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1 Introduction

The experimental observation of neutrino oscillation provides conclusive evidence that neutrinos have
non-zero masses which are much smaller than those of the charged leptons [1]. While in the Standard
Model (SM) the charged fermions acquire masses by coupling to the Higgs boson, the origin of neutrino
masses is still unknown. An elegant extension of the SM, accounting for the smallness of neutrino masses
compared to other fundamental particles, is the seesaw mechanism [2—6]. It introduces a neutrino mass
matrix with Majorana mass terms and very small neutrino mass eigenvalues, emerging from the existence
of a heavy neutrino partner for each of the light neutrino species. Several models implementing the seesaw
mechanism exist (see e.g. Ref. [7] for a concise overview) with different particle content. Among these,
the type-III model [8] introduces at least one extra triplet of heavy fermionic fields with zero hypercharge
in the adjoint representation of SU(2) which couple to electroweak (EW) gauge bosons and generate
neutrino masses through Yukawa couplings to the Higgs boson and neutrinos. Consequently, these new
charged and neutral heavy leptons could be produced via EW processes in proton—proton (pp) collisions at
the Large Hadron Collider (LHC).

Several type-III seesaw heavy-lepton searches have been performed in different decay channels. The search
presented in this paper is an extension of a similar search performed by ATLAS in Run 1 at /s = 8 TeV [9],
using the same final state of two light leptons and two jets, which excluded heavy leptons with masses
below 335GeV. In Run 1 this search was complemented by another ATLAS search for heavy leptons
using the three-lepton final state [10], which excluded heavy-lepton masses below 470 GeV. A search
by the CMS Collaboration using their full Run 2 dataset at v/s = 13 TeV [11] was performed, focusing
on final states with at least three leptons, setting limits on the mass of type-III seesaw heavy leptons of
up to 880 GeV. The analysis presented in this paper, based on the full ATLAS Run 2 dataset, is a novel
measurement performed by an LHC experiment in Run 2 searching for type-III seesaw heavy leptons using
the dilepton signature. Substantial refinements relative to the published ATLAS Run 1 analysis have been
made in the background estimation and selection of signal candidate events, as well as in the theoretical
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Figure 1: Feynman diagrams of the dominant production process in the (a) opposite-charge and (b) same-charge
final-state cases.

signal modelling and signal cross-section next-to-leading-order calculation, all of which have a significant
impact on the achieved measurement sensitivity of this analysis.

A minimal type-III seesaw model is used to optimise the analysis strategy and interpret the search results,
as in Ref. [12]. This model introduces a single fermionic triplet with unknown (heavy) masses for one
neutral and two oppositely charged leptons, denoted by (L*, L™, N°). Here L* is the antiparticle of L~
and N is a Majorana particle. These heavy leptons decay into a SM lepton and a W, Z or H boson. The
heavy leptons are assumed to be degenerate in mass. This assumption does not limit the generality of
results within the context of type-III seesaw models because the theoretical calculations predict only a
small mass-splitting due to radiative corrections and the resulting transitions between heavy leptons are
highly suppressed [13].

The remaining degrees of freedom in the simplified model are the unknown mixing angles V,, (& = e, u, 7)
between the SM leptons and the new heavy-lepton states, which enter only in the expressions for the L*
and N° decay widths. The production cross-section does not depend on the V,, parameters because the
heavy leptons are produced through the coupling to the EW bosons. Only the branching fraction 8, of the
L* and N° decays to lepton flavour o depends on the values of the mixing angles and is proportional to
Ba = Vo> (IVe* + IV, > + |V+|?). In this analysis the decay branching ratios are assumed to be equal for
all three lepton flavours, with 8, = 8, = B, = 1/3.

The dominant production mechanism for type-III seesaw heavy leptons in pp collisions is pair production
through ¢§ — W* — NC°L*, and the largest branching fraction is the one with two W bosons in the
final state: N — W*(* (£ = e, u,7), and L* — W*y (v = Ve, Vu, V7). Branching fractions through
intermediate W bosons range from approximately 80% down to approximately 60% over the heavy-lepton
mass range. This search is optimised for the dominant processes pp — N°L* — W*{¥W*y, where one
W boson decays leptonically and the other decays hadronically (Figure 1). However, all pp — N°L* and
pp — L*L¥ processes with two or more leptons in the final state are considered to form part of the signal.
Only final states containing electrons and muons are considered, including those from leptonic 7 decays.

The exclusive topology of the final state consists of two jets from the hadronically decaying W boson, large
missing transverse momentum and a lepton pair with either same-sign charge (SS) or opposite-sign charge
(OS) and with either same-flavour (ee or uu) or different-flavour (eu) combinations.

The ATLAS detector is described in Section 2. The data and simulated events used are outlined in



Section 3, and the event reconstruction procedure is detailed in Section 4. The analysis strategy is presented
in Section 5, followed by a discussion of the background estimation in Section 6 and of systematic
uncertainties in Section 7. Finally, the statistical analysis and results are presented in Section 8, followed
by the conclusions in Section 9.

2 ATLAS detector

The ATLAS detector [14] at the LHC is a multipurpose particle detector with a forward—backward
symmetric cylindrical geometry' and a nearly 47 coverage in solid angle around the collision point. It
consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic
and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting toroidal
magnets.

The inner detector is immersed in a 2T axial magnetic field and provides charged-particle tracking in
the range |n| < 2.5. The high-granularity silicon pixel detector covers the vertex region and typically
provides four measurements per track, the first hit being normally in the insertable B-layer, which was
installed before Run 2 [15, 16]. It is followed by the silicon microstrip tracker which usually provides
four measurements per track. These silicon detectors are complemented by the transition radiation tracker
(TRT), which enables radially extended track reconstruction up to || = 2.0. The TRT also provides
electron-identification information based on the fraction of hits (typically 30 in total) above a higher
energy-deposit threshold corresponding to that of transition radiation.

The calorimeter system covers the pseudorapidity range || < 4.9. Within the region || < 3.2,
electromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr)
sampling calorimeters, with an additional thin LAr presampler covering |n| < 1.8 to correct for energy loss
in material upstream of the calorimeters. Hadronic calorimetry is provided by the steel/scintillator-tile
calorimeter, segmented into three barrel structures within || < 1.7, and two copper/LAr hadronic endcap
calorimeters. The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter
modules optimised for electromagnetic and hadronic measurements, respectively.

The muon spectrometer comprises separate trigger and high-precision tracking chambers which measure
the deflection of muons in a magnetic field generated by the superconducting air-core toroids. The field
integral of the toroids ranges between 2.0 and 6.0 T m across most of the muon spectrometer. A set of
precision chambers covers the region || < 2.7 with three layers of monitored drift tubes, complemented by
cathode-strip chambers in the forward region, where the background is highest. The muon trigger system
covers the range || < 2.4 with resistive-plate chambers in the barrel and thin-gap chambers in the endcap
regions.

A two-level trigger system is used to select interesting events [17]. The first-level trigger is implemented in
hardware and uses a subset of detector information to reduce the event rate to at most 100 kHz. This is
followed by a software-based trigger which further reduces the event rate to approximately 1 kHz.

I ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards.
Polar coordinates (r, ¢) are used in the transverse plane, ¢ being the azimuthal angle around the z-axis. The pseudorapidity is

defined in terms of the polar angle 6 as n = —Intan(6/2). Angular distance is measured in units of AR = \I(An)z + (A¢)2.



3 Data and simulated events

The data used in this analysis correspond to proton—proton collisions with proton bunches colliding every
25 ns. Data quality criteria are applied to ensure that considered events were recorded with stable beam
conditions and with all relevant sub-detector systems operational. After data quality requirements, the
samples used for this analysis correspond to 3.2fb™!, 33.0fb™!, 44.3fb!, and 58.5fb~! of integrated
luminosity recorded in 2015, 2016, 2017, and 2018, respectively, for a total of 139 fb~!. In the four years of
data taking, the average number of interactions per bunch crossing is 13, 25, 38, and 36, respectively. The
uncertainty in the combined 2015-2018 integrated luminosity is 1.7% [18], obtained using the LUCID-2
detector [19] for the primary luminosity measurements.

Samples of signal and background processes were simulated using several Monte Carlo (MC) gen-
erators. The signal considered in the simplified type-III seesaw model is implemented in the Map-
Grapru5_aMC@NLO [20] generator at leading order (LO) using FEYyNRuLEs [21]. For the simulated
signal production, MADGraPHS_aMC@NLO was interfaced to PyTHia 8.212 [22] for parton showering.
The A14 set of tuned parameters [23] was used for the parton shower. The NNPDF3.01lo [24] parton
distribution function (PDF) set was used in the matrix element calculation, and the NNPDF2.31o [25]
was used in the parton shower. The signal cross-section and its uncertainty are calculated separately at
next-to-leading-order (NLO) plus next-to-leading-logarithmic (NLL) accuracy, assuming that the heavy
leptons, L* and N°, are SU(2) triplet fermions [26, 27]. Simulated SM background samples include
top quark pair (¢7) and diboson (VV, V = Z, W) production processes, which are the dominant ones, as
well as Drell-Yan (¢q — Z/y" — (*¢ (€ = e, u, 7)), triboson (VVV), single top quark, and rare top
quark (¢7 + V) production processes. The non-dominant processes are grouped into the ‘other’ background
category throughout this paper.

The generators used in the MC sample production and the cross-section calculations used for MC sample
normalisation are provided in Table 1. In order to minimise the theoretical uncertainties, the normalisation
of the MC samples modelling dominant backgrounds is considered as a free parameter in the final likelihood
fit, as described in Section 8.

The production of ¢7 events was modelled using the PowHEG-Box v2 generator [28—31], which provides
matrix elements at next-to-leading order (NLO) in the strong coupling constant as with the NNPDF3.0nlo
PDF. The hgamp parameter in PowHEG controls the matching between the matrix element and the parton
shower, and effectively regulates the high-p radiation against which the #7 system recoils. It was set to
1.5myp [32], using a top quark mass of m,, = 172.5 GeV. The renormalisation and factorisation scale
was set to /mfop + p%’ op? where pr, 1op is the transverse momentum of the simulated top quark in the event.
The events were interfaced with Pythia 8.230 [22] for the parton shower and hadronisation, using the A14
set of tuned parameters and the NNPDF2. 310 set of PDFs. The decays of bottom and charm hadrons were
simulated using EvrGEeN v1.6.0 [33]. The ¢7 sample is initially normalised to the cross-section prediction
at next-to-next-to-leading order (NNLO) in QCD including the re-summation of next-to-next-to-leading
logarithmic (NNLL) soft-gluon terms calculated using Top++2.0 [34—40], while the final yield is extracted
from the data, as is described in Section 5. For pp collisions at a centre-of-mass energy of /s = 13 TeV,
this cross-section corresponds to o (17) ynr.osnnLL = 832 + 51 pb.

Samples of diboson final states (VV) were simulated with the SHERPA v2.2.1 or v2.2.2 generator [41], as
detailed in Table 1, including off-shell effects and Higgs boson contributions, where appropriate. Fully
leptonic final states and semileptonic final states, where one boson decays leptonically and the other
hadronically, were generated using matrix elements at NLO accuracy in QCD for up to one additional parton



Table 1: The event generator, parton shower generator, cross-section normalisation, and PDF set used for the
matrix element (ME) calculation are shown for each simulated signal and background event sample. The generator
cross-section is used where not specifically stated otherwise.

Physics process  Event generator ME PDF set Cross-section Parton shower
normalisation generator
PyTHiA 8.212
0/7 +

N°/L MabpGrapru5_aMC@NLO NNPDF3.01o NLO & EviGen 1.6.0

Top physics

tr PowHEG-Box v2 NNPDF3.0nlo NNLO+NNLL PyTHia 8.230

Single ¢ PowHEG-Box v2 NNPDF3.0nlo NLO & EVTGEN. 160

tr+V PowHEG-Box v2 NNPDF3.0nlo NLO o

Multiboson

Z2Z.WZ, WW SHERPA 2.2.1 & 2.2.2 NNPDF3.0nnlo NLO SHERPA

vvv SHERPA 2.2.2 NNPDF3.0nnlo NLO SHERPA

Drell-Yan

Zy* — SHERPA 2.2.1 NNPDF3.0nnlo NNLO SHERPA

and at LO accuracy for up to three additional parton emissions. Samples for the loop-induced processes
g8 — VV were generated using LO-accurate matrix elements for emission of up to one additional parton for
both the fully leptonic and semileptonic final states. Electroweak production of a diboson pair in association
with two jets (VVjj) is also accurate up to leading order. The matrix element calculations were matched
and merged with the SHERPA parton shower based on Catani—Seymour dipole factorisation [42, 43] using
the MEPS @NLO prescription [44—47]. QCD corrections were provided by the OpENLoops library [48,
49]. The NNPDF3.0nnlo set of PDFs was used [24], along with the dedicated set of tuned parton-shower
parameters developed by the SHERPA authors.

Other background processes, such as single-top production, ¢7 + V processes and the Drell-Yan Z/y* —
e*e” /utu~ /tHT™ process, do not contribute significantly to the regions defined in this analysis and are
outlined only in Table 1.

For all samples, a full simulation of the ATLAS detector response [50] was performed using the GEAnT 4
toolkit [51]. The effect of multiple interactions in the same and neighbouring bunch crossings (pile-up)
was modelled by overlaying the original hard-scattering event with simulated inelastic pp events generated
with PyTHia 8.186 using the NNPDF2. 310 set of PDFs and the A3 set of tuned parameters [52]. The MC
events are weighted to reproduce the distribution of the average number of interactions per bunch crossing
({u)) observed in the data. The {u) value in MC is rescaled by a factor of 1.03 + 0.07 to improve the level
of agreement between data and simulation in the visible inelastic pp cross-section [53].

4 Event reconstruction

After the application of beam, detector and data-quality requirements, events containing jets failing to
satisfy the quality criteria described in Ref. [54] are rejected to suppress events with large calorimeter noise
or non-collision backgrounds. To further reject non-collision backgrounds originating from cosmic rays



and beam-halo events, at least one reconstructed collision vertex is required with at least two associated
tracks with transverse momentum (p) greater than 500 MeV. The pp vertex candidate with the highest
sum of the squared transverse momenta of all associated tracks is identified as the primary vertex.

Electron candidates are reconstructed from energy deposits in the electromagnetic calorimeter associated
with a charged-particle track measured in the inner detector. The electron candidates are required to pass
the Tight likelihood-based identification selection [55-57], to have transverse momentum pt > 40 GeV and
to be in the fiducial volume of the inner detector, || < 2.47. The transition region between the barrel and
endcap calorimeters (1.37 < || < 1.52) is excluded because it has inefficient regions due to the presence of
service conduits. The track associated with the electron candidate must have a transverse impact parameter
(dp) evaluated in the transverse plane at the point of closest approach of the track to the beam axis which
satisfies |dp|/o(do) < 5, where o (dp) is the uncertainty in dyp. A longitudinal impact parameter value
of |zo sin(8)| < 0.5 mm is also required for electrons, where 7 is the distance between the track and the
primary vertex in the z direction and 6 is the polar angle of the track. The combined identification and
reconstruction efficiency for Tight electrons ranges from 58% to 88% in the transverse energy (ET) range
from 4.5 GeV to 100 GeV. In addition, the electron candidates must also satisfy the Loose isolation criteria,
which use calorimeter-based and track-based isolation requirements with an efficiency of about 99%. Both
reconstruction and isolation performance are evaluated in Z — ee decay measurements, described in
Ref. [58]. Electron candidates are discarded if their angular distance from a jet satisfies 0.2 < AR < 0.4.

Muon candidates are reconstructed by matching an inner-detector track with a track reconstructed in
the muon spectrometer. The muon candidates are required to have pr > 40GeV, || < 2.5 and a
transverse impact parameter significance of |dy|/o (dyp) < 3. A longitudinal impact parameter value of
|zo sin(0)| < 0.5 mm is required for muons. Muon candidates with pt lower than 300 GeV are required to
pass the Medium muon identification requirements, while for higher values of pt a special HighPt muon
identification is applied, which is optimised for searches in the high-p regime [59]. The muon candidates
must also fulfil the TightTrackOnly track-based isolation requirements. This results in a reconstruction
and identification efficiency of over 95% in the entire phase space, as measured in Z — uu events [59].
Muons within AR = 0.4 of the axis of a jet having more than three tracks and with pr(u)/pr(jet) < 0.5
are discarded. If a muon candidate overlapping with an electron leaves a sufficiently large energy deposit in
the calorimeter and shares a track reconstructed in the inner detector with the electron, this muon candidate
is also discarded.

Jets are reconstructed by clustering energy deposits in the calorimeter using the anti-k, algorithm [60]
with the radius parameter equal to 0.4. The measured jet transverse momentum is corrected for detector
effects by recalibrating to the particle energy scale before the interaction with the detector [61]. For all
jets the expected average transverse energy contribution from pile-up is corrected using a subtraction
method. This is based on the level of diffuse noise added to the event per unit area in n—¢ by pile-up which
is subtracted from the jet area in 7—¢ space and a residual correction derived from the MC simulation,
as detailed in Refs. [61, 62]. To reduce the contamination from jets from pile-up, a ‘jet vertex tagger’
(JVT) algorithm [63] is used for jets with pr < 60 GeV and || < 2.4. It employs a multivariate technique
that relies on jet energy and tracking variables to determine the likelihood that the jet originates from
pile-up. The Medium JVT working point is used which has an average efficiency of 92%. Jets within
AR = 0.2 of an electron are discarded. Jets within AR = 0.2 of a muon and featuring fewer than three tracks
or having pr(u)/pr(jet) > 0.5 are also removed. Jets considered in this analysis are required to have
pt > 20GeV and || < 2.5. Jets fulfilling these kinematic criteria are identified as containing b-hadrons
and categorised as b-tagged jets if tagged by a multivariate algorithm which uses information about the
impact parameters of inner-detector tracks matched to the jet, the presence of displaced secondary vertices,



and the reconstructed flight paths of b- and c-hadrons inside the jet [64—66]. The algorithm is used at the
working point providing a b-tagging efficiency of 77%, as determined in a sample of simulated ¢ events.
This corresponds to rejection factors of approximately 134, 6 and 22 for light-quark and gluon jets, c-jets,
and hadronically-decaying 7-leptons, respectively.

Missing transverse momentum (with magnitude E?iss) is present in events with unbalanced kinematics
in the transverse plane. This originates from undetected momentum in the event, due either to neutrinos
escaping detection or to other particles falling outside the detector acceptance, being badly reconstructed,
or failing reconstruction altogether. The E%‘iss is calculated as the modulus of the negative vectorial sum of
the pr of the fully calibrated and reconstructed physics objects in the event. Jets in the forward direction are
considered if they satisfy pr > 30 GeV. An additional ‘soft term’ is added, accounting for all tracks in the
event that are not associated with any reconstructed object, but are associated with the identified primary
vertex. The use of this track-based soft term is motivated by improved performance in E‘T’rliss reconstruction
in a high pile-up environment [67].

Correction factors to account for differences in the identification and selection efficiency, reconstructed
energy and energy resolution between data and MC simulation are applied to the selected electrons, muons
and jets, and consequently also when calculating E%“SS in MC simulation, as described in Refs. [55, 57, 59,
61].

S Analysis strategy and event selection

All selected events, reconstructed as defined in Section 4, are required to match the signal topology, as
defined in Section 1, whereby a separate analysis channel is used for each light-lepton flavour (ee, ey, pu)
and charge combination (SS, OS), resulting in six analysis channels. Events must pass dilepton triggers,
where the pt thresholds are optimised depending on the lepton flavour combination and the data-taking
year. Thresholds range from 12 GeV to 22 GeV for the leading lepton pt and from 8 GeV to 17 GeV for
the pr of the sub-leading lepton. Compared to single-lepton triggers, the dilepton triggers have looser
identification and isolation criteria, minimising biases on the implementation of data-driven estimation of
backgrounds, with only a marginal reduction of signal event efficiencies.

Selected events are then categorised into exclusive categories (analysis regions) based on different sets
of requirements for reconstructed objects. These regions are grouped according to their purpose into
signal regions, control regions, and validation regions. Signal regions (SRs) are defined to achieve the best
sensitivity to the targeted models with an enhanced signal-to-background ratio and are used to compare
data with each signal hypothesis plus the expected background using the statistical methodology detailed in
Section 8. The purpose of control regions (CRs) and validation regions (VRs) is to evaluate and validate
the background contamination in the SRs. The CRs and VRs are thus constructed with the purpose
of minimising the signal presence while maximising the contributions of distinct types of background.
Consequently, the CRs and VRs are constructed to be kinematically close to the SRs, which is done
by modifying one or more kinematic requirements while also ensuring no overlap with SRs and among
themselves. In CRs the background prediction is fit to data by assigning a floating parameter to the
background normalisation of the main process. In VRs the background estimation methods are validated
by comparing the background model with data.

While optimising the SR definition to maximise the signal significance, the data are not looked at (blinded),
until the background modelling has been validated. Likewise, as a part of the same strategy, while validating



the background predictions, the data are compared with the background estimates only in the CR and VR,
which are designed to have negligible signal contamination.

All regions used in this analysis, with the corresponding selection criteria, are summarised in Table 2 and
described below.

As the signal process contains neutrinos in the final state, one of the most important selection criteria is based
on the E‘T][liss significance S (E%‘iss) [67]. The value of S(E‘Tniss) is calculated using a maximum-likelihood
ratio method which considers the direction of the ET"* and the calibrated objects as well as their respective
resolutions. The SR selection criteria are optimised to maximise the analysis sensitivity. This results
in different selection values for the OS and SS channels due to different background compositions and
associated event topologies. Consequently, the E?iss significance selection value is S(E%li“) > 10 for the
OS channels and S(ET"™*) > 7.5 for the SS channels.

At least two jets with pp > 20 GeV and || < 2.5 are required for each region. A b-jet veto is applied to all
the jets in SR events to suppress background from SM processes involving top quarks. For each signal
event, the dijet invariant mass (m ;) of the two highest-pr jets is expected to be close to the W mass. The
dijet invariant mass is thus required to be in the window 60 GeV < m; < 100 GeV.

In the SR definition, a lower bound on the invariant mass of the lepton pair (m¢,) is introduced and is
found to give optimal results at 110 GeV (100 GeV) in the OS (SS) regions. This choice aims to remove the
Drell-Yan events around the Z — ee peak, where the electron charge might also have been misidentified.

Furthermore, in the SR definition for the OS analysis channels, the azimuthal angle A¢(E‘T“iss, f)min between
the directions of E%liss and the closest lepton has been shown to have good separation power between signal
and background events, especially reducing the SR background contamination from #7 and diboson events.
This is explained by difference between the sources of the measured EITniSS for signal and background,
because the latter tends to have a spurious component due to misreconstructed jets. After optimisation, a
requirement of A¢(E%‘iss, ) .. > lisused. In the SR definition for the SS analysis channels, this selection
criterion is not applied, because other criteria already reduce the 77 and diboson background contamination,

Table 2: A summary of all analysis regions defined in the text. The region definitions are the same for all analysis
channel flavour combinations.

0S (f+€— — e+e",eiu¢,ﬂ+u") SS (fi + _ eiei’eiﬂi’ui‘ui)

Top CR m;; VR SR Diboson CR mj; VR SR
N(jet) >2 >2 >2 >2 >2 >2
N (b-jet) >2 0 0 0 0 0
mj; [GeV] (60, 100) (35,60) U (100, 125) (60, 100) | (0,60) U (100,300) (0,60) U (100,300) (60, 100)
mee [GeV] > 110 > 110 > 110 > 100 > 100 > 100
S(EF™) >5 > 10 > 10 >5 >5 >75
AG(EFS,€) — — > 1 — — —
pr(jj) [GeV] — — > 100 — — > 60
pr(t6) [GeV] — — > 100 — — > 100
Hr + E;‘“SS [GeV]| =300 > 300 > 300 (300, 500) > 500 > 300




and this criterion is not very effective in reducing the fake-background contribution, whose contribution is
significantly larger for the SS analysis channels.

To further increase the expected signal significance, additional selection criteria are introduced: the dijet
transverse momentum must fulfil the condition pr(jj) > 100 GeV (60 GeV) for the OS (SS) regions, while
the dilepton transverse momentum must satisfy pr(£€) > 100GeV for both OS and SS events. These
selection requirements exploit the boosted decay topology of object pairs, which would be expected in the
presence of heavy leptons.

Due to the high masses of the heavy leptons in the decay chain, the signal process is expected to contain
high-pr leptons, jets and neutrinos. Since the optimal measure for the high-pr activity of the neutrinos
escaping the detector is the E%‘iss, and an estimator of the event activity for the measured objects is the
scalar sum of the transverse momenta of selected leptons and jets Hr, a combined Ht + ET"* > 300 GeV
selection criterion is applied in all analysis regions. The Hy +EJ"™ is also the observable used in the final
likelihood fit, described in Section 8. The final signal selection efficiency relative to the events with at least
two leptons is about 1.2% for masses between 500 GeV and 900 GeV and drops below 1% for higher mass
points.

The dominant background contribution (almost 50% of the total) in the OS channels is 7 production in
which the two W bosons in the final state decay leptonically. In the SS channels the ¢7 events originate from
charge misidentification and are at the level of 25%. To estimate the contribution from the ¢7 decays, an OS
control region enriched in top-quark events is defined (Top CR); no dedicated SS CR is used. In this region,
the SR selection is modified by requiring the number of b-tagged jets to be N(b-jet) > 2. To increase
the statistical significance, all requirements on the transverse momenta, pt(;jj) and pr(££), as well as the
azimuthal angle, Agb(E?i“, €) i @re omitted, and the S (E%“i“) selection is relaxed to S (E%“iss) > 5. The
normalisation of the 1 MC sample is a free parameter in the simultaneous likelihood fit across all CRs, as
described in Section 8.

To obtain validation and control regions with a large fraction of diboson events, the dijet mass m ; selection
is inverted relative to the SR definition. Since the m; selection in the SR requires a pair of jets to match the
W mass window, the inverted selection defines a kinematic sideband, with negligible signal contamination
but still selecting events kinematically similar to those in the SR. In addition, all requirements on the
transverse momenta, pr(jj) and p(€f€), as well as the azimuthal angle, A(/)(EIT‘“SS, é’)min, are omitted,
in order to ensure that there are enough events in the CRs. This selection defines the m;; VR for
the OS analysis channels, while for the SS analysis channels the S (E%‘iss) selection is additionally
relaxed to S(ET") > 5. The SS Diboson CR is then defined by introducing an additional requirement
300GeV < Hr + Ef™ < 500 GeV, while the remaining Kinematic region with Hr + E3™ > 500 GeV is
used as the SS mj; VR. The diboson background contributes only slightly less (45%) than the ¢7 background
to the contamination in the OS SR and more than half (55%) of the total background in the SS SR. The
normalisation of the diboson MC sample used in the analysis is estimated in the SS Diboson CR for both
OS and SS events, as the OS and SS diboson cross-sections are found to be the same within the systematics
uncertainties. This is achieved by using the normalisation value of the diboson MC sample as a free
parameter in the simultaneous likelihood fit across all CRs, as described in Section 8. Two representative
post-fit distributions of the Ht + ETmiss variable in the VRs are shown in Figure 2. Good agreement between
measured data and predictions is observed within uncertainties.
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Figure 2: Post-fit distributions of the Hy + Efrniss variable for data and SM background predictions in two validation
regions, namely (a) in the OS puu m;; VR and (b) in the SS ee m ;; VR. The hatched bands include all systematic
uncertainties post-fit with the correlations between various sources taken into account. Errors on data are statistical
only. The lower panel shows the ratio of the observed data to the estimated SM background.

6 Background composition and estimation

The final-state topologies of the six analysis channels have different background compositions. Background
estimation techniques, implemented consistently among the channels, are discussed in this section. In
general, the expected number of background events and the associated kinematic distributions are derived
with a mixture of data-driven methods and simulation.

In the analysis, one considers two conceptually different background categories according to their source,
namely irreducible and reducible backgrounds. Irreducible background sources are SM processes producing
the same prompt final-state lepton pairs as does the signal, with the dominant contributions in this analysis
coming from ¢7 and diboson production. Irreducible-background predictions are obtained from simulated
event samples, described in Section 3. To avoid double-counting between the irreducible background
predictions, which are derived from MC, and the data-driven reducible background predictions, a dedicated
algorithm is introduced. Irreducible MC events are only used if simulated leptons originating in the hard
process (prompt leptons) can be associated to their reconstructed lepton counterpart.

The reducible background sources are the processes where the leptons reconstructed in the analysis
originate from either non-prompt leptons or other particles and thus the selected events contain at least one
fake/non-prompt electron or muon. In addition, events where a lepton charge is misidentified (allowing the
tf process to contribute to the background in the SS analysis channels) are also considered as a reducible
background category.

The reducible background due to charge misidentification is estimated in SS analysis channels that contain
electrons. The effect of muon charge misidentification is found to be negligible. The modelling of
charge misidentification in simulation deviates from that in data due to the complexity of the processes
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involved, and it relies strongly on a precise description of the detector material. Consequently, charge
reconstruction correction factors (scale factors), applied to the simulated background events to compensate
for the differences relative to data, are derived by comparing the charge misidentification probability
measured in data with the one in simulation. The charge misidentification probability is extracted by
performing a likelihood fit on a dedicated Z — ee data sample, as described in Ref. [58]. These scale
factors are then applied to the simulated background events to compensate for the differences.

The ‘fake-background’ sources, non-isolated, non-prompt electrons and muons, are produced by secondary
decays of light- or heavy-flavour mesons into light leptons embedded within jets. Although the b-jet veto
significantly reduces the number of fake leptons from heavy-flavour decays, a fraction of these events
still passes the analysis selection. For electrons, another significant component of fakes arises from
photon conversions, as well as from jets that are reconstructed as electrons. MC samples are not used to
estimate these background sources because the simulation of jet production and hadronisation has large
intrinsic uncertainties. Instead, the fake-lepton background (namely, background from misidentified or
non-prompt leptons) is estimated with a data-driven approach, known as the ‘fake factor’ method, as
described in Ref. [68]. This method relies on determining the probability, or fake factor (F'), for a fake
lepton to be identified as a tight (7') lepton, corresponding to the default lepton selection. The fake factor is
measured in dedicated fake-enriched regions, where events must pass single-lepton triggers, contain no
b-jets and have only one reconstructed lepton that satisfies either the tight selection criteria or a relaxed
(loose, L) selection. Loose electrons will pass the Loose identification requirements but fail either the
Tight identification or the isolation requirements. Loose muons, on the other hand, will pass the Medium
identification requirements but fail isolation. Electron and muon fake factors F are then defined as the ratio
of the number of tight leptons to the number of loose leptons and are parameterised as functions of p and
1. The fake-lepton background (containing at least one fake lepton) is then estimated in the SR by applying
F as a normalisation correction to relevant distributions in a template region which has the same selection
criteria as the SR except that at least one of the two leptons must pass the loose selection but fail the tight
one.

The number of events in the SR that contain at least one fake lepton, N fake g estimated from the adjacent
regions, which can be labelled by the lepton pair passing/failing the nominal requirements as (T'L, LT,
LL), where the first lepton is leading and the second is sub-leading in pt. Data events are weighted with
fake factors according to the loose-lepton multiplicity of the region:

prompt € only

N®™€ = [F(Nrp +Ner) = FPNie] gy, = [F(NTL + Nor) = FPNLL |yl ’

with N7, N7, Np . denoting the number of events in the corresponding adjacent region. The prompt-
lepton contribution is subtracted using the irreducible-background MC samples to account for the
prompt-lepton contamination in the adjacent regions. The m ;; VR, as defined in Table 2, is used to verify
the data-driven fake-lepton estimate.

The experimental systematic uncertainty of the data-driven estimate of the fake-lepton background is
evaluated by rederiving the fake factor while varying the relevant systematic uncertainty sources by
their uncertainties. These account for variation in the underlying composition (i.e. relative contributions
of different background processes) of fake backgrounds across the regions analysed. Furthermore, the
uncertainty in the normalisation of the simulated irreducible events is accounted for in the background
estimation procedure when the prompt-lepton contribution gets subtracted. The total uncertainty in the
fake-lepton background varies between 10% and 20% across the analysed kinematic range.
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7 Systematic uncertainties

Experimental and theoretical systematic uncertainty sources affecting both the background and signal
predictions are accounted for in the analysis. The impact of systematic uncertainties on the total event yields
as well as the changes in the shapes of kinematic distributions are taken into account when performing the
statistical analysis in both the SRs and CRs, as described in Section 8.

Uncertainties in the predicted background yields and kinematic distributions of the MC samples (¢7
and diboson production) arise from variations in parton-shower parameters, uncertainties in the QCD
renormalisation/factorisation scales, as(mz) uncertainty, and uncertainties due to PDFs used. All
uncertainties listed are calculated using the PDFALHC prescription [69]. Since the yield of the 7 and
diboson backgrounds is derived from the likelihood fit to the data in the CRs, these systematic variations
contribute by changing the shapes of the background predictions used in the likelihood fit in the CRs and
SRs.

The effect of the uncertainty in the strong coupling constant as(mz) = 0.118 is assessed by variations of
+0.001. Uncertainties from missing higher orders are evaluated by using seven variations of the QCD
factorisation and renormalisation scales in the matrix elements up to a factor of two [70]. Uncertainties in
the nominal PDF set, used in the MC generation, are evaluated from 100 variations using the LHAPDF6
toolkit [71]. Additional uncertainties in the ¢7 acceptance due to the selection of the PDF set are calculated
using the central values of the MSTW2008 68% CL NNLO [72, 73], CT10 NNLO [74, 75] and NNPDF2. 310
5f FEN [25] PDF sets. In Suerpa diboson samples central values of the CT14 [76] and MMHT2014 [77]
PDF sets are used.

The uncertainty due to initial-state-radiation (ISR) modelling is estimated by comparing the nominal ¢7
sample with two additional samples, produced by simultaneously varying the factorisation and renormalisa-
tion scales by a factor of two [78]. Similarly, the impact of final-state-radiation (FSR) modelling is evaluated
by a reweighting procedure, using a variation of the FSR parton shower, in which the renormalisation
scale for QCD emission is varied by factors of 0.5 and 2.0. The impact of the parton shower and
hadronisation model is evaluated by comparing the nominal generator set-up with a sample showered with
Herwig 7.13 [79, 80], using the Herwig 7.1 default set of tuned parameters [80] and the MMHT2014 PDF
set. To assess the uncertainty in the matching of NLO matrix elements and the parton shower, the PowHEG
sample is compared with a sample of events generated with MADGrapHS_aMC@NLO v2.6.0 interfaced
with PyTHia 8.230.

For signal samples, only uncertainties in the QCD scales and PDFs used are considered. As signal
normalisation is the unknown parameter being measured, only the acceptance effect on the limits is taken
into account.

A significant contribution to the total background uncertainty arises from the statistical uncertainty in the
data and MC samples. The corresponding data statistical uncertainty in the signal regions varies from
29% to 47%, and the MC statistical uncertainty from 7% to 10%, depending on the region considered.
Additionally the 1.7% uncertainty in the combined 2015-2018 integrated luminosity, as defined in Section 3,
is taken into account.

Experimental systematic uncertainties due to different lepton reconstruction, identification, charge iden-
tification, isolation, and trigger efficiencies in data compared to those in simulation are also taken into
account [57, 59], as are uncertainties in absolute lepton energy calibration [55]. Likewise, experimental
systematic uncertainties due to different reconstruction and b-tagging efficiencies for reconstructed jets in
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data and simulation are also taken into account [64—66], as well as absolute jet and ErTniss energy scale and
resolution uncertainties [61, 67]. The uncertainty in the pile-up simulation, derived from comparison of
data with simulation, is also taken into account [63]. The uncertainty in the data-driven estimate of the
fake-lepton background is evaluated by varying the fake factor as described in Section 6. All experimental
systematic uncertainties discussed here affect the signal samples as well as the background.

8 Statistical analysis and results

The statistical analysis package HistFirTER [81] is used to implement a binned maximum-likelihood fit
in all control and signal regions, described in Section 5, to obtain the numbers of signal and background
events. Validation regions are used to cross-check the fit results but are not included in the fit itself.
For the likelihood fit, the CRs and SRs are binned in the Ht + E%‘iss variable in bins uniformly defined
in log(Hr + ET™) in the range 300 GeV < (Hr + Ef"™) < 2TeV, where the last bin also includes any
overflow values. The SRs have six bins, and the Top CRs and Diboson CRs each have two bins. The VRs
have four and three bins for OS and SS events, respectively.

The binned likelihood function used in the final maximum-likelihood fit is a product of Poisson probability
density functions that compares the observed number of events with each signal hypothesis plus the
expected background, and assumes Gaussian distributions to constrain the nuisance parameters associated
with the systematic uncertainties for each bin in the fitted distributions. The systematic uncertainties of the
sources listed in Section 7 are used to compute the uncertainties of all the bins in the fit and are then mapped
to the nuisance parameters. The widths of the Gaussian distributions correspond to the magnitudes of
these uncertainties. Poisson distributions are used for modelling MC simulation statistical uncertainties.

The final normalisations of the 7 and diboson MC samples are not taken from MC calculations but are
derived in the simultaneous likelihood fit to the data in the dedicated Top and Diboson CRs, as introduced
in Section 5. Consequently, additional free parameters in the likelihood are introduced for the ¢7 and
diboson background contributions, to fit their yields in the Top and Diboson control regions, respectively.
Fitting the yields of the largest backgrounds reduces the systematic uncertainty in the predicted yield from
SM sources. The fitted normalisations are compatible with their SM predictions within the uncertainties.

Post-fit binned distributions of Hr + E%‘iss are shown in Figures 3 and 4 for the signal regions. After
the fit, the compatibility between the data and the expected background is assessed and good agreement
is observed, with a p-value of 0.5 for the background-only hypothesis.” In the absence of a significant
deviation from expectations, 95% confidence level (CL) upper limits on the signal production cross-section
are derived using the CLs method [82]. Pseudo-experiments are used to set the limit. All the plots and
tables presented in this paper are then derived from a likelihood fit assuming no signal presence, by fitting
only the background normalisation and corresponding sources of systematic uncertainty, as described in
the text (called a background-only fit).

Figure 5 shows good agreement, within uncertainties, between the expected background and observed
events in all the regions and channels considered in the analysis. The level of agreement between the
data and background predictions in the CRs and VRs, being well within the statistical and systematic
uncertainties, demonstrates the validity of the background estimation procedures.

2 The p-value is defined as the probability that the observed difference between the data and the background prediction is a
background fluctuation.
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Figure 3: Distributions of Hy + E%‘iss in opposite-sign signal regions, namely (a) the electron—electron signal region,
(b) the electron—muon signal region, and (c) the muon—muon signal region after the background-only fit described
in the text. The coloured lines correspond to signal samples with the N and L* mass stated in the legend. The
hatched bands include all systematic uncertainties post-fit with the correlations between various sources taken into
account. Errors on data are statistical only. The lower panel shows the ratio of the observed data to the estimated SM

background.

15



(2] T e (%] T E
c ‘ Data‘ [Diboson 3 c ‘ Data‘ [1Diboson
Q@ ' % Total SM [t E Q@ T % Total SM [t E
L []Mis-ID lep. 3 w [Mis-ID lep. ]
Other Other 3
—m(N°LY) =600 GeV 3 L% =600GeV 7
—m(N’,L") =800 GeV 7 L) =800GeV
— m(N°,L*) = 1000 GeV %) =1000 GeV 7
2 . ]
o o
o ) o
© 1 © \
= 400 500 1000 ) 2000 a 400 500 1000 ) 2000
H + E?'Ss [GeV] H + E.'P'ss [GeV]
(@) (b)
(%) " ‘ 1
€ 6 ATLAS 4 Data  [MDiboson ]
2 {s=13TeV, 139 fb" % Total SM [Z]Mis-ID lep.]
w SS SR (utu) Other
—m(N’,L") =600 GeV ]
—m(N,L%) =800 GeV 1
—m(N’,L%) = 1000 GeV 1
g Lo T
o I
- ’AV A
9 , 4
© \
[m)

400 500 7000 2000
H, + ET [GeV]

©)

Figure 4: Distributions of Ht + E’Tniss in same-sign signal regions, namely (a) the electron—electron signal region,
(b) the electron—muon signal region, and (c) the muon—muon signal region after the background-only fit described
in the text. The coloured lines correspond to signal samples with the N and L* mass stated in the legend. The
hatched bands include all systematic uncertainties post-fit with the correlations between various sources taken into
account. Errors on data are statistical only. The lower panel shows the ratio of the observed data to the estimated SM
background.
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Figure 5: The numbers of observed and expected events in the control, validation, and signal regions for all
channels, split by lepton flavour and electric charge combination. The background expectation is the result of the
background-only fit described in the text. The hatched bands include all post-fit systematic uncertainties with the
correlations between various sources taken into account. Errors on data are statistical only. The lower panel shows
the ratio of the observed data to the estimated SM background.

The total relative systematic uncertainty in the background yields after the fit, and its breakdown into
components, is presented in Figure 6. The contributions of theoretical and experimental uncertainties in
the SR are both of the order of 10%. The dominant uncertainty is due to the limited number of simulated
events. It is reduced in the final fit combination, yielding a total uncertainty of less than 20%. After the fit,
none of the nuisance parameters are pulled from their central values or have the uncertainties constrained.

Predicted numbers of background events in signal regions are listed together with the observed number of
events in data in Table 3. Expected signal yields for several mass points are given for comparison.

The upper limits on the production cross-sections of the processes pp — W* — NOL* and pp — Z* —
L*L7 at the 95% CL are evaluated as a function of the heavy-lepton mass. The resulting exclusion limits
on the signal cross-section are shown in Figure 7. By comparing the upper limits on the cross-section
with the theoretical model dependence of the cross-section on the heavy-lepton mass, the lower mass limit
on the mass of the type-III seesaw heavy leptons N and L* can be derived. The expected lower limit is
820fé% GeV, where the uncertainties on the limit are extracted from the +1 o band, while the observed
lower limit on the mass is 790 GeV, excluding the mass values below this point.
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Figure 6: Relative contributions of different sources of statistical and systematic uncertainty in the total background
yield estimation after the fit. Systematic uncertainties are calculated in an uncorrelated way by shifting in turn only
one nuisance parameter from the post-fit value by one standard deviation, keeping all the other parameters at their
post-fit values, and comparing the resulting event yield with the nominal yield. Validation regions are not included in
the fit. Individual uncertainties can be correlated, and do not necessarily add in quadrature to the total background
uncertainty, which is indicated by ‘Total uncertainty’.

Table 3: The number of expected background events in signal regions after the likelihood fit, compared with the data.
Uncertainties correspond to the total uncertainties in the predicted event yields and can be smaller than the value
of individual contributions summed in quadrature because the latter can be anti-correlated. Due to rounding, the
totals can differ from the sums of components. The 77 and diboson normalisations are allowed to float in the fit. As a
reference, representative signal yields and their errors for signal masses m(N®, L*), denoted by m in the table, are
shown in the bottom part of the table.

Signal regions OS e*e” OS e*u* OS p*u* SS e*e* SS e*u* SS ptp*
Observed events 8 8 11 12 11 5

Total background 79 =17 7.8 x1.5 90 =15 109 =14 113 £1.3 444+0.63
tf 42 £25 33 x12 42 £12 40 £12 198+0.57 —
Diboson 34 15 399 +0.60 4.03+060 48 1.0 64 =13 3.60+0.52
Misidentified leptons  0.0049 +0.0005 0.0051 +0.0005 0.17+0.03 0.92+0.35 1.65+0.34 0.31+0.04
Other 031 +027 056 =+029 0.60+045 1.17+0.12 1.24+0.16 0.53+0.20
Signal expectation

m = 600 GeV 426 =031 6.64 +044 371023 3.24+027 494+034 2.53+0.14
m = 800 GeV 1.02 +0.10 156 =+0.15 0.78+0.06 0.76+0.08 1.03+0.11 0.53+0.04
m = 1000 GeV 024 =003 037 =+004 0.17+0.02 0.15+0.02 0.22+0.03 0.10+0.01

18



—
o
w

ATLAS ----Expected 95% CL limit
{s=13TeV, 139 fb" Ml Expected limit + 1o
Expected limit + 26
— Observed 95% CL limit
— Type-lll seesaw
BN’ L* e, pu,1)=1/3

Total cross-section [fb]
2

—_
o

400500600 700" 800900 1000 1100 1200
m(N,L*) [GeV]

Figure 7: Expected and observed 95% CLg exclusion limits for the type-III seesaw process with the corresponding
one- and two-standard-deviation bands, showing the 95% CL upper limit on the cross-section. The theoretical signal
cross-section prediction, given by the NLO calculation [26, 27], is shown as a red line with the corresponding
uncertainty band.

9 Conclusion

The ATLAS detector at the Large Hadron Collider was used to search for the pair production of heavy
leptons predicted by the type-III seesaw model. The analysis is performed using a final state containing
two same-charge or opposite-charge leptons, electrons or muons, two jets from a hadronically decaying
W boson that were not identified as b-tagged, and large missing transverse momentum. The search uses
139 fb~! of data from proton—proton collisions at 4/s = 13 TeV, recorded during the 2015, 2016, 2017 and
2018 data-taking periods.

No significant excess above the SM prediction was found. Limits are set on the type-III seesaw heavy-lepton
masses, using the simplified type-III seesaw model and assuming branching fractions to all lepton flavours
to be equal. Heavy leptons with masses below 790 GeV are excluded at the 95% confidence level with the
expected lower mass limit at 820fé% GeV.
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