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This paper describes a measurement of light-by-light scattering based on Pb+Pb collision

data recorded by the ATLAS experiment during Run 2 of the LHC. The study uses 2.2 nb−1

of integrated luminosity collected in 2015 and 2018 at
√
𝑠NN = 5.02 TeV. Light-by-light

scattering candidates are selected in events with two photons produced exclusively, each

with transverse energy 𝐸
𝛾
T
> 2.5 GeV, pseudorapidity |𝜂𝛾 | < 2.37, diphoton invariant mass

𝑚𝛾𝛾 > 5 GeV, and with small diphoton transverse momentum and diphoton acoplanarity. The

integrated and differential fiducial cross sections are measured and compared with theoretical

predictions. The diphoton invariant mass distribution is used to set limits on the production

of axion-like particles. This result provides the most stringent limits to date on axion-like

particle production for masses in the range 6–100 GeV. Cross sections above 2 to 70 nb are

excluded at the 95% CL in that mass interval.
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1 Introduction

Light-by-light (LbyL) scattering, 𝛾𝛾 → 𝛾𝛾, is a process in the Standard Model (SM) that proceeds at

lowest order in quantum electrodynamics (QED) via virtual one-loop box diagrams involving charged

fermions (leptons and quarks) and 𝑊± bosons (Figure 1). LbyL interactions can occur in relativistic

heavy-ion collisions at any impact parameters. However, the large impact parameters i.e. larger than

twice the radius of the ions, are experimentally preferred as the strong interaction does not play a role in

these ultra-peripheral collision (UPC) events. In general, UPC events allow studies of processes involving

nuclear photoexcitation, photoproduction of hadrons, and two-photon interactions. Comprehensive reviews

of UPC physics can be found in Refs. [1, 2]. The electromagnetic (EM) fields produced by the colliding

Pb nuclei can be treated as a beam of quasi-real photons with a small virtuality of 𝑄2 < 1/𝑅2, where 𝑅
is the radius of the nuclear charge distribution and so 𝑄2 < 10−3 GeV2 [3–5]. The cross section for the

reaction Pb+Pb (𝛾𝛾) → Pb(∗)+Pb(∗) 𝛾𝛾 can then be calculated by convolving the respective photon flux

with the elementary cross section for the process 𝛾𝛾 → 𝛾𝛾, with a possible EM excitation [6], denoted
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by (∗). Since the photon flux associated with each nucleus scales as 𝑍2, the LbyL cross section is strongly

enhanced relative to proton–proton (𝑝𝑝) collisions.

In this measurement, the final-state signature of interest is the exclusive production of two photons, where

the diphoton final state is measured in the detector surrounding the Pb+Pb interaction region, and the

incoming Pb ions survive the EM interaction. Hence, one expects that two low-energy photons will be

detected with no further activity in the central detector. In particular, no reconstructed charged-particle

tracks originating from the Pb+Pb interaction point are expected.

The LbyL process has been proposed as a sensitive channel to study physics beyond the SM. Modifications of

the 𝛾𝛾 → 𝛾𝛾 scattering rates can be induced by new exotic charged particles [7] and by the presence of extra

spatial dimensions [8]. The LbyL cross sections are also sensitive to Born–Infeld extensions of QED [9],

Lorentz-violating operators in electrodynamics [10], and the presence of space-time non-commutativity in

QED [11]. Additionally, new neutral particles, such as axion-like particles (ALP), can also contribute in

the form of narrow diphoton resonances [12], as shown in Figure 1. ALPs are relatively light, gauge-singlet

(pseudo-)scalar particles that appear in many theories with a spontaneously broken global symmetry. Their

masses and couplings to SM particles may range over many orders of magnitude. The previous ATLAS

searches involving ALP decays to photons are based on 𝑝𝑝 collision data [13, 14].

LbyL scattering via an electron loop has been precisely, albeit indirectly, tested in measurements of the

anomalous magnetic moment of the electron and muon [15, 16]. The 𝛾𝛾 → 𝛾𝛾 reaction has been measured

in photon scattering in the Coulomb field of a nucleus (Delbrück scattering) [17–20] and in the photon

splitting process [21]. A related process, in which initial photons fuse to form a pseudoscalar meson which

subsequently decays into a pair of photons, has been studied at electron–positron colliders [22–24].

The authors of Ref. [25] proposed to measure LbyL scattering by exploiting the large photon fluxes available

in heavy-ion collisions at the LHC. The first direct evidence of the LbyL process in Pb+Pb UPC at the

LHC was established by the ATLAS [26] and CMS [27] Collaborations. The evidence was obtained from

Pb+Pb data recorded in 2015 at a centre-of-mass energy of
√
𝑠

NN
= 5.02 TeV with integrated luminosities

of 0.48 nb−1 (ATLAS) and 0.39 nb−1 (CMS). The CMS Collaboration also set upper limits on the cross

section for ALP production, 𝛾𝛾 → 𝑎 → 𝛾𝛾, over a mass range of 5–90 GeV. Exploiting a data sample of

Pb+Pb collisions collected in 2018 at the same centre-of-mass energy with an integrated luminosity of

1.73 nb−1, the ATLAS Collaboration observed LbyL scattering with a significance of 8.2𝜎 [28]. These two
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Figure 1: Schematic diagrams of (left) SM LbyL scattering and (right) axion-like particle production in Pb+Pb UPC.

A potential electromagnetic excitation of the outgoing Pb ions is denoted by (∗).
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ATLAS measurements used tight requirements on the diphoton invariant mass (> 6 GeV) and single-photon

transverse energy (> 3 GeV).

This paper presents a measurement of the cross sections for Pb+Pb (𝛾𝛾) → Pb(∗)+Pb(∗) 𝛾𝛾 production at√
𝑠

NN
= 5.02 TeV using a combination of Pb+Pb collision data recorded in 2015 and 2018 by the ATLAS

experiment, corresponding to an integrated luminosity of 2.2 nb−1. This analysis follows the approach

proposed in Ref. [25] and the methodology used in the previous measurements [26, 28]. However, as a

result of improvements in the trigger efficiency and purity of the photon identification, a broader kinematic

range in diphoton invariant mass (> 5 GeV) and single-photon transverse energy (> 2.5 GeV) is covered.

This extension results in an increase of about 50% in expected signal yield in comparison with the previous

tighter requirements.

The integrated fiducial cross section and four differential distributions involving kinematic variables of

the final-state photons are measured. Two of the distributions characterise the energy of the process:

the invariant mass of the diphoton system, 𝑚𝛾𝛾 , and the average transverse momentum of two photons,

(𝑝𝛾1

T
+ 𝑝

𝛾2

T
)/2. The remaining ones probe angular correlations of the 𝛾𝛾 system. These are the rapidity1

of the diphoton system, 𝑦𝛾𝛾 , and | cos(𝜃∗) |, defined as:

| cos(𝜃∗) | =
����tanh

(
Δ𝑦𝛾1,𝛾2

2

)���� ,
where 𝜃∗ is the 𝛾𝛾 scattering angle in the 𝛾𝛾 centre-of-mass frame, and Δ𝑦𝛾1,𝛾2 is the difference between

the rapidities of the photons.

The measured diphoton invariant mass distribution is used to set limits on ALP production via the process

𝛾𝛾 → 𝑎 → 𝛾𝛾.

2 ATLAS detector

The ATLAS detector [29] at the LHC covers nearly the entire solid angle around the collision point. It

consists of an inner tracking detector surrounded by a thin superconducting solenoid, EM and hadronic

calorimeters, and a muon spectrometer incorporating three large superconducting toroid magnets. The

inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle tracking

in the pseudorapidity2 range |𝜂 | < 2.5.

The high-granularity silicon pixel detector (Pixel) covers the collision region. Typically, it provides

four measurements per track, with the first hit being in the insertable B-layer (IBL) [30, 31], which was

installed at a mean distance of 3.3 cm from the beam pipe before the start of Run 2. It is followed by the

silicon microstrip tracker (SCT), which usually provides four two-dimensional measurement points per

track. These silicon detectors are complemented by the transition radiation tracker, which enables radially

extended track reconstruction up to |𝜂 | = 2.0.

1 Rapidity is defined as 𝑦 = 1
2 ln

𝐸+𝑝𝑧
𝐸−𝑝𝑧 , where 𝐸 and 𝑝𝑧 are particle’s energy and the component of momentum along the beam

axis, respectively.
2 ATLAS uses a right-handed coordinate system with origin at the nominal interaction point in the centre of the detector and

the 𝑧-axis along the beam pipe. The 𝑥-axis points from the IP to the centre of the LHC ring, and the 𝑦-axis points upwards.

Cylindrical coordinates (𝑟, 𝜙) are used in the transverse plane, 𝜙 being the azimuthal angle around the 𝑧-axis. The pseudorapidity

is defined in terms of the polar angle 𝜃 as 𝜂 = − ln tan(𝜃/2). Angular distance is measured in units of Δ𝑅 ≡
√
(Δ𝜂)2 + (Δ𝜙)2.

The transverse energy of a photon or electron is 𝐸T = 𝐸/cosh(𝜂), where 𝐸 is its energy.
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The calorimeter system covers the pseudorapidity range |𝜂 | < 4.9. Within the region |𝜂 | < 3.2, EM

calorimetry is provided by barrel and endcap lead/liquid-argon (LAr) EM calorimeters (high-granularity for

|𝜂 | < 2.5), with an additional thin LAr presampler covering |𝜂 | < 1.8 to correct for energy loss in material

upstream of the calorimeters. Hadronic calorimetry is provided by the steel/scintillator-tile calorimeter,

segmented into three barrel structures within |𝜂 | < 1.7, and two copper/LAr hadronic endcap calorimeters.

The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules

(FCal) optimised for EM and hadronic measurements respectively.

The muon spectrometer (MS) comprises high-precision tracking chambers measuring the deflection of

muons in a magnetic field generated by the superconducting air-core toroids. The precision chamber

system covers the region |𝜂 | < 2.7 with three layers of monitored drift tubes, complemented by cathode

strip chambers in the forward region, where the background is highest.

The ATLAS minimum-bias trigger scintillators (MBTS) consist of scintillator slats positioned between the

ID and the endcap calorimeters, with each side having an outer ring of four slats segmented in azimuthal

angle, covering 2.07 < |𝜂 | < 2.76, and an inner ring of eight slats, covering 2.76 < |𝜂 | < 3.86.

The ATLAS zero-degree calorimeters (ZDC) consist of four longitudinal compartments on each side of the

interaction point (IP), each with one nuclear interaction length of tungsten absorber, with the Cerenkov light

read out by 1.5 mm quartz rods. The detectors are located 140 m from the nominal IP in both directions,

covering |𝜂 | > 8.3.

The ATLAS LUCID-2 detector [32] consists of 32 photomultiplier tubes for luminosity measurements and

luminosity monitoring. Its two modules are placed symmetrically at about ±17 m from the nominal IP.

The ATLAS trigger system [33] consists of a Level-1 trigger implemented using a combination of dedicated

electronics and programmable logic, and a software-based high-level trigger (HLT).

3 Data and Monte Carlo simulation samples

The data used in this measurement is from Pb+Pb collisions with a centre-of-mass energy of
√
𝑠

NN
= 5.02 TeV,

recorded in 2015 and 2018 with the ATLAS detector at the LHC. The full data set corresponds to an

integrated luminosity of 2.2 nb−1. Only high-quality data with all detectors operating normally are

analysed.

Monte Carlo (MC) simulated events for the LbyL signal process were generated at leading order (LO)

using SuperChic v3.0 [34]. They take into account box diagrams with leptons and quarks (such as the

diagram in Figure 1), and𝑊± bosons, including interference effects. The𝑊± contribution is only important

for diphoton masses 𝑚𝛾𝛾 > 2𝑚𝑊 . Next-to-leading-order QCD and QED corrections are not included.

They increase the 𝛾𝛾 → 𝛾𝛾 cross section by a few percent [35, 36]. An alternative LbyL signal sample

was generated using calculations from Ref. [37]. The difference between the nominal and alternative

signal prediction is mainly in the implementation of the non-hadronic overlap condition of the Pb ions. In

SuperChic v3.0 the probability for exclusive 𝛾𝛾 interactions turns on smoothly for Pb+Pb impact parameters

in the range of 15–20 fm and it is unity for larger values, while the alternative prediction fully suppresses

these interactions for impact parameters below 14 fm when two nuclei overlap during the collision. This

difference leads to a fiducial cross section for LbyL scattering that is by about 3% larger in the alternative

calculation than in the prediction from SuperChic v3.0.
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The exclusive diphoton final state can also be produced via the strong interaction through a quark

loop in the exchange of two gluons in a colour-singlet state. This central exclusive production (CEP)

background contribution, 𝑔𝑔 → 𝛾𝛾, was modelled using SuperChic v3.0. Background from two-photon

production of quark–antiquark pairs was estimated using Herwig++ 2.7.1 [38] where the Equivalent

Photon Approximation (EPA) formalism in 𝑝𝑝 collisions is implemented. The sample was then normalised

to cover the differences in equivalent photon fluxes between the Pb+Pb and 𝑝𝑝 cases.

Exclusive dielectron pairs from the reaction Pb+Pb (𝛾𝛾) → Pb(∗)+Pb(∗) 𝑒+𝑒− are used for various aspects

of the analysis, in particular to validate the EM calorimeter energy scale and resolution. This 𝛾𝛾 → 𝑒+𝑒−

process was modelled with the STARlight v2.0 MC generator [39], in which the cross section is computed

by combining the Pb+Pb photon flux with the LO formula for 𝛾𝛾 → 𝑒+𝑒−. The background contribution

from a related process, 𝛾𝛾 → 𝜏+𝜏−, was modelled using STARlight v2.0 interfaced with Pythia 8.212 [40]

for the simulation of 𝜏-lepton decays.

Events for the ALP signal were generated using STARlight v2.0 for ALP masses (𝑚𝑎) ranging between 5

and 100 GeV. A mass spacing of 1 GeV was used for 5 < 𝑚𝑎 < 30 GeV, while for 𝑚𝑎 > 30 GeV a 10 GeV

mass spacing was used. The width of the simulated ALP resonance is well below the detector resolution in

all simulated samples.

All generated events were passed through a detector simulation [41] based on GEANT4 [42] and are

reconstructed with the standard ATLAS reconstruction software.

4 Event selection

Candidate diphoton events were recorded using a dedicated trigger for events with moderate activity in the

calorimeter but little additional activity in the entire detector. The trigger strategies for the 2015 and 2018

data sets were different. In particular, the latter aimed at improving the trigger efficiency at low photon

transverse energy, 𝐸T, values. At Level-1 in 2015, the total 𝐸T registered in the calorimeter after noise

suppression was required to be between 5 and 200 GeV. In 2018, a logical OR of two Level-1 conditions

was required: (1) at least one EM cluster with 𝐸T > 1 GeV in coincidence with total 𝐸T registered in the

calorimeter between 4–200 GeV, or (2) at least two EM clusters with 𝐸T > 1 GeV with total 𝐸T registered

in the calorimeter below 50 GeV. At the HLT, events in 2015 were rejected if more than one hit was found

in the inner ring of the MBTS (MBTS veto). In 2018, a requirement of total 𝐸T on each side of the FCal

detector to be below 3 GeV was imposed. Additionally, in both data sets a veto condition on activity in the

Pixel detector, hereafter referred to as Pixel-veto, had to be satisfied. The number of hits was required to be

at most 10 in 2015, and at most 15 in 2018.

Photons are reconstructed from EM clusters in the calorimeter and tracking information provided by

the ID, which allows the identification of photon conversions [43]. Selection requirements are applied

to remove EM clusters with a large amount of energy from poorly functioning calorimeter cells, and a

timing requirement is made to reject out-of-time candidates. An energy calibration specifically optimised

for photons [44] is applied to the candidates to account for upstream energy loss and both lateral and

longitudinal shower leakage. The calibration is derived for nominal 𝑝𝑝 collisions with dedicated factors

applied to account for a negligible contribution from multiple Pb+Pb collisions at the same bunch crossing.

A correction [44] is applied to photons in MC samples to account for potential mismodelling of quantities

which describe shower shapes of the associated EM showers.

The photon particle identification (photon PID) in this analysis is based on a selection of the shower-shape

variables, optimised for the signal events. Only photons with 𝐸T > 2.5 GeV and |𝜂 | < 2.37, excluding the
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calorimeter transition region 1.37 < |𝜂 | < 1.52, are considered. The pseudorapidity requirement ensures

that the photon candidates pass through regions of the EM calorimeter where the first layer is segmented

into narrow strips, providing good separation between genuine prompt photons and photons coming from

the decay of neutral hadrons. The identification is based on a neural network trained on background

photons extracted from data and photons from the signal MC simulation, as already used in the previous

ATLAS measurement [28]. The PID requirements are optimised for low-𝐸T photons (𝐸T < 20 GeV) to

maintain a constant photon PID efficiency of 95% as a function of 𝜂 and 𝐸T with respect to reconstructed

photon candidates. They also select a purer sample of photons than obtained with the cut-based photon

PID utilised in 𝑝𝑝 collisions [43].

Preselected events are required to have exactly two photons satisfying the above selection criteria, with

a diphoton invariant mass greater than 5 GeV. In order to suppress the 𝛾𝛾 → 𝑒+𝑒− background, a veto

on charged-particle tracks (with 𝑝T > 100 MeV, |𝜂 | < 2.5, at least one hit in the Pixel detector and at

least six hits in the Pixel and SCT detectors in total) is imposed. In order to reduce the background from

electrons with poorly reconstructed tracks, candidate events are required to have no ‘pixel tracks’ in the

vicinity of the photon candidate. Pixel tracks are reconstructed using only the information from the Pixel

detector, and are required to have 𝑝T > 50 MeV, |𝜂 | < 2.5, and at least three hits in the Pixel detector. In

order to suppress fake pixel tracks due to noise in the Pixel detector, only pixel tracks with Δ𝜂 < 0.5 from

the photons are considered. These requirements reduce the fake-photon background from the dielectron

final state by a factor of about 104, according to simulation. They have minor impact on 𝛾𝛾 → 𝛾𝛾 signal

events (93% efficiency for the track veto and 99% for the pixel-track veto), since the probability of photon

conversion in the Pixel detector is relatively small and the converted photons have a low probability of

being reconstructed at very low 𝐸T due to the presence of low-momentum electron tracks.

Due to the absence of tracks in the LbyL signal events, no primary vertex is reconstructed. The photon

direction is estimated using the barycentre of the cluster with respect to the origin of the ATLAS coordinate

system.

To reduce other sources of fake-photon background (involving mainly calorimeter noise and cosmic-ray

muons), the transverse momentum of the diphoton system (𝑝
𝛾𝛾
T

) is required to be below 1 GeV for

𝑚𝛾𝛾 < 12 GeV and below 2 GeV for 𝑚𝛾𝛾 > 12 GeV. To reduce real-photon background from CEP

𝑔𝑔 → 𝛾𝛾 reactions, an additional requirement on the diphoton acoplanarity, 𝐴𝜙 = (1 − |Δ𝜙𝛾𝛾 |/𝜋) < 0.01,

is used. The CEP process exhibits a significantly broader acoplanarity distribution than the 𝛾𝛾 → 𝛾𝛾
process because gluons recoil against the Pb nucleus, which then dissociates.

To select 𝛾𝛾 → 𝑒+𝑒− candidates, events are required to pass the same trigger as in the diphoton selection.

Each electron is reconstructed from an EM energy cluster in the calorimeter matched to a track in the

ID [45]. The electrons are required to have a transverse energy 𝐸T > 2.5 GeV and pseudorapidity |𝜂 | < 2.47

with the calorimeter transition region 1.37 < |𝜂 | < 1.52 excluded. They are also required to meet loose

identification criteria based on shower-shape and track-quality variables [45]. The 𝛾𝛾 → 𝑒+𝑒− events

are selected by requiring exactly two oppositely charged electrons, no further charged-particle tracks

coming from the interaction region (with the selection requirements as described above), and dielectron

acoplanarity below 0.01.
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5 Detector calibration

5.1 Trigger efficiency

The trigger sequence used in the analysis consists of three independent requirements: Level-1, MBTS/FCal

veto, and the requirement on low activity in the ID.

The Level-1 trigger efficiency was estimated with 𝛾𝛾 → 𝑒+𝑒− events passing one of the independent

supporting triggers. These triggers are designed to select events with single or double dissociation of Pb

nuclei and small activity in the ID. They are based on a coincidence of signals in one or both ZDC sides

with a requirement on the total 𝐸T in the calorimeter to be below 50 GeV. Dielectron event candidates are

required to have exactly two reconstructed tracks and two geometrically matched EM clusters, each with

a minimum 𝐸T of 1 GeV and |𝜂 | < 1.47, excluding the calorimeter transition region 1.37 < |𝜂 | < 1.52.

The electron identification requirements are removed in order to accept more events in this very low

𝐸T region, where the efficiencies to reconstruct and identify electrons are low. Furthermore, dielectron

acoplanarity evaluated using electron charged-particle tracks is required to be below 0.01. The extracted

Level-1 trigger efficiency is provided as a function of the sum of 𝐸T of the two EM clusters reconstructed

offline (
∑
𝐸clusters

T
= 𝐸cluster1

T
+ 𝐸cluster2

T
). For

∑
𝐸clusters

T
= 5 GeV this efficiency, shown in Figure 2, reaches

60% for 2018 trigger settings, while it is consistent with 0% for 2015 trigger settings due to higher

trigger thresholds. The Level-1 trigger efficiency grows to about 25% (95%) for
∑
𝐸clusters

T
= 7.5 GeV for

2015 (2018) data. The efficiency plateau is reached around
∑
𝐸clusters

T
= 10 GeV for the 2015 data-taking

period and around
∑
𝐸clusters

T
= 9 GeV for the 2018 one. The error bars associated with the data points

represent statistical uncertainties. The efficiency is parameterised using an error function fit that is used

to reweight the MC simulation. The statistical uncertainty is estimated by varying the fit parameters by

their uncertainty values. The systematic uncertainty is estimated using modified 𝛾𝛾 → 𝑒+𝑒− selection

criteria.
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Figure 2: The Level-1 trigger efficiency extracted from 𝛾𝛾 → 𝑒+𝑒− events that pass the supporting triggers as a

function of the sum of 𝐸T of the two EM clusters. Data are shown as points with error bars representing statistical

uncertainties, separately for two data-taking periods: 2015 (open squares) and 2018 (full circles). The efficiency is

parameterised using the error function fit, shown as a dashed (2015) or solid (2018) line. Shaded bands denote total

(statistical and systematic) uncertainty.
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The MBTS and FCal veto efficiencies are estimated using 𝛾𝛾 → 𝑒+𝑒− events recorded by supporting

triggers. The MBTS veto efficiency is estimated to be (98 ± 2)% [26] and the FCal veto efficiency is found

to be (99.1 ± 0.6)%. Both efficiencies are independent of kinematics.

Due to low conversion probability of signal photons in the Pixel detector, inefficiency of the Pixel-veto

requirement at the trigger level is found to be negligible for diphoton event candidates.

The efficiency for selected 𝛾𝛾 → 𝑒+𝑒− events to satisfy the Pixel-veto requirement is evaluated using a

dedicated supporting trigger accepting events with at most 15 tracks at the HLT, out of which at least

two had 𝑝T > 1 GeV. At Level-1, the same trigger condition was applied as in the diphoton trigger. The

FCal veto requirement was also imposed at the HLT. The Pixel-veto efficiency is parameterised using a

second-order polynomial as a function of dielectron rapidity, 𝑦𝑒𝑒. The efficiency reaches 80–85% for

dielectron rapidity |𝑦𝑒𝑒 | < 1 and drops to 45–50% at |𝑦𝑒𝑒 | ≈ 2.5. This efficiency correction is applied to

the 𝛾𝛾 → 𝑒+𝑒− MC simulation.

5.2 Photon reconstruction and identification

The photon reconstruction efficiency is extracted from data using 𝛾𝛾 → 𝑒+𝑒− events, where one of the

electrons emits a hard-bremsstrahlung photon when interacting with the material of the detector. A

tag-and-probe method is performed for events collected by the diphoton trigger with exactly one identified

electron and exactly two reconstructed charged-particle tracks. The electron is considered a tag if it

can be matched to one of the tracks with a Δ𝑅 < 1.0 requirement. The electron is required to have

𝐸𝑒
T
> 4 GeV and the track that is unmatched with the electron (trk2) must have 𝑝T < 1.5 GeV. The

electron–trk2 transverse momentum difference is treated as the transverse energy of the probe, since the

additional hard-bremsstrahlung photon is expected to have 𝐸
𝛾
T
≈ (𝐸𝑒

T
− 𝑝trk2

T
). The 𝑝trk2

T
< 1.5 GeV

requirement ensures a sufficient Δ𝑅 separation between the expected photon and the second electron. A

hard-bremsstrahlung photon is expected to be within a distance of Δ𝑅 = 1.0 around trk2 direction. Any

additional background contribution to the exclusive 𝛾𝛾 → 𝑒+𝑒− reaction is found to be very small in Pb+Pb

UPC [46], and therefore it is considered negligible.

The data sample contains 2905 𝛾𝛾 → 𝑒+𝑒−(𝛾) bremsstrahlung photons and is used to extract the photon

reconstruction efficiency, which is presented in Figure 3. The efficiency in data is approximately 60% for

𝐸
𝛾
T
= 2.5 GeV and reaches 90% at 𝐸

𝛾
T
= 6 GeV. Reasonable agreement between data and simulation is

found. The distribution from Figure 3 is used to obtain the data-to-simulation scale factors that are used to

correct the MC simulation.

High-𝑝T exclusive dilepton production (𝛾𝛾 → ℓ+ℓ− with ℓ± = 𝑒±, 𝜇±) with final-state radiation (FSR)

is used for data-driven measurements of the photon PID efficiency, defined as the probability for a

reconstructed photon to satisfy the identification criteria. Events with exactly two oppositely charged

tracks with 𝑝T > 0.5 GeV are selected in UPC events recorded by the diphoton or dimuon3 triggers. In

addition a requirement to reconstruct a photon candidate with 𝐸
𝛾
T
> 2.5 GeV and |𝜂 | < 2.37, excluding the

calorimeter transition region 1.37 < |𝜂 | < 1.52, is imposed. A photon candidate is required to be separated

from each track with the requirement Δ𝑅 > 0.3. This condition avoids the leakage of the photon cluster

energy to an electron cluster from the 𝛾𝛾 → 𝑒+𝑒− process. The mass of the dilepton system is required

to be above 1.5 GeV. The FSR event candidates are identified using a 𝑝
tt𝛾
T

< 1 GeV requirement, where

3 The dimuon trigger required a muon candidate with 𝑝T > 4 GeV reconstructed at Level-1 and at least two tracks with 𝑝T above

1 GeV among up to 15 tracks found at the HLT.
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Figure 3: Photon reconstruction efficiency as a function of photon 𝐸
𝛾
T

(approximated with 𝐸𝑒
T
− 𝑝trk2

T
) extracted from

𝛾𝛾 → 𝑒+𝑒− events with a hard-bremsstrahlung photon. Data (full symbols) are compared with 𝛾𝛾 → 𝑒+𝑒− MC

simulation (open symbols). The error bars denote statistical uncertainties.

𝑝
tt𝛾
T

is the transverse momentum of the three body system consisting of two oppositely charged tracks and

a photon. The FSR sample consists of 1333 (212) photon candidates in the 2018 (2015) data set and is

statistically independent from the hard-bremsstrahlung photon sample used in the photon reconstruction

efficiency measurement.

Figure 4 shows the photon PID efficiency as a function of the reconstructed photon 𝐸T for 2015 and 2018

data. The efficiency in data is compared with the efficiency extracted from the signal MC sample. Photon

PID efficiencies in MC simulation with 2015 and 2018 data-taking conditions are in good agreement. In

the data for photons with 𝐸T < 5 GeV, the photon PID efficiency is in the range of 91-93% in the 2018

set, while it is found to be 97-100% in the 2015 set. This difference is due to slightly different detector

conditions between the 2015 and 2018 data-taking periods, causing the photon shower-shape distributions

to be narrower in the 2015 data. Based on these studies, MC simulated events are corrected using photon

𝐸T-dependent data-to-simulation scale factors separately for the 2015 and 2018 data sets.

5.3 Photon energy calibration

The EM energy scale and energy resolution are validated in data using 𝛾𝛾 → 𝑒+𝑒− events. The two

electrons from the 𝛾𝛾 → 𝑒+𝑒− reaction exhibit balanced transverse momenta with |𝑝𝑒+
T

− 𝑝𝑒
−

T
|, expected

to be below 30 MeV, which is much smaller than the EM calorimeter energy resolution. Therefore, the

energy resolution, 𝜎𝐸cluster
T

, can be determined from the measurement of 𝐸cluster1
T

− 𝐸cluster2
T

distributions in

𝛾𝛾 → 𝑒+𝑒− events from the formula:

𝜎𝐸cluster
T

≈
𝜎(𝐸cluster1

T
−𝐸cluster2

T
)√

2
,

where 𝐸cluster1
T

and 𝐸cluster2
T

are the transverse energies of the two clusters. At low electron-𝐸T (below

10 GeV) the value of 𝜎𝐸cluster
T

/𝐸cluster
T

is observed to be 8–10% in data, which agrees well with the resolution

obtained from simulation.
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Figure 4: Photon PID efficiency as a function of photon 𝐸T extracted from FSR event candidates in 2015 (left) and

2018 (right) data (full symbols) and signal MC sample (open symbols). The error bars denote statistical uncertainties.

The EM energy scale is cross-checked using the ratio of electron cluster 𝐸T to electron track 𝑝T. It is

observed that the simulation provides a good description of the 𝐸𝑒
T
/𝑝trk

T
distribution.

5.4 Control distributions for exclusive 𝜸𝜸 → 𝒆+𝒆− production

Figure 5 presents detector-level distributions for events passing the 𝛾𝛾 → 𝑒+𝑒− selection (outlined in

Section 4) in the 2018 Pb+Pb data. In total, 28 045 𝛾𝛾 → 𝑒+𝑒− event candidates are observed. The shaded

bands reflect systematic uncertainties due to electron energy scale and resolution, electron reconstruction

and identification, and trigger efficiency. In general, the STARlight prediction describes the normalisation

and shapes of distributions well. Small systematic differences between the central values of the exclusive

dielectron data and the MC prediction are seen in the tail of the dielectron 𝑝T distribution, likely due to a

missing contribution from the QED final-state radiation which is not simulated by the MC generator.

The low number of 𝛾𝛾 → 𝑒+𝑒− events collected by a control trigger in the 2015 Pb+Pb data precludes

precision comparisons between data and MC simulation in that sample. In particular, the tighter Pixel-veto

requirement imposed at the HLT necessitates a dedicated pseudorapidity-dependent trigger efficiency

correction which, due to the limited number of 𝛾𝛾 → 𝑒+𝑒− events, could only be extracted with 20%

precision. Nevertheless, overall reasonable agreement was found within large uncertainties as demonstrated

in the previous ATLAS publication [26].

6 Background estimation

6.1 Dielectron final states

The 𝛾𝛾 → 𝑒+𝑒− process has a relatively high cross section and can be a source of fake diphoton events.

The electron-to-photon misidentification can occur when the electron track is not reconstructed or the
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Figure 5: Kinematic distributions for Pb+Pb (𝛾𝛾) → Pb(∗)+Pb(∗) 𝑒+𝑒− event candidates in the 2018 data set:

dielectron mass (top-left), dielectron rapidity (top-right), dielectron 𝑝T (bottom-left) and electron transverse energy

(bottom-right). Data (points) are compared with MC expectations (histograms). The simulation prediction is

normalised to the same integrated luminosity as the data. Systematic uncertainties due to electron energy scale and

resolution, electron reconstruction and identification, and trigger efficiency, are shown as shaded bands. The lower

panels display the ratio of data to MC predictions. Some values are outside the plotting range.

electron emits a hard bremsstrahlung photon.

The 𝛾𝛾 → 𝑒+𝑒− yield in the signal region defined in Section 4 is estimated using a fully data-driven method.

A control region is defined requiring exactly two photon candidates passing the signal selection, and one or

two pixel tracks. This control region is denoted by CR𝑁=1, 2
PixTrk

. The event yield observed in CR𝑁=1, 2
PixTrk

is

extrapolated to the signal region using the probability of missing the electron pixel track if the standard

track is not reconstructed (𝑝𝑒
mistag

).

The 𝑝𝑒
mistag

value is measured in data using events with exactly one standard track and two photon candidates

having 𝐴𝜙 < 0.01. It is measured to be 𝑝𝑒
mistag

= (47± 9)%, where the uncertainty is estimated by relaxing

the 𝐴𝜙 requirement. It is also found that 𝑝𝑒
mistag

does not depend on the probed photon 𝐸T and 𝜂.

The number of 𝛾𝛾 → 𝑒+𝑒− events in the signal region is estimated to be 𝑁𝛾𝛾→𝑒+𝑒− = 15 ± 7, where the

uncertainty accounts for the 𝑝𝑒
mistag

uncertainty and limited event yield in CR𝑁=1, 2
PixTrk

. This uncertainty
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also covers the differences if the 𝛾𝛾 → 𝑒+𝑒− yield is instead extrapolated from event yields for individual

pixel-track multiplicities (𝑁 = 1 or 𝑁 = 2).

The distribution shapes of various kinematic variables of 𝛾𝛾 → 𝑒+𝑒− background in the signal region are

taken from data in CR𝑁=1
PixTrk

. The shape uncertainty is constructed by comparing kinematic distributions

from data in CR𝑁=1
PixTrk

with the distributions from data in CR𝑁=2
PixTrk

.

6.2 Central exclusive diphoton production

The CEP 𝑔𝑔 → 𝛾𝛾 background is estimated from MC simulation with the overall rate of this process

evaluated in the 𝐴𝜙 control region in the data. The normalisation is constrained using the condition:

𝑁data(𝐴𝜙 > 0.01) = 𝑁𝑔𝑔→𝛾𝛾 (𝐴𝜙 > 0.01) + 𝑁sig(𝐴𝜙 > 0.01) + 𝑁𝛾𝛾→𝑒𝑒 (𝐴𝜙 > 0.01) ,

where 𝑁data denotes the number of observed events, 𝑁𝑔𝑔→𝛾𝛾 is the expected CEP 𝑔𝑔 → 𝛾𝛾 event yield,

𝑁sig is the expected number of signal events (from MC simulation) and 𝑁𝛾𝛾→𝑒𝑒 is the 𝑒+𝑒− background

yield. The 𝑁𝛾𝛾→𝑒𝑒 is estimated using the same data-driven method as described in Section 6.1. The

diphoton acoplanarity distribution for events satisfying the signal region selection, but before applying the

𝐴𝜙 < 0.01 requirement is shown in Figure 6. The predictions provide a fair description of the shape of the

data distribution.

The uncertainty in the CEP 𝑔𝑔 → 𝛾𝛾 background process takes into account the limited number of events

in the 𝐴𝜙 > 0.01 control region (11%), as well as experimental and modelling uncertainties. It is found

that all experimental uncertainties have a negligible impact on the CEP 𝑔𝑔 → 𝛾𝛾 background estimate.

The impact of the MC modelling uncertainty on the shape of the acoplanarity distribution is estimated

using an alternative SuperChic v2.0 MC sample with extra gluon interactions (no absorptive effects). This

leads to a 21% change in the CEP background yield in the signal region, which is taken as a systematic

uncertainty. An additional check is performed by varying the parton distribution function (PDF) of the

gluon. The differences between leading-order MMHT 2014 [47], CT14 [48] and NNPDF3.1 [49] PDF sets

have negligible impact on the shape of the diphoton acoplanarity distribution.

In addition, the energy deposition in the ZDC, which is sensitive to the dissociation of Pb nuclei, is studied

for events before the 𝐴𝜙 < 0.01 requirement is imposed. Good agreement is observed in the 𝐴𝜙 > 0.01

control region between the data-driven CEP estimate and the observed events with a signal corresponding

to at least one neutron in the ZDC. In the signal region (𝐴𝜙 < 0.01), approximately 70% of observed events

have a signal corresponding to no neutrons in the ZDC, which is consistent with the signal-plus-background

hypothesis.

The background due to CEP in the signal region is estimated to be 12 ± 3 events. In the differential

cross-section measurements, the shape uncertainty is evaluated using the alternative SuperChic v2.0 MC

sample.

6.3 Other background sources with prompt photons

The contribution from the 𝛾𝛾 → 𝑒+𝑒−𝛾𝛾 process is evaluated using the MadGraph5_aMC@NLO v2.4.3

MC generator [50] and the Pb+Pb photon flux from STARlight. This contribution is estimated to be below

1% of the expected signal and is consequently ignored in the analysis.
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Figure 6: The diphoton acoplanarity distribution for events satisfying the signal region selection, but before applying

the 𝐴𝜙 < 0.01 requirement. Data are shown as points with statistical error bars, while the histograms represent the

expected signal and background levels. The CEP 𝑔𝑔 → 𝛾𝛾 background is normalised in the 𝐴𝜙 > 0.01 control

region. The signal prediction is normalised to the same integrated luminosity as the data. The shaded band represents

the uncertainties in signal and background predictions, excluding the uncertainty in the luminosity.

The contribution from bottomonia production (for example, 𝛾𝛾 → 𝜂𝑏 → 𝛾𝛾 or 𝛾Pb → Υ → 𝛾𝜂𝑏 → 3𝛾)

is calculated using relevant branching fractions from Refs. [51, 52] and found to be negligible.

The contribution from UPC events where both nuclei emit a bremsstrahlung photon is estimated using

calculations from Ref. [53]. The cross section for single-bremsstrahlung photon production from a Pb ion

in the fiducial region of the measurement is calculated to be below 10−4 pb, so the coincidence of two such

occurrences is negligible.

6.4 Other fake-photon background

The background contribution from 𝛾𝛾 → 𝑞𝑞 production is estimated using MC simulation based on

Herwig++ and it contributes less than 1 event to the total number of events in the signal region. The

expected yield for the background from 𝛾𝛾 → 𝜏+𝜏− process is estimated using MC simulation based

on STARlight + Pythia 8 and is found to be less than 0.5 events. Both of these background sources are

considered negligible.

Exclusive two-meson production can be a potential source of background for LbyL scattering events, mainly

due to their similar back-to-back topology. Mesons can fake photons either by their decay into photons

(𝜋0, 𝜂, 𝜂′) or by mis-reconstructed charged-particle tracks (for example 𝜋+, 𝜋− states). Estimates for such

contributions are reported in Refs. [25, 54–57] and these contributions are considered to be negligible in

the signal region.

The background from fake diphoton events induced by cosmic-ray muons is estimated using a control region

with at least one track reconstructed in the muon spectrometer and further studied using the reconstructed

photon-cluster time distribution. The latter method is also used to estimate the background originating

from calorimeter noise. After imposing the 𝑝
𝛾𝛾
T

requirements, these background contributions are below 1

event and are considered negligible.
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7 Systematic uncertainties

Systematic uncertainties in the 𝛾𝛾 → 𝛾𝛾 cross-section measurements arise from the reconstruction of

photons, the background determination, and integrated luminosity uncertainty, as well as the procedures

used to correct for detector effects.

The precision of the Level-1 trigger efficiency estimation is limited by the number of events recorded

by the supporting trigger. As a systematic check, the 𝑒+𝑒− event selection is varied. In total, the impact

of the Level-1 trigger efficiency uncertainty on the expected signal yield is 5%. The uncertainty in the

MBTS/FCal veto efficiency has negligible impact on the results.

The uncertainty in the photon reconstruction and PID efficiencies is estimated by parameterising the scale

factors as a function of the photon pseudorapidity, instead of the photon transverse momentum. This

affects the expected signal yield by 4% (photon reconstruction efficiency) and 2% (photon PID efficiency).

The variation of the selection criteria used in data-driven efficiency measurements has negligible impact

on the results. The statistical uncertainty of the photon reconstruction and PID efficiency corrections is

propagated using the pseudo-experiment method in which the correction factors are randomly shifted in an

ensemble of pseudo-experiments according to the mean and standard deviation of the correction factor.

This has negligible impact on the expected signal.

The uncertainties related to the photon energy scale and resolution affect the expected signal yield by 1%

and 2%, respectively. The uncertainty due to imperfect knowledge of the photon angular resolution is

estimated using electron clusters from the 𝛾𝛾 → 𝑒+𝑒− process. The data–MC difference in the electron

cluster 𝜙 resolution is applied as an extra smearing to photons from the signal MC sample. This results in a

2% shift of the signal yield, which is taken as a systematic uncertainty.

The uncertainty due to the choice of signal MC generator is estimated by using an alternative signal

MC sample, as detailed in Section 3. This affects the signal yield by 1% which is taken as a systematic

uncertainty. The uncertainty due to the limited signal MC sample size is 1%.

The uncertainties in the background estimation are evaluated as described in Section 6.

The uncertainty in the integrated luminosity of the data sample is 3.2%. It is derived from the calibration

of the luminosity scale using 𝑥–𝑦 beam-separation scans, following a methodology similar to that detailed

in Ref. [58], and using the LUCID-2 detector for the baseline luminosity measurements.

Systematic uncertainties associated with the background estimate, the photon PID and reconstruction

efficiency, photon energy scale, and photon angular and energy resolution are fully correlated between

the 2015 and 2018 data-taking periods. Systematic uncertainties in the trigger efficiency are computed

separately for each data-taking period. They are dominated by the statistical uncertainty of each data set

and are thus uncorrelated.

8 Results

8.1 Kinematic distributions

Photon kinematic distributions comparing the selected data with the sum of expected event yields from

simulated signal and background processes in the signal region are shown in Figure 7. In total, 97 events are
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Source of uncertainty Detector correction (𝐶)

0.263 ± 0.021

Trigger efficiency 5%

Photon reco. efficiency 4%

Photon PID efficiency 2%

Photon energy scale 1%

Photon energy resolution 2%

Photon angular resolution 2%

Alternative signal MC 1%

Signal MC statistics 1%

Total 8%

Table 1: The detector correction factor, 𝐶, and its uncertainties for the integrated fiducial cross-section measurement.

The second row lists the numerical value of 𝐶 together with the total uncertainty. The total uncertainty on 𝐶 is a

quadratic sum of systematic and statistical components.

observed in data where 45 signal events and 27 background events are expected. This excess of observed

events is visible in all distributions shown in Figure 7.

8.2 Integrated fiducial cross section

The inclusive cross section for the 𝛾𝛾 → 𝛾𝛾 process is measured in a fiducial phase space, defined by the

following requirements on the diphoton final state, reflecting the selection at reconstruction level: both

photons have to be within |𝜂 | < 2.4 with a transverse momentum of 𝑝T > 2.5 GeV. The invariant mass of

the diphoton system has to be 𝑚𝛾𝛾 > 5 GeV with transverse momentum of 𝑝
𝛾𝛾
T

< 1 GeV. In addition, the

photons must fulfil an acoplanarity requirement of 𝐴𝜙 < 0.01.

The integrated fiducial cross section is obtained as follows:

𝜎fid =
𝑁data − 𝑁bkg

𝐶 ×
∫
𝐿d𝑡

, (1)

where 𝑁data = 97 is the number of selected events in data, 𝑁bkg = 27±5 is the number of background events,∫
𝐿d𝑡 = 2.22 ± 0.07 nb−1 is the integrated luminosity of the data sample and 𝐶 = 0.263 ± 0.021 is the

overall correction factor that accounts for detector efficiencies and resolution effects, and for signal events

passing the event selection but originating from outside the fiducial phase space (fiducial corrections). The

𝐶 factor is defined as the ratio of the number of reconstructed MC signal events passing the selection to the

number of generated MC signal events satisfying the fiducial requirements.

The uncertainty in 𝐶 is estimated by varying the data/MC correction factors within their uncertainties as

described in Section 7, in particular for the photon reconstruction and PID efficiencies, photon energy scale

and resolution and trigger efficiency. An overview of the various uncertainties in 𝐶 is given in Table 1.

The uncertainty in 𝑁bkg is dominated by the uncertainty in the 𝛾𝛾 → 𝑒+𝑒− background. This has a 6%

impact on the estimated integrated fiducial cross section.
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Figure 7: Kinematic distributions for 𝛾𝛾 → 𝛾𝛾 event candidates: diphoton invariant mass (top-left), diphoton rapidity

(top-right), diphoton transverse momentum (mid-left), diphoton | cos(𝜃∗) | (mid-right), leading photon transverse

energy (bottom-left) and leading photon pseudorapidity (bottom-right). Data (points) are compared with the sum

of signal and background expectations (histograms). The signal prediction is normalised to the same integrated

luminosity as the data. Systematic uncertainties in the signal and background processes, excluding that in the

luminosity, are shown as shaded bands.
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The measured integrated fiducial cross section is 𝜎fid = 120±17 (stat.)±13 (syst.)±4 (lumi.) nb, which can

be compared with the predicted values of 80 ± 8 nb from Ref. [37] and 78 ± 8 nb from the SuperChic v3.0

MC generator [34]. The data-to-theory ratios are 1.50 ± 0.32 and 1.54 ± 0.32, respectively.

The theoretical uncertainty in the cross section is primarily due to limited knowledge of the nuclear (EM)

form-factors and the related initial photon fluxes. This is extensively studied in Ref. [59] and the relevant

uncertainty is estimated to be 10% within the fiducial phase space of the measurement. For masses below

100 GeV, this uncertainty does not exhibit a dependence on the diphoton mass. Higher-order corrections

(not included in the calculations) are also part of the theoretical uncertainty and are of the order of 1–3% in

the corresponding invariant mass range [35, 36].

8.3 Differential fiducial cross sections

Differential fiducial cross sections as a function of diphoton invariant mass, diphoton absolute rapidity,

average photon transverse momentum and diphoton | cos 𝜃∗ | are unfolded to particle level in the fiducial

phase space described in the previous section.

The differential fiducial cross sections are determined using an iterative Bayesian unfolding method [60]

with one iteration for all distributions. The unfolding procedure corrects for bin migrations between particle-

and detector-level distributions due to detector resolution effects, and applies reconstruction efficiency as

well as fiducial corrections. The reconstruction efficiency corrects for events inside the fiducial region that

are not reconstructed in the signal region due to detector inefficiencies; the fiducial corrections take into

account events that are reconstructed in the signal region, but originate from outside the fiducial region.

The background contributions are subtracted from data prior to unfolding.

The statistical uncertainty of the data is estimated using 1000 Poisson-distributed pseudo-data sets,

constructed by smearing the observed number of events in each bin of the detector-level distribution. The

root mean square of the differences between the resulting unfolded distributions and the unfolded data is

taken as the statistical uncertainty in each bin.

In the measurement of differential fiducial cross sections, the full set of experimental systematic uncertainties

described in Section 7 is considered. In addition, uncertainties due to the unfolding procedure and the

modelling of the signal process are considered by repeating the cross-section extraction with modified

inputs [61]. The distributions are reweighted at generator level to obtain better agreement between data and

simulation after event reconstruction. The obtained prediction at detector level, which is then similar to

data, is unfolded with the input of the default unfolding and the difference from the reweighted prediction

at generator level is considered as an uncertainty. The size of this uncertainty is typically below 1%. The

impact of statistical uncertainties in the signal simulation is estimated using pseudo-data and is found to be

1–3%.

The unfolded differential fiducial cross sections are shown in Figure 8. They are compared with the

predictions from SuperChic v3.0, which provide a fair description of the data, except for the overall

normalisation differences. For nearly all variables and bins the total uncertainties in the cross-section

measurements are dominated by statistical uncertainties, ranging from 25% to 75%. The background

systematic uncertainties are large and comparable to statistical uncertainties in some bins (up to 40%,

mainly at high |𝑦𝛾𝛾 |) due to the limited number of events in the data control regions. Global 𝜒2 comparisons

are carried out for the shapes of differential distributions. They do not display any significant differences

between predictions and data, with the largest 𝜒2 per degree of freedom being 4.3/3 when comparing the
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Figure 8: Measured differential fiducial cross sections of 𝛾𝛾 → 𝛾𝛾 production in Pb+Pb collisions at
√
𝑠

NN
= 5.02 TeV

for four observables (from left to right and top to bottom): diphoton invariant mass, diphoton absolute rapidity,

average photon transverse momentum and diphoton | cos(𝜃∗) |. The measured cross-section values are shown as

points with error bars giving the statistical uncertainty and grey bands indicating the size of the total uncertainty. The

results are compared with the prediction from the SuperChic v3.0 MC generator (solid line) with bands denoting the

theoretical uncertainty.

shape of | cos(𝜃∗) | distribution. The 𝑚𝛾𝛾 differential fiducial distribution is measured up to 𝑚𝛾𝛾 = 30 GeV.

For 𝑚𝛾𝛾 > 30 GeV, no events are observed in data versus a total expectation of 0.8 events.

The cross sections for all distributions shown in this paper, including normalised differential fiducial cross

sections, are available in HepData [62].

8.4 Search for ALP production

Any particle coupling directly to photons could be produced in an 𝑠-channel process in photon–photon

collisions, leading to a resonance peak in the invariant mass spectrum. One popular candidate for producing

a narrow diphoton resonance is an axion-like particle (ALP) [12]. The measured diphoton invariant mass

spectrum, as shown in Figure 7, is used to search for 𝛾𝛾 → 𝑎 → 𝛾𝛾 process, where 𝑎 denotes the ALP.
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The LbyL, 𝛾𝛾 → 𝑒+𝑒− and CEP 𝑔𝑔 → 𝛾𝛾 processes are considered as background. The contribution

from 𝛾𝛾 → 𝑒+𝑒− and CEP 𝑔𝑔 → 𝛾𝛾 processes is estimated using data-driven techniques as described in

Section 6. The LbyL background is estimated using simulated events generated with SuperChic v3.0. These

events are normalised to the data yield, after subtracting 𝛾𝛾 → 𝑒+𝑒− and CEP 𝑔𝑔 → 𝛾𝛾 contributions and

excluding the mass search region. To smooth statistical fluctuations in the background shape at high mass,

a Crystal Ball function is fitted to the sum of all background contributions, while assigning the fit residuals

as additional systematic uncertainty.

Events simulated with STARlight v2.0 [39], which implements the ALP couplings as described in Ref. [12],

for various ALP masses between 5 GeV and 100 GeV are used to build an analytical model of the ALP

signal, interpolating between the simulated mass points. The efficiency of ALP events to satisfy the

selection criteria (outlined in Section 4) is about 20% for 𝑚𝑎 = 6 GeV and increases up to 45% for

𝑚𝑎 = 12 GeV. An efficiency plateau of about 80% is reached for an ALP mass around 40 GeV. The

diphoton invariant mass resolution for simulated ALP signal ranges from 0.5 GeV at 𝑚𝑎 = 6 GeV to

1.5 GeV at 𝑚𝑎 = 100 GeV and is dominated by the photon energy resolution. The impact of the uncertainty

on the primary-vertex position has a subdominant effect on the diphoton invariant mass resolution over the

full mass range.

In every analysis bin a cut-and-count analysis is performed to estimate the expected numbers of background

and signal events. The bin-width is chosen to include at least 80% of a reconstructed ALP signal peak

within a given bin and ranges from 2 GeV to 20 GeV. To cover the entire mass range, the analysis bins

overlap and have an equidistant distance of 1 GeV between the bin centres. The signal contribution is fitted

individually for every bin using a maximum-likelihood fit implemented in the HistFitter software [63–65]

which is based on HistFactory [66], RooFit [67] and RooStats [68].

Since no significant deviation from the background-only hypothesis is observed, the result is then used to

estimate the upper limit on the ALP signal strength (𝜇CLs) at 95% confidence level (CL). The corresponding

test-statistic distributions are evaluated using pseudo-experiments.

Experimental systematic uncertainties affecting the ALP signal model originate from the trigger, photon

PID and reconstruction efficiencies, and photon energy scale and resolution. The systematic uncertainties

are evaluated identically to the treatment in the cross-section measurements, described in Section 7. The

theoretical uncertainty in the calculated ALP signal cross section is 10% in the full mass range, due to the

limited knowledge of the initial photon fluxes [59]. This uncertainty is considered uncorrelated with other

sources of uncertainty.

The limits set on the signal strength 𝜇CLs are transformed into limits on the cross section 𝜎CLs
𝛾𝛾→𝑎→𝛾𝛾 =

𝜇CLs · 𝜎MC
𝑎,gen. Additionally, limits on the ALP coupling to photons (1/ΛCLs

𝑎 ) are calculated from 1/ΛCLs
𝑎 =√

𝜇CLs · 1/Λgen
𝑎 . 𝜎MC

𝑎,gen and Λgen
𝑎 are the cross section and coupling used in the MC generator. The observed

and expected 95% CL limits on the ALP production cross section and ALP coupling to photons are

presented in Figure 9. The limits set on the cross section 𝜎𝛾𝛾→𝑎→𝛾𝛾 for an ALP with a mass of 6–100 GeV

range from 70 nb to 2 nb. The derived constraints on 1/Λ𝑎 range from 0.3 TeV−1 to 0.06 TeV−1. The

widths of the one- and two-standard-deviation bands of the expected limit distribution decrease for ALP

masses above 30 GeV. This behaviour is driven by the change in the background rate, which has a low

Poisson mean for high ALP masses. For low ALP masses the background rate is sufficiently high to

populate the 𝑁 > 0 expected background outcomes and raise the +1 and +2-standard-deviation boundaries.

The discontinuity at 𝑚𝑎 = 70 GeV is caused by the increase of the mass-bin width which brings an increase

in signal acceptance.
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Assuming a 100% ALP decay branching fraction into photons, the derived constraints on the ALP mass and

its coupling to photons are compared in Figure 10 with those obtained from various experiments [27, 69–72].

The exclusion limits from this analysis are the strongest so far for the mass range of 6 < 𝑚𝑎 < 100 GeV.
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Figure 9: The 95% CL upper limit on the ALP cross section 𝜎𝛾𝛾→𝑎→𝛾𝛾 (left) and ALP coupling 1/Λ𝑎 (right) for

the 𝛾𝛾 → 𝑎 → 𝛾𝛾 process as a function of ALP mass 𝑚𝑎. The observed upper limit is shown as a solid black line

and the expected upper limit is shown by the dashed black line with its ±1 and ±2 standard deviation bands. The

discontinuity at 𝑚𝑎 = 70 GeV is caused by the increase of the mass-bin width which brings an increase in signal

acceptance.
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Figure 10: Compilation of exclusion limits at 95% CL in the ALP–photon coupling (1/Λ𝑎) versus ALP mass (𝑚𝑎)

plane obtained by different experiments. The existing limits, derived from Refs. [27, 69–72] are compared with the

limits extracted from this measurement. The exclusion limits labelled “LHC (𝑝𝑝)” are based on 𝑝𝑝 collision data

from ATLAS and CMS. All measurements assume a 100% ALP decay branching fraction into photons. The plot on

the right is a zoomed-in version covering the range 1 < 𝑚𝑎 < 120 GeV.
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9 Conclusions

This paper presents a measurement of the light-by-light scattering process in quasi-real photon interactions

from ultra-peripheral Pb+Pb collisions at
√
𝑠

NN
= 5.02 TeV by the ATLAS experiment at the LHC. The

measurement is based on the full Run 2 data set corresponding to an integrated luminosity of 2.2 nb−1.

After the selection criteria, 97 events are selected in the data while 27 ± 5 background events are expected.

The dominant background processes are estimated using data-driven methods.

After background subtraction and corrections for detector effects are applied, the integrated fiducial cross

section of the 𝛾𝛾 → 𝛾𝛾 process is measured to be 𝜎fid = 120 ± 17 (stat.) ± 13 (syst.) ± 4 (lumi.) nb.

The data-to-theory ratios are 1.50 ± 0.32 and 1.54 ± 0.32 for predictions from Ref. [37] and from the

SuperChic v3.0 MC generator, respectively. Differential fiducial cross sections are measured as a function

of several properties of the final-state photons and are compared with Standard Model theory predictions for

light-by-light scattering. All measured cross sections are consistent within 2 standard deviations with the

predictions. The measurement precision is limited in all kinematic regions by statistical uncertainties.

The measured diphoton invariant mass distribution is used to search for axion-like particles and set new

exclusion limits on their production in the Pb+Pb (𝛾𝛾) → Pb(∗)+Pb(∗) 𝛾𝛾 reaction. Integrated cross

sections above 2 to 70 nb are excluded at the 95% CL, depending on the diphoton invariant mass in the

range 6–100 GeV. These results provide, to this date and within the aforementioned mass range, the most

stringent constraints in the search for ALP signals.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our

institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF,

Austria; ANAS, Azerbaĳan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada;

CERN; ANID, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO

CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU,

France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR,

China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO,

Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES

of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia;

DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and

Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE

and NSF, United States of America. In addition, individual groups and members have received support

from BCKDF, CANARIE, Compute Canada, CRC and IVADO, Canada; Beĳing Municipal Science &

Technology Commission, China; COST, ERC, ERDF, Horizon 2020 and Marie Skłodowska-Curie Actions,

European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG

and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and

the Greek NSRF, Greece; BSF-NSF and GIF, Israel; La Caixa Banking Foundation, CERCA Programme

Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran

Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom.

22



The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from

CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3

(France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC

(Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource

providers. Major contributors of computing resources are listed in Ref. [73].

References
[1] A. J. Baltz et al., The physics of ultraperipheral collisions at the LHC, Phys. Rept. 458 (2008) 1,

arXiv: 0706.3356 [nucl-ex].

[2] S. R. Klein and P. Steinberg,

Photonuclear and Two-Photon Interactions at High-Energy Nuclear Colliders,
Annu. Rev. Nucl. Part. Sci. 70 (2020) 323, arXiv: 2005.01872 [nucl-ex].

[3] E. Fermi, Sulla teoria dell’ urto tra atomi e corpuscoli elettrici, Nuovo Cim. 2 (1925) 143,

arXiv: hep-th/0205086.

[4] C. F. Weizsäcker, Ausstrahlung bei Stőßen sehr schneller Elektronen, Z. Phys. 88 (1934) 612.

[5] E. J. Williams, Nature of the High Energy Particles of Penetrating Radiation and Status of
Ionization and Radiation Formulae, Phys. Rev. 45 (1934) 729.

[6] ALICE Collaboration, Measurement of the Cross Section for Electromagnetic Dissociation with
Neutron Emission in Pb-Pb Collisions at √𝑠𝑁𝑁 = 2.76 TeV, Phys. Rev. Lett. 109 (2012) 252302,

arXiv: 1203.2436 [nucl-ex].

[7] S. Fichet, G. von Gersdorff, B. Lenzi, C. Royon and M. Saimpert,

Light-by-light scattering with intact protons at the LHC: from standard model to new physics,
JHEP 02 (2015) 165, arXiv: 1411.6629 [hep-ph].

[8] S. C. Inan and A. V. Kisselev, Probe of the Randall-Sundrum-like model with the small curvature
via light-by-light scattering at the LHC, Phys. Rev. D 100 (2019) 095004,

arXiv: 1902.08615 [hep-ph].

[9] J. Ellis, N. E. Mavromatos and T. You, Light-by-Light Scattering Constraint on Born-Infeld Theory,

Phys. Rev. Lett. 118 (2017) 261802, arXiv: 1703.08450 [hep-ph].

[10] V. A. Kostelecky and Z. Li,

Gauge field theories with Lorentz-violating operators of arbitrary dimension,

Phys. Rev. D 99 (2019) 056016, arXiv: 1812.11672 [hep-ph].

[11] R. Horvat, D. Latas, J. Trampetić and J. You,

Light-by-light scattering and spacetime noncommutativity, Phys. Rev. D 101 (2020) 095035,

arXiv: 2002.01829 [hep-ph].

[12] S. Knapen, T. Lin, H. K. Lou and T. Melia,

Searching for Axionlike Particles with Ultraperipheral Heavy-Ion Collisions,
Phys. Rev. Lett. 118 (2017) 171801, arXiv: 1607.06083 [hep-ph].

[13] ATLAS Collaboration, Search for new phenomena in events with at least three photons collected in
𝑝𝑝 collisions at

√
𝑠 = 8 TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 210,

arXiv: 1509.05051 [hep-ex].

23



[14] ATLAS Collaboration, Search for pairs of highly collimated photon-jets in 𝑝𝑝 collisions at√
𝑠 = 13 TeV with the ATLAS detector, Phys. Rev. D 99 (2019) 012008,

arXiv: 1808.10515 [hep-ex].

[15] D. Hanneke, S. Fogwell and G. Gabrielse,

New Measurement of the Electron Magnetic Moment and the Fine Structure Constant,
Phys. Rev. Lett. 100 (2008) 120801, arXiv: 0801.1134 [physics.atom-ph].

[16] Muon 𝑔 − 2 Collaboration,

Final report of the muon E821 anomalous magnetic moment measurement at BNL,

Phys. Rev. D 73 (2006) 072003, arXiv: hep-ex/0602035 [hep-ex].

[17] R. R. Wilson, Scattering of 1.33 MeV Gamma-Rays by an Electric Field, Phys. Rev. 90 (1953) 720.

[18] G. Jarlskog et al.,

Measurement of Delbrück Scattering and Observation of Photon Splitting at High Energies,
Phys. Rev. D 8 (1973) 3813.

[19] M. Schumacher, I. Borchert, F. Smend and P. Rullhusen,

Delbrück scattering of 2.75 MeV photons by lead, Phys. Lett. B 59 (1975) 134.

[20] S. Z. Akhmadaliev et al., Delbrück scattering at energies of 140 − 450 MeV,

Phys. Rev. C 58 (1998) 2844.

[21] S. Z. Akhmadaliev et al.,

Experimental Investigation of High-Energy Photon Splitting in Atomic Fields,
Phys. Rev. Lett. 89 (2002) 061802, arXiv: hep-ex/0111084.

[22] JADE Collaboration, A measurement of the 𝜂 radiative width Γ𝜂→𝛾𝛾 , Phys. Lett. B 158 (1985) 511.

[23] TPC/Two-Gamma Collaboration, Study of 𝜂 formation in photon-photon collisions,
Phys. Rev. D 33 (1986) 844.

[24] D. A. Williams et al., Formation of the pseudoscalars 𝜋0, 𝜂, and 𝜂′ in the reaction 𝛾𝛾 → 𝛾𝛾,

Phys. Rev. D 38 (1988) 1365.

[25] D. d’Enterria and G. G. da Silveira,

Observing Light-by-Light Scattering at the Large Hadron Collider,
Phys. Rev. Lett. 111 (2013) 080405, [Erratum: Phys. Rev. Lett. 116 (2016) 129901],

arXiv: 1305.7142 [hep-ph].

[26] ATLAS Collaboration,

Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC,

Nature Phys. 13 (2017) 852, arXiv: 1702.01625 [hep-ex].

[27] CMS Collaboration, Evidence for light-by-light scattering and searches for axion-like particles in
ultraperipheral PbPb collisions at √𝑠NN = 5.02 TeV, Phys. Lett. B 797 (2019) 134826,

arXiv: 1810.04602 [hep-ex].

[28] ATLAS Collaboration, Observation of Light-by-Light Scattering in Ultraperipheral Pb+Pb
Collisions with the ATLAS Detector, Phys. Rev. Lett. 123 (2019) 052001,

arXiv: 1904.03536 [hep-ex].

[29] ATLAS Collaboration, The ATLAS experiment at the CERN Large Hadron Collider,
JINST 3 (2008) S08003.

24



[30] ATLAS Collaboration, ATLAS Insertable B-Layer Technical Design Report, ATLAS-TDR-19, 2010,

url: https://cds.cern.ch/record/1291633,
ATLAS Insertable B-Layer Technical Design Report Addendum, ATLAS-TDR-19-ADD-1, 2012,

URL: https://cds.cern.ch/record/1451888.

[31] B. Abbott et al., Production and Integration of the ATLAS Insertable B-Layer,
JINST 13 (2018) T05008, arXiv: 1803.00844 [physics.ins-det].

[32] G. Avoni et al., The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS,

JINST 13 (2018) P07017.

[33] ATLAS Collaboration, Performance of the ATLAS trigger system in 2015,

Eur. Phys. J. C 77 (2017) 317, arXiv: 1611.09661 [hep-ex].

[34] L. A. Harland-Lang, V. A. Khoze and M. G. Ryskin,

Exclusive LHC physics with heavy ions: SuperChic 3, Eur. Phys. J. C 79 (2019) 39,

arXiv: 1810.06567 [hep-ph].

[35] Z. Bern, A. De Freitas, L. J. Dixon, A. Ghinculov and H. L. Wong,

QCD and QED corrections to light-by-light scattering, JHEP 11 (2001) 031,

arXiv: hep-ph/0109079.

[36] M. Klusek-Gawenda, W. Schäfer and A. Szczurek,

Two-gluon exchange contribution to elastic 𝛾𝛾 → 𝛾𝛾 scattering and production of two-photons in
ultraperipheral ultrarelativistic heavy ion and proton-proton collisions,
Phys. Lett. B 761 (2016) 399, arXiv: 1606.01058.

[37] M. Klusek-Gawenda, P. Lebiedowicz and A. Szczurek, Light-by-light scattering in ultraperipheral
Pb-Pb collisions at energies available at the CERN Large Hadron Collider,
Phys. Rev. C 93 (2016) 044907, arXiv: 1601.07001 [nucl-th].

[38] M. Bähr et al., Herwig++ physics and manual, Eur. Phys. J. C 58 (2008) 639,

arXiv: 0803.0883 [hep-ph].

[39] S. R. Klein, J. Nystrand, J. Seger, Y. Gorbunov and J. Butterworth,

STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions,
Comput. Phys. Commun. 212 (2017) 258, arXiv: 1607.03838 [hep-ph].

[40] T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159,

arXiv: 1410.3012 [hep-ph].

[41] ATLAS Collaboration, The ATLAS Simulation Infrastructure, Eur. Phys. J. C 70 (2010) 823,

arXiv: 1005.4568 [physics.ins-det].

[42] GEANT4 Collaboration, S. Agostinelli et al., GEANT4 – a simulation toolkit,
Nucl. Instrum. Meth. A 506 (2003) 250.

[43] ATLAS Collaboration, Measurement of the photon identification efficiencies with the ATLAS
detector using LHC Run 2 data collected in 2015 and 2016, Eur. Phys. J. C 79 (2019) 205,

arXiv: 1810.05087 [hep-ex].

[44] ATLAS Collaboration, Electron and photon performance measurements with the ATLAS detector
using the 2015–2017 LHC proton-proton collision data, JINST 14 (2019) P12006,

arXiv: 1908.00005 [hep-ex].

[45] ATLAS Collaboration, Electron reconstruction and identification in the ATLAS experiment using
the 2015 and 2016 LHC proton-proton collision data at

√
𝑠 = 13 TeV, Eur. Phys. J. C 79 (2019) 639,

arXiv: 1902.04655 [physics.ins-det].

25



[46] ALICE Collaboration, Charmonium and 𝑒+𝑒− pair photoproduction at mid-rapidity in
ultra-peripheral Pb-Pb collisions at √𝑠NN=2.76 TeV, Eur. Phys. J. C 73 (2013) 2617,

arXiv: 1305.1467 [nucl-ex].

[47] L. A. Harland-Lang, A. D. Martin, P. Motylinski and R. S. Thorne,

Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204,

arXiv: 1412.3989 [hep-ph].

[48] S. Dulat et al.,

New parton distribution functions from a global analysis of quantum chromodynamics,
Phys. Rev. D 93 (2016) 033006, arXiv: 1506.07443 [hep-ph].

[49] NNPDF Collaboration, Parton distributions from high-precision collider data,

Eur. Phys. J. C 77 (2017) 663, arXiv: 1706.00428 [hep-ph].

[50] J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross
sections, and their matching to parton shower simulations, JHEP 07 (2014) 079,

arXiv: 1405.0301 [hep-ph].

[51] D. Ebert, R. N. Faustov and V. O. Galkin,

Properties of heavy quarkonia and 𝐵𝑐 mesons in the relativistic quark model,
Phys. Rev. D 67 (2003) 014027, arXiv: hep-ph/0210381.

[52] J. Segovia, P. G. Ortega, D. R. Entem and F. Fernandez, Bottomonium spectrum revisited,

Phys. Rev. D 93 (2016) 074027, arXiv: 1601.05093 [hep-ph].

[53] C. A. Bertulani and G. Baur, Electromagnetic processes in relativistic heavy ion collisions,
Phys. Rept. 163 (1988) 299.

[54] M. Klusek-Gawenda and A. Szczurek, Exclusive production of large invariant mass pion pairs in
ultraperipheral ultrarelativistic heavy ion collisions, Phys. Lett. B 700 (2011) 322,

arXiv: 1104.0571 [nucl-th].

[55] M. Klusek-Gawenda, R. McNulty, R. Schicker and A. Szczurek,

Light-by-light scattering in ultraperipheral heavy-ion collisions at low diphoton masses,
Phys. Rev. D 99 (2019) 093013, arXiv: 1904.01243 [hep-ph].

[56] L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin, W.J. Stirling,

Central exclusive meson pair production in the perturbative regime at hadron colliders,
Eur. Phys. J. C 71 (2011) 1714, arXiv: 1105.1626 [hep-ph].

[57] L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin, W.J. Stirling,

Central exclusive production as a probe of the gluonic component of the 𝜂′ and 𝜂 mesons,
Eur. Phys. J. C 73 (2013) 2429, arXiv: 1302.2004 [hep-ph].

[58] ATLAS Collaboration,

Luminosity determination in 𝑝𝑝 collisions at
√
𝑠 = 13 TeV using the ATLAS detector at the LHC,

ATLAS-CONF-2019-021, 2019, url: https://cds.cern.ch/record/2677054.

[59] C. Azevedo, V. P. Goncalves and B. D. Moreira,

Exclusive dilepton production in ultraperipheral 𝑃𝑏𝑃𝑏 collisions at the LHC,

Eur. Phys. J. C 79 (2019) 432, arXiv: 1902.00268 [hep-ph].

[60] G. D’Agostini, A Multidimensional unfolding method based on Bayes’ theorem,

Nucl. Instrum. Meth. A 362 (1995) 487.

26



[61] B. Malaescu, An Iterative, dynamically stabilized method of data unfolding, (2009),

arXiv: 0907.3791 [physics.data-an].

[62] High Energy Physics Data Repository, url: https://hepdata.net.

[63] A. L. Read, Presentation of search results: The CL(s) technique,

J. Phys. G 28 (2002) 2693, ed. by M. Whalley and L. Lyons.

[64] M. Baak et al., HistFitter software framework for statistical data analysis,
Eur. Phys. J. C 75 (2015) 153, arXiv: 1410.1280 [hep-ex].

[65] G. Cowan, K. Cranmer, E. Gross and O. Vitells,

Asymptotic formulae for likelihood-based tests of new physics,
Eur. Phys. J. C 71 (2011) 1554, [Erratum: Eur. Phys. J. C 73 (2013) 2501],

arXiv: 1007.1727 [physics.data-an].

[66] K. Cranmer, G. Lewis, L. Moneta, A. Shibata and W. Verkerke,

HistFactory: A tool for creating statistical models for use with RooFit and RooStats,
CERN-OPEN-2012-016, 2012, url: http://cdsweb.cern.ch/record/1456844.

[67] W. Verkerke and D. Kirkby, The RooFit toolkit for data modeling, 2003,

arXiv: physics/0306116 [physics.data-an].

[68] L. Moneta et al., The RooStats Project, PoS ACAT (2010) 057,

arXiv: 1009.1003 [physics.data-an].

[69] M. Bauer, M. Neubert and A. Thamm, Collider probes of axion-like particles, JHEP 12 (2017) 044,

arXiv: 1708.00443 [hep-ph].

[70] D. Aloni, C. Fanelli, Y. Soreq and M. Williams, Photoproduction of Axionlike Particles,
Phys. Rev. Lett. 123 (2019) 071801, arXiv: 1903.03586 [hep-ph].

[71] NA64 Collaboration, Search for Axionlike and Scalar Particles with the NA64 Experiment,
Phys. Rev. Lett. 125 (2020) 081801, arXiv: 2005.02710 [hep-ex].

[72] Belle II Collaboration, Search for Axionlike Particles Produced in 𝑒+𝑒− Collisions at Belle II,
Phys. Rev. Lett. 125 (2020) 161806, arXiv: 2007.13071 [hep-ex].

[73] ATLAS Collaboration, ATLAS Computing Acknowledgements, ATL-SOFT-PUB-2020-001,

url: https://cds.cern.ch/record/2717821.

27



The ATLAS Collaboration

G. Aad102, B. Abbott128, D.C. Abbott103, A. Abed Abud36, K. Abeling53, D.K. Abhayasinghe94,

S.H. Abidi167, O.S. AbouZeid40, N.L. Abraham156, H. Abramowicz161, H. Abreu160, Y. Abulaiti6,

B.S. Acharya67a,67b,n, B. Achkar53, L. Adam100, C. Adam Bourdarios5, L. Adamczyk84a, L. Adamek167,

J. Adelman121, M. Adersberger114, A. Adiguzel12c,ae, S. Adorni54, T. Adye143, A.A. Affolder145, Y. Afik160,

C. Agapopoulou65, M.N. Agaras38, A. Aggarwal119, C. Agheorghiesei27c, J.A. Aguilar-Saavedra139f,139a,ad,

A. Ahmad36, F. Ahmadov80, W.S. Ahmed104, X. Ai18, G. Aielli74a,74b, S. Akatsuka86, M. Akbiyik100,

T.P.A. Åkesson97, E. Akilli54, A.V. Akimov111, K. Al Khoury65, G.L. Alberghi23b,23a, J. Albert176,

M.J. Alconada Verzini161, S. Alderweireldt36, M. Aleksa36, I.N. Aleksandrov80, C. Alexa27b,

T. Alexopoulos10, A. Alfonsi120, F. Alfonsi23b,23a, M. Alhroob128, B. Ali141, S. Ali158, M. Aliev166,

G. Alimonti69a, C. Allaire36, B.M.M. Allbrooke156, B.W. Allen131, P.P. Allport21, A. Aloisio70a,70b,

F. Alonso89, C. Alpigiani148, E. Alunno Camelia74a,74b, M. Alvarez Estevez99, M.G. Alviggi70a,70b,

Y. Amaral Coutinho81b, A. Ambler104, L. Ambroz134, C. Amelung26, D. Amidei106,

S.P. Amor Dos Santos139a, S. Amoroso46, C.S. Amrouche54, F. An79, C. Anastopoulos149, N. Andari144,

T. Andeen11, J.K. Anders20, S.Y. Andrean45a,45b, A. Andreazza69a,69b, V. Andrei61a, C.R. Anelli176,

S. Angelidakis9, A. Angerami39, A.V. Anisenkov122b,122a, A. Annovi72a, C. Antel54, M.T. Anthony149,

E. Antipov129, M. Antonelli51, D.J.A. Antrim171, F. Anulli73a, M. Aoki82, J.A. Aparisi Pozo174,

M.A. Aparo156, L. Aperio Bella46, N. Aranzabal36, V. Araujo Ferraz81a, R. Araujo Pereira81b,

C. Arcangeletti51, A.T.H. Arce49, F.A. Arduh89, J-F. Arguin110, S. Argyropoulos52, J.-H. Arling46,

A.J. Armbruster36, A. Armstrong171, O. Arnaez167, H. Arnold120, Z.P. Arrubarrena Tame114, G. Artoni134,

H. Asada117, K. Asai126, S. Asai163, T. Asawatavonvanich165, N. Asbah59, E.M. Asimakopoulou172,

L. Asquith156, J. Assahsah35d, K. Assamagan29, R. Astalos28a, R.J. Atkin33a, M. Atkinson173, N.B. Atlay19,

H. Atmani65, K. Augsten141, V.A. Austrup182, G. Avolio36, M.K. Ayoub15a, G. Azuelos110,am,

H. Bachacou144, K. Bachas162, F. Backman45a,45b, P. Bagnaia73a,73b, M. Bahmani85, H. Bahrasemani152,

A.J. Bailey174, V.R. Bailey173, J.T. Baines143, C. Bakalis10, O.K. Baker183, P.J. Bakker120, E. Bakos16,

D. Bakshi Gupta8, S. Balaji157, R. Balasubramanian120, E.M. Baldin122b,122a, P. Balek180, F. Balli144,

W.K. Balunas134, J. Balz100, E. Banas85, M. Bandieramonte138, A. Bandyopadhyay24, Sw. Banerjee181,i,

L. Barak161, W.M. Barbe38, E.L. Barberio105, D. Barberis55b,55a, M. Barbero102, G. Barbour95,

T. Barillari115, M-S. Barisits36, J. Barkeloo131, T. Barklow153, R. Barnea160, B.M. Barnett143,

R.M. Barnett18, Z. Barnovska-Blenessy60a, A. Baroncelli60a, G. Barone29, A.J. Barr134,

L. Barranco Navarro45a,45b, F. Barreiro99, J. Barreiro Guimarães da Costa15a, U. Barron161, S. Barsov137,

F. Bartels61a, R. Bartoldus153, G. Bartolini102, A.E. Barton90, P. Bartos28a, A. Basalaev46, A. Basan100,

A. Bassalat65,aj, M.J. Basso167, R.L. Bates57, S. Batlamous35e, J.R. Batley32, B. Batool151, M. Battaglia145,

M. Bauce73a,73b, F. Bauer144, P. Bauer24, H.S. Bawa31, A. Bayirli12c, J.B. Beacham49, T. Beau135,

P.H. Beauchemin170, F. Becherer52, P. Bechtle24, H.C. Beck53, H.P. Beck20,p, K. Becker178, C. Becot46,

A. Beddall12d, A.J. Beddall12a, V.A. Bednyakov80, M. Bedognetti120, C.P. Bee155, T.A. Beermann182,

M. Begalli81b, M. Begel29, A. Behera155, J.K. Behr46, F. Beisiegel24, M. Belfkir5, A.S. Bell95, G. Bella161,

L. Bellagamba23b, A. Bellerive34, P. Bellos9, K. Beloborodov122b,122a, K. Belotskiy112, N.L. Belyaev112,

D. Benchekroun35a, N. Benekos10, Y. Benhammou161, D.P. Benjamin6, M. Benoit29, J.R. Bensinger26,

S. Bentvelsen120, L. Beresford134, M. Beretta51, D. Berge19, E. Bergeaas Kuutmann172, N. Berger5,

B. Bergmann141, L.J. Bergsten26, J. Beringer18, S. Berlendis7, G. Bernardi135, C. Bernius153,

F.U. Bernlochner24, T. Berry94, P. Berta100, A. Berthold48, I.A. Bertram90, O. Bessidskaia Bylund182,

N. Besson144, A. Bethani101, S. Bethke115, A. Betti42, A.J. Bevan93, J. Beyer115, D.S. Bhattacharya177,

P. Bhattarai26, V.S. Bhopatkar6, R. Bi138, R.M. Bianchi138, O. Biebel114, D. Biedermann19, R. Bielski36,

K. Bierwagen100, N.V. Biesuz72a,72b, M. Biglietti75a, T.R.V. Billoud141, M. Bindi53, A. Bingul12d,

28



C. Bini73a,73b, S. Biondi23b,23a, C.J. Birch-sykes101, M. Birman180, T. Bisanz36, J.P. Biswal3,

D. Biswas181,i, A. Bitadze101, C. Bittrich48, K. Bjørke133, T. Blazek28a, I. Bloch46, C. Blocker26, A. Blue57,

U. Blumenschein93, G.J. Bobbink120, V.S. Bobrovnikov122b,122a, S.S. Bocchetta97, D. Bogavac14,

A.G. Bogdanchikov122b,122a, C. Bohm45a, V. Boisvert94, P. Bokan172,53, T. Bold84a, A.E. Bolz61b,

M. Bomben135, M. Bona93, J.S. Bonilla131, M. Boonekamp144, C.D. Booth94, A.G. Borbély57,

H.M. Borecka-Bielska91, L.S. Borgna95, A. Borisov123, G. Borissov90, D. Bortoletto134, D. Boscherini23b,

M. Bosman14, J.D. Bossio Sola104, K. Bouaouda35a, J. Boudreau138, E.V. Bouhova-Thacker90,

D. Boumediene38, A. Boveia127, J. Boyd36, D. Boye33c, I.R. Boyko80, A.J. Bozson94, J. Bracinik21,

N. Brahimi60d, G. Brandt182, O. Brandt32, F. Braren46, B. Brau103, J.E. Brau131, W.D. Breaden Madden57,

K. Brendlinger46, R. Brener160, L. Brenner36, R. Brenner172, S. Bressler180, B. Brickwedde100,

D.L. Briglin21, D. Britton57, D. Britzger115, I. Brock24, R. Brock107, G. Brooĳmans39, W.K. Brooks146d,

E. Brost29, P.A. Bruckman de Renstrom85, B. Brüers46, D. Bruncko28b, A. Bruni23b, G. Bruni23b,

M. Bruschi23b, N. Bruscino73a,73b, L. Bryngemark153, T. Buanes17, Q. Buat155, P. Buchholz151,

A.G. Buckley57, I.A. Budagov80, M.K. Bugge133, F. Bührer52, O. Bulekov112, B.A. Bullard59,

T.J. Burch121, S. Burdin91, C.D. Burgard120, A.M. Burger129, B. Burghgrave8, J.T.P. Burr46, C.D. Burton11,

J.C. Burzynski103, V. Büscher100, E. Buschmann53, P.J. Bussey57, J.M. Butler25, C.M. Buttar57,

J.M. Butterworth95, P. Butti36, W. Buttinger36, C.J. Buxo Vazquez107, A. Buzatu158,

A.R. Buzykaev122b,122a, G. Cabras23b,23a, S. Cabrera Urbán174, D. Caforio56, H. Cai138, V.M.M. Cairo153,

O. Cakir4a, N. Calace36, P. Calafiura18, G. Calderini135, P. Calfayan66, G. Callea57, L.P. Caloba81b,

A. Caltabiano74a,74b, S. Calvente Lopez99, D. Calvet38, S. Calvet38, T.P. Calvet102, M. Calvetti72a,72b,

R. Camacho Toro135, S. Camarda36, D. Camarero Munoz99, P. Camarri74a,74b, M.T. Camerlingo75a,75b,

D. Cameron133, C. Camincher36, S. Campana36, M. Campanelli95, A. Camplani40, V. Canale70a,70b,

A. Canesse104, M. Cano Bret78, J. Cantero129, T. Cao161, Y. Cao173, M.D.M. Capeans Garrido36,

M. Capua41b,41a, R. Cardarelli74a, F. Cardillo174, G. Carducci41b,41a, I. Carli142, T. Carli36, G. Carlino70a,

B.T. Carlson138, E.M. Carlson176,168a, L. Carminati69a,69b, R.M.D. Carney153, S. Caron119, E. Carquin146d,

S. Carrá46, G. Carratta23b,23a, J.W.S. Carter167, T.M. Carter50, M.P. Casado14,f, A.F. Casha167,

E.G. Castiglia183, F.L. Castillo174, L. Castillo Garcia14, V. Castillo Gimenez174, N.F. Castro139a,139e,

A. Catinaccio36, J.R. Catmore133, A. Cattai36, V. Cavaliere29, V. Cavasinni72a,72b, E. Celebi12b, F. Celli134,

K. Cerny130, A.S. Cerqueira81a, A. Cerri156, L. Cerrito74a,74b, F. Cerutti18, A. Cervelli23b,23a, S.A. Cetin12b,

Z. Chadi35a, D. Chakraborty121, J. Chan181, W.S. Chan120, W.Y. Chan91, J.D. Chapman32,

B. Chargeishvili159b, D.G. Charlton21, T.P. Charman93, M. Chatterjee20, C.C. Chau34, S. Che127,

S. Chekanov6, S.V. Chekulaev168a, G.A. Chelkov80,ah, B. Chen79, C. Chen60a, C.H. Chen79, H. Chen15c,

H. Chen29, J. Chen60a, J. Chen39, J. Chen26, S. Chen136, S.J. Chen15c, X. Chen15b, Y. Chen60a,

Y-H. Chen46, H.C. Cheng63a, H.J. Cheng15a, A. Cheplakov80, E. Cheremushkina123,

R. Cherkaoui El Moursli35e, E. Cheu7, K. Cheung64, T.J.A. Chevalérias144, L. Chevalier144, V. Chiarella51,

G. Chiarelli72a, G. Chiodini68a, A.S. Chisholm21, A. Chitan27b, I. Chiu163, Y.H. Chiu176, M.V. Chizhov80,

K. Choi11, A.R. Chomont73a,73b, Y.S. Chow120, L.D. Christopher33e, M.C. Chu63a, X. Chu15a,15d,

J. Chudoba140, J.J. Chwastowski85, L. Chytka130, D. Cieri115, K.M. Ciesla85, V. Cindro92, I.A. Cioară27b,

A. Ciocio18, F. Cirotto70a,70b, Z.H. Citron180,j, M. Citterio69a, D.A. Ciubotaru27b, B.M. Ciungu167,

A. Clark54, M.R. Clark39, P.J. Clark50, S.E. Clawson101, C. Clement45a,45b, Y. Coadou102, M. Cobal67a,67c,

A. Coccaro55b, J. Cochran79, R. Coelho Lopes De Sa103, H. Cohen161, A.E.C. Coimbra36, B. Cole39,

A.P. Colĳn120, J. Collot58, P. Conde Muiño139a,139h, S.H. Connell33c, I.A. Connelly57, S. Constantinescu27b,

F. Conventi70a,an, A.M. Cooper-Sarkar134, F. Cormier175, K.J.R. Cormier167, L.D. Corpe95,

M. Corradi73a,73b, E.E. Corrigan97, F. Corriveau104,ab, M.J. Costa174, F. Costanza5, D. Costanzo149,

G. Cowan94, J.W. Cowley32, J. Crane101, K. Cranmer125, R.A. Creager136, S. Crépé-Renaudin58,

F. Crescioli135, M. Cristinziani24, V. Croft170, G. Crosetti41b,41a, A. Cueto5, T. Cuhadar Donszelmann171,

H. Cui15a,15d, A.R. Cukierman153, W.R. Cunningham57, S. Czekierda85, P. Czodrowski36,

29



M.M. Czurylo61b, M.J. Da Cunha Sargedas De Sousa60b, J.V. Da Fonseca Pinto81b, C. Da Via101,

W. Dabrowski84a, F. Dachs36, T. Dado47, S. Dahbi33e, T. Dai106, C. Dallapiccola103, M. Dam40,

G. D’amen29, V. D’Amico75a,75b, J. Damp100, J.R. Dandoy136, M.F. Daneri30, M. Danninger152, V. Dao36,

G. Darbo55b, O. Dartsi5, A. Dattagupta131, T. Daubney46, S. D’Auria69a,69b, C. David168b, T. Davidek142,

D.R. Davis49, I. Dawson149, K. De8, R. De Asmundis70a, M. De Beurs120, S. De Castro23b,23a,

N. De Groot119, P. de Jong120, H. De la Torre107, A. De Maria15c, D. De Pedis73a, A. De Salvo73a,

U. De Sanctis74a,74b, M. De Santis74a,74b, A. De Santo156, J.B. De Vivie De Regie65, D.V. Dedovich80,

A.M. Deiana42, J. Del Peso99, Y. Delabat Diaz46, D. Delgove65, F. Deliot144, C.M. Delitzsch7,

M. Della Pietra70a,70b, D. Della Volpe54, A. Dell’Acqua36, L. Dell’Asta74a,74b, M. Delmastro5,

C. Delporte65, P.A. Delsart58, D.A. DeMarco167, S. Demers183, M. Demichev80, G. Demontigny110,

S.P. Denisov123, L. D’Eramo121, D. Derendarz85, J.E. Derkaoui35d, F. Derue135, P. Dervan91, K. Desch24,

K. Dette167, C. Deutsch24, M.R. Devesa30, P.O. Deviveiros36, F.A. Di Bello73a,73b, A. Di Ciaccio74a,74b,

L. Di Ciaccio5, W.K. Di Clemente136, C. Di Donato70a,70b, A. Di Girolamo36, G. Di Gregorio72a,72b,

B. Di Micco75a,75b, R. Di Nardo75a,75b, K.F. Di Petrillo59, R. Di Sipio167, C. Diaconu102, F.A. Dias120,

T. Dias Do Vale139a, M.A. Diaz146a, F.G. Diaz Capriles24, J. Dickinson18, M. Didenko166, E.B. Diehl106,

J. Dietrich19, S. Díez Cornell46, C. Diez Pardos151, A. Dimitrievska18, W. Ding15b, J. Dingfelder24,

S.J. Dittmeier61b, F. Dittus36, F. Djama102, T. Djobava159b, J.I. Djuvsland17, M.A.B. Do Vale147,

M. Dobre27b, D. Dodsworth26, C. Doglioni97, J. Dolejsi142, Z. Dolezal142, M. Donadelli81c, B. Dong60c,

J. Donini38, A. D’onofrio15c, M. D’Onofrio91, J. Dopke143, A. Doria70a, M.T. Dova89, A.T. Doyle57,

E. Drechsler152, E. Dreyer152, T. Dreyer53, A.S. Drobac170, D. Du60b, T.A. du Pree120, Y. Duan60d,

F. Dubinin111, M. Dubovsky28a, A. Dubreuil54, E. Duchovni180, G. Duckeck114, O.A. Ducu36, D. Duda115,

A. Dudarev36, A.C. Dudder100, E.M. Duffield18, M. D’uffizi101, L. Duflot65, M. Dührssen36, C. Dülsen182,

M. Dumancic180, A.E. Dumitriu27b, M. Dunford61a, A. Duperrin102, H. Duran Yildiz4a, M. Düren56,

A. Durglishvili159b, D. Duschinger48, B. Dutta46, D. Duvnjak1, G.I. Dyckes136, M. Dyndal36, S. Dysch101,

B.S. Dziedzic85, M.G. Eggleston49, T. Eifert8, G. Eigen17, K. Einsweiler18, T. Ekelof172, H. El Jarrari35e,

V. Ellajosyula172, M. Ellert172, F. Ellinghaus182, A.A. Elliot93, N. Ellis36, J. Elmsheuser29, M. Elsing36,

D. Emeliyanov143, A. Emerman39, Y. Enari163, M.B. Epland49, J. Erdmann47, A. Ereditato20,

P.A. Erland85, M. Errenst182, M. Escalier65, C. Escobar174, O. Estrada Pastor174, E. Etzion161,

G.E. Evans139a,139b, H. Evans66, M.O. Evans156, A. Ezhilov137, F. Fabbri57, L. Fabbri23b,23a, V. Fabiani119,

G. Facini178, R.M. Fakhrutdinov123, S. Falciano73a, P.J. Falke24, S. Falke36, J. Faltova142, Y. Fang15a,

Y. Fang15a, G. Fanourakis44, M. Fanti69a,69b, M. Faraj67a,67c, A. Farbin8, A. Farilla75a, E.M. Farina71a,71b,

T. Farooque107, S.M. Farrington50, P. Farthouat36, F. Fassi35e, P. Fassnacht36, D. Fassouliotis9,

M. Faucci Giannelli50, W.J. Fawcett32, L. Fayard65, O.L. Fedin137,o, W. Fedorko175, A. Fehr20,

M. Feickert173, L. Feligioni102, A. Fell149, C. Feng60b, M. Feng49, M.J. Fenton171, A.B. Fenyuk123,

S.W. Ferguson43, J. Ferrando46, A. Ferrante173, A. Ferrari172, P. Ferrari120, R. Ferrari71a,

D.E. Ferreira de Lima61b, A. Ferrer174, D. Ferrere54, C. Ferretti106, F. Fiedler100, A. Filipčič92,

F. Filthaut119, K.D. Finelli25, M.C.N. Fiolhais139a,139c,a, L. Fiorini174, F. Fischer114, J. Fischer100,

W.C. Fisher107, T. Fitschen21, I. Fleck151, P. Fleischmann106, T. Flick182, B.M. Flierl114, L. Flores136,

L.R. Flores Castillo63a, F.M. Follega76a,76b, N. Fomin17, J.H. Foo167, G.T. Forcolin76a,76b, B.C. Forland66,

A. Formica144, F.A. Förster14, A.C. Forti101, E. Fortin102, M.G. Foti134, D. Fournier65, H. Fox90,

P. Francavilla72a,72b, S. Francescato73a,73b, M. Franchini23b,23a, S. Franchino61a, D. Francis36, L. Franco5,

L. Franconi20, M. Franklin59, G. Frattari73a,73b, A.N. Fray93, P.M. Freeman21, B. Freund110,

W.S. Freund81b, E.M. Freundlich47, D.C. Frizzell128, D. Froidevaux36, J.A. Frost134, M. Fujimoto126,

C. Fukunaga164, E. Fullana Torregrosa174, T. Fusayasu116, J. Fuster174, A. Gabrielli23b,23a, A. Gabrielli36,

S. Gadatsch54, P. Gadow115, G. Gagliardi55b,55a, L.G. Gagnon110, G.E. Gallardo134, E.J. Gallas134,

B.J. Gallop143, R. Gamboa Goni93, K.K. Gan127, S. Ganguly180, J. Gao60a, Y. Gao50, Y.S. Gao31,l,

F.M. Garay Walls146a, C. García174, J.E. García Navarro174, J.A. García Pascual15a, C. Garcia-Argos52,

30



M. Garcia-Sciveres18, R.W. Gardner37, N. Garelli153, S. Gargiulo52, C.A. Garner167, V. Garonne133,

S.J. Gasiorowski148, P. Gaspar81b, A. Gaudiello55b,55a, G. Gaudio71a, P. Gauzzi73a,73b, I.L. Gavrilenko111,

A. Gavrilyuk124, C. Gay175, G. Gaycken46, E.N. Gazis10, A.A. Geanta27b, C.M. Gee145, C.N.P. Gee143,

J. Geisen97, M. Geisen100, C. Gemme55b, M.H. Genest58, C. Geng106, S. Gentile73a,73b, S. George94,

T. Geralis44, L.O. Gerlach53, P. Gessinger-Befurt100, G. Gessner47, S. Ghasemi151,

M. Ghasemi Bostanabad176, M. Ghneimat151, A. Ghosh65, A. Ghosh78, B. Giacobbe23b, S. Giagu73a,73b,

N. Giangiacomi23b,23a, P. Giannetti72a, A. Giannini70a,70b, G. Giannini14, S.M. Gibson94, M. Gignac145,

D.T. Gil84b, B.J. Gilbert39, D. Gillberg34, G. Gilles182, N.E.K. Gillwald46, D.M. Gingrich3,am,

M.P. Giordani67a,67c, P.F. Giraud144, G. Giugliarelli67a,67c, D. Giugni69a, F. Giuli74a,74b, S. Gkaitatzis162,

I. Gkialas9,g, E.L. Gkougkousis14, P. Gkountoumis10, L.K. Gladilin113, C. Glasman99, J. Glatzer14,

P.C.F. Glaysher46, A. Glazov46, G.R. Gledhill131, I. Gnesi41b,b, M. Goblirsch-Kolb26, D. Godin110,

S. Goldfarb105, T. Golling54, D. Golubkov123, A. Gomes139a,139b, R. Goncalves Gama53,

R. Gonçalo139a,139c, G. Gonella131, L. Gonella21, A. Gongadze80, F. Gonnella21, J.L. Gonski39,

S. González de la Hoz174, S. Gonzalez Fernandez14, R. Gonzalez Lopez91, C. Gonzalez Renteria18,

R. Gonzalez Suarez172, S. Gonzalez-Sevilla54, G.R. Gonzalvo Rodriguez174, L. Goossens36,

N.A. Gorasia21, P.A. Gorbounov124, H.A. Gordon29, B. Gorini36, E. Gorini68a,68b, A. Gorišek92,

A.T. Goshaw49, M.I. Gostkin80, C.A. Gottardo119, M. Gouighri35b, A.G. Goussiou148, N. Govender33c,

C. Goy5, I. Grabowska-Bold84a, E.C. Graham91, J. Gramling171, E. Gramstad133, S. Grancagnolo19,

M. Grandi156, V. Gratchev137, P.M. Gravila27f, F.G. Gravili68a,68b, C. Gray57, H.M. Gray18, C. Grefe24,

K. Gregersen97, I.M. Gregor46, P. Grenier153, K. Grevtsov46, C. Grieco14, N.A. Grieser128, A.A. Grillo145,

K. Grimm31,k, S. Grinstein14,w, J.-F. Grivaz65, S. Groh100, E. Gross180, J. Grosse-Knetter53, Z.J. Grout95,

C. Grud106, A. Grummer118, J.C. Grundy134, L. Guan106, W. Guan181, C. Gubbels175, J. Guenther77,

A. Guerguichon65, J.G.R. Guerrero Rojas174, F. Guescini115, D. Guest171, R. Gugel100, A. Guida46,

T. Guillemin5, S. Guindon36, J. Guo60c, W. Guo106, Y. Guo60a, Z. Guo102, R. Gupta46, S. Gurbuz12c,

G. Gustavino128, M. Guth52, P. Gutierrez128, C. Gutschow95, C. Guyot144, C. Gwenlan134,

C.B. Gwilliam91, E.S. Haaland133, A. Haas125, C. Haber18, H.K. Hadavand8, A. Hadef60a, M. Haleem177,

J. Haley129, J.J. Hall149, G. Halladjian107, G.D. Hallewell102, K. Hamano176, H. Hamdaoui35e, M. Hamer24,

G.N. Hamity50, K. Han60a,v, L. Han15c, L. Han60a, S. Han18, Y.F. Han167, K. Hanagaki82,t, M. Hance145,

D.M. Handl114, M.D. Hank37, R. Hankache135, E. Hansen97, J.B. Hansen40, J.D. Hansen40, M.C. Hansen24,

P.H. Hansen40, E.C. Hanson101, K. Hara169, T. Harenberg182, S. Harkusha108, P.F. Harrison178,

N.M. Hartman153, N.M. Hartmann114, Y. Hasegawa150, A. Hasib50, S. Hassani144, S. Haug20,

R. Hauser107, L.B. Havener39, M. Havranek141, C.M. Hawkes21, R.J. Hawkings36, S. Hayashida117,

D. Hayden107, C. Hayes106, R.L. Hayes175, C.P. Hays134, J.M. Hays93, H.S. Hayward91, S.J. Haywood143,

F. He60a, Y. He165, M.P. Heath50, V. Hedberg97, A.L. Heggelund133, C. Heidegger52, K.K. Heidegger52,

W.D. Heidorn79, J. Heilman34, S. Heim46, T. Heim18, B. Heinemann46,ak, J.G. Heinlein136, J.J. Heinrich131,

L. Heinrich36, J. Hejbal140, L. Helary46, A. Held125, S. Hellesund133, C.M. Helling145, S. Hellman45a,45b,

C. Helsens36, R.C.W. Henderson90, Y. Heng181, L. Henkelmann32, A.M. Henriques Correia36, H. Herde26,

Y. Hernández Jiménez33e, H. Herr100, M.G. Herrmann114, T. Herrmann48, G. Herten52, R. Hertenberger114,

L. Hervas36, T.C. Herwig136, G.G. Hesketh95, N.P. Hessey168a, H. Hibi83, S. Higashino82,

E. Higón-Rodriguez174, K. Hildebrand37, J.C. Hill32, K.K. Hill29, K.H. Hiller46, S.J. Hillier21, M. Hils48,

I. Hinchliffe18, F. Hinterkeuser24, M. Hirose132, S. Hirose169, D. Hirschbuehl182, B. Hiti92, O. Hladik140,

J. Hobbs155, N. Hod180, M.C. Hodgkinson149, A. Hoecker36, D. Hohn52, D. Hohov65, T. Holm24,

T.R. Holmes37, M. Holzbock115, L.B.A.H. Hommels32, T.M. Hong138, J.C. Honig52, A. Hönle115,

B.H. Hooberman173, W.H. Hopkins6, Y. Horii117, P. Horn48, L.A. Horyn37, S. Hou158, A. Hoummada35a,

J. Howarth57, J. Hoya89, M. Hrabovsky130, J. Hrivnac65, A. Hrynevich109, T. Hryn’ova5, P.J. Hsu64,

S.-C. Hsu148, Q. Hu29, S. Hu60c, Y.F. Hu15a,15d,ao, D.P. Huang95, X. Huang15c, Y. Huang60a, Y. Huang15a,

Z. Hubacek141, F. Hubaut102, M. Huebner24, F. Huegging24, T.B. Huffman134, M. Huhtinen36,

31



R. Hulsken58, R.F.H. Hunter34, N. Huseynov80,ac, J. Huston107, J. Huth59, R. Hyneman153, S. Hyrych28a,

G. Iacobucci54, G. Iakovidis29, I. Ibragimov151, L. Iconomidou-Fayard65, P. Iengo36, R. Ignazzi40,

O. Igonkina120,y,*, R. Iguchi163, T. Iizawa54, Y. Ikegami82, M. Ikeno82, N. Ilic119,167,ab, F. Iltzsche48,

H. Imam35a, G. Introzzi71a,71b, M. Iodice75a, K. Iordanidou168a, V. Ippolito73a,73b, M.F. Isacson172,

M. Ishino163, W. Islam129, C. Issever19,46, S. Istin160, J.M. Iturbe Ponce63a, R. Iuppa76a,76b, A. Ivina180,

J.M. Izen43, V. Izzo70a, P. Jacka140, P. Jackson1, R.M. Jacobs46, B.P. Jaeger152, V. Jain2, G. Jäkel182,

K.B. Jakobi100, K. Jakobs52, T. Jakoubek180, J. Jamieson57, K.W. Janas84a, R. Jansky54, M. Janus53,

P.A. Janus84a, G. Jarlskog97, A.E. Jaspan91, N. Javadov80,ac, T. Javůrek36, M. Javurkova103, F. Jeanneau144,

L. Jeanty131, J. Jejelava159a, P. Jenni52,c, N. Jeong46, S. Jézéquel5, H. Ji181, J. Jia155, Z. Jia15c, H. Jiang79,

Y. Jiang60a, Z. Jiang153, S. Jiggins52, F.A. Jimenez Morales38, J. Jimenez Pena115, S. Jin15c, A. Jinaru27b,

O. Jinnouchi165, H. Jivan33e, P. Johansson149, K.A. Johns7, C.A. Johnson66, E. Jones178, R.W.L. Jones90,

S.D. Jones156, T.J. Jones91, J. Jongmanns61a, J. Jovicevic36, X. Ju18, J.J. Junggeburth115,

A. Juste Rozas14,w, A. Kaczmarska85, M. Kado73a,73b, H. Kagan127, M. Kagan153, A. Kahn39, C. Kahra100,

T. Kaji179, E. Kajomovitz160, C.W. Kalderon29, A. Kaluza100, A. Kamenshchikov123, M. Kaneda163,

N.J. Kang145, S. Kang79, Y. Kano117, J. Kanzaki82, L.S. Kaplan181, D. Kar33e, K. Karava134,

M.J. Kareem168b, I. Karkanias162, S.N. Karpov80, Z.M. Karpova80, V. Kartvelishvili90, A.N. Karyukhin123,

E. Kasimi162, A. Kastanas45a,45b, C. Kato60d, J. Katzy46, K. Kawade150, K. Kawagoe88, T. Kawaguchi117,

T. Kawamoto144, G. Kawamura53, E.F. Kay176, S. Kazakos14, V.F. Kazanin122b,122a, J.M. Keaveney33a,

R. Keeler176, J.S. Keller34, E. Kellermann97, D. Kelsey156, J.J. Kempster21, J. Kendrick21, K.E. Kennedy39,

O. Kepka140, S. Kersten182, B.P. Kerševan92, S. Ketabchi Haghighat167, M. Khader173, F. Khalil-Zada13,

M. Khandoga144, A. Khanov129, A.G. Kharlamov122b,122a, T. Kharlamova122b,122a, E.E. Khoda175,

A. Khodinov166, T.J. Khoo77, G. Khoriauli177, E. Khramov80, J. Khubua159b, S. Kido83, M. Kiehn36,

E. Kim165, Y.K. Kim37, N. Kimura95, A. Kirchhoff53, D. Kirchmeier48, J. Kirk143, A.E. Kiryunin115,

T. Kishimoto163, D.P. Kisliuk167, V. Kitali46, C. Kitsaki10, O. Kivernyk24, T. Klapdor-Kleingrothaus52,

M. Klassen61a, C. Klein34, M.H. Klein106, M. Klein91, U. Klein91, K. Kleinknecht100, P. Klimek36,

A. Klimentov29, T. Klingl24, T. Klioutchnikova36, F.F. Klitzner114, P. Kluit120, S. Kluth115, E. Kneringer77,

E.B.F.G. Knoops102, A. Knue52, D. Kobayashi88, M. Kobel48, M. Kocian153, T. Kodama163, P. Kodys142,

D.M. Koeck156, P.T. Koenig24, T. Koffas34, N.M. Köhler36, M. Kolb144, I. Koletsou5, T. Komarek130,

T. Kondo82, K. Köneke52, A.X.Y. Kong1, A.C. König119, T. Kono126, V. Konstantinides95,

N. Konstantinidis95, B. Konya97, R. Kopeliansky66, S. Koperny84a, K. Korcyl85, K. Kordas162,

G. Koren161, A. Korn95, I. Korolkov14, E.V. Korolkova149, N. Korotkova113, O. Kortner115, S. Kortner115,

V.V. Kostyukhin149,166, A. Kotsokechagia65, A. Kotwal49, A. Koulouris10,

A. Kourkoumeli-Charalampidi71a,71b, C. Kourkoumelis9, E. Kourlitis6, V. Kouskoura29, R. Kowalewski176,

W. Kozanecki101, A.S. Kozhin123, V.A. Kramarenko113, G. Kramberger92, D. Krasnopevtsev60a,

M.W. Krasny135, A. Krasznahorkay36, D. Krauss115, J.A. Kremer100, J. Kretzschmar91, P. Krieger167,

F. Krieter114, A. Krishnan61b, M. Krivos142, K. Krizka18, K. Kroeninger47, H. Kroha115, J. Kroll140,

J. Kroll136, K.S. Krowpman107, U. Kruchonak80, H. Krüger24, N. Krumnack79, M.C. Kruse49,

J.A. Krzysiak85, A. Kubota165, O. Kuchinskaia166, S. Kuday4b, D. Kuechler46, J.T. Kuechler46, S. Kuehn36,

T. Kuhl46, V. Kukhtin80, Y. Kulchitsky108,af, S. Kuleshov146b, Y.P. Kulinich173, M. Kuna58, A. Kupco140,

T. Kupfer47, O. Kuprash52, H. Kurashige83, L.L. Kurchaninov168a, Y.A. Kurochkin108, A. Kurova112,

M.G. Kurth15a,15d, E.S. Kuwertz36, M. Kuze165, A.K. Kvam148, J. Kvita130, T. Kwan104, F. La Ruffa41b,41a,

C. Lacasta174, F. Lacava73a,73b, D.P.J. Lack101, H. Lacker19, D. Lacour135, E. Ladygin80, R. Lafaye5,

B. Laforge135, T. Lagouri146c, S. Lai53, I.K. Lakomiec84a, J.E. Lambert128, S. Lammers66, W. Lampl7,

C. Lampoudis162, E. Lançon29, U. Landgraf52, M.P.J. Landon93, V.S. Lang52, J.C. Lange53,

R.J. Langenberg103, A.J. Lankford171, F. Lanni29, K. Lantzsch24, A. Lanza71a, A. Lapertosa55b,55a,

J.F. Laporte144, T. Lari69a, F. Lasagni Manghi23b,23a, M. Lassnig36, V. Latonova140, T.S. Lau63a,

A. Laudrain100, A. Laurier34, M. Lavorgna70a,70b, S.D. Lawlor94, M. Lazzaroni69a,69b, B. Le101,

32



E. Le Guirriec102, A. Lebedev79, M. LeBlanc7, T. LeCompte6, F. Ledroit-Guillon58, A.C.A. Lee95,

C.A. Lee29, G.R. Lee17, L. Lee59, S.C. Lee158, S. Lee79, B. Lefebvre168a, H.P. Lefebvre94, M. Lefebvre176,

C. Leggett18, K. Lehmann152, N. Lehmann20, G. Lehmann Miotto36, W.A. Leight46, A. Leisos162,u,

M.A.L. Leite81c, C.E. Leitgeb114, R. Leitner142, D. Lellouch180,*, K.J.C. Leney42, T. Lenz24, S. Leone72a,

C. Leonidopoulos50, A. Leopold135, C. Leroy110, R. Les107, C.G. Lester32, M. Levchenko137, J. Levêque5,

D. Levin106, L.J. Levinson180, D.J. Lewis21, B. Li15b, B. Li106, C-Q. Li60c,60d, F. Li60c, H. Li60a, H. Li60b,

J. Li60c, K. Li148, L. Li60c, M. Li15a,15d, Q. Li15a,15d, Q.Y. Li60a, S. Li60d,60c, X. Li46, Y. Li46, Z. Li60b,

Z. Li134, Z. Li104, Z. Liang15a, M. Liberatore46, B. Liberti74a, K. Lie63c, S. Lim29, C.Y. Lin32, K. Lin107,

R.A. Linck66, R.E. Lindley7, J.H. Lindon21, A. Linss46, A.L. Lionti54, E. Lipeles136, A. Lipniacka17,

T.M. Liss173,al, A. Lister175, J.D. Little8, B. Liu79, B.X. Liu152, H.B. Liu29, J.B. Liu60a, J.K.K. Liu37,

K. Liu60d, M. Liu60a, M.Y. Liu60a, P. Liu15a, X. Liu60a, Y. Liu46, Y. Liu15a,15d, Y.L. Liu106, Y.W. Liu60a,

M. Livan71a,71b, A. Lleres58, J. Llorente Merino152, S.L. Lloyd93, C.Y. Lo63b, E.M. Lobodzinska46,

P. Loch7, S. Loffredo74a,74b, T. Lohse19, K. Lohwasser149, M. Lokajicek140, J.D. Long173, R.E. Long90,

I. Longarini73a,73b, L. Longo36, K.A. Looper127, I. Lopez Paz101, A. Lopez Solis149, J. Lorenz114,

N. Lorenzo Martinez5, A.M. Lory114, P.J. Lösel114, A. Lösle52, X. Lou45a,45b, X. Lou15a, A. Lounis65,

J. Love6, P.A. Love90, J.J. Lozano Bahilo174, M. Lu60a, Y.J. Lu64, H.J. Lubatti148, C. Luci73a,73b,

F.L. Lucio Alves15c, A. Lucotte58, F. Luehring66, I. Luise155, L. Luminari73a, B. Lund-Jensen154,

M.S. Lutz161, D. Lynn29, H. Lyons91, R. Lysak140, E. Lytken97, F. Lyu15a, V. Lyubushkin80,

T. Lyubushkina80, H. Ma29, L.L. Ma60b, Y. Ma95, D.M. Mac Donell176, G. Maccarrone51,

A. Macchiolo115, C.M. Macdonald149, J.C. MacDonald149, J. Machado Miguens136, D. Madaffari174,

R. Madar38, W.F. Mader48, M. Madugoda Ralalage Don129, N. Madysa48, J. Maeda83, T. Maeno29,

M. Maerker48, V. Magerl52, N. Magini79, J. Magro67a,67c,q, D.J. Mahon39, C. Maidantchik81b, T. Maier114,

A. Maio139a,139b,139d, K. Maj84a, O. Majersky28a, S. Majewski131, Y. Makida82, N. Makovec65,

B. Malaescu135, Pa. Malecki85, V.P. Maleev137, F. Malek58, D. Malito41b,41a, U. Mallik78, C. Malone32,

S. Maltezos10, S. Malyukov80, J. Mamuzic174, G. Mancini51, I. Mandić92,

L. Manhaes de Andrade Filho81a, I.M. Maniatis162, J. Manjarres Ramos48, K.H. Mankinen97, A. Mann114,

A. Manousos77, B. Mansoulie144, I. Manthos162, S. Manzoni120, A. Marantis162, G. Marceca30,

L. Marchese134, G. Marchiori135, M. Marcisovsky140, L. Marcoccia74a,74b, C. Marcon97, M. Marjanovic128,

Z. Marshall18, M.U.F. Martensson172, S. Marti-Garcia174, C.B. Martin127, T.A. Martin178, V.J. Martin50,

B. Martin dit Latour17, L. Martinelli75a,75b, M. Martinez14,w, P. Martinez Agullo174,

V.I. Martinez Outschoorn103, S. Martin-Haugh143, V.S. Martoiu27b, A.C. Martyniuk95, A. Marzin36,

S.R. Maschek115, L. Masetti100, T. Mashimo163, R. Mashinistov111, J. Masik101, A.L. Maslennikov122b,122a,

L. Massa23b,23a, P. Massarotti70a,70b, P. Mastrandrea72a,72b, A. Mastroberardino41b,41a, T. Masubuchi163,

D. Matakias29, A. Matic114, N. Matsuzawa163, P. Mättig24, J. Maurer27b, B. Maček92,

D.A. Maximov122b,122a, R. Mazini158, I. Maznas162, S.M. Mazza145, J.P. Mc Gowan104, S.P. Mc Kee106,

T.G. McCarthy115, W.P. McCormack18, E.F. McDonald105, A.E. McDougall120, J.A. Mcfayden18,

G. Mchedlidze159b, M.A. McKay42, K.D. McLean176, S.J. McMahon143, P.C. McNamara105,

C.J. McNicol178, R.A. McPherson176,ab, J.E. Mdhluli33e, Z.A. Meadows103, S. Meehan36, T. Megy38,

S. Mehlhase114, A. Mehta91, B. Meirose43, D. Melini160, B.R. Mellado Garcia33e, J.D. Mellenthin53,

M. Melo28a, F. Meloni46, A. Melzer24, E.D. Mendes Gouveia139a,139e, A.M. Mendes Jacques Da Costa21,

L. Meng36, X.T. Meng106, S. Menke115, E. Meoni41b,41a, S. Mergelmeyer19, S.A.M. Merkt138,

C. Merlassino134, P. Mermod54, L. Merola70a,70b, C. Meroni69a, G. Merz106, O. Meshkov113,111,

J.K.R. Meshreki151, J. Metcalfe6, A.S. Mete6, C. Meyer66, J-P. Meyer144, M. Michetti19, R.P. Middleton143,

L. Mĳović50, G. Mikenberg180, M. Mikestikova140, M. Mikuž92, H. Mildner149, A. Milic167, C.D. Milke42,

D.W. Miller37, L.S. Miller34, A. Milov180, D.A. Milstead45a,45b, R.A. Mina153, A.A. Minaenko123,

I.A. Minashvili159b, A.I. Mincer125, B. Mindur84a, M. Mineev80, Y. Minegishi163, Y. Mino86, L.M. Mir14,

M. Mironova134, K.P. Mistry136, T. Mitani179, J. Mitrevski114, V.A. Mitsou174, M. Mittal60c, O. Miu167,

33



A. Miucci20, P.S. Miyagawa93, A. Mizukami82, J.U. Mjörnmark97, T. Mkrtchyan61a, M. Mlynarikova121,

T. Moa45a,45b, S. Mobius53, K. Mochizuki110, P. Mogg114, S. Mohapatra39, R. Moles-Valls24, K. Mönig46,

E. Monnier102, A. Montalbano152, J. Montejo Berlingen36, M. Montella95, F. Monticelli89, S. Monzani69a,

N. Morange65, A.L. Moreira De Carvalho139a, D. Moreno22a, M. Moreno Llácer174,

C. Moreno Martinez14, P. Morettini55b, M. Morgenstern160, S. Morgenstern48, D. Mori152, M. Morii59,

M. Morinaga179, V. Morisbak133, A.K. Morley36, G. Mornacchi36, A.P. Morris95, L. Morvaj155,

P. Moschovakos36, B. Moser120, M. Mosidze159b, T. Moskalets144, P. Moskvitina119, J. Moss31,m,

E.J.W. Moyse103, S. Muanza102, J. Mueller138, R.S.P. Mueller114, D. Muenstermann90, G.A. Mullier97,

D.P. Mungo69a,69b, J.L. Munoz Martinez14, F.J. Munoz Sanchez101, P. Murin28b, W.J. Murray178,143,

A. Murrone69a,69b, J.M. Muse128, M. Muškinja18, C. Mwewa33a, A.G. Myagkov123,ah, A.A. Myers138,

G. Myers66, J. Myers131, M. Myska141, B.P. Nachman18, O. Nackenhorst47, A.Nag Nag48, K. Nagai134,

K. Nagano82, Y. Nagasaka62, J.L. Nagle29, E. Nagy102, A.M. Nairz36, Y. Nakahama117, K. Nakamura82,

T. Nakamura163, H. Nanjo132, F. Napolitano61a, R.F. Naranjo Garcia46, R. Narayan42, I. Naryshkin137,

M. Naseri34, T. Naumann46, G. Navarro22a, P.Y. Nechaeva111, F. Nechansky46, T.J. Neep21, A. Negri71a,71b,

M. Negrini23b, C. Nellist119, C. Nelson104, M.E. Nelson45a,45b, S. Nemecek140, M. Nessi36,e,

M.S. Neubauer173, F. Neuhaus100, M. Neumann182, R. Newhouse175, P.R. Newman21, C.W. Ng138,

Y.S. Ng19, Y.W.Y. Ng171, B. Ngair35e, H.D.N. Nguyen102, T. Nguyen Manh110, E. Nibigira38,

R.B. Nickerson134, R. Nicolaidou144, D.S. Nielsen40, J. Nielsen145, M. Niemeyer53, N. Nikiforou11,

V. Nikolaenko123,ah, I. Nikolic-Audit135, K. Nikolopoulos21, P. Nilsson29, H.R. Nindhito54, A. Nisati73a,

N. Nishu60c, R. Nisius115, I. Nitsche47, T. Nitta179, T. Nobe163, D.L. Noel32, Y. Noguchi86, I. Nomidis135,

M.A. Nomura29, M. Nordberg36, J. Novak92, T. Novak92, O. Novgorodova48, R. Novotny141, L. Nozka130,

K. Ntekas171, E. Nurse95, F.G. Oakham34,am, H. Oberlack115, J. Ocariz135, A. Ochi83, I. Ochoa39,

J.P. Ochoa-Ricoux146a, K. O’Connor26, S. Oda88, S. Odaka82, S. Oerdek53, A. Ogrodnik84a, A. Oh101,

C.C. Ohm154, H. Oide165, M.L. Ojeda167, H. Okawa169, Y. Okazaki86, M.W. O’Keefe91, Y. Okumura163,

A. Olariu27b, L.F. Oleiro Seabra139a, S.A. Olivares Pino146a, D. Oliveira Damazio29, J.L. Oliver1,

M.J.R. Olsson171, A. Olszewski85, J. Olszowska85, Ö.O. Öncel24, D.C. O’Neil152, A.P. O’neill134,

A. Onofre139a,139e, P.U.E. Onyisi11, H. Oppen133, R.G. Oreamuno Madriz121, M.J. Oreglia37,

G.E. Orellana89, D. Orestano75a,75b, N. Orlando14, R.S. Orr167, V. O’Shea57, R. Ospanov60a,

G. Otero y Garzon30, H. Otono88, P.S. Ott61a, G.J. Ottino18, M. Ouchrif35d, J. Ouellette29,

F. Ould-Saada133, A. Ouraou144,*, Q. Ouyang15a, M. Owen57, R.E. Owen143, V.E. Ozcan12c, N. Ozturk8,

J. Pacalt130, H.A. Pacey32, K. Pachal49, A. Pacheco Pages14, C. Padilla Aranda14, S. Pagan Griso18,

G. Palacino66, S. Palazzo50, S. Palestini36, M. Palka84b, P. Palni84a, C.E. Pandini54,

J.G. Panduro Vazquez94, P. Pani46, G. Panizzo67a,67c, L. Paolozzi54, C. Papadatos110, K. Papageorgiou9,g,

S. Parajuli42, A. Paramonov6, C. Paraskevopoulos10, D. Paredes Hernandez63b, S.R. Paredes Saenz134,

B. Parida180, T.H. Park167, A.J. Parker31, M.A. Parker32, F. Parodi55b,55a, E.W. Parrish121, J.A. Parsons39,

U. Parzefall52, L. Pascual Dominguez135, V.R. Pascuzzi18, J.M.P. Pasner145, F. Pasquali120,

E. Pasqualucci73a, S. Passaggio55b, F. Pastore94, P. Pasuwan45a,45b, S. Pataraia100, J.R. Pater101,

A. Pathak181,i, J. Patton91, T. Pauly36, J. Pearkes153, B. Pearson115, M. Pedersen133, L. Pedraza Diaz119,

R. Pedro139a, T. Peiffer53, S.V. Peleganchuk122b,122a, O. Penc140, C. Peng63b, H. Peng60a, B.S. Peralva81a,

M.M. Perego65, A.P. Pereira Peixoto139a, L. Pereira Sanchez45a,45b, D.V. Perepelitsa29, E. Perez Codina168a,

F. Peri19, L. Perini69a,69b, H. Pernegger36, S. Perrella36, A. Perrevoort120, K. Peters46, R.F.Y. Peters101,

B.A. Petersen36, T.C. Petersen40, E. Petit102, V. Petousis141, C. Petridou162, F. Petrucci75a,75b, M. Pettee183,

N.E. Pettersson103, K. Petukhova142, A. Peyaud144, R. Pezoa146d, L. Pezzotti71a,71b, T. Pham105,

P.W. Phillips143, M.W. Phipps173, G. Piacquadio155, E. Pianori18, A. Picazio103, R.H. Pickles101,

R. Piegaia30, D. Pietreanu27b, J.E. Pilcher37, A.D. Pilkington101, M. Pinamonti67a,67c, J.L. Pinfold3,

C. Pitman Donaldson95, M. Pitt161, L. Pizzimento74a,74b, A. Pizzini120, M.-A. Pleier29, V. Plesanovs52,

V. Pleskot142, E. Plotnikova80, P. Podberezko122b,122a, R. Poettgen97, R. Poggi54, L. Poggioli135,

34



I. Pogrebnyak107, D. Pohl24, I. Pokharel53, G. Polesello71a, A. Poley152,168a, A. Policicchio73a,73b,

R. Polifka142, A. Polini23b, C.S. Pollard46, V. Polychronakos29, D. Ponomarenko112, L. Pontecorvo36,

S. Popa27a, G.A. Popeneciu27d, L. Portales5, D.M. Portillo Quintero58, S. Pospisil141, K. Potamianos46,

I.N. Potrap80, C.J. Potter32, H. Potti11, T. Poulsen97, J. Poveda174, T.D. Powell149, G. Pownall46,

M.E. Pozo Astigarraga36, A. Prades Ibanez174, P. Pralavorio102, M.M. Prapa44, S. Prell79, D. Price101,

M. Primavera68a, M.L. Proffitt148, N. Proklova112, K. Prokofiev63c, F. Prokoshin80, S. Protopopescu29,

J. Proudfoot6, M. Przybycien84a, D. Pudzha137, A. Puri173, P. Puzo65, D. Pyatiizbyantseva112, J. Qian106,

Y. Qin101, A. Quadt53, M. Queitsch-Maitland36, M. Racko28a, F. Ragusa69a,69b, G. Rahal98, J.A. Raine54,

S. Rajagopalan29, A. Ramirez Morales93, K. Ran15a,15d, D.M. Rauch46, F. Rauscher114, S. Rave100,

B. Ravina57, I. Ravinovich180, J.H. Rawling101, M. Raymond36, A.L. Read133, N.P. Readioff149,

M. Reale68a,68b, D.M. Rebuzzi71a,71b, G. Redlinger29, K. Reeves43, D. Reikher161, A. Reiss100, A. Rej151,

C. Rembser36, A. Renardi46, M. Renda27b, M.B. Rendel115, A.G. Rennie57, S. Resconi69a,

E.D. Resseguie18, S. Rettie95, B. Reynolds127, E. Reynolds21, O.L. Rezanova122b,122a, P. Reznicek142,

E. Ricci76a,76b, R. Richter115, S. Richter46, E. Richter-Was84b, M. Ridel135, P. Rieck115, O. Rifki46,

M. Rĳssenbeek155, A. Rimoldi71a,71b, M. Rimoldi46, L. Rinaldi23b, T.T. Rinn173, G. Ripellino154, I. Riu14,

P. Rivadeneira46, J.C. Rivera Vergara176, F. Rizatdinova129, E. Rizvi93, C. Rizzi36, S.H. Robertson104,ab,

M. Robin46, D. Robinson32, C.M. Robles Gajardo146d, M. Robles Manzano100, A. Robson57,

A. Rocchi74a,74b, E. Rocco100, C. Roda72a,72b, S. Rodriguez Bosca174, A. Rodriguez Rodriguez52,

A.M. Rodríguez Vera168b, S. Roe36, J. Roggel182, O. Røhne133, R. Röhrig115, R.A. Rojas146d, B. Roland52,

C.P.A. Roland66, J. Roloff29, A. Romaniouk112, M. Romano23b,23a, N. Rompotis91, M. Ronzani125,

L. Roos135, S. Rosati73a, G. Rosin103, B.J. Rosser136, E. Rossi46, E. Rossi75a,75b, E. Rossi70a,70b,

L.P. Rossi55b, L. Rossini46, R. Rosten14, M. Rotaru27b, B. Rottler52, D. Rousseau65, G. Rovelli71a,71b,

A. Roy11, D. Roy33e, A. Rozanov102, Y. Rozen160, X. Ruan33e, T.A. Ruggeri1, F. Rühr52,

A. Ruiz-Martinez174, A. Rummler36, Z. Rurikova52, N.A. Rusakovich80, H.L. Russell104, L. Rustige38,47,

J.P. Rutherfoord7, E.M. Rüttinger149, M. Rybar142, G. Rybkin65, E.B. Rye133, A. Ryzhov123,

J.A. Sabater Iglesias46, P. Sabatini174, L. Sabetta73a,73b, S. Sacerdoti65, H.F-W. Sadrozinski145,

R. Sadykov80, F. Safai Tehrani73a, B. Safarzadeh Samani156, M. Safdari153, P. Saha121, S. Saha104,

M. Sahinsoy115, A. Sahu182, M. Saimpert36, M. Saito163, T. Saito163, H. Sakamoto163, D. Salamani54,

G. Salamanna75a,75b, A. Salnikov153, J. Salt174, A. Salvador Salas14, D. Salvatore41b,41a, F. Salvatore156,

A. Salvucci63a, A. Salzburger36, J. Samarati36, D. Sammel52, D. Sampsonidis162, D. Sampsonidou162,

J. Sánchez174, A. Sanchez Pineda67a,36,67c, H. Sandaker133, C.O. Sander46, I.G. Sanderswood90,

M. Sandhoff182, C. Sandoval22b, D.P.C. Sankey143, M. Sannino55b,55a, Y. Sano117, A. Sansoni51,

C. Santoni38, H. Santos139a,139b, S.N. Santpur18, A. Santra174, K.A. Saoucha149, A. Sapronov80,

J.G. Saraiva139a,139d, O. Sasaki82, K. Sato169, F. Sauerburger52, E. Sauvan5, P. Savard167,am, R. Sawada163,

C. Sawyer143, L. Sawyer96,ag, I. Sayago Galvan174, C. Sbarra23b, A. Sbrizzi67a,67c, T. Scanlon95,

J. Schaarschmidt148, P. Schacht115, D. Schaefer37, L. Schaefer136, U. Schäfer100, A.C. Schaffer65,

D. Schaile114, R.D. Schamberger155, E. Schanet114, C. Scharf19, N. Scharmberg101, V.A. Schegelsky137,

D. Scheirich142, F. Schenck19, M. Schernau171, C. Schiavi55b,55a, L.K. Schildgen24, Z.M. Schillaci26,

E.J. Schioppa68a,68b, M. Schioppa41b,41a, K.E. Schleicher52, S. Schlenker36, K.R. Schmidt-Sommerfeld115,

K. Schmieden100, C. Schmitt100, S. Schmitt46, L. Schoeffel144, A. Schoening61b, P.G. Scholer52,

E. Schopf134, M. Schott100, J.F.P. Schouwenberg119, J. Schovancova36, S. Schramm54, F. Schroeder182,

A. Schulte100, H-C. Schultz-Coulon61a, M. Schumacher52, B.A. Schumm145, Ph. Schune144,

A. Schwartzman153, T.A. Schwarz106, Ph. Schwemling144, R. Schwienhorst107, A. Sciandra145,

G. Sciolla26, M. Scornajenghi41b,41a, F. Scuri72a, F. Scutti105, L.M. Scyboz115, C.D. Sebastiani91,

P. Seema19, S.C. Seidel118, A. Seiden145, B.D. Seidlitz29, T. Seiss37, C. Seitz46, J.M. Seixas81b,

G. Sekhniaidze70a, S.J. Sekula42, N. Semprini-Cesari23b,23a, S. Sen49, C. Serfon29, L. Serin65,

L. Serkin67a,67b, M. Sessa60a, H. Severini128, S. Sevova153, F. Sforza55b,55a, A. Sfyrla54, E. Shabalina53,

35



J.D. Shahinian136, N.W. Shaikh45a,45b, D. Shaked Renous180, L.Y. Shan15a, M. Shapiro18, A. Sharma36,

A.S. Sharma1, P.B. Shatalov124, K. Shaw156, S.M. Shaw101, M. Shehade180, Y. Shen128, A.D. Sherman25,

P. Sherwood95, L. Shi95, C.O. Shimmin183, Y. Shimogama179, M. Shimojima116, J.D. Shinner94,

I.P.J. Shipsey134, S. Shirabe165, M. Shiyakova80,z, J. Shlomi180, A. Shmeleva111, M.J. Shochet37,

J. Shojaii105, D.R. Shope154, S. Shrestha127, E.M. Shrif33e, M.J. Shroff176, E. Shulga180, P. Sicho140,

A.M. Sickles173, E. Sideras Haddad33e, O. Sidiropoulou36, A. Sidoti23b,23a, F. Siegert48, Dj. Sĳacki16,

M.Jr. Silva181, M.V. Silva Oliveira36, S.B. Silverstein45a, S. Simion65, R. Simoniello100,

C.J. Simpson-allsop21, S. Simsek12b, P. Sinervo167, V. Sinetckii113, S. Singh152, M. Sioli23b,23a, I. Siral131,

S.Yu. Sivoklokov113, J. Sjölin45a,45b, A. Skaf53, E. Skorda97, P. Skubic128, M. Slawinska85, K. Sliwa170,

R. Slovak142, V. Smakhtin180, B.H. Smart143, J. Smiesko28b, N. Smirnov112, S.Yu. Smirnov112,

Y. Smirnov112, L.N. Smirnova113,r, O. Smirnova97, E.A. Smith37, H.A. Smith134, M. Smizanska90,

K. Smolek141, A. Smykiewicz85, A.A. Snesarev111, H.L. Snoek120, I.M. Snyder131, S. Snyder29,

R. Sobie176,ab, A. Soffer161, A. Søgaard50, F. Sohns53, C.A. Solans Sanchez36, E.Yu. Soldatov112,

U. Soldevila174, A.A. Solodkov123, A. Soloshenko80, O.V. Solovyanov123, V. Solovyev137, P. Sommer149,

H. Son170, A. Sonay14, W. Song143, W.Y. Song168b, A. Sopczak141, A.L. Sopio95, F. Sopkova28b,

S. Sottocornola71a,71b, R. Soualah67a,67c, A.M. Soukharev122b,122a, D. South46, S. Spagnolo68a,68b,

M. Spalla115, M. Spangenberg178, F. Spanò94, D. Sperlich52, T.M. Spieker61a, G. Spigo36, M. Spina156,

D.P. Spiteri57, M. Spousta142, A. Stabile69a,69b, B.L. Stamas121, R. Stamen61a, M. Stamenkovic120,

A. Stampekis21, E. Stanecka85, B. Stanislaus134, M.M. Stanitzki46, M. Stankaityte134, B. Stapf120,

E.A. Starchenko123, G.H. Stark145, J. Stark58, P. Staroba140, P. Starovoitov61a, S. Stärz104, R. Staszewski85,

G. Stavropoulos44, M. Stegler46, P. Steinberg29, A.L. Steinhebel131, B. Stelzer152,168a, H.J. Stelzer138,

O. Stelzer-Chilton168a, H. Stenzel56, T.J. Stevenson156, G.A. Stewart36, M.C. Stockton36, G. Stoicea27b,

M. Stolarski139a, S. Stonjek115, A. Straessner48, J. Strandberg154, S. Strandberg45a,45b, M. Strauss128,

T. Strebler102, P. Strizenec28b, R. Ströhmer177, D.M. Strom131, R. Stroynowski42, A. Strubig45a,45b,

S.A. Stucci29, B. Stugu17, J. Stupak128, N.A. Styles46, D. Su153, W. Su60c,148, X. Su60a, V.V. Sulin111,

M.J. Sullivan91, D.M.S. Sultan54, S. Sultansoy4c, T. Sumida86, S. Sun106, X. Sun101, C.J.E. Suster157,

M.R. Sutton156, S. Suzuki82, M. Svatos140, M. Swiatlowski168a, S.P. Swift2, T. Swirski177,

A. Sydorenko100, I. Sykora28a, M. Sykora142, T. Sykora142, D. Ta100, K. Tackmann46,x, J. Taenzer161,

A. Taffard171, R. Tafirout168a, E. Tagiev123, R. Takashima87, K. Takeda83, T. Takeshita150, E.P. Takeva50,

Y. Takubo82, M. Talby102, A.A. Talyshev122b,122a, K.C. Tam63b, N.M. Tamir161, J. Tanaka163, R. Tanaka65,

S. Tapia Araya173, S. Tapprogge100, A. Tarek Abouelfadl Mohamed107, S. Tarem160, K. Tariq60b,

G. Tarna27b,d, G.F. Tartarelli69a, P. Tas142, M. Tasevsky140, E. Tassi41b,41a, A. Tavares Delgado139a,

Y. Tayalati35e, A.J. Taylor50, G.N. Taylor105, W. Taylor168b, H. Teagle91, A.S. Tee90,

R. Teixeira De Lima153, P. Teixeira-Dias94, H. Ten Kate36, J.J. Teoh120, K. Terashi163, J. Terron99,

S. Terzo14, M. Testa51, R.J. Teuscher167,ab, S.J. Thais183, N. Themistokleous50, T. Theveneaux-Pelzer46,

F. Thiele40, D.W. Thomas94, J.O. Thomas42, J.P. Thomas21, E.A. Thompson46, P.D. Thompson21,

E. Thomson136, E.J. Thorpe93, R.E. Ticse Torres53, V.O. Tikhomirov111,ai, Yu.A. Tikhonov122b,122a,

S. Timoshenko112, P. Tipton183, S. Tisserant102, K. Todome23b,23a, S. Todorova-Nova142, S. Todt48,

J. Tojo88, S. Tokár28a, K. Tokushuku82, E. Tolley127, R. Tombs32, K.G. Tomiwa33e, M. Tomoto82,117,

L. Tompkins153, P. Tornambe103, E. Torrence131, H. Torres48, E. Torró Pastor174, M. Toscani30,

C. Tosciri134, J. Toth102,aa, D.R. Tovey149, A. Traeet17, C.J. Treado125, T. Trefzger177, F. Tresoldi156,

A. Tricoli29, I.M. Trigger168a, S. Trincaz-Duvoid135, D.A. Trischuk175, W. Trischuk167, B. Trocmé58,

A. Trofymov65, C. Troncon69a, F. Trovato156, L. Truong33c, M. Trzebinski85, A. Trzupek85, F. Tsai46,

J.C-L. Tseng134, P.V. Tsiareshka108,af, A. Tsirigotis162,u, V. Tsiskaridze155, E.G. Tskhadadze159a,

M. Tsopoulou162, I.I. Tsukerman124, V. Tsulaia18, S. Tsuno82, D. Tsybychev155, Y. Tu63b, A. Tudorache27b,

V. Tudorache27b, T.T. Tulbure27a, A.N. Tuna59, S. Turchikhin80, D. Turgeman180, I. Turk Cakir4b,s,

R.J. Turner21, R. Turra69a, P.M. Tuts39, S. Tzamarias162, E. Tzovara100, K. Uchida163, F. Ukegawa169,

36



G. Unal36, M. Unal11, A. Undrus29, G. Unel171, F.C. Ungaro105, Y. Unno82, K. Uno163, J. Urban28b,

P. Urquĳo105, G. Usai8, Z. Uysal12d, V. Vacek141, B. Vachon104, K.O.H. Vadla133, T. Vafeiadis36,

A. Vaidya95, C. Valderanis114, E. Valdes Santurio45a,45b, M. Valente168a, S. Valentinetti23b,23a,

A. Valero174, L. Valéry46, R.A. Vallance21, A. Vallier36, J.A. Valls Ferrer174, T.R. Van Daalen14,

P. Van Gemmeren6, S. Van Stroud95, I. Van Vulpen120, M. Vanadia74a,74b, W. Vandelli36,

M. Vandenbroucke144, E.R. Vandewall129, A. Vaniachine166, D. Vannicola73a,73b, R. Vari73a, E.W. Varnes7,

C. Varni55b,55a, T. Varol158, D. Varouchas65, K.E. Varvell157, M.E. Vasile27b, G.A. Vasquez176,

F. Vazeille38, D. Vazquez Furelos14, T. Vazquez Schroeder36, J. Veatch53, V. Vecchio101, M.J. Veen120,

L.M. Veloce167, F. Veloso139a,139c, S. Veneziano73a, A. Ventura68a,68b, A. Verbytskyi115, V. Vercesi71a,

M. Verducci72a,72b, C.M. Vergel Infante79, C. Vergis24, W. Verkerke120, A.T. Vermeulen120,

J.C. Vermeulen120, C. Vernieri153, P.J. Verschuuren94, M.C. Vetterli152,am, N. Viaux Maira146d,

T. Vickey149, O.E. Vickey Boeriu149, G.H.A. Viehhauser134, L. Vigani61b, M. Villa23b,23a,

M. Villaplana Perez3, E.M. Villhauer50, E. Vilucchi51, M.G. Vincter34, G.S. Virdee21, A. Vishwakarma50,

C. Vittori23b,23a, I. Vivarelli156, M. Vogel182, P. Vokac141, S.E. von Buddenbrock33e, E. Von Toerne24,

V. Vorobel142, K. Vorobev112, M. Vos174, J.H. Vossebeld91, M. Vozak101, N. Vranjes16,

M. Vranjes Milosavljevic16, V. Vrba141, M. Vreeswĳk120, N.K. Vu102, R. Vuillermet36, I. Vukotic37,

S. Wada169, P. Wagner24, W. Wagner182, J. Wagner-Kuhr114, S. Wahdan182, H. Wahlberg89, R. Wakasa169,

V.M. Walbrecht115, J. Walder143, R. Walker114, S.D. Walker94, W. Walkowiak151, V. Wallangen45a,45b,

A.M. Wang59, A.Z. Wang181, C. Wang60a, C. Wang60c, F. Wang181, H. Wang18, H. Wang3, J. Wang63a,

P. Wang42, Q. Wang128, R.-J. Wang100, R. Wang60a, R. Wang6, S.M. Wang158, W.T. Wang60a, W. Wang15c,

W.X. Wang60a, Y. Wang60a, Z. Wang106, C. Wanotayaroj46, A. Warburton104, C.P. Ward32, R.J. Ward21,

N. Warrack57, A.T. Watson21, M.F. Watson21, G. Watts148, B.M. Waugh95, A.F. Webb11, C. Weber29,

M.S. Weber20, S.A. Weber34, S.M. Weber61a, A.R. Weidberg134, J. Weingarten47, M. Weirich100,

C. Weiser52, P.S. Wells36, T. Wenaus29, B. Wendland47, T. Wengler36, S. Wenig36, N. Wermes24,

M. Wessels61a, T.D. Weston20, K. Whalen131, A.M. Wharton90, A.S. White106, A. White8, M.J. White1,

D. Whiteson171, B.W. Whitmore90, W. Wiedenmann181, C. Wiel48, M. Wielers143, N. Wieseotte100,

C. Wiglesworth40, L.A.M. Wiik-Fuchs52, H.G. Wilkens36, L.J. Wilkins94, H.H. Williams136,

S. Williams32, S. Willocq103, P.J. Windischhofer134, I. Wingerter-Seez5, E. Winkels156, F. Winklmeier131,

B.T. Winter52, M. Wittgen153, M. Wobisch96, A. Wolf100, R. Wölker134, J. Wollrath52, M.W. Wolter85,

H. Wolters139a,139c, V.W.S. Wong175, N.L. Woods145, S.D. Worm46, B.K. Wosiek85, K.W. Woźniak85,

K. Wraight57, S.L. Wu181, X. Wu54, Y. Wu60a, J. Wuerzinger134, T.R. Wyatt101, B.M. Wynne50, S. Xella40,

L. Xia178, J. Xiang63c, X. Xiao106, X. Xie60a, I. Xiotidis156, D. Xu15a, H. Xu60a, H. Xu60a, L. Xu29,

T. Xu144, W. Xu106, Y. Xu15b, Z. Xu60b, Z. Xu153, B. Yabsley157, S. Yacoob33a, D.P. Yallup95,

N. Yamaguchi88, Y. Yamaguchi165, A. Yamamoto82, M. Yamatani163, T. Yamazaki163, Y. Yamazaki83,

J. Yan60c, Z. Yan25, H.J. Yang60c,60d, H.T. Yang18, S. Yang60a, T. Yang63c, X. Yang60b,58, Y. Yang163,

Z. Yang60a, W-M. Yao18, Y.C. Yap46, E. Yatsenko60c, H. Ye15c, J. Ye42, S. Ye29, I. Yeletskikh80,

M.R. Yexley90, E. Yigitbasi25, P. Yin39, K. Yorita179, K. Yoshihara79, C.J.S. Young36, C. Young153,

J. Yu79, R. Yuan60b,h, X. Yue61a, M. Zaazoua35e, B. Zabinski85, G. Zacharis10, E. Zaffaroni54,

J. Zahreddine135, A.M. Zaitsev123,ah, T. Zakareishvili159b, N. Zakharchuk34, S. Zambito36, D. Zanzi36,

S.V. Zeißner47, C. Zeitnitz182, G. Zemaityte134, J.C. Zeng173, O. Zenin123, T. Ženiš28a, D. Zerwas65,

M. Zgubič134, B. Zhang15c, D.F. Zhang15b, G. Zhang15b, J. Zhang6, Kaili. Zhang15a, L. Zhang15c,

L. Zhang60a, M. Zhang173, R. Zhang181, S. Zhang106, X. Zhang60c, X. Zhang60b, Y. Zhang15a,15d,

Z. Zhang63a, Z. Zhang65, P. Zhao49, Z. Zhao60a, A. Zhemchugov80, Z. Zheng106, D. Zhong173, B. Zhou106,

C. Zhou181, H. Zhou7, M.S. Zhou15a,15d, M. Zhou155, N. Zhou60c, Y. Zhou7, C.G. Zhu60b, C. Zhu15a,15d,

H.L. Zhu60a, H. Zhu15a, J. Zhu106, Y. Zhu60a, X. Zhuang15a, K. Zhukov111, V. Zhulanov122b,122a,

D. Zieminska66, N.I. Zimine80, S. Zimmermann52,*, Z. Zinonos115, M. Ziolkowski151, L. Živković16,

G. Zobernig181, A. Zoccoli23b,23a, K. Zoch53, T.G. Zorbas149, R. Zou37, L. Zwalinski36.

37



1Department of Physics, University of Adelaide, Adelaide; Australia.
2Physics Department, SUNY Albany, Albany NY; United States of America.
3Department of Physics, University of Alberta, Edmonton AB; Canada.
4 (𝑎)Department of Physics, Ankara University, Ankara;(𝑏) Istanbul Aydin University, Application and

Research Center for Advanced Studies, Istanbul;(𝑐)Division of Physics, TOBB University of Economics

and Technology, Ankara; Turkey.
5LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy; France.
6High Energy Physics Division, Argonne National Laboratory, Argonne IL; United States of America.
7Department of Physics, University of Arizona, Tucson AZ; United States of America.
8Department of Physics, University of Texas at Arlington, Arlington TX; United States of America.
9Physics Department, National and Kapodistrian University of Athens, Athens; Greece.
10Physics Department, National Technical University of Athens, Zografou; Greece.
11Department of Physics, University of Texas at Austin, Austin TX; United States of America.
12 (𝑎)Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul;(𝑏) Istanbul Bilgi

University, Faculty of Engineering and Natural Sciences, Istanbul;(𝑐)Department of Physics, Bogazici

University, Istanbul;(𝑑)Department of Physics Engineering, Gaziantep University, Gaziantep; Turkey.
13Institute of Physics, Azerbaĳan Academy of Sciences, Baku; Azerbaĳan.
14Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona;

Spain.
15 (𝑎) Institute of High Energy Physics, Chinese Academy of Sciences, Beĳing;(𝑏)Physics Department,

Tsinghua University, Beĳing;(𝑐)Department of Physics, Nanjing University, Nanjing;(𝑑)University of

Chinese Academy of Science (UCAS), Beĳing; China.
16Institute of Physics, University of Belgrade, Belgrade; Serbia.
17Department for Physics and Technology, University of Bergen, Bergen; Norway.
18Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA;

United States of America.
19Institut für Physik, Humboldt Universität zu Berlin, Berlin; Germany.
20Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of

Bern, Bern; Switzerland.
21School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom.
22 (𝑎)Facultad de Ciencias y Centro de Investigaciónes, Universidad Antonio Nariño,

Bogotá;(𝑏)Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia; Colombia.
23 (𝑎) INFN Bologna and Universita’ di Bologna, Dipartimento di Fisica;(𝑏) INFN Sezione di Bologna; Italy.
24Physikalisches Institut, Universität Bonn, Bonn; Germany.
25Department of Physics, Boston University, Boston MA; United States of America.
26Department of Physics, Brandeis University, Waltham MA; United States of America.
27 (𝑎)Transilvania University of Brasov, Brasov;(𝑏)Horia Hulubei National Institute of Physics and Nuclear

Engineering, Bucharest;(𝑐)Department of Physics, Alexandru Ioan Cuza University of Iasi,

Iasi;(𝑑)National Institute for Research and Development of Isotopic and Molecular Technologies, Physics

Department, Cluj-Napoca;(𝑒)University Politehnica Bucharest, Bucharest;( 𝑓 )West University in Timisoara,

Timisoara; Romania.
28 (𝑎)Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava;(𝑏)Department of

Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak

Republic.
29Physics Department, Brookhaven National Laboratory, Upton NY; United States of America.
30Departamento de Física, Universidad de Buenos Aires, Buenos Aires; Argentina.
31California State University, CA; United States of America.

38



32Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom.
33 (𝑎)Department of Physics, University of Cape Town, Cape Town;(𝑏) iThemba Labs, Western

Cape;(𝑐)Department of Mechanical Engineering Science, University of Johannesburg,

Johannesburg;(𝑑)University of South Africa, Department of Physics, Pretoria;(𝑒)School of Physics,

University of the Witwatersrand, Johannesburg; South Africa.
34Department of Physics, Carleton University, Ottawa ON; Canada.
35 (𝑎)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université

Hassan II, Casablanca;(𝑏)Faculté des Sciences, Université Ibn-Tofail, Kénitra;(𝑐)Faculté des Sciences

Semlalia, Université Cadi Ayyad, LPHEA-Marrakech;(𝑑)Faculté des Sciences, Université Mohamed

Premier and LPTPM, Oujda;(𝑒)Faculté des sciences, Université Mohammed V, Rabat; Morocco.
36CERN, Geneva; Switzerland.
37Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America.
38LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand; France.
39Nevis Laboratory, Columbia University, Irvington NY; United States of America.
40Niels Bohr Institute, University of Copenhagen, Copenhagen; Denmark.
41 (𝑎)Dipartimento di Fisica, Università della Calabria, Rende;(𝑏) INFN Gruppo Collegato di Cosenza,

Laboratori Nazionali di Frascati; Italy.
42Physics Department, Southern Methodist University, Dallas TX; United States of America.
43Physics Department, University of Texas at Dallas, Richardson TX; United States of America.
44National Centre for Scientific Research "Demokritos", Agia Paraskevi; Greece.
45 (𝑎)Department of Physics, Stockholm University;(𝑏)Oskar Klein Centre, Stockholm; Sweden.
46Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen; Germany.
47Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund; Germany.
48Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden; Germany.
49Department of Physics, Duke University, Durham NC; United States of America.
50SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom.
51INFN e Laboratori Nazionali di Frascati, Frascati; Italy.
52Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.
53II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen; Germany.
54Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.
55 (𝑎)Dipartimento di Fisica, Università di Genova, Genova;(𝑏) INFN Sezione di Genova; Italy.
56II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen; Germany.
57SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow; United Kingdom.
58LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble; France.
59Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA; United States of

America.
60 (𝑎)Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics,

University of Science and Technology of China, Hefei;(𝑏) Institute of Frontier and Interdisciplinary Science

and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University,

Qingdao;(𝑐)School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC,

Shanghai;(𝑑)Tsung-Dao Lee Institute, Shanghai; China.
61 (𝑎)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg;(𝑏)Physikalisches

Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Germany.
62Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima; Japan.
63 (𝑎)Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong;(𝑏)Department

of Physics, University of Hong Kong, Hong Kong;(𝑐)Department of Physics and Institute for Advanced

Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; China.

39



64Department of Physics, National Tsing Hua University, Hsinchu; Taiwan.
65ĲCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay; France.
66Department of Physics, Indiana University, Bloomington IN; United States of America.
67 (𝑎) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine;(𝑏) ICTP, Trieste;(𝑐)Dipartimento

Politecnico di Ingegneria e Architettura, Università di Udine, Udine; Italy.
68 (𝑎) INFN Sezione di Lecce;(𝑏)Dipartimento di Matematica e Fisica, Università del Salento, Lecce; Italy.
69 (𝑎) INFN Sezione di Milano;(𝑏)Dipartimento di Fisica, Università di Milano, Milano; Italy.
70 (𝑎) INFN Sezione di Napoli;(𝑏)Dipartimento di Fisica, Università di Napoli, Napoli; Italy.
71 (𝑎) INFN Sezione di Pavia;(𝑏)Dipartimento di Fisica, Università di Pavia, Pavia; Italy.
72 (𝑎) INFN Sezione di Pisa;(𝑏)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy.
73 (𝑎) INFN Sezione di Roma;(𝑏)Dipartimento di Fisica, Sapienza Università di Roma, Roma; Italy.
74 (𝑎) INFN Sezione di Roma Tor Vergata;(𝑏)Dipartimento di Fisica, Università di Roma Tor Vergata,

Roma; Italy.
75 (𝑎) INFN Sezione di Roma Tre;(𝑏)Dipartimento di Matematica e Fisica, Università Roma Tre, Roma;

Italy.
76 (𝑎) INFN-TIFPA;(𝑏)Università degli Studi di Trento, Trento; Italy.
77Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck; Austria.
78University of Iowa, Iowa City IA; United States of America.
79Department of Physics and Astronomy, Iowa State University, Ames IA; United States of America.
80Joint Institute for Nuclear Research, Dubna; Russia.
81 (𝑎)Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de

Fora;(𝑏)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro;(𝑐) Instituto de Física,

Universidade de São Paulo, São Paulo; Brazil.
82KEK, High Energy Accelerator Research Organization, Tsukuba; Japan.
83Graduate School of Science, Kobe University, Kobe; Japan.
84 (𝑎)AGH University of Science and Technology, Faculty of Physics and Applied Computer Science,

Krakow;(𝑏)Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow; Poland.
85Institute of Nuclear Physics Polish Academy of Sciences, Krakow; Poland.
86Faculty of Science, Kyoto University, Kyoto; Japan.
87Kyoto University of Education, Kyoto; Japan.
88Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka ;

Japan.
89Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina.
90Physics Department, Lancaster University, Lancaster; United Kingdom.
91Oliver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom.
92Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics,

University of Ljubljana, Ljubljana; Slovenia.
93School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom.
94Department of Physics, Royal Holloway University of London, Egham; United Kingdom.
95Department of Physics and Astronomy, University College London, London; United Kingdom.
96Louisiana Tech University, Ruston LA; United States of America.
97Fysiska institutionen, Lunds universitet, Lund; Sweden.
98Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3),

Villeurbanne; France.
99Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid; Spain.
100Institut für Physik, Universität Mainz, Mainz; Germany.
101School of Physics and Astronomy, University of Manchester, Manchester; United Kingdom.

40



102CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.
103Department of Physics, University of Massachusetts, Amherst MA; United States of America.
104Department of Physics, McGill University, Montreal QC; Canada.
105School of Physics, University of Melbourne, Victoria; Australia.
106Department of Physics, University of Michigan, Ann Arbor MI; United States of America.
107Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of

America.
108B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk; Belarus.
109Research Institute for Nuclear Problems of Byelorussian State University, Minsk; Belarus.
110Group of Particle Physics, University of Montreal, Montreal QC; Canada.
111P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow; Russia.
112National Research Nuclear University MEPhI, Moscow; Russia.
113D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow;

Russia.
114Fakultät für Physik, Ludwig-Maximilians-Universität München, München; Germany.
115Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München; Germany.
116Nagasaki Institute of Applied Science, Nagasaki; Japan.
117Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya; Japan.
118Department of Physics and Astronomy, University of New Mexico, Albuquerque NM; United States of

America.
119Institute for Mathematics, Astrophysics and Particle Physics, Radboud University/Nikhef, Nĳmegen;

Netherlands.
120Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam;

Netherlands.
121Department of Physics, Northern Illinois University, DeKalb IL; United States of America.
122 (𝑎)Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk;(𝑏)Novosibirsk State University

Novosibirsk; Russia.
123Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino; Russia.
124Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research

Centre "Kurchatov Institute", Moscow; Russia.
125Department of Physics, New York University, New York NY; United States of America.
126Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo; Japan.
127Ohio State University, Columbus OH; United States of America.
128Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK; United

States of America.
129Department of Physics, Oklahoma State University, Stillwater OK; United States of America.
130Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc; Czech Republic.
131Institute for Fundamental Science, University of Oregon, Eugene, OR; United States of America.
132Graduate School of Science, Osaka University, Osaka; Japan.
133Department of Physics, University of Oslo, Oslo; Norway.
134Department of Physics, Oxford University, Oxford; United Kingdom.
135LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris; France.
136Department of Physics, University of Pennsylvania, Philadelphia PA; United States of America.
137Konstantinov Nuclear Physics Institute of National Research Centre "Kurchatov Institute", PNPI, St.

Petersburg; Russia.
138Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of

America.

41



139 (𝑎)Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa;(𝑏)Departamento de

Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa;(𝑐)Departamento de Física, Universidade

de Coimbra, Coimbra;(𝑑)Centro de Física Nuclear da Universidade de Lisboa, Lisboa;(𝑒)Departamento de

Física, Universidade do Minho, Braga;( 𝑓 )Departamento de Física Teórica y del Cosmos, Universidad de

Granada, Granada (Spain);(𝑔)Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa, Caparica;(ℎ) Instituto Superior Técnico, Universidade de Lisboa, Lisboa;

Portugal.
140Institute of Physics of the Czech Academy of Sciences, Prague; Czech Republic.
141Czech Technical University in Prague, Prague; Czech Republic.
142Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic.
143Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom.
144IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette; France.
145Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United

States of America.
146 (𝑎)Departamento de Física, Pontificia Universidad Católica de Chile, Santiago;(𝑏)Universidad Andres

Bello, Department of Physics, Santiago;(𝑐) Instituto de Alta Investigación, Universidad de

Tarapacá;(𝑑)Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso; Chile.
147Universidade Federal de São João del Rei (UFSJ), São João del Rei; Brazil.
148Department of Physics, University of Washington, Seattle WA; United States of America.
149Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.
150Department of Physics, Shinshu University, Nagano; Japan.
151Department Physik, Universität Siegen, Siegen; Germany.
152Department of Physics, Simon Fraser University, Burnaby BC; Canada.
153SLAC National Accelerator Laboratory, Stanford CA; United States of America.
154Physics Department, Royal Institute of Technology, Stockholm; Sweden.
155Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of

America.
156Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom.
157School of Physics, University of Sydney, Sydney; Australia.
158Institute of Physics, Academia Sinica, Taipei; Taiwan.
159 (𝑎)E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi;(𝑏)High

Energy Physics Institute, Tbilisi State University, Tbilisi; Georgia.
160Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel.
161Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel.
162Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece.
163International Center for Elementary Particle Physics and Department of Physics, University of Tokyo,

Tokyo; Japan.
164Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo; Japan.
165Department of Physics, Tokyo Institute of Technology, Tokyo; Japan.
166Tomsk State University, Tomsk; Russia.
167Department of Physics, University of Toronto, Toronto ON; Canada.
168 (𝑎)TRIUMF, Vancouver BC;(𝑏)Department of Physics and Astronomy, York University, Toronto ON;

Canada.
169Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied

Sciences, University of Tsukuba, Tsukuba; Japan.
170Department of Physics and Astronomy, Tufts University, Medford MA; United States of America.
171Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of

42



America.
172Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden.
173Department of Physics, University of Illinois, Urbana IL; United States of America.
174Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia; Spain.
175Department of Physics, University of British Columbia, Vancouver BC; Canada.
176Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada.
177Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg; Germany.
178Department of Physics, University of Warwick, Coventry; United Kingdom.
179Waseda University, Tokyo; Japan.
180Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot; Israel.
181Department of Physics, University of Wisconsin, Madison WI; United States of America.
182Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität

Wuppertal, Wuppertal; Germany.
183Department of Physics, Yale University, New Haven CT; United States of America.
𝑎 Also at Borough of Manhattan Community College, City University of New York, New York NY; United

States of America.
𝑏 Also at Centro Studi e Ricerche Enrico Fermi; Italy.
𝑐 Also at CERN, Geneva; Switzerland.
𝑑 Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.
𝑒 Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève;

Switzerland.
𝑓 Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona; Spain.
𝑔 Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece.
ℎ Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI; United

States of America.
𝑖 Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of

America.
𝑗 Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva; Israel.
𝑘 Also at Department of Physics, California State University, East Bay; United States of America.
𝑙 Also at Department of Physics, California State University, Fresno; United States of America.
𝑚 Also at Department of Physics, California State University, Sacramento; United States of America.
𝑛 Also at Department of Physics, King’s College London, London; United Kingdom.
𝑜 Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg; Russia.
𝑝 Also at Department of Physics, University of Fribourg, Fribourg; Switzerland.
𝑞 Also at Dipartimento di Matematica, Informatica e Fisica, Università di Udine, Udine; Italy.
𝑟 Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow; Russia.
𝑠 Also at Giresun University, Faculty of Engineering, Giresun; Turkey.
𝑡 Also at Graduate School of Science, Osaka University, Osaka; Japan.
𝑢 Also at Hellenic Open University, Patras; Greece.
𝑣 Also at ĲCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay; France.
𝑤 Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain.
𝑥 Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg; Germany.
𝑦 Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University/Nikhef,

Nĳmegen; Netherlands.
𝑧 Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of

Sciences, Sofia; Bulgaria.
𝑎𝑎 Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest;

43



Hungary.
𝑎𝑏 Also at Institute of Particle Physics (IPP); Canada.
𝑎𝑐 Also at Institute of Physics, Azerbaĳan Academy of Sciences, Baku; Azerbaĳan.
𝑎𝑑 Also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid; Spain.
𝑎𝑒 Also at Istanbul University, Dept. of Physics, Istanbul; Turkey.
𝑎 𝑓 Also at Joint Institute for Nuclear Research, Dubna; Russia.
𝑎𝑔 Also at Louisiana Tech University, Ruston LA; United States of America.
𝑎ℎ Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.
𝑎𝑖 Also at National Research Nuclear University MEPhI, Moscow; Russia.
𝑎 𝑗 Also at Physics Department, An-Najah National University, Nablus; Palestine.
𝑎𝑘 Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.
𝑎𝑙 Also at The City College of New York, New York NY; United States of America.
𝑎𝑚 Also at TRIUMF, Vancouver BC; Canada.
𝑎𝑛 Also at Universita di Napoli Parthenope, Napoli; Italy.
𝑎𝑜 Also at University of Chinese Academy of Sciences (UCAS), Beĳing; China.
∗ Deceased

44


