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Jet substructure has provided new opportunities for searches and measurements at the LHC, and

has seen continuous development since the optimization of the large-radius jet definition used

by ATLAS was performed during Run 1. A range of new inputs to jet reconstruction, pile-up

mitigation techniques and jet grooming algorithms motivate an optimisation of large-radius

jet reconstruction for ATLAS. In this paper, this optimisation procedure is presented, and

the performance of a wide range of large-radius jet definitions is compared. The relative

performance of these jet definitions is assessed using metrics such as their pileup stability,

ability to identify hadronically decaying bosons and top quarks with large transverse

momenta. A new type of jet input object, called a ‘unified flow object’ is introduced which

combines calorimeter- and inner-detector-based signals in order to achieve optimal performance

across a wide kinematic range. Large-radius jet definitions are identified which significantly

improve on the current ATLAS baseline definition, and their modelling is studied using

collisions recorded by the ATLAS detector at 13 TeV during 2017.
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1 Introduction

High-energy particle collisions such as those produced in the Large Hadron Collider (LHC) at CERN can

result in the production of massive particles (e.g. / / bosons and top quarks) with large Lorentz boosts.

When such particles decay, their decay products become collimated, or ‘boosted’, in the direction of the

progenitor particle. For massive particles that are sufficiently boosted, it is advantageous to reconstruct their

hadronic decay products as a single large-radius (large- ) jet. Such large- jets capture a characteristic,

multi-pronged jet substructure from the two-body or three-body decays of hadronically decaying , and

bosons and top quarks, which is distinct from the radiation pattern of a light-quark- or gluon-initiated

jet.

The substructure of boosted particle decays [1, 2] allows powerful new approaches to be utilised in

searches for physics beyond the Standard Model (BSM) [3–12] at high energy scales, and has enabled

novel measurements of Standard Model processes [13–24].

The reconstruction of boosted hadronic systems is complicated by the presence of soft radiation from several

sources, which degrades performance when reconstructing jet substructure observables. In particular, soft
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radiation from the underlying event and uncorrelated radiation from additional interactions concurrent

with the hard-scattering event of interest (pile-up interactions) can degrade the jet mass resolution and other

jet substructure quantities, which are critical to boosted object identification. These effects are amplified

by the use of a large radius for jet reconstruction [25–28], which incorporates more uncorrelated energy.

During Run 1, the average number of pile-up interactions per LHC bunch crossing was roughly 20. This

number increased to 34 in the Run 2 dataset, although some events during this period were recorded

with up to 70 pile-up interactions. The average number of pile-up collisions is expected to increase further

during Run 3 and will reach 200 pile-up interactions during high-luminosity LHC operations [29]. As

experimental conditions become more challenging, the choices made when reconstructing large- jets will

need to evolve to maintain optimal performance.

There is no single way to reconstruct a jet, and several choices must be made at the level of a physics

analysis to define the jets which will be used. Jets at the LHC are typically reconstructed from some set

of input objects (‘jet inputs’, or simply ‘inputs’ throughout) using a sequential recombination algorithm

with a user-specified radius parameter ( ). Once a jet input type is chosen, it may be preprocessed before

jet reconstruction, for example, to mitigate the effects of pile-up. After jet reconstruction, a grooming

algorithm may be applied to the jets which preferentially removes soft and/or wide-angled radiation from

the reconstructed jet, to further suppress contributions from pile-up and the underlying event and to enhance

the resolution of the jet mass and other substructure observables.

Large- jets are typically reconstructed by ATLAS using the anti- algorithm [30] and a radius parameter

1 0. The choice of recombination scheme and radius parameter has been studied previously [31], and

is not revisited in these studies. ATLAS large- jet reconstruction has so-far been based on topological

cluster inputs reconstructed only using calorimeter-based energy measurements. These clusters provide

excellent energy resolution, but do not accurately represent the positions of individual particles within

jets with large transverse momentum ( T), particularly in areas where the energy density is large or the

calorimeter granularity is coarse. This can result in degraded performance when the resolution of individual

particles becomes relevant, for instance, when reconstructing the mass of showers which are so collimated

that they are not spatially resolved by the ATLAS calorimeter’s granularity. In order to better reconstruct

the angular distributions of charged particles within jets, several particle-flow (PFlow) algorithms which

were developed and commissioned by ATLAS during Run 2 are considered. These include a PFlow

implementation designed to improve 0 4 jet performance at low T [32], and a variant designed to

reconstruct jet substructure at the highest transverse momenta, called Track-CaloClusters (TCCs) [7, 33].

In this work, a union of PFlow and TCCs called ‘Unified Flow Objects’ (UFOs) is established to provide

optimal performance across a wider kinematic range than is possible with either particle-flow objects

(PFOs) or TCCs alone, which are each found to perform well in distinct kinematic regions. Jet inputs may

also be preprocessed using one or several of the many input-object-level pile-up mitigation techniques which

have been developed, such as constituent subtraction [34, 35], Voronoi subtraction [36], SoftKiller [37],

and pile-up per particle identification (PUPPI) [38]. Various input types and pile-up mitigation algorithms

can be combined to create pile-up-robust inputs to jet reconstruction, adding additional complexity to the

search for optimal performance.

Grooming algorithms are another tool which may be used to remove undesirable radiation from jets after

they have been reconstructed. The performance of several grooming algorithms was studied by ATLAS

in detail using Run 1 data [39] and during preparations for Run 2 [40], including the jet trimming [41],

pruning [42], and mass drop filtering [43] algorithms. Based on these studies, large- jets groomed

with the trimming algorithm using parameter choices of sub 0 2 and cut 5% were found to be

optimal for ATLAS with Run 2 conditions. Since the completion of these studies, several additional jet
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grooming algorithms have been proposed, including the modified mass drop (mMDT) [44] and soft-drop

(SD) [45] algorithms, and their recent extensions: bottom-up soft-drop (BUSD) and recursive soft-drop

(RSD) [46].

The development of new input objects, pile-up mitigation techniques and jet grooming algorithms by the

experimental and phenomenological communities motivates a thorough reoptimisation of the large- jet

definition used by ATLAS. In this paper, the jet tagging and substructure performance of 171 distinct

combinations of the different jet inputs, pile-up mitigation techniques and grooming algorithms is evaluated

using Run 2 conditions. The performance of different jet definitions is compared in the context of several

metrics, which quantify their tagging performance, their pile-up stability, and the sensitivity of their mass

response to different jet substructure topologies. The performance in data is also studied to ensure the

validity of the conclusions from the Monte Carlo studies.

The remaining sections of this document are structured as follows. The ATLAS detector is described in

Section 2, along with aspects of the 2017 dataset and details of the simulated events used to perform

these studies. An overview of the jet reconstruction techniques surveyed by these studies is provided

in Section 3. Several metrics are used to determine the optimal jet definition, as well as to understand

the behaviour of individual algorithms. Due to the large number of possible large- jet definitions, a

two-stage optimisation is performed to determine which of these exhibit the best performance. In the first

stage, presented in Section 4, the metrics which will be used to evaluate the relative performance of all jet

definitions are established by studying the performance of a limited set of jet definitions. The observations

made from these comparisons motivate a union of the existing particle-flow and TCC input objects; this

new input object type is presented in Section 5. The results of the complete survey of jet definitions are

presented in Section 6. UFO-based definitions which perform consistently well are selected for further

study. This smaller list of jet definitions, each of which improves on the current ATLAS baseline large-

jet definition, is calibrated using simulated events, and a more detailed comparison of their performance in

terms of their tagging performance and jet T and mass resolutions as well as their performance in data

is made in Section 7. In an appendix, more details of the interaction between pile-up interactions and

topological cluster formation are provided.

2 The ATLAS detector, data and simulated events

The ATLAS detector [47–49] consists of three principal subsystems1. The inner detector (ID) provides

tracking of charged particles within 2 5 using silicon pixel and microstrip detectors, as well as a

transition radiation tracker which provides a large number of hits in the ID’s outermost layers in addition to

particle identification information. This subsystem is immersed in an axial magnetic field generated by a 2 T

solenoid. A sampling calorimeter surrounds the ID and barrel solenoid, providing energy measurements

of electromagnetically and hadronically interacting particles within 4 9, and is followed by a muon

spectrometer.

The electromagnetic showers of electrons and photons are measured with a high-granularity liquid argon

(LAr) calorimeter, consisting of a barrel module within 1 475 and two endcaps from 1 365 3 2.

Hadronic showers are measured using a steel/scintilator tile calorimeter within 1 7 and with a pair

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector

and the -axis along the beam pipe. The -axis points from the IP to the centre of the LHC ring, and the -axis points

upward. Cylindrical coordinates are used in the transverse plane, being the azimuthal angle around the -axis. The

pseudorapidity is defined in terms of the polar angle as ln tan 2 .
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of LAr/copper endcaps within 1 5 3 2. In the forward region, a LAr/copper and LAr/tungsten

forward calorimeter measures showers of both kinds within 3 2 4 9.

The muon spectrometer is based one barrel and two endcap superconducting toroidal magnets. Precision

chambers provide measurements for all muons within 2 7, and separate trigger chambers allow the

online selection of events with muons within 2 4.

As writing events to disk at the nominal LHC collision rate of 40 MHz is currently unfeasible, a two-level

trigger system is used to select events for analysis. The hardware-based Level-1 trigger accepts events at a

rate of 100 kHz using a subset of available detector information. The software-based High-Level Trigger

then reduces the event rate to 1 kHz, which is retained for further analysis.

Studies presented in this paper utilise a dataset of proton–proton collisions delivered by the LHC in 2017

with centre-of-mass-energy 13 TeV and collected with the ATLAS detector. Data containing high- T

dĳet events were selected using a single-jet trigger, and the leading anti- 1 0 jet is required to have

T above 600 GeV. All data are required to meet standard ATLAS quality criteria [50]; data taken during

periods when detector subsystems were not functional, which contain significant contamination from

detector noise, or where there were detector read-out problems are discarded. The resulting dataset has an

integrated luminosity of 44.3 fb 1 and an associated luminosity uncertainty of 2.4% [51], obtained using

the LUCID-2 detector [52] for the primary luminosity measurements.

The simulated event samples used to perform these studies were generated using Pythia 8.186 [53, 54]

with the NNPDF2.3 LO [55] set of parton distribution functions (PDF), a T-ordered parton shower, Lund

string hadronisation [56, 57], and the A14 set of tuned parameters (tune) [58]. These samples provide

‘background’ jets which originate from high-energy quark and gluon scattering (using a 2 2 matrix

element), and ‘signal’ jets originating from high- T boson and top quark decays across a wide kinematic

range. The signal jets were produced using a BSM spin-1 model including only

hadronic and decays. The signal top quark jets are taken from a BSM model, where the top

quarks may decay either hadronically or semileptonically. In order to remove dependence on the specific

BSM physics models used to generate these jets, the T spectrum of signal jets is always reweighted to

match that of background jets [59]. Straightforward particle-level containment definitions are used to

ensure that the signal jets provide samples of two- and three-pronged jet topologies: the decay partons

of the boson or top quark are required to be within 0 75 of the particle-level jet axis. Top jets

containing leptonic boson decays are rejected using particle-level information.

All simulated events were passed through the complete ATLAS detector simulation [60] based on

Geant4 [61] using the FTFP_BERT_ATL model [60]. The effect of pile-up was modelled by overlaying

the hard-scatter event with minimum-bias collisions generated by Pythia 8.210 with the A3 tune [62]

and the NNPDF2.3 LO PDF set. The number of pile-up vertices was reweighted to match the data events,

which have an average of 38 simultaneous interactions per bunch crossing in the 2017 dataset. Pile-up

events are overlaid such that each subdetector reconstructs the effect of signals from adjacent bunch

crossings (‘out-of-time’ pile-up) as well as those from the same bunch crossing as the hard-scatter event

(‘in-time’ pile-up) [63].

3 Objects and algorithms

This section provides a brief overview of different jet input object, pile-up mitigation and grooming

options. All jets discussed in these studies are reconstructed using the anti- algorithm as implemented in
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FastJet [64] with radius parameter 1 0. All jets used in these results are required to have a minimum

T of 300 GeV, and to be within 1 2.

The complete set of jet input object types, pile-up mitigation and grooming algorithms surveyed is

summarised in Table 1. In some cases, additional algorithms or settings were studied but were not found to

produce results which differed significantly from those presented here. Notes have been made in Section 4

when appropriate regarding these omitted jet definitions, and they are indicated in Table 1 by an asterisk

(*).

Table 1: Summary of pile-up mitigation algorithms, jet inputs, and grooming algorithms, the abbreviated names

used throughout this work, and the relevant parameters tested for each algorithm. UFOs are introduced in Section 5.

Algorithms marked with an asterisk (*) were studied, but were not found to produce results significantly different

from other configurations. Such results are not presented in these studies.

Algorithm Abbreviation Settings

Jet input objects Topological Clusters Topoclusters N/A

Particle-Flow PFlow N/A

Track-CaloClusters TCCs N/A

Unified Flow Objects UFOs N/A

Pile-up mitigation algorithms Constituent Subtraction CS

0 01

max 0 25

0

Voronoi Subtraction (*) VS N/A

SoftKiller SK 0 6

Pile-up Per Particle Identification PUPPI

min 0 001

0 0 3

200 MeV

14 MeV

Jet grooming algorithms

Soft-Drop SD
cut = 0.1

= 0, 1, 2(*)

Bottom-up Soft-Drop BUSD
cut = 0.05, 0.1

= 0, 1, 2(*)

Recursive Soft-Drop RSD
cut = 0.05, 0.1

= 0, 1, 2(*)

= 3, 5(*),

Pruning N/A
cut = 0.15

cut = 0.25

Trimming N/A
cut = 5%, 9%

sub = 0.1, 0.2
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3.1 Jet input objects

3.1.1 Stable generator-level particles

Particle-level jets, or ‘truth jets’, are reconstructed in simulated events at generator level. All detector-stable

particles from the hard-scattering process with a lifetime in the laboratory frame such that 10 mm

are used. Particles that are expected to leave only negligible energy depositions in the calorimeter, i.e.

muons and neutrinos, are excluded.

Ungroomed particle-level jets are used as the reference objects for selections throughout these studies in

order to ensure that the same set of reconstructed jets are selected for comparison, regardless of the jet

input objects used in reconstruction or grooming algorithm applied. In studies of simulated jets, unless

otherwise specified, ungroomed particle-level jets are geometrically matched ( < 0.75) to ungroomed

reconstructed jets, and kinematic selections are applied to the ungroomed particle-level jet four-vector.

Particle-level jets are also taken as the reference for simulation-based ATLAS jet calibrations, and for

studies of the jet energy and mass resolution. In this circumstance, they are groomed using the same

algorithm and parameters as the reconstructed jets to which they are being compared (Section 7).

3.1.2 Inner detector tracks

Tracks are reconstructed from charged-particle hits in the inner detector. In order to ensure that only well-

reconstructed tracks from the hard scattering are used, track quality criteria are applied. The ‘loose’ quality

working point is used, which places requirements on the number of silicon hits in each subdetector [65].

Tracks are associated to the primary vertex (PV) of the hard interaction by placing a requirement on the

track distance of closest approach to the PV along the axis, 0 sin 2 0 mm. The PV is selected as

the vertex with the highest scalar 2
T

sum of tracks associated with it using transverse and longitudinal

impact parameter requirements. In addition, tracks are required to have T > 500 MeV and to be within the

tracking volume (| | < 2.5).

3.1.3 Topological clusters

Jets reconstructed from ATLAS calorimeter information are built from ‘topoclusters’ [66], which are

three-dimensional groupings of topologically connected calorimeter cells. Topoclusters are formed using

iterated ‘seed’ and ‘collect’ steps based on the absolute value of the signal significance in a cell relative

to the expected noise, noise, which considers both electronic noise and stochastic noise from pile-up

interactions. Cells with signal significance over 4 noise in an event are allowed to seed topocluster formation,

and their neighbouring cells with significance over 2 noise are subsequently included. This step is repeated

until all adjacent cells have a significance below 2 noise, at which point all neighbouring cells are added to

the cluster (0 noise). If this process results in a cluster with two or more local energy maxima, a splitting

algorithm is used to separate the showers. The energies of the resulting set of clusters are calibrated at the

electromagnetic (EM) scale, and all clusters are taken to be massless.

An additional calibration using the local cell weighting (LCW) scheme is applied to form clusters whose

energy is calibrated at the correct particle-level scale [66]. This weighting scheme classifies energy

depositions as either electromagnetic- or hadronic-like using a variety of cluster moments, and accounts for
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the non-compensating response of the calorimeter, out-of-cluster energy, and for energy deposited in the

dead material within the detector.

Finally, the angular coordinates ( and ) of topoclusters are recalculated relative to the primary vertex of

the event, instead of the geometric centre of the ATLAS detector. A detailed description of topocluster

reconstruction and calibration is provided in Ref. [66].

3.1.4 Particle-flow objects (PFOs)

Particle-flow (PFlow) reconstruction combines track- and calorimeter-based measurements and results

in improved jet energy and mass resolution, and improved pile-up stability relative to jets reconstructed

from topoclusters alone [32, 67]. Double-counting of contributions from the momentum measurement of

charged particles in the inner detector and their energy measurement from the calorimeters is removed

using a cell-based energy subtraction.

The PFlow algorithm first attempts to match each selected track to a single topocluster in the calorimeter,

using topoclusters calibrated to the EM scale, and tracks selected using the “tight” quality working

point [65]. The track momentum and the topocluster position are used to compute the expected energy

deposition in the calorimeter by the particle that created the track. It is not uncommon for a single

particle to deposit energy in multiple topoclusters. For each track/topocluster system, the PFlow algorithm

evaluates the probability that the particle’s energy was deposited in more than one topocluster, and may

include additional topoclusters in the track/topocluster system if they are necessary to reconstruct the full

shower energy. The expected energy deposited in the calorimeter by the particle that produced the track is

subtracted, cell-by-cell, from the associated topoclusters. If the associated calorimeter energy following

this subtraction is consistent with the expected shower fluctuations of a single particle, the remaining

calorimeter energy is removed.

Topoclusters which are not matched to any tracks are assumed to contain energy deposited by neutral

particles and are left unmodified. In the cores of jets, particles are often produced at higher energies and in

dense environments, decreasing the advantages of using inner-detector-based measurements of charged

particles. To account for this degradation of inner tracker performance, the shower subtraction is gradually

disabled for tracks with momenta below 100 GeV if the energy clus deposited in the calorimeter in a cone

of size 0 15 around the extrapolated track trajectory satisfies

clus
dep

dep
33 2 log10 40 GeV trk

T

where dep is the expected energy deposition from a charged pion. The subtraction is completely disabled

for tracks with T 100 GeV when this condition is satisfied.

After the PFlow algorithm has run to completion, the collection of particle-flow objects (PFOs) consists of

tracks, and both modified and unmodified topoclusters. Charged PFOs which are not matched to the PV

are removed in order to reduce the contribution from pile-up; this procedure is referred to as ‘Charged

Hadron Subtraction’ (CHS) [68, 69].
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3.1.5 Track-CaloClusters (TCCs)

Track-CaloClusters (TCCs) [33] were developed in the context of searches for massive BSM diboson

resonances [7]. These constituents combine calorimeter- and inner-detector-based measurements in a

manner which is optimised for jet substructure reconstruction performance in the highest- T jets. Unlike

PFlow, which uses the expected energy depositions of single particles to determine the contributions of

individual tracks to clusters, the TCCs use the energy information from topoclusters and angular information

from tracks.

The TCC algorithm starts by attempting to match each ‘loose’ track in the event (from both the hard-scatter

and pile-up vertices) to topoclusters calibrated to the local hadronic scale in the calorimeter. In the case

where one track matches one topocluster, the T of the TCC object is taken from the topocluster, while

its and coordinates are taken from the track. In more complex situations where multiple tracks are

matched to multiple topoclusters, several TCC objects are created (where the TCC multiplicity is equal to

the track multiplicity): each TCC object is given some fraction of the momentum of the topocluster, where

that fraction is determined from the ratios of momenta of the matched tracks. TCC angular properties ( ,

) are taken directly from the unmodified inner detector tracks, and their mass is set to zero.

As in PFlow reconstruction, unmatched topoclusters are included in the TCC objects as unmodified neutral

objects.

3.2 Jet-input-level pile-up mitigation algorithms

Prior to jet reconstruction, the set of input objects may be preprocessed by one or by a combination

of several input-level pile-up mitigation algorithms. When reconstructing jets from topoclusters, these

algorithms are applied to the entire set of inputs. When incorporating tracking information, the PV provides

an additional, powerful method to reject charged particles from pile-up interactions. In this case, these

additional pile-up mitigation algorithms are applied only to the neutral PFOs or TCCs in an event before jet

finding.

3.2.1 Constituent Subtraction (CS)

Constituent Subtraction [34] is a per-particle method of performing area subtraction [70] on jet input

objects. The catchment area [26] of each input object is defined using ghost association: massless particles

called ‘ghosts’ are overlaid on the event uniformly, with T satisfying

g

T g

where , the area of the ghosts, is set to 0.01 and
T

corresponds to the expected contribution from pile-up

radiation in a small – area of 0 1 0 1. For each event, the pile-up energy density is estimated as

the median of the T distribution of the 0 4 [71] jets in the event. These jets are reconstructed

without a T requirement, but are required to be within 2 0. The total T of all of the ghosts is equal

to the expected average pile-up contribution, based on the estimated value of .
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After the ghosts have been added, the distance between each cluster and ghost is given by2

2 2

The cluster–ghost pairs are then sorted in order of ascending , and the algorithm proceeds iteratively

through each pair, modifying the T of each cluster and ghost by

If T, T : T, T, T, ,

T, 0;

otherwise: T, T, T, ,

T, 0.

until max, where max is a free parameter of the algorithm taken to be 0.25 in this study, based

on studies of 0 4 jet performance [72]. Any ghosts remaining after the subtraction are eliminated.

In the authors’ description of this algorithm, a correction is also applied for the mass of the input object.

Since all neutral ATLAS jet inputs are defined to be massless, this correction is unnecessary in the ATLAS

implementation.

3.2.2 SoftKiller (SK)

The SoftKiller (SK) [37] algorithm applies a T cut to input objects. This cut is chosen on an event-by-event

basis such that the value of after the selection is approximately zero. To achieve this, the event is divided

into an – grid of user-specified length scale, chosen to be 0 6, based on studies of 0 4 jet

performance [72]. The T cut is determined in order to make half of the grid spaces empty after it is

applied (input objects are removed from all grid cells, not just the half which are empty following SK).

To account for detector-level effects, where input objects may not consist purely of hard-scatter or pile-up

contributions (see appendix), the best performance is achieved by applying some form of area subtraction

to input objects before applying SK. In these studies, SK is always applied to inputs after the CS algorithm;

this combination is indicated as ‘CS+SK’.

An alternative approach to assigning areas to jet input objects is based on Voronoi tesselation [36] and was

studied both in isolation and in conjunction with the SoftKiller algorithm. Both variants of this alternative

were found to perform similarly to the CS+SK results presented here.

3.2.3 Pile-up Per Particle Identification (PUPPI)

‘Pile-up per particle identification’, or PUPPI [38], is a pile-up-mitigation algorithm which assigns each

input object a likelihood to have originated from a pile-up interaction based on its kinematic properties

and proximity to charged hard-scatter particles matched to the event’s PV. This likelihood is given by

log T
min 0

2 In the original formulation, there is also the option to make a
T

-dependent distance metric. Only values of 0 were

considered in Ref. [34], and so only this configuration is considered in these studies.
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where the index tracks the charged inputs matched to the PV, 0 is the maximum radial distance at which

inputs may be matched to each other, min is the minimum radial distance of matching, is the angular

distance between an input object and a charged hard-scatter particle, and is the Heaviside step function.

The value of min is generally taken to be very small, and is chosen to be 0 001 in these studies. The value

of 0 is chosen to be 0 3.

Once has been calculated for all input objects, then the following quantity is determined:

2 ¯PU
¯PU

2

2
PU

where ¯ PU is the mean value of for all charged pile-up input objects in the event, and PU is the RMS of

that same distribution. The four-momentum of each neutral input is then weighted by

2 NDF 1
2

where 2 is the cumulative distribution of the 2 distribution, eliminating all neutral inputs whose

calculated value of is less than ¯ PU.

In order to suppress additional noise, a T cut is applied to the remaining input objects after they have

been reweighted. This cut is dependent on the number of reconstructed primary vertices ( PV), and is

determined by

T cut PV

where the parameters and are user-specified. For these studies, the parameters are chosen to be

200 MeV and 14 MeV, based on studies of the 0 4 PFlow jet energy resolution.

While PUPPI could technically be applied to topoclusters, the principles of the algorithm depend strongly

on the matching of neutral input objects to nearby charged particles from the hard-scatter event. It is

therefore more effective for particle-flow-type algorithms. Due to the large number of free parameters, and

since it has only been optimised for ATLAS PFlow jets with 0 4, PUPPI is only applied to PFlow

jets.

3.3 Grooming algorithms

3.3.1 Trimming

Trimming [41] was designed to remove contamination from soft radiation in the jet by excluding regions of

the jet where the energy flow originates mainly from the underlying event, pile-up, or initial-state radiation

(ISR), in order to improve the resolution of the jet energy and mass measurements. In Run 1 [31], it was

also found to be effective in mitigating the effects of pile-up on large- jets. To trim a large- jet, the jet

constituents are reclustered into subjets of a user-specified radius sub using the algorithm. Subjets with

T less than some user-specified fraction cut of the T of the original ungroomed jet are discarded: their

constituents are removed from the final groomed jet.
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3.3.2 Pruning

Pruning [42] proposes a modification of the jet clustering sequence, which removes splittings that are

assessed as likely to pull in soft radiation from pile-up interactions and the underlying event. This is

achieved by determining a ‘pruning radius’ such that hard prongs fall into separate subjets, while discarding

softer radiation outside of these prongs. The constituents of the large- jet are reclustered using the

Cambridge–Aachen (C/A) algorithm [73, 74] to form an angle-ordered cluster sequence. At each step of

the clustering sequence, the softer subjet is discarded if it is either too soft or wide-angled, enforced by

requiring

12 cut 2
12

T,12

cut

where 12, 12, and T,12 are respectively the angular distance, the mass, and the transverse momentum

of the subjet pair at a given step in the clustering sequence, and min T,1 T,2 T,1 T,2 . The

parameters cut and cut are user-defined, and respectively control the amount of wide-angled and soft

radiation which is removed by the pruning algorithm.

3.3.3 Soft-Drop (SD)

Soft-drop [45] is a technique for removing soft and wide-angle radiation from a jet. In this algorithm,

the constituents of the large- jet are reclustered using the C/A algorithm, creating an angle-ordered jet

clustering history. Then, the clustering sequence is traversed in reverse (starting from the widest-angled

radiation and iterating towards the jet core). At each step in the clustering sequence, the kinematics of the

splitting are tested with the condition

min T,1 T,2

T,1 T,2
cut

12

where the subscripts 1 and 2 respectively denote the harder and softer branches of the splitting, and the

parameters cut and dictate the amount of soft and wide-angled radiation which is removed. If the

splitting fails this condition, the lower- T branch of the clustering history is removed, and the declustering

process is repeated on the higher- T branch. If the condition is satisfied, the process terminates and the

remaining constituents form the groomed jet.

If = 0, SD suppresses radiation purely based on the T, while larger values of allow more soft radiation

to remain within the groomed jet when it is sufficiently collinear. SD with 0 is equivalent to the

modified Mass Drop Tagger (MDT) algorithm [31, 75]. SD grooming has an intrinsic quality which is not

shared by the trimming or pruning algorithms: certain jet substructure observables are calculable beyond

leading-logarithm accuracy following the application of SD [75–81].

3.3.4 Recursive Soft-Drop (RSD) and Bottom-Up Soft-Drop (BUSD)

The standard soft-drop algorithm aims to find the first hard splitting in the jet clustering history in order to

define a groomed jet. In the case of a multi-pronged decay, this treatment may not be sufficient to remove

enough soft radiation from the jet, since the SD condition may be satisfied before removing all of this

energy. A recursive extension of the SD algorithm (‘recursive soft-drop,’ or RSD) has been proposed [46],
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in which the algorithm continues recursively along the harder branch of the C/A clustering sequence until

hard splittings have been found. The case of =1 is equivalent to the standard SD algorithm, while for

larger values of , a larger fraction of the jet may be traversed by the grooming algorithm. When ,

the entire C/A sequence is traversed by the grooming algorithm regardless of the number of hard splittings

found.

Bottom-up soft-drop (BUSD) [46] instead incorporates the SD criteria within the jet clustering algorithm,

similar to pruning. In these studies, the ‘local’ version of BUSD is implemented, which is applied after

initial jet reconstruction. Using this approach, jets are reconstructed with the anti- algorithm, and then

reclustered using a modified version of the C/A algorithm, where particles and with the smallest distance

0 are combined to create a new pseudojet given by

max if the soft-drop condition fails

otherwise

The results of applying local BUSD are expected to be similar to those of RSD with , since both

algorithms begin with the same set of constituents per jet and groom the entire C/A clustering sequence.

Other configurations for the SD family of algorithms were studied, including 2 grooming, but were not

found to give results significantly different from those reported in detail.

4 Performance metrics

In order to survey the relative performance of all considered large- jet definitions, several metrics must be

established which probe relevant aspects of their behaviour in the context of large- jet reconstruction

and calibration by ATLAS. It is not feasible to calibrate each of the definitions studied (even with a

simulation-based approach, as in Section 7), and so these metrics have been chosen in order to be robust

against differences caused by calibration. The metrics selected include the tagging performance of high- T

bosons and top quarks, the stability of the jets in the presence of pile-up interactions, and the degree to

which a jet definition’s mass scale depends on the signal- or background-like substructure of the jet.

In this section, the behaviour of each metric is illustrated using a reduced list of jet definitions that have

been selected to highlight the interplay between different aspects of jet reconstruction. For each metric, jets

reconstructed from topological clusters, particle-flow and track-calocluster input objects are compared, with

and without pile-up mitigation. Two grooming algorithms are also compared for each jet input: trimming

with sub 0 2 and cut 0 05, and soft-drop with 1 0 and cut 0 1. The trimming algorithm is

chosen because it is the current baseline definition used by ATLAS. The soft-drop algorithm is chosen as

an alternative which has demonstrated good performance, as is shown in Section 6.

Results of the complete survey of all jet definitions summarised in Table 1 are provided in Section 6.

4.1 Tagging performance

Many analyses using large- jets rely on a tagger to distinguish between different types of jets, such as

distinguishing between the decay of a high- T, hadronically decaying top quark and a jet originating from

a high-energy quark or gluon. Such boosted-particle taggers range in complexity from simple mass cuts to

complex machine-learning algorithms [82–84]. While the complete optimisation of a jet tagger is outside
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the scope of this work, it is important to compare the tagging performance of different jet definitions in

terms of their background rejection (defined as the reciprocal of the background-jet tagging efficiency) at

fixed signal-jet tagging efficiency. This may be done using a simple tagger based on the jet mass and a

jet substructure (JSS) observable. In order to study the tagging performance for different jet topologies,

taggers are created for high- T bosons and top quarks by combining the jet mass with another jet

substructure observable which is sensitive to either two- or three-pronged signal jet topologies.

The jet mass, as defined by

jet

jet

2

jet

2

where are the constituents of the jet, is typically one of the most powerful variables that can be used to

discriminate between different types of jets.

To tag boosted decays, which have a two-pronged structure, the 2 observable [85–87] is used with a

choice of angular exponent 1 0. This observable is a ratio of three-point to two-point energy–energy

correlation functions which has been used by ATLAS in taggers since Run 1 [39, 82].

For boosted top quark decays, which have a three-pronged structure, 32 with the winner-take-all axis

configuration [88, 89] is used. This observable is a ratio of two -subjettiness variables, which tests the

compatibility of a jet’s substructure with a particular -pronged hypothesis. ATLAS has incorporated 32

into its top taggers, whether simple or complex, since Run 1 [59, 82].

Unlike a mass-only tagger, where more aggressive grooming can improve the jet mass resolution at the

cost of grooming away additional information contained within a jet’s soft radiation, a mass+JSS tagger

relies on such soft radiation to achieve better background rejection. Such taggers are a more realistic

approximation to the expected future tagging performance of any given jet definition (which will use more

sophisticated techniques), and are amenable to this survey of many jet definitions.

For both the and top taggers, the tagging algorithm proceeds similarly: first, a fixed signal-efficiency

( sig) mass window is selected, where the window is defined to be the minimum mass range which contains

68% of the signal mass distribution. This window should select the signal jet mass peak. A one-sided cut

is then applied to 2 or 32, and background rejection (1 bkg) is compared at a fixed signal efficiency

taken to be sig 50%. This signal efficiency working point is representative of taggers used by ATLAS in

physics analysis, and the results were not found to depend strongly on the working point which was selected.

The relative performance of various jet definitions in terms of their background rejection at a fixed signal

efficiency point was noted to typically provide a consistent ordering of jet definitions before and after

applying a simulation-based calibration, and so this metric was selected instead of possible alternatives

such as the Receiver Operating Characteristic (ROC) curve integral.

The background rejection for the boosted boson tagger is shown as a function of signal tagging efficiency

in Figure 1 for two T bins: a low- T bin (300 GeV <
true, ungroomed

T
< 500 GeV), and a high- T bin

(1000 GeV <
true, ungroomed

T
< 1500 GeV), where kinematic requirements are placed on the T of the

ungroomed particle-level jet which is associated with the detector-level jet under study (Section 3.1.1).

The low- T bin represents the regime where the decay products are boosted just enough to be contained

within a single large- jet, while the high- T bin represents the regime where the decay products are more

collimated and may begin to merge. The performance in these two regions is expected to be different due

to detector effects and algorithmic differences. Similarly, the background rejection of the top tagger is
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shown in Figure 2, except the lower T bin is chosen to be 500 GeV <
true, ungroomed

T
< 1000 GeV, since the

larger mass of the top quark results in less collimation of its decay products.

Better alternatives to the baseline topocluster jet definition are clearly visible. At low T, PFlow reconstruc-

tion results in the best performance for boson and top tagging, while TCCs have a lower background

rejection than topocluster jets. At high T, TCCs provide a significantly better background rejection than

the other options, although PFlow still provides an improvement over topocluster reconstruction.

The application of CS+SK pile-up mitigation has very little effect for the high- T jets, but for the low- T

tagger, it significantly improves the background rejection for soft-drop jets, which are more susceptible

to pile-up than trimmed jets. This effect is seen for all three jet input types, but it is pronounced for

topocluster inputs, which do not use tracking information to remove pile-up. Top tagging performance

benefits more from adopting soft-drop grooming than tagging: background rejection increases when

tagging top quarks regardless of the input object type or T bin when soft-drop is chosen.
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Figure 1: Background rejection as a function of signal efficiency for a tagger using the jet mass and 𝐷2 for 𝑊 boson

jets at (a,c,e) low 𝑝T, and (b,d,f) high 𝑝T. Several different jet input object types are shown: (a,b) topoclusters, (c,d)

particle-flow objects and (e,f) track-caloclusters. Jet 𝑝T and 𝜂 cuts before tagging are made using the ungroomed

particle-level large-𝑅 jet matched to each of the groomed reconstructed large-𝑅 jets. Jets groomed with the trimming

(𝑅sub = 0.2, 𝑓cut = 0.05) and soft-drop (𝛽 = 1.0, 𝑧cut = 0.1) algorithms are shown. The background rejection factor

of the baseline topocluster-based trimmed collection at a fixed signal tagging efficiency of 50% is indicated with a ★.
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Figure 2: Background rejection as a function of signal efficiency for a tagger using the jet mass and 𝜏32 for top quark

jets at (a,c,d) low 𝑝T, and (b,d,f) high 𝑝T. Several different jet input object types are shown: (a,b) topoclusters, (c,d)

particle-flow objects and (e,f) track-caloclusters. Jet 𝑝T and 𝜂 cuts before tagging are made using the ungroomed

particle-level large-𝑅 jet matched to each of the groomed reconstructed large-𝑅 jets. Jets groomed with the trimming

(𝑅sub = 0.2, 𝑓cut = 0.05) and soft-drop (𝛽 = 1.0, 𝑧cut = 0.1) algorithms are shown. The background rejection factor

of the baseline topocluster-based trimmed collection at a fixed signal tagging efficiency of 50% is indicated with a ★.
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4.2 Pile-up stability

Two metrics are used to study the pile-up stability of jet definitions in order to determine which definitions

are sufficiently insensitive to pile-up. The first quantifies the effect on the jet mass scale by studying how

the boson mass peak position changes as a function of pile-up, and provides a handle with which to

assess the impact of pile-up on a jet’s hard structure. The second quantifies the impact on substructure

observables by studying the pile-up dependence of boson tagging efficiency, in order to quantify how

pile-up contributions alter the soft radiation patterns within jets.

A related study of the effects of pile-up on topocluster reconstruction is presented in an appendix of this

publication, utilising a new technique which propagates particle-level information about hard-scatter and

pile-up energy depositions through the ATLAS reconstruction procedure.

4.2.1 Pile-up stability of the boson jet mass peak position

Jet substructure observables such as the jet mass are particularly sensitive to pile-up; the contribution of

pile-up to the jet mass scales approximately with the jet radius cubed [90]. Figure 3 shows a subset of the

trimmed mass distribution of jets in bins of PV for various jet input object types, demonstrating that

pile-up can visibly alter the average value and width of the jet mass distribution. This effect is quantified

using a simple metric. In bins of PV, the core of the mass peak is iteratively fit with a Gaussian

distribution. The trend of the fitted peak position versus PV is then fit with a line. The slope of this line is

a measure of the sensitivity of the jet mass to PU: a larger magnitude indicates larger pile-up sensitivity.

The position of the jet mass peak was found to be a more resilient metric when studying the performance

of uncalibrated jet definitions than other possible choices, such as properties of the jet mass response.

The results of this fitting procedure are provided in Figure 4 for the reduced set of jet definitions. The

application of CS+SK pile-up mitigation is shown to stabilise trends in topocluster and PFlow jets, even for

jet grooming algorithms which are most sensitive to the effects of pile-up such as soft-drop with topocluster

jets. The fitted value of the boson mass peak position decreases as a function of PV for TCCs. This is

related to TCC cluster splitting: as the number of pile-up interactions increases, the number of pile-up

tracks also increases. Since these tracks are included in the energy-sharing step of the TCC algorithm,

topoclusters are divided into more parts, and more energy is removed. Unlike PFlow and topocluster jet

reconstruction, the pile-up stability of TCCs deteriorates after the application of CS+SK. Uncorrected

PFlow and TCC jet reconstruction are less sensitive to pile-up than topocluster inputs, since they are able

to remove the charged pile-up component via CHS.

4.2.2 Pile-up stability of a simple tagger

The second metric of pile-up stability quantifies the effect of pile-up on the tagging efficiency, which is

impacted more by contributions from soft radiation to the tails of jet substructure observables. The 2

variable is particularly sensitive to soft radiation, and so a tagger is defined using the jet mass and 2

(Section 4.1). For a sample of events with PV < 15, a mass cut which results in a 68% signal efficiency is

found, and then the 2 cut that results in an overall signal efficiency of 50% is determined. Then, in bins

of PV, the signal efficiency of applying these cuts is evaluated. These signal efficiencies are plotted as a

function of PV and the trend is fit with a line. The slope of this line is indicative of pile-up sensitivity in
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Figure 3: Pile-up dependence of the 𝑊 boson jet mass reconstructed using (a) topoclusters, (b) particle-flow objects

and (c) track-caloclusters. Distributions are shown for the trimming grooming algorithm (𝑅sub = 0.2, 𝑓cut = 0.05),

with unmodified jet input objects. Jet 𝑝T and 𝜂 cuts before tagging are made using the ungroomed particle-level

large-𝑅 jet matched to each of the groomed reconstructed large-𝑅 jets.

the soft jet substructure of the jet definition. These slopes are shown for the reduced set of jet definitions in

Figure 5.

As pile-up levels increase, the signal efficiency of the 𝑊 tagger tends to decrease, although the opposite

behaviour is often observed for TCC jets. Similarly to what was found when studying the 𝑊 mass peak

position metric (Section 4.2.1), topocluster inputs are the least stable. After pile-up mitigation, the pile-up

stability of all inputs, including TCCs, improves. The trends in stability as a function of grooming algorithm

are the same as for the 𝑊 mass peak position.

19



•
•

•

•

•

(a)

•
•

•

•

•

(b)

•
•

•

•

•

(c)

Figure 4: The value of the fitted 𝑊 boson mass peak as a function of the number of primary vertices, 𝑁PV. Several

different jet input object types are shown: (a) topoclusters, (b) particle-flow objects and (c) track-caloclusters.

Jet 𝑝T and 𝜂 cuts before tagging are made using the ungroomed particle-level large-𝑅 jet matched to each of the

groomed reconstructed large-𝑅 jets. Jets groomed with the trimming (𝑅sub = 0.2, 𝑓cut = 0.05) and soft-drop (𝛽 = 1.0,

𝑧cut = 0.1) algorithms are shown.
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Figure 5: The signal efficiency of a 𝑊 boson tagger as a function of the number of primary vertices, 𝑁PV. Several

different jet input object types are shown: (a) topoclusters, (b) particle-flow objects and (c) track-caloclusters.

Jet 𝑝T and 𝜂 cuts before tagging are made using the ungroomed particle-level large-𝑅 jet matched to each of the

groomed reconstructed large-𝑅 jets. Jets groomed with the trimming (𝑅sub = 0.2, 𝑓cut = 0.05) and soft-drop (𝛽 = 1.0,

𝑧cut = 0.1) algorithms are shown.
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4.3 Topological sensitivity

ATLAS calibrates large-𝑅 jets using a procedure which involves simulation-based and in situ methods [91].

For the simulation-based calibration, the average jet energy and mass scale in reconstructed jets are

calibrated to the average scale of jets at particle level, using a sample of jets originating from light quarks

and gluons (Section 7.1). These light-quark- and gluon-derived calibrations are also currently applied

to all jets, including to signal jets (e.g. 𝑊 /𝑍/𝐻/𝑡 jets). Dependence of the jet energy and mass scale on

the progenitor of the jet is undesirable: if the jet mass scale for signal and background jets with similar

kinematics is different, then the signal jets will receive an incorrect calibration factor.

In order to examine the topology dependence of the jet mass scale for different jet definitions, the ratio

of the mean value of the uncalibrated jet mass response, 𝑅𝑚 = 𝑚reco/𝑚true, for signal 𝑊 jets to that of

background jets is constructed within a bin of large-𝑅 jet 𝑝T, 𝜂 and mass. Deviations from unity will

result in non-closure in the mass response for signal jets following calibration (Section 7.1). This effect is

relevant at low 𝑝T, where 𝑊 jets may be contained within an 𝑅 = 1.0 jet, but top quarks are not; therefore,

only 𝑊 jets and background jets are considered in this context. The baseline topocluster-based trimmed

large-𝑅 jet definition used by the ATLAS experiment exhibits a difference for signal jets of 4% by this

metric; therefore, deviations from unity of 4% or less have not been found to be problematic at later stages

of the calibration workflow [91], given the current level of calibration precision.

Figure 6 shows the jet mass response for signal and background jets built from topological clusters

and groomed with either the trimming or soft-drop grooming algorithms. The low-𝑝T bin, where this

topological effect is most pronounced, is shown. A larger sensitivity to the signal- or background-like

nature of the jet is observed for soft-drop grooming, which retains more soft radiation. The application of

pile-up mitigation can exacerbate topological differences in the jet mass scale by altering the distribution of

soft jet constituents differently depending on the jet’s signal- or background-like topology.
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Figure 6: Distribution of the jet mass response in 𝑊 jets and 𝑞/𝑔 jets reconstructed from topoclusters. The mass

response is constructed following application of the (a) trimming (𝑅sub = 0.2, 𝑓cut = 0.05) or (b) soft-drop (𝛽 = 1.0,

𝑧cut = 0.1) grooming algorithms at both truth and detector level. Jet 𝑝T and 𝜂 selections are made using the

ungroomed particle-level large-𝑅 jet matched to each of the groomed detector-level large-𝑅 jets. The uncertainties

from the fits are typically less than 0.005. A particle-level mass-window cut with 68% signal efficiency is applied to

both the groomed signal and background jets.
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5 Unified Flow Objects (UFOs)

After observing the behaviour of the jet input objects currently used by ATLAS in physics analyses

(topoclusters, PFOs and TCCs), it is clear even from the reduced set of jet definitions (Section 4) that

no single jet definition is optimal according to all metrics. While TCCs significantly improve tagging

performance at high T, their performance is typically worse than the baseline topocluster-based trimmed

jet definition at low T, and they are more sensitive to pile-up than other definitions. Jets reconstructed

from PFOs can improve on the baseline definition for the entire T range, but their tagging performance is

significantly worse than that of TCC jets at high T when given the same grooming algorithm.

The relative performance of these jet definitions can be understood by reflecting on how different inputs are

reconstructed. For low- T particles, PFOs are designed to improve the correspondence between particles

and reconstructed objects. However, as the particle T increases or the environment close-by to the particle

becomes dense, the inner detector’s momentum resolution deteriorates, and so the PFlow subtraction

algorithm is gradually disabled in order to avoid degradation of the jet energy resolution.

The cluster splitting scheme used for TCCs does not utilise a detailed understanding of the correlation

between tracks and clusters, and instead is designed to resolve many (charged) particles without double

counting their energy. When splitting low-energy topoclusters, this can result in an incorrect redistribution

of the cluster’s energy, while for high-energy clusters, the ability to resolve many particles increases the

relative tagging performance of TCCs over other definitions. TCCs exhibit pile-up instabilities at low T,

where the mass scale decreases as the number of pile-up interactions increases. This trend is the opposite of

what is observed for jets reconstructed from topoclusters and PFOs, and occurs because the TCC algorithm

splits clusters into more components when additional tracks from pile-up interactions are present in the

reconstruction procedure.

These observations motivate the development of a new jet input object, which combines desirable aspects

of PFO and TCC reconstruction in order to achieve optimal overall performance across the full kinematic

range. These new inputs are called Unified Flow Objects (UFOs).

The UFO reconstruction algorithm is illustrated in Figure 7. The process begins by applying the standard

ATLAS PFlow algorithm (Section 3.1.4). Charged PFOs which are matched to pile-up vertices are removed.

The remaining PFOs are classified into different categories: neutral PFOs, charged PFOs which were

used to subtract energy from a topocluster, and charged PFOs for which no subtraction was performed

due to their high momentum or being located in a dense environment. Jet-input-level pile-up mitigation

algorithms may now be applied to the neutral PFOs if desired. A modified version of the TCC splitting

algorithm is then applied to the remaining PFOs: only tracks from the hard-scatter vertex are used as input

to the splitting algorithm, in order to avoid pile-up instabilities. Any tracks which have been used for PFlow

subtraction are not considered, as they have already been well-matched and their expected contributions

have been subtracted from the energy in the calorimeter. The TCC algorithm then proceeds as described in

Section 3.1.5, using the modified collection of tracks to split neutral and unsubtracted charged PFOs instead

of topoclusters. This approach provides the maximum benefit of PFlow subtraction at lower particle T,

and cluster splitting where the benefit is maximal at high particle T.

The performance of UFOs is illustrated in Figures 8 and 9 according to the same metrics as for other jet

input objects in Section 4. The increased tagging performance of UFOs is demonstrated across both the

low and high T ranges in Figure 8, where their performance is superior to that of TCC jets at high T, and

becomes similar to that of PFlow jets as T decreases.
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UFOs are naturally pile-up-stable due to the inclusion of only charged-particle tracks matched to the

primary vertex, similar to the ATLAS PFlow algorithm. Figure 9 demonstrates the additional stability that

an input-level pile-up mitigation algorithm such as CS+SK can offer when it is applied to neutral particles

(calorimeter deposits), especially at low T.

The topological dependence of UFOs is not enhanced relative to the other jet definitions previously studied,

and options exist with sensitivity equal to or below that of the baseline topocluster-based trimmed definition

which improve on other aspects of jet performance.
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Figure 7: An illustration of the unified flow object reconstruction algorithm.
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Figure 8: Background rejection as a function of signal efficiency for a tagger using (top row) the jet mass and 𝐷2 for

𝑊 boson jets, or (bottom row) the jet mass and 𝜏32 for top quark jets. These results are shown in (left) low-𝑝T and

(right) high-𝑝T bins, and include a comparison of different jet input object types, including topoclusters, particle-flow

objects, track-caloclusters and unified flow objects. The large-𝑅 jets are groomed using the trimming algorithm

(𝑅sub = 0.2, 𝑓cut = 0.05). The background rejection factor of the baseline topocluster-based trimmed collection at a

fixed signal tagging efficiency of 50% is indicated with a ★.

25



•
•

•

•

•

(a)

•
•

•

•

•

(b)

•

•

•

(c)

•

•

•

(d)

Figure 9: (top row) The value of the fitted 𝑊 boson mass peak, and (bottom row) the signal efficiency of a 𝑊 boson

tagger as a function of the number of primary vertices, 𝑁PV. These results are shown for large-𝑅 jets groomed with

the (left) trimming (𝑅sub = 0.2, 𝑓cut = 0.05) or (right) soft-drop (𝛽 = 1.0, 𝑧cut = 0.1) algorithms. A comparison of

different jet input object types is made, including topoclusters, particle-flow objects, track-caloclusters and unified

flow objects.
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6 Performance survey

The metrics described in Section 4 are used to study the performance of all jet definitions listed in Table 1,

with the addition of UFOs. This provides a more complete understanding of the interplay between the

different aspects of jet reconstruction. The results are summarised in Figures 10–14.

6.1 Tagging performance

A comparison of the background rejection of the tagger at the 50% signal tagging efficiency working

point is shown in Figure 10 for two T bins: a low- T bin (300 GeV <
true, ungroomed

T
< 500 GeV), and a

high- T bin (1000 GeV <
true, ungroomed

T
< 1500 GeV).

Several trends are apparent from the performance of the taggers. As seen in Section 4, for a fixed grooming

algorithm, PFO reconstruction improves on topocluster reconstruction for both T bins, while TCCs

improve background rejection even further at high T. In both cases, UFO reconstruction is able to match

or improve on the performance of other jet inputs for both T bins. In general, pile-up mitigation improves

tagging performance for all input types. The effects of pile-up mitigation are more apparent at low T,

where soft pile-up radiation has a larger impact on the reconstruction of 2. At high T, pile-up mitigation

significantly improves the performance of TCC jets. This is related to the greater impact of pile-up

mitigation for TCCs on the background mass distribution than the signal distribution, which increases the

background rejection.

The tagging performance varies significantly among the different grooming algorithms and parameter

choices. For trimming algorithms, smaller values of sub or larger values of cut result in reduced tagging

performance, regardless of the jet input type. These parameter choices correspond to more aggressive

grooming, indicating that some of the softer radiation is important for effectively tagging different types

of jets. An analogous observation is made for SD jets, where small values of , or large values of cut

generally result in degraded tagging performance.

A similar set of results is seen for the top tagger in Figure 11. In the low- T bin, PFlow jets typically

outperform both topocluster and TCC jets, while TCC jets outperform the other input object types at high

T. Again, UFO jets are able to match or improve the performance compared to the other jet input types in

both T bins. Pile-up mitigation tends to improve results, particularly at low T, as observed for taggers,

although in a few cases the background rejection deteriorates. The baseline trimming algorithm works well

for all input object types, but at low T, the background rejection may be improved by 50% by instead

using a SD algorithm with lighter grooming. The standard SD algorithm with 1 and cut 0 1 works

particularly well, although recursive and bottom-up variants can also provide comparable performance.

In general, the tagging performance of jets constructed out of UFOs matches or exceeds that of jets

reconstructed out of any other input type.
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Figure 10: Background rejection at 50% signal efficiency for a tagger using the jet mass and 𝐷2 for 𝑊 boson jets at

(a) low 𝑝T, and (b) high 𝑝T. Jet 𝑝T and 𝜂 cuts before tagging are made using the ungroomed particle-level large-𝑅
jet matched to each of the groomed reconstructed large-𝑅 jets. The current baseline topocluster-based trimmed

collection is indicated with a ★.
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Figure 11: Background rejection at 50% signal efficiency for a tagger using the jet mass and 𝜏32 for top quark jets at

(a) low 𝑝T, and (b) high 𝑝T. Jet 𝑝T and 𝜂 cuts before tagging are made using the ungroomed particle-level large-𝑅
jet matched to each of the groomed reconstructed large-𝑅 jets. The current baseline topocluster-based trimmed

collection is indicated with a ★.
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6.2 Pile-up stability

The slopes of the fitted average boson jet mass as a function of PV are shown in Figure 12 for each of the

surveyed jet definitions. The uncertainties in the fitted slope values tend to be negligible compared to the

differences between reported values. Among jet input types, PFOs and UFOs are the most pile-up-stable.

PFOs, TCCs, and UFOs are all more pile-up-stable than topoclusters, due to the ability to easily remove

charged particles from pile-up vertices. As discussed in Section 4, the fitted value of the TCC mass

peak position decreases as a function of PV for most grooming algorithms, although for lighter grooming

algorithms which are more affected by pile-up, the slope is sometimes positive. This effect is exacerbated

by the use of CS+SK, and for CS+SK TCCs, all of the studied trends are negative.

There are significant differences in the pile-up stability of different jet grooming algorithms. In general, all

studied configurations of trimming are stable. For SD, RSD and BUSD, stability depends on the parameter

choice. Larger values of , where more soft and wide-angled radiation is retained, have a larger pile-up

dependence. As expected, for the same value of cut, RSD and BUSD are more stable than the standard SD

definition.

For all input types, with the exception of TCCs, jet-input-level pile-up mitigation techniques improve the

pile-up stability of the jet definitions. Since too much energy is already subtracted for TCCs because of the

inclusion of pile-up tracks in their reconstruction, any additional subtraction further degrades performance.

For other jet inputs, the use of pile-up mitigation reduces the pile-up sensitivity so that it is better than or

equivalent to the pile-up sensitivity from the baseline trimmed topocluster jet definition. This is true even

for lightly groomed algorithms (e.g. RSD with cut 0 05, 1, 3), where CS+SK improves stability

by a factor of 20. While PUPPI improves the pile-up stability of PFOs, the performance of CS+SK PFOs is

better overall, sometimes by more than a factor of two. This improvement is seen for nearly all grooming

algorithms. The pile-up stability of UFOs is similar to that of PFOs, which is expected since the modified

TCC splitting step does not remove pile-up particles.

The change in signal efficiency of the 2 tagger as a function of PV is shown in Figure 13. Uncertainties

in the reported values from the fitting procedure tend to be negligible (sub-percent level). As pile-up levels

increase, the signal efficiency of the tagger tends to decrease. As observed when studying the mass

peak position metric, topocluster inputs are the least stable. After pile-up mitigation, the pile-up stability

of all inputs, including TCCs, improves by this metric. The trends in stability as a function of grooming

algorithm are the same as for the mass position. While CS+SK is typically still more performant than

PUPPI, the degree of improvement is not as large as that observed when studying the pile-up stability of

the jet mass peak-position.
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Figure 12: Pile-up dependence of the value of the fitted 𝑊 boson mass peak at low 𝑝T. Jet 𝑝T and 𝜂 cuts before

tagging are made using the ungroomed particle-level large-𝑅 jet matched to each of the groomed reconstructed

large-𝑅 jets. The current baseline topocluster-based trimmed collection is indicated with a★. The 𝑧-axis colour range

is based on the difference of the baseline collection from a slope of 0. This makes differences between definitions

more discernible than those between very unstable collections, which may have values beyond the axis range.
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Figure 13: Pile-up dependence of a 𝐷2 cut on the 𝑊 boson jet selection efficiency at low 𝑝T. Jet 𝑝T and 𝜂 cuts before

tagging are made using the ungroomed particle-level large-𝑅 jet matched to each of the groomed reconstructed

large-𝑅 jets. The current baseline topocluster-based trimmed collection is indicated with a★. The 𝑧-axis colour range

is based on the difference of the baseline collection from a slope of 0. This makes differences between definitions

more discernible than those between very unstable collections, which may have values beyond the axis range.
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6.3 Topological sensitivity

In order to examine the topology dependence of the jet energy and mass scale for different jet definitions,

the ratio of the mean value of the uncalibrated jet mass response for 𝑊 jets to that of background jets is

constructed. These values can be significantly different, as seen in Section 4. Deviations from unity will

result in non-closure in the mass response following calibration. This effect is largest at low 𝑝T, where the

reconstruction of 𝑊 jets is relevant. As seen in Figure 14, the baseline topocluster-based trimmed large-𝑅
jet definition used by the ATLAS experiment shows a score of around 4% in this metric, and so small

deviations from unity are not problematic.

The topology dependence is increased by the application of jet-input-level pile-up mitigation algorithms.

In general, TCCs show the most sensitivity, which can reach 20% after pile-up mitigation algorithms are

applied. The topological sensitivity is increased for all inputs after the application of CS+SK, regardless of

the grooming algorithm applied. This effect is generally lower for UFOs than for other jet inputs, even after

pile-up mitigation algorithms are applied; the behaviour of PFlow jets is similar.
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Figure 14: Ratio of the mean value of mass response in 𝑊 jets to that in 𝑞/𝑔 jets at low 𝑝T. Kinematic selections

before tagging are made using the ungroomed particle-level large-𝑅 jet matched to each of the groomed reconstructed

large-𝑅 jets. The current baseline topocluster-based trimmed collection is indicated with a ★.
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7 Comparison of calibrated jet definitions

The tagging performance of a jet definition will have the largest impact on the sensitivity of searches for

new physics performed by ATLAS, and so it is the primary metric used to determine which definitions

are important for further study. The pile-up stability and topological sensitivity of the jet mass scale are

also important, but since the performance of the baseline topocluster-based trimmed jet definition is still

adequate, they are primarily used to distinguish between otherwise similar jet definitions. The primary

motivation for choosing UFO-based definitions for further study is their boson and top quark tagging

performance.

Based on their optimal tagging performance over the entire kinematic range of interest, in addition

to the increased pile-up stability achieved by utilising tracking information in the jet definition, only

jets reconstructed from UFOs are considered further. Several grooming algorithms are promising:

soft-drop ( 1 0 cut 0 1) jets perform well when tagging high- T top quarks, while the RSD

( 1 0 cut 0 05 ) and BUSD ( 1 0 cut 0 05) extensions provide further improvements

for high- T bosons. Trimmed UFO jets ( cut 0 05 sub 0 2) also provide competitive performance

in certain regions. These four UFO jet definitions were selected for calibration and further study, as

summarised in Table 2 in the category ‘studied definitions.’

Table 2: Summary of the jet reconstruction algorithms, jet-input-level pile-up mitigation algorithms, and grooming

algorithms which were determined to merit calibration and further study. Several promising UFO-based definitions

are calibrated, as well as other definitions which enable comparisons of the impact of varying different aspects of jet

definitions.

Category Input Objects Grooming Algorithm Configuration
Baseline LCW Topoclusters Trimmed sub 0 2, cut 0 05

definitions TCCs Trimmed sub 0 2, cut 0 05

CS+SK UFOs Trimmed sub 0 2, cut 0 05

Studied CS+SK UFOs SD cut 0 1, 1 0

definitions CS+SK UFOs RSD cut 0 05, 1 0,

CS+SK UFOs BUSD cut 0 05, 1 0

Additional UFOs Trimmed sub 0 2, cut 0 05

definitions PFOs Trimmed sub 0 2, cut 0 05

UFOs SD cut 0 1, 1 0

7.1 Simulation-based jet energy and mass scale calibrations

A simulation-based calibration is derived using Pythia dĳet events for each of the UFO collections

which were selected for further study, as well as for additional large- jet definitions which will permit

comparisons of each aspect of the jet definition which is studied. These jet definitions are listed in Table 2.

This calibration follows the methodology in Ref. [91], and restores the average reconstructed jet T and

mass scales (JES, JMS) to those of the particle-level references. For each jet definition, a reference set of

particle-level jets are reconstructed as described in Section 3.1.1, and the same grooming algorithm is

applied as that used for the detector-level jet definition.

Detector-level jets are matched to particle-level jets using a procedure which minimises the distance
2 2. The T and mass responses are defined respectively as

T
reco
T

true
T

and

33



reco true , where the ‘reco’ quantities correspond to the value of the jet energy or mass before

any calibration has been applied. The truth quantities are defined using particle-level jets, reconstructed

following the procedure described in Section 3.1.1. The average response is determined using a Gaussian

fit to the core of each response distribution.

For the JES calibration, these fits are performed in bins of jet energy and detector pseudorapidity det,

defined as the jet pseudorapidity calculated relative to the geometrical centre of the ATLAS detector. This

parameterisation yields a more accurate representation of the active calorimeter cells than that obtained

when using the pseudorapidity calculated relative to the PV, and results in an improved evaluation of the

calorimeter response. The JES correction factor, JES 1
T

is smoothed in energy and det, and is

applied to the four-momentum of the reconstructed jet as a multiplicative scale factor. A correction to the

jet (‘ ’ below) is also applied to correct for biases with respect to the particle-level reference in certain

detector regions [92]. The JES correction is similar for each of the four CS+SK UFO jet definitions which

are calibrated, regardless of the grooming algorithm which is applied.

After the JES correction has been applied, the jet mass scale calibration is derived using the same procedure

in bins of reco, det, and log( reco reco). The jet mass calibration factor JMS 1 is applied only

to the mass of the jet, keeping the jet energy fixed and thus allowing the T to vary. This factor is also a

smooth function of the large- jet kinematics. The reconstructed large- jet kinematics are thus given

by:

reco JES 0 reco JES JMS 0 reco 0
reco
T JES

2
0

2
JMS

2
0

cosh 0

where the quantities 0, 0 and 0 refer to the jet properties prior to any calibration, but following the jet

grooming procedure. The JMS correction is mostly similar for each of the four CS+SK UFO jet definitions

which are studied, but differences in the size of the correction become largest for massive jets at high T.

Figure 15 presents the average jet mass response for jets with a particle-level jet mass equal to that

of the boson, for the four CS+SK UFO jet definitions which are calibrated. The response for large-

jets with this mass is obtained by directly taking a profile through the smoothed response maps. High- T

trimmed jets require a smaller calibration factor than jets which are groomed using the SD, RSD or BUSD

algorithms. This indicates that there are differences in the high- T behaviour of grooming algorithms:

trimming removes more pile-up from jets at high T, bringing the average JMS of these jets closer to

particle level before calibration.

All figures where JES+JMS calibrations have been applied to the large- jet four-vector are labelled

‘JES+JMS’.

7.2 Comparison of calibrated jet definition performance

7.2.1 Jet mass and T resolution

The expected large- jet mass resolution, defined to be the 68% interquantile range divided by twice the

median of the distribution, is shown in Figure 16 for samples of signal jets. For these studies (as for all

studies in this document), the baseline trimmed topocluster mass is used directly, rather than the combined

mass [91] (which incorporates additional measurements from the inner tracking detector), allowing a direct

comparison of the unmodified performance of the different jet definitions. In Figures 16(a) and 16(b),
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Figure 15: The jet mass response for UFO CS+SK large-𝑅 jets which have been groomed with (a) trimming, (b)

soft-drop, (c) recursive soft-drop and (d) bottom-up soft-drop. The jet mass response is presented as a function of jet

pseudorapidity for several values of the jet transverse momentum from 200 GeV to 2 TeV, for jets with a particle-level

mass equal to the 𝑊 boson mass. The mass responses for large-𝑅 jets with this mass are obtained by directly taking a

profile through the smoothed response maps.
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the resolution for all UFO jet definitions is shown to be better than for the baseline trimmed topocluster

definition, particularly at high T. The expected mass resolution of UFO jets is stable across the entire T

spectrum. In the low- T region the mass resolution of UFO jets is typically similar to that of topocluster

jets, while in the high- T region, it more closely follows the behaviour of TCC jets. For hadronically

decaying high- T top quarks, UFOs improve the jet mass resolution relative to topocluster-based jets by

26%, and by 40% for high- T hadronically decaying bosons.

In order to help factorise the performance gains from various sources, comparisons of the jet mass resolution

are also provided for several other calibrated jet definitions. Figures 16(c) and 16(d) show a comparison

of the four unmodified input object types using the trimming algorithm. In general, at high- T the mass

resolution of top quarks is better than that of bosons due to the fact that bosons are lighter, and their

decay products are typically more collimated, making the calorimeter granularity relevant at lower values of

T. UFO jets outperform topocluster and TCC jets for both boson and top quark jets. PFlow jets are also

found to be more performant than topocluster and TCC jets for top quark jets, although their performance

deteriorates for highly boosted bosons. The trimming and soft-drop algorithms are compared for UFO

jets with and without CS+SK pile-up mitigation in Figures 16(e) and 16(f). The application of CS+SK

does not significantly alter the mass resolution of trimmed UFO jets; however, it is found to improve the

mass resolution for soft-drop jets at low T by nearly 40%.

The large- jet T resolution for background jets is shown in Figure 17, determined as the one-standard-

deviation width of Gaussian fits to the
T

distributions divided by their fitted mean. The T resolution of

trimmed topocluster jets is superior to that of either TCC trimmed jets or any of the UFO jet definitions

studied. UFO jets do not use the LC correction because PFOs are reconstructed using topoclusters at the

EM scale, which results in a degraded correlation between the particle-level and detector-level large- jet

T. While TCC jets take topoclusters calibrated to the LC scale as input, the energy resolution of TCC

trimmed jets is worse than for topocluster trimmed jets, while the UFO trimmed jet resolution is almost

identical to the resolution of PFlow trimmed jets. This indicates that the energy resolution degradation of

TCC is due to the inclusion of pile-up tracks in the energy sharing, since these are not included in the UFO

implementation.

7.2.2 Jet mass+JSS tagging performance

In this section, a comparison of the tagging performance of the calibrated jet definitions is reported. Instead

of considering a single efficiency working point (Section 4.1), the tagging performance is studied using

ROC curves. Figures 18 and 19 show the tagger background rejection as a function of the tagger signal

efficiency, using the same jet mass jet substructure taggers discussed in Section 4.1: a fixed mass-window

cut with 68% signal efficiency is applied, and then a one-sided 2 or 32 cut is made to obtain the desired

signal efficiency.

When tagging high- T, hadronically decaying bosons (Figure 18), the considered UFO definitions

bring significant improvement over the LCTopo and TCC definitions. At high T, UFOs outperform

the baseline topocluster-based jet definition in terms of their background rejection by about 120% at a

fixed signal-tagging efficiency of 50%. For high- T, hadronically decaying top quarks (Figure 19), UFO

definitions outperform all other choices, improving the background rejection by 135% when compared

with the baseline topocluster-based jet definition at a fixed signal-tagging efficiency of 50%. Use of the

recursive or bottom-up soft-drop grooming algorithm is noted to further improve performance over the

trimmed UFO definition by an additional 10% for a signal efficiency of 50%, and the application of CS+SK
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Figure 16: The jet mass resolution for (a,c,e) 𝑊 boson jets, and (b,d,f) top quark jets as a function of 𝑝T. In (a,b) the

relative performance of the studied UFO definitions is compared with the current ATLAS baseline topocluster and

TCC jets, while in (c,d) only jet input object types are compared, and in (e,f) the impact of pile-up mitigation is

highlighted.
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Figure 17: The jet 𝑝T resolution in dĳet events. In (a) the relative performance of the studied UFO definitions is

compared with the current ATLAS baseline topocluster and TCC jets, while in (b) only jet input object types are

compared, and in (c) the impact of pile-up mitigation is highlighted.
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pile-up mitigation is also found to increase performance by roughly 10% when it is applied in conjunction

with the soft-drop grooming algorithm.

7.3 Data-to-simulation comparisons

Robust modelling of jet substructure is crucial to reduce uncertainties related to Monte Carlo modelling of

parton showers in physics analyses that rely on jet-substructure-based techniques. To verify the accuracy of

the simulation, predictions were generated at the detector level for several jet substructure observables in

high- T dĳet events using Pythia and reconstructed using the full ATLAS detector simulation [60] based

on Geant4 [61]. The results are compared with the distributions observed in data collected during 2017.

Events are selected using the lowest unprescaled single large- jet trigger. This trigger is fully efficient for

ungroomed large- jets with T > 600 GeV. Data are required to pass a series of quality requirements and

cleaning cuts. In addition, overlap removal and pile-up reweighting are applied. Events are required to have

at least one jet with a groomed jet T above 600 GeV, and all jets are required to have T 600 GeV and

1 2. When studying the behaviour of 32 and 2, the jet mass is required to be greater than 40 GeV.

Data and simulated events are required to pass the same event selection.

The observed data are compared with simulated dĳet events in Figure 20. The jet mass, number of

jet constituents, 2, and 32 are studied. Only statistical uncertainties are displayed, and the statistical

uncertainty of the simulation is negligible compared to that of the data. In general, the level of agreement

between data and simulation for the UFO jets is similar to that of topocluster trimmed jets, indicating

that this level of agreement is tolerable for general use on ATLAS. The exception to this is the number of

constituents, which is known to be modelled poorly [66]. The modelling is improved for UFO jets relative

to topocluster-based trimmed jets, particularly at large constituent multiplicities.

The background rejection for the mass+JSS taggers described in Section 6 is shown in Figure 21 as a

function of the large- jet T, where taggers are created for each T bin, using the 50% signal efficiency

working point. For the tagger, agreement between data and simulation is similar for all jet definitions,

while for the top taggers, agreement is slightly worse for UFO jets than for the topocluster trimmed

definition.
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Figure 18: Background rejection as a function of signal efficiency for a tagger using the jet mass and 𝐷2 for 𝑊
boson jets at (left) low 𝑝T, and (right) high 𝑝T. In (a,b) the relative performance of the studied UFO definitions

is compared with the current ATLAS baseline topocluster and TCC jets, while in (c,d) only jet input object types

are compared, and in (e,f) the impact of pile-up mitigation is highlighted. The background rejection factor of the

baseline topocluster-based trimmed collection at a fixed signal tagging efficiency of 50% is indicated with a ★.
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Figure 19: Background rejection as a function of signal efficiency for a tagger using the jet mass and 𝜏32 for top quark

jets at (left) low 𝑝T, and (right) high 𝑝T. In (a,b) the relative performance of the studied UFO definitions is compared

with the current ATLAS baseline topocluster and TCC jets, while in (c,d) only jet input object types are compared,

and in (e,f) the impact of pile-up mitigation is highlighted.
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Figure 20: Data-to-simulation comparisons of (a) the groomed jet mass, (b) the number of constituents, (c) the

groomed jet 𝐷2 and (d) the groomed jet 𝜏32. Only statistical uncertainties are displayed, and the statistical uncertainty

of the simulation is negligible compared to that of the data. The ratio of simulation to data is provided in the lower

panel of each figure.
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Figure 21: Data-to-simulation comparisons of the background rejection for groomed jets for (a) the mass+𝐷2 𝑊
tagger, and (b) the mass+𝜏32 top tagger.
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8 Concluding remarks

The development of jet substructure techniques has enabled new searches and measurements, boosting the

sensitivity of the Large Hadron Collider experiments to the physics of and beyond the Standard Model.

This paper has presented a set of performance comparisons in order to determine the most promising

large- jet definitions for use in future analyses, with a focus on comparing different jet input objects,

pile-up mitigation algorithms and jet grooming algorithms.

A new type of jet input, called a Unified Flow Object, has been proposed which incorporates tracking

information into jet substructure reconstruction by combining particle-flow reconstruction for low- T

particles and cluster splitting for particles at high T and in dense environments. These UFO inputs can

increase the background rejection of jet taggers across a wide kinematic range by up to 120% for a simple

tagger at 50% signal efficiency, and up to 135% for a simple top tagger at 50% signal efficiency when

compared with the current baseline trimmed topocluster large- jet definition. While the T resolution of

these jets is degraded relative to the baseline LCW topocluster-based ATLAS large- jet definition due

to the different topocluster energy scales used as input objects, UFO jets provide an improved jet mass

resolution, with up to a 45% improvement at high T for signal jets when compared with existing ATLAS

large- jet definitions.

The application of CS+SK pile-up mitigation has been shown to stabilise and augment performance as a

function of the number of pile-up interactions, which will be crucial in the face of the difficult experimental

conditions to come during future LHC data-taking periods. Pile-up mitigation increases the number of

experimentally viable grooming configurations to include options which do not groom soft radiation

aggressively enough to be considered with unmodified jet inputs.

Several promising grooming algorithms were compared using large- CS+SK UFO jets. Definitions

incorporating soft-drop grooming and its extensions, recursive soft-drop and bottom-up soft-drop, all

outperform the baseline ATLAS trimming configuration in terms of high- T and top quark tagging

using simple taggers. These collections are viable for general-purpose use in the challenging experimental

conditions of the LHC only due to the improvements in jet inputs and pile-up mitigation algorithms. The

soft-drop definition using cut 0 1 and angular exponent 1 0 outperforms all other candidates when

identifying high- T top quarks, and is competitive to within 5–10% of the considered RSD and BUSD

options when tagging boosted bosons. These jets also exhibit good pile-up stability and a tolerable

sensitivity to topological effects, according to the metrics studied. This definition provides superior jet

mass resolution for low- T jets when compared with RSD and BUSD options. Due to its wide range of

applicability, it is concluded that the CS+SK UFO soft-drop ( 1 0, cut 0 1) large- jet definition

provides the best performance for use as a general-purpose jet definition in ATLAS physics analyses.
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