| for which g = 0
(e.g., NaCl, NaOH, KCl, KOH, etc.). For such electrolytes,
D = 1 � 4b2O2 (cf. eqn (32b)). Then an interesting case occurs
when b2O2 = 1/4, yielding D = 0 and hence, l+ = l�. In this case a
separate solution is necessary; please see Appendix A for
details. Our independent numerical calculations (not shown)
and our separate analytical solution (Appendix A) indicate that
the solution behavior does not qualitatively change when g = 0
and b2O2 = 1/4, i.e., there is no special physical significance to
this combination of parameter values.

3.1.3 Second-order. The second-order governing equations
for n~(2)

� and ~f(2) are

@~n(2)
�
@~t

+
@~j (2)
�
@~x
¼ 0, (40)

�@
2 ~f(2)

@~x2 ¼
1
2

(1 + g)~n(2)
+ �

1
2

(1� g)~n(2)
� , (41)

where

~j (2)
� (~x; ~t ) ¼ � 1

1� b
@ ~n(2)
�
@~x
� @

~f(2)

@~x
� (1� g) ~n(1)

�
@ ~f(1)

@~x

" #
. (42)

The boundary conditions are

~f(2)(�k‘,t~) ¼ 0, (43a)

j~(2)
� (�k‘,t~) ¼ 0. (43b)

One can show that the time-average of eqn (40) over a period
of the applied potential (i.e., t~= 0 to 2p/O) yields:

@
�

~j (2)
�
�

@~x
¼ 0,!

�
~j (2)
�
�
¼ constant (44)

with

�
~j (2)
�
�
¼� 1

1� b
@
�

~n(2)
�
�

@~x
�
@
�

~f(2)�
@~x

� 1
4

(1� g)

"

� n̂(1)
� �E(1) þ �n(1)

� Ê(1)
	 
375.

(45)

Here hXi is the time-average of X, Ê(1) = �@f̂(1)/@x~, and overbars
denote complex conjugates, e.g., �E (1) = conj(Ê(1)). All electric
fields (E = �@f/@x) are scaled by kBTk/(ze).

Note that eqn (44) combined with the time-average of
the ion flux boundary condition (i.e., h j~(2)

� i�k‘ = 0) imply
that h j~(2)

� i = 0 everywhere. Therefore using eqn (45) one can write

@
�

~n(2)
�
�

@~x
¼ �

�
~E(2)�� 1

4
(1� g) n̂(1)

� �E(1) + �n(1)
� Ê(1)

	 

. (46)

On the other hand, the time-average of eqn (41) becomes

�
@2
�

~f(2)�
@~x2 ¼ 1

2
(1 + g)

�
~n(2)
+
�
� 1

2
(1� g)

�
~n(2)
�
�

, (47)

which can be differentiated with respect to x~ as

@2
�

~E(2)�
@~x2 ¼ 1

2
(1 + g)

@
�

~n(2)
+
�

@~x
� 1

2
(1� g)

@
�

~n(2)
�
�

@~x
. (48)

Then substituting @hn~(2)
� i/@x~ from eqn (46) yields the following

ODE for the time-average electric field:

@2
�

~E(2)�
@~x2 �

�
~E(2)� ¼ f , (49)

where

f ¼ 1
8

(1 + g)2n̂(1)
+ + (1� g)2n̂(1)

�

	 

�E (1)

h

þ (1þ g)2�n(1)
+ + (1� g)2�n(1)

�

	 

Ê(1)
i

.

(50)

At the boundaries x~ = �k‘, we assume hÊ(2)i�k‘ = 0 to close the
problem. Note that this assumption is consistent with all of our
numerical solutions for single-mode sinusoidal applied potentials.

The right hand side f in eqn (49) is known from the first-order
solution. However we could not find an explicit expression for
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this complicated function in terms of the dimensionless para-
meters and variables. Therefore, we numerically solve this ODE
to find a semi-analytical approximation to AREF. (Please refer to
Appendix B for details of the corresponding numerical solution.)

4 Results and discussion

In the following subsections, we present and discuss the results
of first-order and second-order solutions, focusing mainly on
the impacts of b and g. We also compare these low-potential
approximate solutions with the numerical solution to the full
nonlinear PNP equations. For visual purposes, we change
the origin of the spatial domain from midplane to the left
electrode, i.e., y = x + ‘ with y A [0,2‘].

4.1 First-order solution

Fig. 3 compares the first-order (eqn (38) and (39)) and numer-
ical solutions to the ion concentrations and electric potential at
different voltages. (Detail of the numerical solution algorithm
are provided elsewhere.28) The values are normalized by F0 to
render the analytical solution independent of the applied
potential. Time variations of excess positive and negative ion
concentrations and electric potential are depicted in Fig. 3(a–c)
at a certain location of ky = 1 (i.e., at the edge of the Debye
layer). The highly multimodal numerical solutions approach
the analytical solution by decreasing the applied potential
to F0 B 1. As expected, the first-order analytical solution is
sinusoidal, oscillating at the same frequency as the applied
potential (i.e., O), with its amplitude and phase lag depending

on location and other dimensionless groups. Fig. 3(d) quanti-
tatively compares the numerical and analytical solutions in the
time and space domains. The integral norm of the difference,
defined as

~X ½1� � ~XN
�� �� ¼ 1

(2k‘)
2p
O

� �ð2p
O

0

ð2k‘

0

~X ½1� � ~XN
�� ��

~y;~td~yd~t, (51)

is plotted against F0, where the superscripts [1] and N denote
the first-order and numerical solutions, respectively, and
X = n�, f. Note that the observed convergence rate is O(F0) as
expected for this first-order approximation.

The effect of b on the first-order solution is demonstrated in
Fig. 4 for g = 0. The excess ion concentrations, free charge density,
and electric potential are shown vs. position at a certain time of
Ot = p/2 (i.e., when the applied potential reaches to its peak
magnitude). For symmetric electrolytes (b = 0, thick black curves)
the ion concentrations reach to the bulk values after a few Debye
layers. However, for ba 0, where there is a mismatch between the
mobilities of ions, a non-monotonic behavior is observed. The ion
concentrations oscillate spatially with an amplitude decaying to
zero at the midplane (Fig. 4(a and b)) (please see the supplementary
animated movie for the time variations of the spatial distributions,
ESI†). Far away from the electrode (insets in Fig. 4(a and b)), the
negative and positive ions appear to have the same distribution and
dependency on the b value. But an analysis of the free charge density
distribution (r[1]) reveals a systematic difference (Fig. 4(c)). For a
symmetric electrolyte the free charge density approaches to zero after
a few Debye layers. For b a 0 however, r[1] spatially oscillates to
become identically zero at the midplane. Note that the free charge
density is three orders of magnitude smaller than the nominal
ion concentrations. However it was shown that, despite its small
magnitude, it yields electrophoretic forces (AREF-induced) that are
several orders of magnitude higher than gravitational and colloidal
forces in electrokinetic systems.28 Finally, Fig. 4(d) shows the impact
of b on the electric potential distribution. Regardless of b, a
considerable portion of the potential drop occurs within a few Debye
layers from the electrodes. The screening strength of the Debye layer
seems to increase for b a 0, further dropping the potential toward
zero in the bulk.

Fig. 5(a) shows the impact of g on the free charge density
distribution for b = 0 and �1/2. We consider the most common
values of g = �1/3, 0, 1/3 which correspond to 1–2, 1–1, and 2–1
electrolytes, respectively. Interestingly, when b = 0, g has
no effect on the spatial distribution of free charge density.
Similar to the results illustrated in Fig. 4(c), r[1] approaches to
zero within a few Debye layers away from the electrodes. When
b a 0, the valence mismatch becomes important. For this
representative example shown in Fig. 5(a), g can even qualita-
tively change the spatial oscillation of the distribution, e.g.,
dashed red curve (g = �1/3) changes sign (charge reversal) near
the midplane which does not happen for the other two g cases.
Note that depending on the applied frequency and the electro-
lyte type, multiple charge reversals can occur. The results
presented here serve as a representative example. (Please see

Fig. 3 Comparison of the first-order approximate and full numerical solu-
tions to the PNP equations. (a–c) Time variations of the normalized ion
concentrations (a and b) and potential (c) for the approximate solution and
numerical solution at different potentials (F0 = 20, 10, 5, 1), evaluated at a
fixed location of ky = 1 (i.e., one Debye layer away from the left electrode).
(d) Normalized norm of the difference between approximate and numerical
solutions vs. potential. Parameters: b = �1/3, g = �1/3, k‘ = 100, O = 0.01.
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Hashemi Amrei et al.29 for a detailed analysis of charge rever-
sals.) Additionally, g = 0 seems to provide the maximum
nonzero free charge density in the bulk. A notable observation
in Fig. 4(c and d) is that |b| (not b) governs the system behavior.
For example, cases of b = �1/3 (D� = 2D+) and b = 1/3 (D+ = 2D�)
yield the same results. As shown in Fig. 5(b), this behavior
breaks when g a 0. At fixed location of ky = 50 and time of

Ot~ = p/2, the free charge density is plotted vs. b for different
g values. We notice that for g = 0, it is the absolute value of b
that determines the system behavior, consistent with the
results in Fig. 4(c). But when g a 0, the corresponding curves
of positive and negative g are mirrored about b = 0, and the
system is governed by the product bg. Moreover, for b = 0, the
free charge density at the micron scale is zero for all g values, in
accordance to the spatial distributions in Fig. 5(a).

4.2 Second-order solution

The semi-analytical AREF from eqn (49) is compared to that
obtained from numerical solution to the PNP equations in
Fig. 6 at different applied potentials. Hereafter, we refer to
these two AREFs as semi-analytical (hÊisA) and numerical (hÊiN),
respectively. The AREF is normalized by F2

0 to make the semi-
analytical AREF independent of the applied potential. (Note
that hÊisA = F2

0hÊ(2)i.) Fig. 6(a) shows the comparison for
O = 0.001. We realize that as F0 gets smaller, the numerical
AREF approaches to the semi-analytical one. More importantly
at the micron scale, which is of interest to most researchers, the
semi-analytical solution accurately captures the complicated
spatial structure of AREF. As a matter of fact, the curves of
different F0 collapse under appropriate normalization. This
behavior is robust, even at higher frequencies (Fig. 6(b)) where
AREF has multiple sign changes. In other words, the semi-
analytical solution correctly predicts the AREF sign and zeros.
Therefore, instead of the complicated numerical solution to the
PNP equations, researchers can safely use this approximation
to find the direction of AREF-induced electrophoretic force.
(We will discuss these issues in more detail; cf. Fig. 9 and the
corresponding discussion.)

We have analyzed the impact of b on the semi-analytical
AREF in Fig. 7 when g = 0 and �1/3. For g = 0, Fig. 7(a and b)
show a non-monotonic b dependence of the AREF peak magni-
tude. By increasing the |b| from 0 (identically zero AREF) to 1,
AREF peak magnitude at the micron scale first ascends to a
maximum and then drops. Notably, when |b| - 1 the spatial

Fig. 4 Effect of b on the first-order solution. Spatial variations of the
normalized positive and negative ion concentrations (a and b), free
charge density (c), and potential (d) for different b, evaluated at a fixed
time of Ot~= p/2. The black curves in all figures correspond to b = 0. Note
that the insets in (a) and (b) look very similar but are quantitatively distinct.
Parameters: g = 0, k‘ = 100, O = 0.01.

Fig. 5 Effects of g and b on the first-order solution. (a) Spatial variations of
the normalized free charge density for different g and two different b
values of 0 and �1/2, evaluated at a fixed time of Ot~= p/2. The arrow points
to the tiny charge reversal that occurs for b = �1/2, g = �1/3 near the
midplane. (b) Normalized Free charge density vs. b for different g values,
evaluated at fixed time and location of Ot~= p/2 and ky = 50. Parameters:
k‘ = 100, O = 0.01.

Fig. 6 Comparison of the second-order approximate (semi-analytical)
and numerically calculated AREF (i.e., time-average electric field, hE~i).
Spatial variations of the normalized AREF for approximate solution and
numerical solution at different potentials (F0 = 10, 7, 5, 1) and for O = 0.001
(a) and O = 0.01 (b). Parameters: b = �1/3, g = �1/3, k‘ = 100.
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structure is significantly affected and the peak disappears
(curves a and f in Fig. 7(a and b), respectively). Similar observa-
tions were reported for the numerical AREF calculation.29 The
problem gets more intricate for a nonzero g. A representative
case of g = �1/3 is depicted in Fig. 7(c and d). When b o 0,
changing the g from 0 to �1/3 slightly affects the AREF
distribution, decreasing its magnitude (cf. curves in Fig. 7(a
and c)). However, when b 4 0, a qualitative difference is
observed between cases of g = 0 and �1/3 (e.g., compare j curves
in Fig. 7(b and d)). As pointed out by Hashemi Amrei et al.,29 when
the faster ion has a smaller valence (and vice versa), there will be a
competition between ionic mobility and valence mismatches to
determine the sign of AREF. In the context of this study, the
competition exists when bg o 0. When bg 4 0, the both sources
of asymmetry work in accord to determine the AREF sign. Another
notable observation is that when b = 0, regardless of g, AREF is
identically zero at the micron scale.

It would be helpful to compare the AREF for actual electro-
lytes of different (b, g) combinations (Fig. 8). The diffusivity of an
ion can be expressed in terms of its drag coefficient (li) as20,23,24

Di ¼
kBT
li

, li ¼
NAe2jzij
L1i

, (52)

where LN

i is the limiting conductance of the ion and NA is the
Avogadro’s number. Limiting conductance data of different
ions can be found in physical chemistry textbooks.34 NaOH
has the highest negative b value (D�4 D+) among the selected
electrolytes and provides the maximum positive peak. As b gets

closer to zero, the AREF peaks at lower magnitudes; e.g.,
compare NaCl with b = �0.21 to NaOH with b = �0.6. As
expected, electrolytes with positive b (HCl, b = 0.64) have
negative peaks. An interesting case would be KCl with a nearly
zero ionic mobility mismatch (b = �0.02) for which the AREF is
nearly zero. However, recall that the b effect on AREF peak
magnitude is non-monotonic (Fig. 7), a behavior that was
explained at length by Hashemi Amrei et al.29 Using a different
set of dimensionless parameters (e.g., d = D�/D+ instead of b as
a measure for ionic mobility mismatch), they showed that dmax

for which AREF has its maximum peak depends on F0. By
increasing F0, dmax gets indefinitely closer to 1 (equivalently,
bmax gets closer to 0). Therefore, at high applied potentials, KCl
may have a higher peak than NaOH. It is worth mentioning
that for the dimensionless parameters used in the present
study, the bmax is not governed solely by F0. Finally, electrolytes
with valence mismatch (g a 0) show intriguing behavior (CaCl2

and H2SO4). As discussed in discussion of Fig. 7, a balance
between asymmetries due to b and g determines the AREF
distribution.

Finally, we comprehensively analyze the collapse of numer-
ical AREF curves for different potentials in Fig. 9. Fig. 9(a)
shows the numerical AREF distribution for different voltages
normalized by their corresponding peak values (dashed curves
of different color intensities), along with the semi-analytical
AREF plotted as solid. Each color corresponds to a different
dimensionless frequency (O). We notice that by increasing the
O, a better collapse is obtained. Additionally, the ratio of
numerical to semi-analytical AREF peak is plotted versus F0

Fig. 7 Effect of b on the second-order approximate (semi-analytical)
AREF (i.e., time-average electric field, hE~i) for g = 0 (a and b) and g = �1/3
(c and d). The black curves in all figures correspond to b = 0. Parameters:
k‘ = 100, O = 0.01.

Fig. 8 Spatial variations of the second-order approximate (semi-analytical)
AREF (i.e., time-average electric field, hE~i) for different electrolytes. Dimensional
parameters: ‘ = 25 mm, e = 78, T = 298.15 K, nN = 6.022 � 1021 m�3 (10�5 M),
f = 100 kHz.
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in Fig. 9(b) for different O. Interestingly, as O increases, the
ratio decays to nearly 1, even at very high voltages. We perform
a similar analysis by changing the k‘. We find that collapse of
data improves by increasing the k‘ value (Fig. 9(c)). Moreover,
semi-analytical solution appears to accurately predict the AREF
peak magnitude at high k‘ (Fig. 9(d)). Therefore, we conclude
that at high O and k‘ values, semi-analytical solution accurately
captures (1) the spatial structure of AREF (better collapse), and
(2) the AREF magnitude.

It appears that regardless of the system properties, there is a
‘threshold’ F0 above which the numerical AREF curves do not
collapse, and this threshold tends to increase with O or k‘. At
low applied potentials and fixed other system properties, all
AREF distributions collapse onto the semi-analytical solution;
but as F0 passes the threshold potential, the shape of AREF at
the micron scale starts deviating from the semi-analytical
solution. For sufficiently large O or k‘ values, this threshold
potential is simply beyond the considered F0 range. However,
the underlying physics behind the collapse of the AREF dis-
tributions and its sensitivity to O and k‘ remain unclear.

Parameters O and k‘ can be combined into one dimension-
less parameter as

LD ¼
‘D

‘
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Oðk‘Þ2

s
¼

ffiffiffiffiffiffiffiffiffiffi
D=o

p
‘

. (53)

Hashemi Amrei et al.29 showed that this dimensionless diffu-
sive length scale governs the location of peak AREF for a wide

range of parameter space. Note that small LD corresponds to
large O and k‘. Hence, the semi-analytical solution can be
used to predict the both shape and magnitude of AREF when
LD { 1. This is extremely important since for most practical
cases in electrokinetics LD is indeed very small.

5 Conclusions

Following the discovery of AREF by Hashemi Amrei et al.,28 we
have demonstrated by a new approach that a steady electric
field may be induced by an applied oscillatory potential. We
have developed an analytical approximate solution to the PNP
equations at low applied potentials. Specifically, we focused on
the impacts of ionic mobility and valence mismatches to find
approximations to the one-dimensional AREF between parallel
electrodes.28 In this regard, we have shown that the second-
order perturbation solution corroborates the existence of AREF.

Interestingly, at sufficiently small LD ¼
ffiffiffiffiffiffiffiffiffiffi
D=o

p
=‘ (dimension-

less diffusive length scale), this simple approximate solution
accurately predicts both the complicated spatial structure and
the magnitude of AREF, even at extremely high potentials.
We emphasize that for most electrokinetic systems LD { 1.
Hence, researchers can safely use this approximate solution
to calculate AREF. It is significant, considering the extremely
complicated alternative of finding AREF via numerical solution
to the full nonlinear PNP equations.
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Appendix A: first-order solution
(g ¼ 0; b2O2 ¼ 1=4)
As discussed, characteristic equation of the first-order eigen-
value problem has repeated roots for g = 0 and bO ¼ 1=4. For
this special case, the general solution to the first-order problem
becomes:

n̂(1)
þ (~x) ¼ A sinh(l~x)� iS

4l
(Aþ B)~x cosh(l~x), (A1)

n̂(1)
� (~x) ¼ iSB sinh(l~x)� 1

4l
(Aþ B)~x cosh(l~x), (A2)

f̂(1)(~x) ¼ Cx + (iSB� A)
sinh(l~x)

2l2

þ (Aþ B)(iS� 1)
l~x cosh(l~x)� 2 sinh(l~x)

8l4 .

(A3)

with

l ¼ 1ffiffiffi
2
p (1þ 2iO)1=2, (A4a)

S ¼ sgn(b). (A4b)

Fig. 9 Collapse of AREF (i.e., time-average electric field, hE~i) spatial
distribution at different voltages. Dashed (with different color intensities)
and solid curves in (a and c) show the numerical AREF at different
potentials and semi-analytical AREF, respectively. (a and b) Collapse of
AREF curves for different O values and k‘ = 400. (c and d) Collapse of AREF
curves for different k‘ values and O = 5 � 10�3. Parameters: b = �1/3,
g = 0.
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The constants A, B, and C are determined as

A ¼ 4il2

G
((4l2 � 1)S + i) cosh(lk‘)� (S� i)lk‘ sinh(lk‘)

 �

,

(A5)

B ¼ 4il2

G
(S + (4l2 � 1)i) cosh(lk‘) + (S� i)lk‘ sinh(lk‘)

 �

,

(A6)

C ¼ �8iSl(2l4 � 2l2 + 1) cosh2(lk‘)
G

. (A7)

The parameter G is

G ¼ 2iSlk‘ 4(l4 � l2 þ 1)þ 2(2l4 � 2l2 þ 1) cosh(2lk‘)
�

þ (4l2 � 3)
sinh(2lk‘)

lk‘

�
.

(A8)

Appendix B: numerical solution to
eqn (49)

Here we explain a numerical algorithm for solving the eqn (49).
For most practical cases, the electrode spacing is several
thousands of the Debye length. Under such conditions, using
uniform grids for discretization is inefficient. Covering the
entire domain with a uniform grid, fine enough to capture
the sharp gradients within the Debye layer (Bk�1/100), would
require a total of several hundred thousands grids. Instead we
use a stretched grid. Consider a one-dimensional domain of
x~ A [�k‘,k‘] discretized nonuniformly as x~i for i = 1,. . .,2N + 1
(face centered grid, i.e., x1 = �k‘, x2N+1 = k‘) and hi = x~i+1 � x~i.
We set h1 = h2N B 0.01 (corresponding to having 100 grid
points within the Debye layer), and gradually increase the
grid size as xi - 0. Using Newton’s tableau for 3 arbitrary
points at locations x~i�1, x~i, x~i+1 and corresponding values of,
respectively, hÊ(2)ii�1, hÊ(2)ii, hÊ(2)ii+1, one can find the Laplacian
stencil as

@2
�

~E(2)�
i

@~x2 ¼
2
�

~E(2)�
i�1

hi�1(hi + hi�1)
� 2

hihi�1

�
~E(2)�

i þ
2
�

~E(2)�
i+1

hi(hi + hi�1)
. (B1)

Using the obtained Laplacian stencil, the discretized form of
eqn (49) becomes:

aihÊ(2)ii�1 + bihÊ(2)ii + cihÊ(2)ii+1 ¼ fi, (B2)

where

ai ¼
2

hi�1(hi + hi�1)
, (B3a)

bi ¼ �
2

hihi�1
+ 1

� �
, (B3b)

ci ¼
2

hi(hi + hi�1)
. (B3c)

In matrix form, the system of algebraic equations can be
expressed as

b2 c2

a3 b3 c3

. .
.

a2N�1 b2N�1 c2N�1

a2N b2N

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

�
~E(2)i2�
~E(2)i3

..

.

�
~E(2)i2N�1�
~E(2)i2N

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
¼

f 2

f 3

..

.

f 2N�1

f 2N

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

,

(B4)

which can be solved by standard iterative schemes or simply
inverting the coefficient matrix.
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