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1 Introduction

Supersymmetry (SUSY) [1-6] is a generalisation of space-time symmetries that predicts new bosonic
partners of the fermions and new fermionic partners of the bosons of the Standard Model (SM). If R-parity
is conserved [7], supersymmetric particles are produced in pairs and the lightest supersymmetric particle
(LSP) is stable and represents a possible dark-matter candidate [8, 9]. The scalar partners of the left-
and right-handed quarks, the squarks g, and ggr, mix to form two mass eigenstates ¢ and g, ordered by
increasing mass. Superpartners of the charged and neutral electroweak and Higgs bosons also mix, to form
charginos (X *) and neutralinos (¥ 0). Squarks and the fermionic partners of the gluons, the gluinos (§),
could be produced in strong-interaction processes at the Large Hadron Collider (LHC) [10] and decay via
cascades ending with the stable LSP, which escapes the detector unseen, potentially producing substantial
missing transverse momentum (with magnitude denoted E ?iss).

The large cross-sections predicted for the strong production of supersymmetric particles make the gluinos
and squarks a primary target in searches for SUSY in proton—proton (pp) collisions at the LHC. The
large range of possible parameter values for R-parity-conserving models in the Minimal Supersymmetric
Standard Model (MSSM) [11, 12] leads to a rich phenomenology. Squarks (including antisquarks) and
gluinos can be produced in pairs (gg, G§) or in association (§g) and can decay through § — gX ? and
& — qqX (1) to the lightest neutralino, X (1), assumed to be the LSP. Additional decay modes can include
the production of charginos via § — ¢’X¥* (where § and ¢’ are of different flavour) and § — ¢’ X*.
Subsequent chargino decays to WX ?, depending on the decay modes of the W bosons, can increase the jet
multiplicity in these events.

This paper presents a search for these SUSY particles, using three strategies, in final states containing
exclusively hadronic jets and large missing transverse momentum. The first, referred to as the ‘multi-bin
search’, extends the previous search from Ref. [13] by simultaneously fitting the background expectations
to the observed data yields in multiple event selection bins. The second, referred to as the ‘BDT search’, is
a complementary analysis which uses boosted decision trees (BDTs) implemented in the TMVA framework
[14] for the event selection. The BDT search provides improved sensitivity to supersymmetric models in
which gluinos decay via an intermediate chargino, by virtue of its highly optimised design and ability to
exploit correlations between variables. A final strategy, referred to as the ‘model-independent search’ uses
a simple single-bin cut-and-count approach giving sensitivity to generic models characterised by the above
final states. The CMS Collaboration has set limits on similar models in Refs. [15-20].

In the search presented here, events with reconstructed high transverse momentum electrons or muons are
rejected to reduce the background from events with neutrinos (W — ev, uv) and to avoid any overlap with
a complementary ATLAS search in final states with one lepton, jets and missing transverse momentum
[21]. The selection criteria are optimised in the (m(g), m(/\?(l))) and (m(g), m(/\??)) planes, (where m(g),
m(§) and m(X ?) are the gluino, squark and the LSP masses, respectively) for simplified models [22-24]
in which all other supersymmetric particles are assigned masses beyond the reach of the LHC. Although
interpreted in terms of SUSY models, the results of this analysis can also constrain any model of new
physics that predicts the production of jets in association with missing transverse momentum.

The paper is organised as follows. Section 2 describes the ATLAS experiment and the data sample
used for the search, and Section 3 the Monte Carlo (MC) simulation samples used for background and
signal modelling. The physics object reconstruction and identification are presented in Section 4. The
search is performed in signal regions which are defined in Section 5. Summaries of the background
estimation methodology and corresponding systematic uncertainties are presented in Sections 6 and 7,



respectively. Results obtained by the search are reported in Section 8. Section 9 is devoted to a summary
and conclusions.

2 The ATLAS detector and data samples

The ATLAS detector [25] is a multipurpose detector with a forward—backward symmetric cylindrical
geometry and nearly 47 coverage in solid angle.! The inner detector (ID) tracking system consists of pixel
and silicon microstrip detectors covering the pseudorapidity region |77| < 2.5, surrounded by a transition
radiation tracker, which improves electron identification over the region |77| < 2.0. The innermost pixel
layer, the insertable B-layer [26, 27], was added between Run 1 and Run 2 of the LHC, at a radius of 33 mm
around a new, narrower and thinner beam pipe. The ID is surrounded by a thin superconducting solenoid
providing an axial 2 T magnetic field and by a fine-granularity lead/liquid-argon (LAr) electromagnetic
calorimeter covering |n7| < 3.2. A steel/scintillator-tile calorimeter provides hadronic coverage in the
central pseudorapidity range (|| < 1.7). The endcap and forward calorimeters (1.5 < |n| < 4.9) are
made of LAr active layers with either copper or tungsten as the absorber material for electromagnetic
and hadronic measurements. A muon spectrometer with an air-core toroid magnet system surrounds the
calorimeters. Three layers of high-precision tracking chambers provide coverage in the range || < 2.7,
while dedicated chambers allow triggering in the region |n| < 2.4.

The ATLAS trigger system [28] consists of two levels; the first level is a hardware-based system, while the
second is a software-based system called the high-level trigger. The events used by the search described in
this paper were selected using a trigger logic that accepts events with a missing transverse momentum
above 70-110 GeV, depending on the data-taking period. The trigger is approximately 100% efficient for
the event selections considered in this search. Auxiliary data samples used to estimate or validate the yields
of Z(— vv)+jets background events were selected using triggers requiring at least one isolated photon
(pt > 120 GeV), electron (pr > 24 GeV) or muon (pt > 20 GeV), for data collected in 2015. For the
2016-2018 data, these events were selected using triggers requiring at least one isolated electron or muon
(pt > 26 GeV) or photon (p > 140 GeV).

The data were collected by the ATLAS detector during 2015-2018 with a centre-of-mass energy of 13 TeV
and a 25 ns proton bunch crossing interval. The average number of pp interactions per bunch crossing
(pile-up), {u), ranged from 13 in 2015 to around 38 in 2017-2018. Application of beam, detector and
data-quality criteria [29] resulted in a total integrated luminosity of 139 fb~!. The uncertainty in the
combined 2015-2018 integrated luminosity is 1.7% [30], obtained using the LUCID-2 detector [31] for the
primary luminosity measurements.

! ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector. The
positive x-axis is defined by the direction from the interaction point to the centre of the LHC ring, with the positive y-axis
pointing upwards, while the beam direction defines the z-axis. Cylindrical coordinates (r, ¢) are used in the transverse plane, ¢
being the azimuthal angle around the z-axis. The transverse momentum p, the transverse energy E1 and the missing transverse
momentum are defined in the x—y plane. The pseudorapidity 7 is defined in terms of the polar angle 6 by n = —Intan(6/2) and
the rapidity is defined as y = (1/2) In[(E + p;)/(E — pz)] where E is the energy and p the longitudinal momentum of the
object of interest.



3 Simulated event samples

Monte Carlo (MC) data samples are used by the search presented in this paper to optimise the selections,
aid the estimation of backgrounds and assess the sensitivity to specific SUSY signal models.

Simplified SUSY model signal samples are used to describe the production of squarks and gluinos. The
topologies considered include squark-pair production, followed by the direct (§ — gX (1)) or one-step
(G — ¢X" — qgWX ?) decays of squarks, shown in Figures 1(a) and 1(b), and gluino-pair production,
followed by the direct (§ — gGx\) or one-step (3 — qG'¥* — qg’WXx)) decays of gluinos, as shown
in Figures 1(c) and 1(d). ‘One-step’ decays refer to cases where the decays occur via one intermediate
on-shell SUSY particle. An additional simplified model scenario in which squark pairs, gluino pairs,
and squark—gluino pairs are produced inclusively is also considered. In this scenario, all production
processes (gluino—gluino, squark—antisquark, squark—squark, antisquark—antisquark, squark—gluino and
antisquark—gluino) are included, and the produced squarks and/or gluinos can follow the direct decays
indicated in Figures 1(a), 1(c) and 1(e), or decays of squarks via gluinos (§ — ¢g) and decays of gluinos
via squarks (& — ¢4) if kinematically possible. The branching ratios for these decays are calculated with
the SUSY-HIT program [32]. The free parameters are m (X ?) and m(§) (m(g)) for squark-pair (gluino-pair)
production with direct decays of squark and gluinos. In the case of squark- or gluino-pair production
models with one-step decays, the free parameters are m(§) or m(g), and either m (X 1) (with fixed m (¥ ?) =
60 GeV) or m( X)) (with m(¥7) set equal to (m(g/G) + m(¥}))/2). For models with inclusive production
of squarks and gluinos both m(§) and m(g) are varied, with m (X (1)) fixed to 0 GeV, 995 GeV or 1495 GeV.
All other supersymmetric particles, including the squarks of the third generation, have their masses set such
that the particles are effectively decoupled. Eightfold degeneracy of first- and second-generation squarks is
assumed for the simplified models with direct decays of squarks, while fourfold degeneracy is assumed for
the simplified models with one-step decays of squarks. The gluino is allowed to decay into four flavours (u,
d, s, ¢) of quarks in simplified models with gluino-pair production.

These samples were generated at tree level with up to two extra partons in the matrix element (one
extra parton for the models with inclusive production of both squarks and gluinos) using the MaD-
GrapruS_aMC@NLO 2.6.1 or 2.6.2 event generator [33] interfaced to Pytaia 8.212 and PyThia 8.230 [34],
respectively. The CKKW-L merging scheme [35] was applied with a scale parameter that was set to a
quarter of the mass of the gluino for gg production or a quarter of the mass of the squark for §g production
in simplified models. In models with squark, gluino, and squark—gluino pairs, a quarter of the smaller
of the gluino and squark masses was used for the CKKW-L merging scale. The A14 [36] set of tuned
parameters (tune) was used for initial/final-state radiation (ISR/FSR) and underlying-event parameters
together with the NNPDF2.3L.O [37] parton distribution function (PDF) set.

Signal cross-sections are calculated to approximate next-to-next-to-leading order in the strong coupling
constant, adding the resummation of soft gluon emission at next-to-next-to-leading-logarithm accuracy
(approximate NNLO+NNLL) [38-45]. The nominal cross-section and its uncertainty are derived using
the PDF4ALHC15_mc PDF set, following the recommendations of Ref. [46], considering only first- and
second-generation squarks (i, d, §, ¢).

A summary of all SM background processes together with the MC event generators, cross-section calculation
orders in as, PDFs, parton shower and tunes used is given in Table 1. Further details of the generator
configuration can be found in Ref. [13], with updates for 7 modelling described in Ref. [47]. The most
significant change in generator configuration with respect to Ref. [13] relates to the simulation of the
production of a photon in association with jets (y+jets). This process is now simulated with SHErPA 2.2.2
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Figure 1: The decay topologies of (a, b) squark-pair production, (c, d) gluino-pair production and (e) squark—gluino
production in simplified models with (a, c, e) direct decays of squarks and gluinos or (b, d) one-step decays of squarks
and gluinos.

with next-to-leading-order (NLO) cross-sections and the NNPDF3.0NNLO PDF set. Matrix elements are
calculated for up to two partons at NLO and three or four additional partons at leading order (LO) using the
Cowmix [48] and Open Loops [49] matrix-element generators, and merged with the SHERPA parton shower
[50] using the ME+PS @NLO prescription [51].

For all SM background samples the response of the detector to particles was modelled with the full ATLAS
detector simulation [66] based on GEaNT4 [67]. Signal samples were prepared using a fast simulation
based on a parameterisation of showers in the ATLAS electromagnetic and hadronic calorimeters [68]
coupled to GEanT4 simulations of particle interactions elsewhere. The EvtGen v1.2.0 program [69] was
used to describe the properties of the b- and c-hadron decays in the signal samples, and the background
samples except those produced with SHERPA [52].

All simulated events were overlaid with multiple pp collisions simulated with PyTaia 8.186 using the A3
tune [36] and the NNPDF2.3LO parton distribution functions [37]. The MC samples were generated with
a variable number of additional pp interactions (pile-up), and were reweighted to match the distribution of
the mean number of interactions observed in data in 2015-2018.

4 Object reconstruction and identification

The reconstructed primary vertex of the event is required to be consistent with the luminous region and to
have at least two associated tracks with pp > 500 MeV. When more than one such vertex is found, the
vertex with the largest ), p% of the associated tracks is chosen.



Physics process Generator Cross-section PDF set Parton shower Tune

normalisation

W (— lv) +jets SHERPA 2.2.1 [52] NNLO [53] NNPDF3.0NNLO [54] SHERPA [55] SHERPA
Z]y* (= €0) +jets SHERPA 2.2.1 NNLO NNPDF3.0NNLO SHERPA SHERPA
Y +jets SHERPA 2.2.2 NLO NNPDF3.0NNLO SHERPA SHERPA
tt PowHEG-Box v2 [56] NNLO+NNLL [57, 58] NNPDF2.3LO [37] Pyrria 8.230 [34]  Al14[59]
Single top (W ¢-channel) PownEG-Box v2 NNLO+NNLL [60, 61]. NNPDF2.3LO PytHia 8.230 Al4
Single top (s-channel) PownEG-Box v2 NLO [62, 63] NNPDF2.3LO PytHia 8.230 Al4
Single top (¢-channel) PowneG-Box v2 NLO NNPDF2.3LO PytH1A 8.230 Al4
tt+W/Z/H MG5_aMC@NLO 2.2.3 [33] NLO [64, 65] NNPDF2.3LO PyTHia 8.210 Al4
tt+WW MG5_aMC@NLO 2.2.2 NLO NNPDF2.3LO PyTHia 8.210 Al4
WW, WZ,ZZ, Wy, Zy  SHErpa 2.2.1 NLO NNPDF3.0NNLO SHERPA SHERPA

Table 1: The SM background MC simulation samples used in this paper. The generators, the order in @, of
cross-section calculations used for yield normalisation, PDF sets, parton showers and tunes used for the underlying
event are shown.

Jet candidates are reconstructed using the anti-k, jet clustering algorithm [70, 71] with a jet radius parameter
of 0.4 starting from clusters of calorimeter cells [72]. The jets are corrected for energy from pile-up using
the method described in Ref. [73]: a contribution equal to the product of the jet area and the median energy
density of the event is subtracted from the jet energy [74]. Further corrections, referred to as the jet energy
scale corrections, are derived from MC simulation and data, and are used to calibrate the average energies
of jets to the scale of their constituent particles [75]. Only corrected jet candidates with pt > 20 GeV and
In| < 2.8 are considered in this analysis. An algorithm based on boosted decision trees, ‘MV2c10’ [76,
77], is used to identify jets containing a b-hadron (b-jets), with an operating point corresponding to an
efficiency of 77%, and rejection factors of about 130 for jets originating from gluons and light-flavour
quarks (light jets) and about 6 for jets induced by charm quarks, determined using MC simulated 7 events.
Candidate b-jets are required to possess pr > 50 GeV and || < 2.5. In order to reduce the number of
jets generated by pile-up, a significant fraction of the tracks associated with each jet must have an origin
compatible with the primary vertex. This is enforced by using the jet vertex tagger (JVT) output using
the momentum fraction of such tracks [78]. The requirement JVT > 0.59 is only applied to jets with
pr < 120 GeV and || < 2.5, while in the region 2.4 < || < 2.5, alooser value, JVT > 0.11 is used. No
JVT requirement is applied to jets in the region 2.5 < |p| < 2.8. Events with jets originating from detector
noise and non-collision background are rejected if jets satisfying the jet vertex tagging criteria and passing
jet-lepton ambiguity resolution (see below) fail to satisfy the ‘LooseBad’ quality criteria, or if at least
one of the two leading jets fails to satisfy the ‘TightBad’ quality criteria, both of which are described in
Ref. [79]. The application of these criteria reduces the data sample by ~ 9% and maintains an efficiency
for simulated Z+jets events of 99.5%.

Two different classes of reconstructed lepton candidates (electrons or muons) are used in the analyses
presented here. When selecting samples for the search, events containing a ‘baseline’ electron or muon are
rejected. The selections applied to identify baseline leptons are designed to maximise the efficiency with
which W+jets and top quark background events are rejected. When selecting events for the purpose of
estimating residual W+jets and top quark backgrounds, additional requirements are applied to leptons to
ensure greater purity of these backgrounds. These leptons are referred to as ‘high-purity’ leptons below



and form a subset of the baseline leptons.

Baseline muon candidates are formed by combining information from the muon spectrometer and inner
detector as described in Ref. [80] and are required to possess pr > 6 GeV and || < 2.7. Baseline muon
candidates must satisfy ‘Medium’ identification criteria [80]. High-purity muon candidates must also
have a transverse impact parameter significance of |dgv| / o-(dgv) < 3 relative to the primary vertex, and
a longitudinal impact parameter satisfying |zgvsin(0)| < 0.5 mm. Furthermore, high-purity candidates
must satisfy the ‘FCTight’ isolation requirements described in Ref. [80], which rely on tracking- and
calorimeter-based variables and implement a set of n7- and pr-dependent criteria.

Baseline electron candidates are reconstructed from an electromagnetic calorimeter energy deposit matched
to an ID track [81] and are required to satisfy pt > 7 GeV, |n| < 2.47 (including the calorimeter transition
region 1.37 < |g| < 1.52), and the ‘Loose’ likelihood-based identification criteria described in Refs. [81,
82]. High-purity electron candidates must also satisfy ‘“Tight” selection criteria described in Refs. [81, 82].
They are also required to satisfy |df|/o(di") < 5, |zf " sin(#)| < 0.5 mm, and isolation requirements
similar to those applied to high-purity muons [83].

After the selections described above, ambiguities between electrons and muons are resolved to avoid
double counting and/or remove non-isolated leptons: the electron is discarded if a baseline electron and a
baseline muon share the same ID track. Ambiguities between candidate jets with |5| < 2.8 and leptons are
resolved as follows: first, any such jet candidate lying within a distance AR = +/(Ay)2 + (A¢)? = 0.2 of
a baseline electron is discarded. Additionally, if a baseline electron or muon and a jet are found within
AR < min(0.4,0.04 + 10 GeV/ pf}/ ), it is interpreted as a jet and the nearby electron or muon candidate is
discarded. Finally, if a baseline muon and jet are found within AR < 0.2, and the jet satisfies Nyx < 3
(where Ny refers to the number of tracks with pt > 500 MeV that are associated with the jet), it is treated
as a muon and the overlapping jet is ignored. This criterion rejects jets consistent with final-state radiation
or hard bremsstrahlung. The ambiguity resolution procedure follows that used in previous ATLAS analyses
seeking evidence for SUSY particles.

Reconstructed photons are used in the measurement of missing transverse momentum as well as in the
control region used to constrain the Z+jets background, as explained in Section 6. These photon candidates
are required to satisfy pr > 25 GeV and |n| < 2.37 (excluding the transition region 1.37 < |n| < 1.52
between the barrel and endcap EM calorimeters), to satisfy photon shower shape and electron rejection
criteria, and to be isolated [81, 84, 85]. The reduced 7 range for photons is chosen to avoid a region of
coarse granularity at high 7 where discrimination between photon and ¥ candidates worsens. Ambiguities
between candidate jets and photons (when used in the event selection) are resolved by discarding any jet
candidates lying within AR = 0.4 of a photon candidate. Additional selections to remove ambiguities
between electrons or muons and photons are applied such that a photon is discarded if it is within AR = 0.4
of a baseline electron or muon.

The measurement of the missing transverse momentum vector p?iss (and its magnitude E;niss) is based
on the calibrated transverse momenta of all electron, muon, jet and photon candidates, and all tracks
originating from the primary vertex that are not associated with the preceding reconstructed objects [86,
87].

Corrections derived from data control samples are applied to simulated events to account for differences
between data and simulation for the lepton and photon trigger and reconstruction efficiencies, the lepton
momentum/energy scale and resolution, the jet vertex tagger, and the efficiency and mis-tag rate of the
b-tagging algorithm.



5 Event selection and signal regions definitions

Due to the high mass scale expected for the SUSY models considered in this study, the ‘effective mass’, me,
defined to be the scalar sum of E%“iss and the transverse momenta of all jets with pt > 50 GeV, is a powerful
discriminant between the signal and most SM backgrounds. In some regions, when selecting events with at
least N; jets, meg(N;) is calculated using the transverse momenta of the leading N jets with pt > 50 GeV
and E’T“iss. Only jets with pr > 50 GeV are used directly to select events in the search presented in this
paper, although jets with lower pr are taken into account indirectly through their contribution to E}"**
and through their use when rejecting noise and non-collision background events, as explained above in
Section 4.

Following the event reconstruction described in Section 4, a common set of preselection criteria is used in
this search. Events are discarded if a baseline electron (muon) with pt > 7 (6) GeV remains after resolving
the ambiguities between the objects, or if they contain a jet failing to satisfy quality selection criteria
designed to suppress detector noise and non-collision backgrounds (described in Section 4). Events are
also rejected if no second jet with pt > 50 GeV is found, the leading jet pr is smaller than 200 GeV, the
missing transverse momentum in the event is smaller than 300 GeV, or the effective mass is smaller than
800 GeV. In addition, the selection requires the smallest azimuthal separation between the p?i“ and the
momenta of the leading two or three jets, A¢(j1,2,(3),PT"") min, to be greater than 0.2. The requirement is
applied to the third leading jet whenever such a jet is present in the event. A summary of these preselection
criteria is given in Table 2. The remaining events are then analysed with three complementary search
strategies, which all require the presence of jets and significant missing transverse momentum.

Lepton veto No baseline electron (muon) with pp >7 (6) GeV
EP'™ [GeV] > 300
p1(j1) [GeV] > 200
pr(j2) [GeV] > 50
AB (i1 2,(3)> PP min >0.2
megr [GeV] > 800

Table 2: Summary of common preselection criteria used for the search presented in this paper.

To search for a possible signal, selection criteria are defined to enhance the expected signal yield relative to
the SM backgrounds. Signal regions (SRs) are defined using the MC simulation of SUSY signals and the
SM background processes. The SRs are optimised to maximise the expected 95% CL exclusion reach in the
signal model parameter spaces considered. In order to maximise the sensitivity in the (m(g), m(§)) plane,
a variety of signal regions are defined. Squarks typically produce at least one jet in their decays, for instance
through § — q)??, while gluinos typically produce at least two jets, for instance through & — qq)??.
Processes contributing to g and g¢ final states therefore lead to events containing at least two or four
jets, respectively. Decays of heavy SUSY and SM particles (for instance W bosons) produced in longer
g and g decay cascades tend to further increase the jet multiplicity in the final state. To target different
SUSY particle production scenarios, signal regions with different jet multiplicity requirements and either
specific ranges of kinematic variables (in the multi-bin search) or values of the BDT output variable (in
the BDT search) are defined. An additional set of single-bin signal regions used for a model-independent



presentation of the results is also defined (in the model-independent search). All signal regions applied in
these three search strategies are summarised in the following.

5.1 The multi-bin search

In this search strategy, three sets of signal regions targeting different scenarios with direct decays of
squarks and gluinos are defined: the MB-SSd (‘multi-bin squark-squark-direct’) and MB-GGd (‘multi-bin
gluino-gluino-direct’) regions target scenarios with large mass difference between the pair-produced squarks
or gluinos and the lightest neutralino, respectively, while the MB-C (‘multi-bin compressed’) regions target
scenarios with small mass difference between the pair-produced squarks or gluinos and the X (1) Events
are assigned to three sets of mutually exclusive signal regions based on the jet multiplicity, the effective
mass and the missing transverse momentum significance, defined as E’T“iss/\/H_ , where Hr is calculated
as a scalar sum of transverse momenta of all jets with pp > 50 GeV and |5| < 2.8. This variable is used
to suppress backgrounds in which jet energy mismeasurement generates missing transverse momentum,
and was found to enhance sensitivity to models characterised by g4 production. The signal regions are
mutually exclusive within any given set, but can overlap with signal regions from other sets.

After preselecting events as in Table 2, the following selection criteria are applied for the three sets of
signal regions, to further suppress the background processes. At least two jets with |r| < 2 are required for
MB-SSd regions, where the pt of the sub-leading jet must be greater than 100 GeV. The MB-C regions
rely on the selection of an energetic jet with pp > 600 GeV, which could be generated by QCD ISR. In the
MB-GGd regions, at least four jets with pr > 100 GeV, and || < 2 are required. The smallest azimuthal
separation between the p?iss vector and (i) the momenta of the three leading jets, A¢(ji1 2,(3) p?iss) min»
and (ii) the remaining jets with pt > 50 GeV in the event, A¢(ji>3,PT"™) min, is required to be greater
than 0.4 and 0.2, respectively. In MB-SSd, tighter requirements of 0.8 and 0.4, respectively, are applied.
These requirements reduce the background from multi-jet processes, where a jet can be mismeasured and
generate missing transverse momentum that points along the axis of the jet. In the regions with at least
four jets in the final state, jets from signal processes are distributed isotropically. The aplanarity variable
A, defined by A = 3/213, where A3 is the smallest eigenvalue of the normalised momentum tensor of the
jets [88], is maximised by such topologies and is therefore used to select events in the MB-GGd regions,
where a requirement A > 0.04 is applied.

The missing transverse momentum significance E%ﬁss/\/H_T is required to be greater than 10 GeV'/? and
meg to be greater than 1000 GeV in all signal regions except in MB-C, where a tighter, m.g > 1600 GeV,
requirement is applied. An overview of the signal region preselection criteria applied to the MB-SSd,
MB-GGd and MB-C regions is presented in Table 3.

Following these selections, the three sets of signal regions are defined with selections based upon bins in
megr, EX5/+/Hr and Nj, to maximise the sensitivity of the search in the (m(§), m (%)) or (m(g), m(Y))
planes. The MB-SSd regions are separated into two jet multiplicity bins, up to six bins in meg and up to
four bins in EITniSS/\/H_ , giving a total of 24 signal regions. In the lower jet multiplicity bin (N; = [2, 3]),
tighter requirements are applied to the transverse momenta of the leading and sub-leading jets such that
p1(Jji=12) > 250 GeV. In order to reduce the total number of signal regions without significant loss of
search power, some bins are merged, as represented schematically in Table 4. The MB-GGd signal regions
are defined by six bins in m.g and three bins in E%“SS/\/H_ , as shown in Table 5. The MB-C signal regions
are defined by three bins in jet multiplicity, three bins in m.g and two bins in E;“iSS/\/IT , as shown in
Table 6.



MB-SSd MB-GGd MB-C

N; >2 >4 >2
(1) [GeV] > 200 > 200 > 600
prji=a, N, ) [GeV] > 100 > 100 > 50
Gi=1,...n;, <20 <20 <28
A¢(j1,2,(3),p¥1iss) min > 0.8 > 0.4 > 0.4
AP (ji=3,PT") min > 0.4 > 0.4 >0.2
Aplanarity - > 0.04 -
EDiss/\[Hy [GeV!/2] > 10 > 10 > 10
megt [GeV] >1000  >1000 > 1600

Table 3: Summary of preselection criteria used for the multi-bin search.

. meg [TeV]
Nj = [2,3], pr(i=1,2) > 250 GeV
[10.16) | 116,22) | 22.28) | [28.34) | [3.4,4.0) [4.0, c0)
[10, 16)
RS (Gev! 2] |2
[22,28) Nj=[2,00) | Nj=[2,00)
[28, 00) N] = [2, 00) N_] = [2, 00)
mef [TeV]
Nj _ [4’ oo) eff
[10.16) | 116.22) | [22.28) | [2.8, o0)
[10, 16)
EMisS/\HT [GeV/2] | [16,22)
22, c0) et = [2.8,3.4)

Table 4: Summary of the bin boundaries for the MB-SSd signal regions. An empty cell indicates that the corresponding
bin uses only the selection criteria specified at the top of the column and to the left of the row. A non-empty cell
indicates the use of special selection criteria, as specified by the entry. For each jet multiplicity bin ((N; = [2, 3]
and Nj = [4, 0)), the highest bins in mg and E{.“iSS/\/H_ , respectively, are inclusive in that variable. In order to
guarantee sufficient event yields in the highest four m.s and EIT“iSS/\/H_T bins of the upper (N; = [2, 3]) table, no upper
limits on N; are imposed, as indicated in the relevant entries. As a result of this, in order to remove overlap with the
highest m.g and E’T“i“/\/H_T bin of the lower (Nj = [4, 0)) table, a requirement that m.g = [2.8, 3.4) is imposed, as
indicated in the relevant entry.
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Nj = [4, ) T
[10.16) | [16.22) | [2.2.28) | 28,34 | [34.4.0) | [40. =)
[10, 16)
EMiss/\[Hy [GeV!/2] | [16,22)
[22, 00)

Table 5: Summary of the bin boundaries for the MB-GGd signal regions. An empty cell indicates that the
corresponding bin uses only the selection criteria specified at the top of the column and to the left of the row. The
highest bin for each variable is inclusive in that variable.

megr [TeV]
[1.6,2.2) | [2.2,2.8) | [2.8, )

Nj=[2,3];4; [5, )

[16, 22)

EMiss/\[Hy [GeV'/?]
[22, o0)

Table 6: Summary of the bin boundaries for the MB-C signal regions. An empty cell indicates that the corresponding
bin uses only the selection criteria specified at the top of the column and to the left of the row. The highest bin for
each variable is inclusive in that variable.
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5.2 The BDT search

This search strategy is applied separately through two sets of signal regions targeting models with gluino-pair
production with direct (BDT-GGd) or one-step (BDT-GGo) g decays. In each set, events are separated
into four categories, depending on the mass difference Am(g, X (1)) in the target model. A dedicated BDT
discriminant is used in each signal region, giving eight independently trained BDTs in total, to obtain
optimum sensitivity to the models targeted by each SR. The signal regions are listed in Table 7, with the
values of Am(g, X ?) targeted by each of the SRs indicated in the last rows of the table. The signal regions
are not mutually exclusive and hence cannot be combined statistically.

BDT-GGd1 | BDT-GGd2 | BDT-GGd3 | BDT-GGd4

Nj >4

AB(j12,(3)-P %) min > 0.4

A (ji>3PF) min >0.4

ES /megy (Nj) >02

Mg [GEV] > 1400 > 800

BDT score > 0.97 > 0.94 > 0.94 > 0.87
Am (§,)2 (1)) [GeV] 1600-1900 1000-1400 600-1000 200-600

BDT-GGol | BDT-GGo2 \ BDT-GGo3 | BDT-GGo4

N, >6 \ >5

AG(j1 2,(3)-P) min > 0.4 >0.2
AP (ji>3-P ) min > 0.4 02
ES Imeg (Nj) >02

Mgt [GEV] > 1400 > 800

BDT score > 0.96 > 0.87 > 0.92 > 0.84
Am (g, X ?) [GeV] 1400-2000 1200-1400 600-1000 200400

Table 7: Signal region selections for the BDT search with the benchmark signal model parameters (Am (g, X (1))) used
in the optimisation, for (top) direct and (bottom) one-step gluino decays, respectively. In the BDT-GGo regions the

targeted models are characterised by m (X 0= (m(g) + m(¥ ?)) /2.

After applying the preselection criteria from Table 2, additional selection criteria are applied to the
BDT-GGd and BDT-GGo signal regions to further distinguish between signal and background processes,
prior to the final selections based on the BDT discriminants. All BDT-GGd regions require the presence of
at least four jets, with A¢(j1,2,(3),p$iss) min > 0.4, A¢(ji>3,p$i“) min > 0.4 and E%“iss/meff(4j) > 0.2 to
further suppress the multi-jet background. Additionally, EX"** /meg(Nj) > 0.2 is required in all regions.
The BDT-GGo regions require the presence of at least six (BDT-GGo1l and BDT-GGo2) or five (BDT-GGo3
and BDT-GGo4) jets, with A¢(j1 2, (3) ,p%‘iss) min > 0.4 and A¢(j,~>3,p$iss) min > 0.4 in all regions except
in BDT-GGo4, where looser requirements of A¢(j12,3),P7 ") min > 0.2 and A¢(ji>3,p7"™) min > 0.2 are
applied. To select events close to the kinematic regions of interest, meg > 1400 GeV is required in the
BDT-GGd1, BDT-GGd2, BDT-GGol and BDT-GGo2 regions, and m.g > 800 GeV in the BDT-GGd3,
BDT-GGd4, BDT-GGo3 and BDT-GGo4 regions.
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For the final selection in each of the eight signal regions, a dedicated BDT is trained for events satisfying
the dedicated selection criteria for the signal region, listed above. In order to increase the size of the signal
MC samples used for BDT training, and at the same time keep the output performance stable, signal MC
events with similar mass differences between g and X ? (leading to similar event kinematics), normalised to
their corresponding cross-sections, are combined into a single sample for training. All MC samples for the
SM background processes listed in Table 1 are taken into account. The multi-jet background events are not
used in the BDT training since the contribution from these processes is expected to be negligible. All MC
events used in the BDT training are randomly divided into two sets. In order to avoid a decrease of the
total MC sample size to a half of the full dataset, the BDT training is performed on both sets of events,
following the procedure described in Refs. [89, 90]. The BDT score calculated using one set of events is
applied to the other set, which is then used as input for the signal and background evaluation. The data
events used for the evaluation are also randomly divided into two sets. Up to 12 variables are selected
among E‘Tniss, Mmegr, aplanarity A, and the pt and 5 of selected jets, and are then used in the training for the
eight signal regions. The selections based on the BDT scores providing the maximal expected sensitivity
for a benchmark signal model are then used to define the signal regions. The aplanarity is particularly
important for enabling the BDT discriminants to separate signal and background for models with large
Am(g,X ?), because in such models signal events are more spherical than the background.

5.3 Model-independent search

In addition to the multi-bin and BDT searches described above, several signal regions, optimised to
maximise sensitivity to generic SUSY models with specific jet multiplicities in the final state, are defined.
These comprise the model-independent search. These signal regions rely on the single-bin approach
described in Ref. [13]. After applying the preselection criteria of Table 2, ten inclusive SRs characterised
by increasing minimum jet multiplicity are defined, listed in Tables 8 and 9. The signal region definitions
follow those used for the multi-bin search, but with the requirements on meg, N; and E%‘iSS/\/H_T made
inclusive. Some of these SRs require the same jet multiplicity, but are distinguished by requiring higher
meg values. These regions overlap, and therefore cannot be combined statistically.

SR2j-1600 | SR2j-2200 | SR2j-2800 | SR4j-1000 | SR4j-2200 \ SR4j-3400
Nj >2 >4
p1r(ji1) [GeV] > 250 > 600 > 250 > 200
prliza,... Ny ) [GeV] > 250 > 50 > 250 > 100
n(ji=1,..., ijm)l <2.0 <2.8 <12 <2.0
AG(j12,(3)-PT) min >0.8 > 0.4 >0.8 > 0.4
A (ji>3-PE) min > 04 >0.2 >0.4 >0.2
Aplanarity - > 0.04
EMiss/\Hy [GeV'/2] > 16 > 10
meg [GeV] > 1600 > 2200 > 2800 > 1000 > 2200 > 3400

Table 8: Selection criteria used for model-independent search signal regions with minimum jet multiplicities up to
four.
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SR5j-1600 | SR6j-1000 | SR6j-2200 | SR6j-3400
N; >5 >6
pr(j1) [GeV] > 600 > 200
prUi=a,... Ny ) [GeV] > 50 >75
nGi =1, N, <28 <20
AG (1 2,(3)-P™) min > 0.4
A (ji>3- P min >0.2
Aplanarity - ‘ >0.08
EDiss/\[Hy [GeV'/2] > 16 > 10
meg [GeV] > 1600 ‘ > 1000 > 2200 > 3400

Table 9: Selection criteria used for model-independent search signal regions with high jet multiplicities.

6 Background estimation

Standard Model background processes contribute to the event counts in the signal regions. The most
important backgrounds in the search are: Z+jets, W+jets, top quark pair, single top quark, diboson and
multi-jet production. Non-collision backgrounds were found to be negligible.

Generally, the Z+jets background events originate from an irreducible component in which Z — vv decays
generate large ETmiSS. The W+jets background is mostly composed of W — 7v events in which the 7-lepton
decays to hadrons, with additional contributions from W — ev, v events in which no baseline electron or
muon is reconstructed, with E%‘iss due to neutrinos. Top quark pair production, followed by semileptonic
decays, in particular tf — bbtvgq’ (with the T-lepton decaying to hadrons), as well as single-top-quark
events, can also generate large E'Tniss and satisfy the jet and lepton veto requirements. Each of these primary
backgrounds is estimated using dedicated control regions, as described in the following subsection, while
diboson production is estimated with MC simulation normalised using NLO cross-section predictions, as
described in Section 3.

The multi-jet background in the signal regions is due to missing transverse momentum from misreconstruc-
tion of jet energies in the calorimeters, jets lost due to the JVT requirement, as well as neutrinos from
semileptonic decays of heavy-flavour hadrons. It is estimated in a data-driven way described below.

6.1 Control regions

To estimate the SM backgrounds in an accurate and robust fashion, control regions (CRs) are defined for
each of the signal regions. For the BDT and model-independent searches, a dedicated unique set of CRs
is defined for each SR such that the shapes of the background distributions of SR events cannot bias the
analysis. For the multi-bin search, CR bins are defined with similar kinematics to the SR bins to account
for potential mismodelling of the shapes of background distributions, as shall be described below. The
CRs are chosen to be exclusive with respect to the SR selections in order to provide independent data
samples enriched in particular backgrounds and are used to normalise the background MC simulation used
to estimate SR event yields. Equivalently, the MC simulation can be considered to provide multiplicative
extrapolation factors for the contributing background processes, relating the observed CR event yields to
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the expected yield in the SR. The CR selections are designed to have negligible expected SUSY signal
contamination for the models near the exclusion boundary established by previous searches. Cross-checks
of the background estimates are performed with data in several validation regions (VRs, described in
Section 6.2) selected with requirements such that these regions do not overlap with the CR and SR selections
and also have a low expected signal contamination.

Four control regions are defined for each signal region used in the search. The CR selections maintain
adequate statistical precision while minimising the systematic uncertainties arising from the extrapolation
of the CR event yield to estimate the background in the SR. This latter requirement is addressed through
the use of CR jet pt thresholds and meg and BDT score (where appropriate) selections which match those
used in the SR. In some cases, in order to increase the number of CR data events without significantly
increasing the theoretical uncertainties associated with the background estimation procedure, some SR
selection requirements are omitted or loosened, as indicated in the text below. The CR definitions for
the multi-bin (MB) and BDT search strategies are listed in Table 10. For the multi-bin search, only the
preselection requirement on E?i“/ +Hr, indicated in Table 3, is used, rather than the final SR selection
on this variable, in order to increase the number of CR data events without significantly increasing the
theoretical uncertainties associated with the background estimation procedure. Multi-bin regions selected
with the same m.g and N; bin but different E%’iSS/\/H_T bin share the same control region. The signal
region definitions for the model-independent search closely follow those used for the multi-bin search, as
discussed in Section 5.3. For this reason the CR definitions for the model-independent search also closely
follow those used for the multi-bin search, adjusted in a similar way.

CR SR background CR process CR selection
MB/BDT-CRy Z(— vv)+jets y+jets Isolated photon
MB/BDT-CRQ Multi-jet Multi-jet reversed requirements on (i) A¢(j, pll’.‘i“

and (if) EXS /meg (Nj) or EXSS /v/Hy
MB/BDT-CRW W(— Cv)+(Db)jets W(— Cv)+jets  one lepton, 30 GeV< mr (¢, E‘T“i“) < 100 GeV, b-veto
MB/BDT-CRT  t#(+EW) and single top 17 — bbgq’tv  one lepton, 30 GeV< mt(¢, E%‘iss) < 100 GeV, b-tag

Table 10: Control regions used in the analysis. Also listed are the main targeted background in the SR in each case,
the process used to model the background, and the main CR requirement(s) used to select this process. The jet pr
thresholds and meg and BDT score (where appropriate) selections match those used in the corresponding SRs.

The y+jets region in both the multi-bin and BDT search strategies (labelled MB/BDT-CRYy in Table 10) is
used to estimate the contribution of Z(— v¥)+jets background events to each SR by selecting a sample of
v+jets events with pr(y) > 150 GeV and then treating the reconstructed photon as contributing to E?iss.
For pr(y) significantly larger than my the kinematic properties of such events strongly resemble those
of Z+jets events [91]. In order to correct for differences in the Z+jets to y+jets ratio between data and
MC simulation, likely arising from mismodelling of the y+jets process, a correction factor (k) is applied
to simulated y+jets events in the CRy regions. This correction factor is determined by comparing CRy
observations in data and MC simulation with those in similar regions defined by selecting events with two
electrons or muons for which the invariant mass lies within 25 GeV of the mass of the Z boson, satisfying
E%‘iss /VHt > 10 GeV'/2 and meg > 1000 GeV. This selection corresponds to the kinematically lowest
bins of the multi-bin analysis MB-SSd with Nj = [2, 3] and Nj = [4, oo]. The correction factor is obtained
from the double ratio
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where N;i,a‘a and N%am are the data observations in the y and Z control regions, respectively, following
subtraction of the respective non-y+jet and non-Z+jet background expectations obtained from MC
simulation. Nyc and N%’IC are the equivalent y+jet and Z+jet yields obtained from MC simulation. The
value of « is found to depend on jet multiplicity, but is independent of m.g and E‘TniSS /VHrt. Consequently,
k is calculated separately for regions with up to three and at least four jets, and is found to take values
k =0.77+0.04 and « = 0.85 +0.05, respectively. The quoted uncertainty in « is statistical only — systematic
uncertainties in the yields cancel by construction in the ratio and the resulting uncertainties in « are found
to be negligible. In both search strategies, the CRy selections omit the SR requirement on the aplanarity
variable A. Additionally, for the BDT-GGol and BDT-GGo2 SRs, the A¢(j, p™**), and EZ* /meg (Nj)
selections are removed for the corresponding CR selections.

The W+jets and top quark background control regions in both the multi-bin and BDT search strategies
(labelled MB/BDT-CRW and MB/BDT-CRT in Table 10) select samples rich in W(— £v)+jets events and
in semileptonic #7 and single-top events (referred to generically as ‘top quark background’), respectively.
They use events with one high-purity lepton and differ in the number of b-jets required (zero or > 1,
respectively). In both of these search strategies, a requirement on the transverse mass mt computed with
E%‘iss and the selected lepton? is applied, as indicated in Table 10. Events are selected using a trigger based
on the missing transverse momentum, as described in Section 2. This approach allows the use of leptons
with transverse momenta as low as 6 GeV (muons) or 7 GeV (electrons), which maximises the proximity
of the CRs closer to the SRs in the event selection parameter space. The selected lepton is treated as a
jet with the same momentum to model background events in which a hadronically decaying 7-lepton is
produced [92]. The application of this procedure to the offline CRW and CRT selections but not in the
trigger introduces an additional inefficiency with respect to the offline and online SR selections of less than
0.1%. The CRW and CRT selections omit the SR selection requirements on Ag(j, p?iss) in both search
strategies.

The multi-jet background is estimated using a data-driven technique [91], which applies a jet resolution
function to well-measured multi-jet events in order to estimate the impact of jet energy mismeasurement
and heavy-flavour semileptonic decays on E%“SS and other variables. The resolution function of jets is
initially estimated from MC simulation by matching jets reconstructed from generator-level particles
including muons and neutrinos to detector-level jets in multi-jet samples, and then is modified to agree
with data in dedicated samples used to measure the resolution function. The multi-jet region (labelled as
MB/BDT-CRQ in Table 10) uses reversed selection requirements on A¢(j, p?iss) and on E%liss /VHrt in
the multi-bin search, or on ET"** /meg(Nj) in the case of the BDT search, to produce samples enriched in
multi-jet background events. For the two signal regions targeting the lowest mass splittings Am (g, X ?) in
the BDT search, BDT-GGd4 and BDT-GGo4, the BDT score selections are slightly loosened from 0.87 to
0.70 and from 0.84 to 0.60, respectively. The MB/BDT-CRQ regions are used to normalise the shape of
the distributions obtained with the data-driven technique.

Example meg distributions in control regions based on the MB-GGd preselection requirements listed
in Table 3 are shown in Figure 2. Figure 3 shows the BDT score discriminating variable distributions
in control regions corresponding to the BDT-GGol signal region selections. Discrepancies between

2 mr = \2PL RS (1 - cos[AG(E, ™).
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data and MC simulation in these figures (evident particularly for the top quark processes dominating
Figure 2(d)) replicate those observed in the signal regions. The background estimation procedure uses
the CR observations to compensate for these discrepancies, as shall now be described. As a result of this
procedure these discrepancies do not affect the analysis.
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Figure 2: Observed mg distributions in control regions (a) MB-CRy, (b) MB-CRQ, (c) MB-CRW and (d) MB-CRT
after applying the MB-GGd preselection requirements listed in Table 3. The histograms show the MC background
predictions normalised using cross-section times integrated luminosity, with the exception of multi-jet background
which is normalised using data. In the case of the y+jets background, a « factor described in the text is applied.
The last bin includes overflow events. The lower panels show the ratio of data to the background prediction. The
hatched (red) error bands indicate the combined experimental and MC statistical uncertainties on these background
predictions.
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Figure 3: Observed BDT score distributions in control regions (a) BDT-CRy, (b) BDT-CRQ, (c) BDT-CRW and
(d) BDT-CRT after applying the BDT-GGol selection requirements described in Section 5.2, excluding the BDT
score cut. The histograms show the MC background predictions normalised using cross-section times integrated
luminosity, with the exception of multi-jet background which is normalised using data. In the case of the y+jets
background, a « factor described in the text is applied. The lower panels show the ratio of data to the background
prediction. The hatched (red) error bands indicate the combined experimental and MC statistical uncertainties on
these background predictions.

In order to estimate the background yields, a background-only fit is used [93]. The fit is performed using
the observed event yields in the CRs associated with the SRs as the only constraints, so that the fit is not
constrained by the yields in the SRs. It is assumed that signal events from beyond the Standard Model
(BSM) processes do not contribute to the CR yields. Scale factors denoted by u(WH+jets), u(Z+jets)
and u(Top) represent the normalisation of background components relative to MC predictions, and are
simultaneously determined in the fit to all the CRs associated with a SR. The expected background in the
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SR is based on the yields predicted by simulation for W/Z+jets and background processes containing top
quarks, corrected by the scale factors derived from the fit. The systematic and MC statistical uncertainties
of the expected values are included in the fit as nuisance parameters that are constrained by Gaussian terms.
The means of the Gaussian terms are defined by the nominal predictions, while the standard deviations are
determined by the sizes of the systematic uncertainties considered (see Section 7). Poisson distributions
are used for the statistical uncertainties arising from the limited number of data events in the estimation of
the background sources, or the limited number of simulated events. The background-only fit is also used to
estimate the background event yields in the validation regions.
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Figure 4: Fitted normalisation factors per process as a function of the signal region considered in the (a) MB-SSd, (b)
MB-GGd, (c) MB-C regions from the multi-bin search, and (d) regions from the BDT search. The dashed horizontal
lines at 1.0 correspond to pure MC estimates. The coloured bands correspond to the uncertainties in the normalisation
factors for the different background processes.

The MC normalisation factors determined from the background-only fits in each CR for each background
process are shown in Figure 4. For the BDT and model-independent searches, three such factors are
extracted for each signal region, corresponding to the W+jets, Z+jets and top quark backgrounds. For the
multi-bin search a single normalisation factor is applied to each of the W+jets and Z+jets processes in all
regions associated with each jet multiplicity bin, while a dedicated normalisation factor is applied to the
top quark process in each bin. Some trends in these normalisation factors are observed, with those for the
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top quark background becoming smaller with increasingly tight selection requirements for the multi-bin
search signal regions. Similarly, the measured top quark background normalisation factors decrease with
increasingly tight BDT score requirements in the BDT search. This behaviour follows from the simulated
top quark MC samples exhibiting generally harder kinematics than observed in data [47]. Before the
top quark background normalisation factors are applied, the contribution of the top quark background is
expected to be less than 10% (typically 1-2%) in most of the signal regions, with the exception of signal
regions requiring large jet multiplicities, where the contribution of the top quark background can reach
50% of the total background yield. The normalisation factors for the W+jets and Z+jets processes are
generally stable with changing kinematic selections, with the exception of a slight decrease with increasing
jet multiplicity.

6.2 Validation regions

The background estimation procedure is validated by comparing the numbers of events observed in the VRs
with the corresponding SM background predictions obtained from the background-only fits. Several VRs
are defined for all three search strategies, with requirements distinct from those used in the CRs but that
maintain low expected signal contamination. The VRs for the model-independent search closely follow
those used for the multi-bin search, similarly to the CR definitions discussed previously, and so are not
described separately below. As is the case with the CRs, the majority of the VRs are defined using final
states with leptons and photons, allowing the different expected background contributions to the SRs to be
validated with high-purity selections. The VR event selections are not defined exclusively and hence the
observed event yields can be correlated between regions.

The MB/BDT-CRYy estimates of the Z(— vv)+jets background are validated using samples of Z(— ££)+jets
events selected by requiring high-purity lepton pairs of opposite sign and identical flavour for which the
dilepton invariant mass lies within 25 GeV of the Z boson mass. The MB/BDT-CRW and MB/BDT-CRT
estimates of the W+jets and top quark backgrounds are potentially subject to systematic uncertainties
arising from extrapolating over A¢(j, p%liss), E%liss [meg(Nj) or E%‘iss/ vHr, and aplanarity A from the CRs
to the SRs. This extrapolation procedure is checked with validation regions based upon the CR event
selection requirements, modified to more closely resemble those used in the equivalent SR.

The MB/BDT-CRQ estimates of the multi-jet background are validated with VRs for which the MB/BDT-
CRQ selection is applied, but with the SR EX**/+/Hr (MB-VROLMETsig) or EX /meg(Nj) (BDT-
VROLMETMeff) requirements reinstated, or with a requirement on A¢(j, pi***) applied (MB/BDT-
VROLdPhi). These VRs, which are independent of all CRs by construction, test not only the multi-jet
background estimates, but also the estimates of all backgrounds in cases where the multi-jet background
does not dominate. Some representative results are shown in Figures 5 and 6, illustrating the level of
agreement typically observed between data and the background estimates.

For the BDT search, the event yields in the validation regions are often very small. For this reason,
additional validation regions with lower BDT score requirements are defined, for which a minimum of 10
background events is expected in each case.

No significant systematic biases are observed among all the 542 VRs used by the three search strategies.
The largest discrepancy is 2.60" in the MB-VROLMETsig region associated with the MB-SSd signal region
that selects events with two or three jets in the m.g bin range 2800 GeV to infinity, with the E‘Tniss /VHr bin
requirement 16-22 GeV'!/? reinstated (see Figure 5(a)). The 2.60 significance is computed following the
profile likelihood method of Ref. [94] including the systematic uncertainties described in Section 7.
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Figure 5: Observed numbers of events in data and SM background predictions for the VROLMETSig regions
corresponding to the (a) MB-SSd, (b) MB-GGd, (c) MB-C signal regions from the multi-bin search, and (d) the
BDT-VROLMETMeft regions corresponding to the BDT search signal regions. The lower panels in each case show
the ratio of observed data yields to the total predicted background and the observed significance of the data relative to
the background-only hypothesis. The significance is computed following the profile likelihood method of Ref. [94] in
the case where the observed yield exceeds the prediction, and using the same expression with an overall minus sign if
the yield is below the prediction. The hatched (red) error bands indicate the combined experimental, theoretical and
MC statistical uncertainties.
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Figure 6: Observed numbers of events in data and SM background predictions for the MB-VROLdPhi regions
corresponding to the (a) MB-SSd, (b) MB-GGd, (c) MB-C signal regions from the multi-bin search, and (d) the
BDT-VROLdPhi regions corresponding to the BDT search signal regions. The lower panels in each case show the
ratio of observed data yields to the total predicted background and the observed significance of the data relative to the
background-only hypothesis. The significance is computed following the profile likelihood method of Ref. [94] in
the case where the observed yield exceeds the prediction, and using the same expression with an overall minus sign if
the yield is below the prediction. The hatched (red) error bands indicate the combined experimental, theoretical and
MC statistical uncertainties.

7 Systematic uncertainties

The systematic uncertainties (experimental and theoretical) in the background estimates feed into the
analysis via the extrapolation factors that relate observations in the control regions to background predictions
in the signal regions, and via the MC modelling of minor backgrounds. The overall post-fit background
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uncertainties for the multi-bin signal regions, detailed in Figure 7, range from 5% in most of the MB-SSd
regions to 60% in one MB-GGd region. The uncertainty in this last region is dominated by a statistical
fluctuation in the MC samples used to evaluate the experimental JER uncertainty, which arises from
tight requirements placed on m.g and ETmiSS /VHr. This fluctuation has a negligible impact on the results
presented later in this paper. In the BDT signal regions, the post-fit background uncertainties range from
8% in BDT-GGd3 to 28% in BDT-GGol, as shown in Figure 7(d).
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Figure 7: Breakdown of the largest systematic uncertainties in the background estimates, obtained following the
fits described in the text, for the (a) MB-SSd, (b) MB-GGd, (c¢) MB-C regions from the multi-bin search, and (d)
all regions from the BDT search. The individual uncertainties can be correlated, such that the total background
uncertainty is not necessarily their sum in quadrature.

For the backgrounds estimated with extrapolation factors derived from MC simulation, the primary common
sources of systematic uncertainty are the jet energy scale (JES) calibration, jet energy resolution (JER),
theoretical uncertainties in the modelling of these backgrounds, and limited event yields in the MC samples
and data CRs. Correlations between uncertainties (for instance between JES or JER uncertainties in CRs
and SRs) are taken into account where appropriate.

The JES and JER uncertainties are estimated using the methods discussed in Refs. [75, 95]. Variations
according to the scale and resolution of the missing transverse momentum are also considered [86]. The
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combined JES, JER and E%“i“ uncertainty (the last arising from soft tracks not associated with other
identified objects) ranges from 1% of the expected background in multi-bin signal regions which select
events with two jets, to ~ 60% in the MB-GGd region with tight requirements on m.g and E%“iss /VHrt. In
the BDT search, the same uncertainties range from 1% in BDT-GGd3 to 15% in BDT-GGol.

Uncertainties arising from theoretical modelling of background processes are estimated by comparing
samples produced with different MC generators or by varying the renormalisation and factorisation scales.
Uncertainties in each background from scale variations are fully correlated across regions and bins, and
uncorrelated between processes. In some cases this may result in uncertainties cancelling out, while the
higher-order corrections may not cancel out. Different fits with scale variations uncorrelated in all bins and
regions result in limits on the excluded cross-section near the edge of the exclusion region that are weaker
by up to 30% for gluino pair production models with direct decays and moderate neutralino mass. For
similar models with lower neutralino mass the degradation of the limits is a few percent.

The W /Z+jets modelling uncertainties are estimated by considering different merging (CKKW-L) and
resummation scales using alternative samples, PDF and strong coupling constant («as) variations from the
NNPDF3.0NNLO replicas [54], and variations of factorisation and renormalisation scales in the matrix-
element calculations. The last are evaluated using seven point variations, changing the renormalisation and
factorisation scales by factors of 0.5 and 2. Uncertainties in the modelling of top quark pair production are
estimated by comparing the nominal sample listed in Table 1 with alternative samples. The systematic
uncertainty due to the hard-scattering process is evaluated using a comparison of the nominal sample
with the sample generated with MADGraPHS_aMC@NLO interfaced to PyTHia 8. Fragmentation and
hadronisation uncertainties are assessed using a comparison of the nominal sample with a sample generated
with PowHEG-Box interfaced to the HErwiG 7 package [96] for parton showering. Initial-state radiation
uncertainties, as well as uncertainties arising from factorisation and renormalisation scale assumptions, and
uncertainties from the PyTHia 8 parton shower settings, are calculated by varying the relevant parameters
described in Ref. [97] and encapsulated in dedicated event weights in the nominal sample. Uncertainties
in diboson production due to PDF, strong coupling constant, and renormalisation and factorisation scale
uncertainties are estimated in a way similar to that for the W/Z+jets modelling uncertainties. The combined
theoretical uncertainty ranges from 3% to 13% in the multi-bin signal regions, except in a single bin of
the MB-SSd region with tight kinematic requirements, where it rises to 30%. The combined theoretical
uncertainty lies in the range 3% to 8% in the BDT search regions.

The impact of lepton reconstruction uncertainties, and of the uncertainties related to the b-tag/b-veto
efficiency, on the overall background uncertainty is found to be negligible for all SRs.

The uncertainties arising from the data-driven correction procedure applied to events selected in the CRy
region, described in Section 6, are included in Figure 7 under ‘CR statistical uncertainty’. The total
uncertainties due to CR data sample sizes range from 3% to 14% for multi-bin SRs and from 5% to 16%
for BDT SRs. The statistical uncertainty arising from the use of MC samples is largest in the MB-SSd and
MB-GGd SRs (up to 30%) and the BDT-GGol SR (8%). A uniform uncertainty of 100% related to the
multi-jet background estimates is applied to the multi-jet yield in all SRs, motivated by studies carried
out in a previous iteration of this analysis [91]. In most of the SRs the impact of these uncertainties is
negligible, and the maximum resulting contribution to the overall background uncertainty is less than
1%. Uncertainties in background estimates arising from the reweighting of MC samples to match the
distribution of the mean number of pile-up interactions observed in the dataset are found to be negligible.

Experimental uncertainties (JES, JER and E%‘iss) and MC statistical uncertainty in the SUSY signal samples
are estimated in the same way as for the background and are less than a few percent for most models.
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The signal cross-section uncertainty is estimated by computing the changes when the renormalisation and
factorisation scales, PDF and the strong coupling constant are varied. The uncertainties in the generation
of ISR and FSR in SUSY signal events are estimated by varying generator tunes in the simulation as well
as scales used in the matrix-element generator as a function of the mass difference, Am, between the gluino
(or squark) and the X ?. When Am = 25 GeV, this uncertainty ranges from ~10% for low jet multiplicities
to 25-30% for large jet multiplicities. At higher values of Am the uncertainty falls steeply and is negligible
for Am > 400 GeV.

8 Results, interpretation and limits

Distributions of mg and E%“SS/ v/Hr for events satisfying the selection criteria for any of the bins in the
(a) MB-SSd, (b) MB-GGd or (c) MB-C signal regions are shown in Figures 8 and 9 for data and for MC
samples normalised using the background-only fit described in Section 6. Similarly, distributions of the
final discriminating variable used in the BDT search obtained after applying the SR selection criteria but
before the final selection on the variable is applied, are shown in Figure 10 for selected signal regions.
Examples of SUSY signals are also shown for illustration. These signals correspond to the processes to
which each SR is primarily sensitive: §g production for the lower jet multiplicity SRs and g¢ production
for the higher jet multiplicity SRs. In these figures, data and background distributions largely agree within
uncertainties.
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Figure 8: Observed m.g distributions of events satisfying the selection criteria for any of the bins in the (a) MB-SSd,
(b) MB-GGd or (c) MB-C signal regions. The histograms show the MC background predictions normalised by the
background-only fit described in the text. The lower panels show the ratio of data to the background prediction. The
hatched (red) error bands indicate combined post-fit experimental, theoretical and MC statistical uncertainties, with
the experimental and theoretical uncertainties calculated using the coarser SR binning used in the fit rather than the
finer binning used in the histograms. Expected distributions for benchmark signal model points, normalised using
the approximate NNLO+NNLL cross-section (Section 3) times integrated luminosity, are also shown for comparison
(masses in GeV). In each case the overflow is included in the final bin.
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Figure 9: Observed EITniss /+/Hr distributions of events satisfying the selection criteria for any of the bins in the (a)
MB-SSd, (b) MB-GGd or (c) MB-C signal regions. The histograms show the MC background predictions normalised
by the background-only fit described in the text. The lower panels show the ratio of data to the background prediction.
The hatched (red) error bands indicate combined post-fit experimental, theoretical and MC statistical uncertainties,
with the experimental and theoretical uncertainties calculated using the coarser SR binning used in the fit rather than
the finer binning used in the histograms. Expected distributions for benchmark signal model points, normalised using
the approximate NNLO+NNLL cross-section (Section 3) times integrated luminosity, are also shown for comparison
(masses in GeV). In each case the overflow is included in the final bin.
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Figure 10: Observed BDT score distributions for the (a) BDT-GGd1 and (b) BDT-GGol regions obtained after
applying the SR selection criteria but before the final selection on this quantity is applied. The histograms show the
MC background predictions normalised by the background-only fit described in the text. The lower panels show the
ratio of data to the background prediction. The hatched (red) error bands indicate the combined post-fit experimental,
theoretical and MC statistical uncertainties, with the experimental and theoretical uncertainties calculated using
the SR selection used in the fit rather than on a histogram bin-by-bin basis. Expected distributions for benchmark
signal model points, normalised using the approximate NNLO+NNLL cross-section (Section 3) times integrated
luminosity, are also shown for comparison (masses in GeV).

The number of events observed in the data and the number of SM events expected to enter each of the signal
regions determined using the background-only fit are shown in Table 11 for the BDT search and in Table 12
for the model-independent search. The results of all searches presented in this paper are also summarised
in Figures 11 and 12. To quantify the level of agreement between background predictions and observed
yields and to set upper limits on the number of BSM signal events in each SR, a model-independent fit is
used [93]. This fit proceeds in the same way as the background-only fit, where yields in the CRs are used
to constrain the predictions of backgrounds in each SR, while the SR yield is also used in the likelihood
function with an additional parameter-of-interest describing potential signal contributions. The observed
and expected upper limits at 95% confidence level (CL) on the number of events from BSM phenomena
for each signal region (Szgs and Sg,fp) are derived using the CLg prescription [98], neglecting any possible
signal contamination in the CRs. These limits, when normalised by the integrated luminosity of the data
sample, may be interpreted as upper limits on the visible cross-section of BSM physics ((eo-)?f)s), where
the visible cross-section is defined as the product of production cross-section, acceptance and efficiency.
The model-independent fit is also used to compute the one-sided p-value (pg) of the background-only
hypothesis, which quantifies the statistical significance of an excess. The fit results are evaluated using
asymptotic formulae [99] except in SRs where less than 10 events are observed, where pseudo-experiments
are used. No statistically significant deviation from the background expectation is found for any of the
presented search strategies.
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BDT regions
Signal Region GGd1 GGd2 GGd3 GGd4

Total bkg pre-fit 29 56 253 348

Fitted background events

Diboson 3.0+0.9 49+1.4 21+5 26+7
Z[y*+jets 20+4 33+£5 139 + 14 180 + 18
W +jets 7.1+2.6 13+4 48 +8 52+9
z : 0.3 0.8
t7(+EW) + single top 0.1%59 0.655¢ 16+5 39+ 11
» 0.1 0.1 0.1
Multi-jet 0.1%5, - 0145 0135
Total bkg post-fit 30+5 52+6 223 £ 17 298 +23
Observed 34 68 227 291
(e o) [fb] 0.13 0.24 0.33 0.36
s95 18 33 46 50
95 6 8 17 21
Sexp 15%5 20+ 44710 54+
po (Z2) 0.30 (0.51)  0.05 (1.60)  0.44 (0.15)  0.50 (0.00)
Signal Region GGol GGo2 GGo3 GGod
Total bkg pre-fit 7 25 111 177

Fitted background events

Diboson 0.6+0.2 22+0.6 6.6+2.2 6.8+2.1
Z |y*+jets 3.8+1.3 10.9+1.9 35+6 39+7
W +jets 0.9+0.5 39+13 16+4 27+6
t7(+EW) + single top 0.2+0.2 1.3+0.8 28+6 85+ 14
.y 0.1 0.7
Multi-jet - - 0.1%5 0.7+
Total bkg post-fit 55+1.5 18+2.4 85+9 159 + 16
Observed 6 25 80 135
(oo [fb] 0.05 0.12 0.16 0.18
8% 7.1 17 22 25
95 2.3 5 10 14
5% 6.923 1175 25+ 37+l
po (Z) 0.49 (0.01)  0.10 (1.28)  0.50 (0.00)  0.50 (0.00)

Table 11: Numbers of events observed in the signal regions used in the BDT search compared with background
expectations obtained from the fits described in the text. Empty cells (indicated by a ‘~") correspond to estimates
lower than 0.01. The p-values (pg) give the probabilities of the observations being consistent with the estimated
backgrounds. For an observed number of events lower than expected, the p-value is capped at 0.5. Between
parentheses, p-values are also presented in terms of the number of equivalent Gaussian standard deviations (Z). Also
shown are 95% CL upper limits on the visible cross-section ((60')235), the visible number of signal events (Sggs )
and the number of signal events (ngp) given the expected number of background events (and +10 excursions of the

expectation).
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Model independent regions
Signal Region SR2j-1600  SR2j-2200  SR2j-2800 SR4j-1000  SR4j-2200

Total bkg pre-fit 2120 979 82 610 71

Fitted background events

Diboson 130 +29 T4+17  58=+1.7 4£12  63+17
Z[y*+ets 1510£120 670 +50 64+7 28123 35+4
W +jets 500£50  225+16 15524 144212 154%19
t1(+EW) + single top 44 +9 14+5 1.4+0.8 67 + 14 2.4+09
Multi-jet 02£02 0303 - 02202 -
Total bkg post-fit 2190+130 980+ 50 87+8 536+ 32 60+5
Observed 2111 971 78 535 60
(e, [fb] 1.47 078 0.14 0.52 0.14
s%. 204 108 19 72 19

95 90 +43 9 27 8

8%, 247+ 114743 24*9 7330 19*%
Po (2) 050 (0.00)  0.50(0.00) ~ 0.50(0.00) 050 (0.00) ~ 0.48 (0.05)

Signal Region SR4j-3400  SR5j-1600  SR6j-1000  SR6j-2200  SR6j-3400

Total bkg pre-fit 7 427 29 7 1.1

Fitted background events

Diboson 0.7+0.2 36+ 10 1.8+0.6 0.3%9%  0.1£0.0
Z [y*+ets 3.3+0.8 17016  9.3+£18 24206 0302
W +jets 1.6£0.4 80£7  72x16  15+05 0403
ti(+EW) + single top 0.1%91 33+6 2715  04x03 -
Multi-jet 0.1+01 0.2+0.2 - - -
Total bkg post-fit 57+1.0 319 £20 21+3  46+1.0  0.8+04
Observed 4 320 25 5

(e0)® [fb] 0.04 0.37 0.11 0.04 0.02
893 5.0 51 16 62 3.1
s% 6255 s i AN O R
po(Z) 0.50 (0.00)  0.48 (0.06)  0.24 (0.71) ~ 0.47 (0.06) ~ 0.50 (0.00)

Table 12: Numbers of events observed in the signal regions used in the model-independent search, compared with
background expectations obtained from the fits described in the text. Empty cells (indicated by a ‘-") correspond
to estimates lower than 0.01. The p-values (pg) give the probabilities of the observations being consistent with
the estimated backgrounds. For an observed number of events lower than expected, the p-value is capped at 0.5.
Between parentheses, p-values are also presented in terms of the number of equivalent Gaussian standard deviations

(Z). Also shown are 95% CL upper limits on the visible cross-section ((eo-)ggs), the visible number of signal events

95

(8% ) and the number of signal events (S&p

obs
of the expectation).

) given the expected number of background events (and +10 excursions
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Figure 11: Comparison of the observed and expected event yields as a function of signal region in the (a) MB-SSd,
(b) MB-GGd, (c) MB-C regions from the multi-bin search, and (d) regions from the BDT search. The background
predictions are those obtained from the background-only fits, as discussed in the text. The lower panels in each case
show the ratio of observed data yields to the total predicted background and the observed significance of the data
relative to the background-only hypothesis. The significance is computed following the profile likelihood method
of Ref. [94] in the case where the observed yield exceeds the prediction, and using the same expression with an
overall minus sign if the yield is below the prediction. The hatched (red) error bands indicate the combined post-fit
experimental, theoretical and MC statistical uncertainties.
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Figure 12: Comparison of the observed and expected event yields as a function of signal region in the model-
independent search. The background predictions are those obtained from the background-only fits, as discussed in
the text. The lower panels show the ratio of observed data yields to the total predicted background and the observed
significance of the data relative to the background-only hypothesis. The significance is computed following the
profile likelihood method of Ref. [94] in the case where the observed yield exceeds the prediction, and using the same
expression with an overall minus sign if the yield is below the prediction. The hatched (red) error band indicates the
combined post-fit experimental, theoretical and MC statistical uncertainties.

Model-dependent fits [93] in all the SRs are used to set limits on specific classes of SUSY models, using
asymptotic formulae [99] except in cases where the limit corresponds to a signal yield of fewer than three
events. Such a fit proceeds in the same way as the model-independent fit, except that both the signal yield
in the signal region and the signal contamination in the CRs are taken into account. Correlations between
signal and background systematic uncertainties are taken into account where appropriate. Systematic
uncertainties in the assumed signal yields due to detector effects and the theoretical uncertainties in the
signal acceptance are included in the fit. The results of the three search strategies, multi-bin, BDT and
model-independent, presented in this paper are all considered when constructing the final observed and
expected 95% CL exclusion limits. For each considered physics model the observed and expected exclusion
limits obtained from the signal region with the best expected CLg value are used. The limits are driven
for most models by the multi-bin search, which additionally exploits the shapes of the expected signal
distributions. The BDT search is most powerful for models characterised by complex topologies with large
jet multiplicities, such as one-step gluino decay models with significant mass splitting between SUSY
states. All the fits for the various model points and parameter spaces considered yield fitted SUSY signal
cross-sections consistent with zero within uncertainties.

Figure 13 shows the exclusion limits in simplified models with squark pair production and subsequent
direct squark decays into a quark and the lightest neutralino. The expected and observed exclusion limits
shown in the figure are obtained by using the signal region from the three search strategies with the best
expected sensitivity at each point. These regions are usually those from the multi-bin search, although
all signal regions are considered in the optimisation. Limits are shown both for a hypothesis of eight
mass-degenerate light-flavour squarks and for a hypothesis of a single non-mass-degenerate light-flavour
squark. From the observed limits in the former case, neutralino masses below about 800 GeV can be
excluded for squark masses of 1300 GeV, while squark masses below 1850 GeV are excluded for a massless
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neutralino, using the optimised signal regions from the multi-bin search.

qq production, B(q — q i:)=100%
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Figure 13: Exclusion limits in the mass plane of the lightest neutralino and first- and second-generation squarks

assuming squark pair production and direct decays § — gX (1) obtained by using the signal region with the best
expected sensitivity at each point. Observed limits are indicated by the medium dark (maroon) curve where the
solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by
the renormalisation and factorisation scale and PDF uncertainties. The expected limits are indicated with a dark
dashed curve, with the light (yellow) band indicating the 10~ excursions due to experimental and background-only
theoretical uncertainties. Limits are shown both for a hypothesis of eight mass-degenerate light-flavour squarks and
for a hypothesis of a single non-mass-degenerate light-flavour squark. Results are compared with the observed limits
for the hypothesis of eight mass-degenerate light-flavour squarks obtained by the previous ATLAS search with jets,
missing transverse momentum, and no leptons [13].

Another example of a direct decay is shown in Figure 14, where gluino pair production with the subsequent
decay g — ch)?(l) is considered. Due to the higher production cross-sections compared to squark pair
production, higher mass limits can be obtained. For gluino masses up to about 1000 GeV, neutralino masses
can be excluded up to 950 GeV, close to the kinematic limit near the diagonal. These limits are driven
by the multi-bin signal regions dedicated to models with small mass differences. For small neutralino
masses the observed lower limit on the gluino mass is as large as 2300 GeV. For gluino masses up to about
1700 GeV the best sensitivity is obtained with the optimised BDT regions, excluding neutralino masses
below about 1160 GeV.
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gg production, B(g — qq %:)=100%
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Figure 14: Exclusion limits in the mass plane of the lightest neutralino and the gluino for gluino pair production with
direct decays § — qgX ? obtained by using the signal region with the best expected sensitivity at each point. Observed
limits are indicated by the medium dark (maroon) curve where the solid contour represents the nominal limit, and the
dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF
uncertainties. The expected limits are indicated with a dark dashed curve, with the light (yellow) band indicating
the 10 excursions due to experimental and background-only theoretical uncertainties. Results are compared with
the observed limits obtained by the previous ATLAS searches with jets, missing transverse momentum, and no
leptons [13].
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Figure 15 shows the exclusion limits for squark pair production where the squark decays via an intermediate
chargino (one-step) into a quark, W boson and neutralino. For the model presented in Figure 15(a) the
chargino mass is fixed at m(¥7) = (m(§) + m(¥}))/2 and the result is shown in the (m(g), m(¥})) plane.
In the region close to the kinematic limit near the diagonal, neutralino and squark masses up to 600 GeV
are excluded, again driven by the multi-bin signal regions dedicated to models with small mass differences.
For massless neutralinos, squark masses are excluded below 1310 GeV. Figure 15(b) shows the exclusion
limits in the (m(g), X) plane, for X = Am (X%, X})/Am(g, X)), in models with the neutralino mass fixed to
60 GeV. Squark masses are excluded up to 1350 GeV for the most favourable X values. For low values of
m(X ?), the observed exclusion limits are less stringent than those expected, due to a small excess of events
in one bin of the MB-GGd SR with Nj > 4, meg = [2200,2800) GeV and EX* /v/Hy = [10, 16) GeV'/2
(see Figure 11(b)). While the MB-GGd event selection criteria are optimised for sensitivity to gluino pair
production with direct decays, they also provide sensitivity to these one-step squark pair production models
due to their increased jet multiplicity.
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Figure 15: Exclusion limits for squark pair production with a one-step decay via an intermediate chargino into qW)??.
Figure (a) shows the limits in the (m(§), m(¥})) plane for a chargino mass fixed at m(¥7) = (m(g) + m(¥}))/2.
Alternatively in Figure (b), the neutralino mass is fixed at 60 GeV and exclusion limits are given for X =
Am(Xi, X (1)) JAm (G, X ?), as a function of the squark mass. Exclusion limits are obtained by using the signal region
with the best expected sensitivity at each point. Observed limits are indicated by the medium dark (maroon)
curves where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the
signal cross-section by the renormalisation and factorisation scale and PDF uncertainties. The expected limits are
indicated with dark dashed curves, with the light (yellow) bands indicating the 10~ excursions due to experimental and
background-only theoretical uncertainties. Results are compared with the observed limits obtained by the previous
ATLAS searches with jets, missing transverse momentum, and no leptons [13].

The results of the search for gluino pair production with a one-step decay via an intermediate chargino
into ¢gg’'WX ? are shown in Figure 16. Figure 16(a) shows the limit for a chargino mass chosen such that
m(X7) = (m(g) + m(¥ ?)) /2. In the region close to the kinematic limit near the diagonal, neutralino and
gluino masses up to 900 GeV are excluded, driven by the multi-bin signal regions dedicated to models
with small mass differences. For massless neutralinos, gluino masses are excluded below 2220 GeV.
Figure 16(b) shows limits on X = Am(¥i, ¥))/Am (g, X)), for a neutralino mass of 60 GeV. Gluino
masses are excluded up to 2210 GeV for the most favourable values of X. The narrow corridor of decreased
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sensitivity to the gluino mass at X ~ 0.06 corresponds to models for which Am (X f,)?(l)) ~ m(W) and
hence the chargino decay products are produced at rest in the chargino rest frame, leading to reduced signal
acceptance.
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Figure 16: Exclusion limits for gluino pair production with a one-step decay via an intermediate chargino into g’ WX ?.
Figure (a) shows the limits in the (m (), m(¥})) plane for a chargino mass fixed at m(¥7) = (m(g) + m(¥}))/2.
Alternatively in Figure (b), the neutralino mass is fixed at 60 GeV and exclusion limits are given for X =

Am(XT, X (l)) JAm(g, X ?), as a function of the gluino mass. Exclusion limits are obtained by using the signal region
with the best expected sensitivity at each point. Observed limits are indicated by the medium dark (maroon)
curves where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the
signal cross-section by the renormalisation and factorisation scale and PDF uncertainties. The expected limits are
indicated with dark dashed curves, with the light (yellow) bands indicating the 10~ excursions due to experimental and
background-only theoretical uncertainties. Results are compared with the observed limits obtained by the previous
ATLAS searches with jets, missing transverse momentum, and no leptons [13].

Figure 17 expresses the mass limits in the (m(g), m(§)) plane in the model with combined production of
squark pairs, gluino pairs, and squark—gluino pairs, for different assumptions about the neutralino mass:
m(X ?) =0 GeV, 995 GeV or 1495 GeV, motivated by the assumptions used in Ref. [13]. Depending on
the mass hierarchy, the § — §g and § — gq one-step decays are taken into account. A lower limit of
3000 GeV for equal squark and gluino masses is found for the scenario with a massless X ?. The squark
production cross-section, which in the considered models is strongly dominated by #- and u-channel
diagrams, decreases with increasing gluino mass, leading to weaker limits in regions of the mass plane
where gluino masses are high. In regions where the gluino mass becomes greater than 8 TeV, the kinematics
is expected to stay the same, and the change of the production cross-section is expected to provide a smooth
transition of the exclusion limits between a gluino mass of 8.5 TeV and the decoupled gluino scenario.
In scenarios with m (X ?) =995 GeV, the search becomes less sensitive to models with very small mass
difference between the particles, as seen in models with gluino masses around 6 TeV and squark masses
around 1 TeV. In similar compressed regions, with the squark (gluino) mass close to the mass of the LSP
and the gluino (squark) mass as high as 4 TeV, the search still has sensitivity to such models due to g
production processes that provide sufficient acceptance.
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Figure 17: Exclusion limits for the model with combined production of squark pairs, gluino pairs, and squark—gluino
pairs, for different assumptions about the neutralino mass: (a) m( )2?) =0 GeV, (b) m(X ?) = 995 GeV and (c¢)

m( )2?) = 1495 GeV, varying values of m(g) and m(§) and assuming a purely bino X ? Exclusion limits are obtained
by using the signal region with the best expected sensitivity at each point. Observed limits are indicated by the
medium dark (maroon) curves where the solid contour represents the nominal limit, and the dotted lines are obtained
by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties. The
expected limits are indicated with dark dashed curves, with the light (yellow) bands indicating the 10~ excursions due
to experimental and background-only theoretical uncertainties. In Figure (a) observed and expected limits on squark
(gluino) masses are also shown, assuming gluino (squark) masses are decoupled as in simplified models presented in
Figure 13 (14). Results (a) and (b) are compared with the observed limits obtained by the previous ATLAS searches
with no leptons, jets and missing transverse momentum [13].
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9 Conclusions

This paper presents the results of three search strategies for squarks and gluinos in final states containing
high-pr jets, large missing transverse momentum but no electrons or muons, based on a 139 fb~! dataset
of 4/s = 13 TeV proton—proton collisions recorded by the ATLAS experiment at the LHC. No significant
deviation from the background expectation is found.

Results are interpreted in terms of simplified models with only first- and second-generation squarks, or
gluinos, together with a neutralino LSP, with the masses of all the other SUSY particles set such that the
particles are effectively decoupled. For a massless lightest neutralino, gluino masses below 2.30 TeV are
excluded at the 95% confidence level in a simplified model with only gluinos and the lightest neutralino.
For a simplified model involving the strong production of squarks of the first and second generations,
with decays to a massless lightest neutralino, squark masses below 1.85 TeV are excluded, assuming
mass-degenerate squarks of the first two generations. In simplified models with pair-produced squarks and
gluinos, each decaying via an intermediate X I into one quark or two quarks, a W boson and a X ?, squark
masses below 1.31 TeV and gluino masses below 2.22 TeV are excluded for massless X ? In models with
combined production of squark pairs, gluino pairs, and squark—gluino pairs, a lower limit of 3000 GeV for
equal squark and gluino masses is found for the scenario with a massless X (1).

These results extend the region of supersymmetric parameter space excluded by ATLAS searches
substantially beyond that obtained previously.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our
institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhl, Armenia; ARC, Australia, BMWFW and FWF,
Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada;
CERN; ANID, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO
CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU,
France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR,
China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO,
Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES
of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia;
DST/NREF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and
Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE
and NSF, United States of America. In addition, individual groups and members have received support
from BCKDF, CANARIE, Compute Canada, CRC and IVADO, Canada; Beijing Municipal Science &
Technology Commission, China; COST, ERC, ERDF, Horizon 2020 and Marie Sktodowska-Curie Actions,
European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG
and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and
the Greek NSRF, Greece; BSF-NSF and GIF, Israel; La Caixa Banking Foundation, CERCA Programme
Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Goran
Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom.

38



The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from
CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3
(France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC
(Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource
providers. Major contributors of computing resources are listed in Ref. [100].

References

(1]

(2]

(3]

(4]

(5]
(6]
(7]

(8]

(9]

(10]
(11]

[12]

[13]

[14]

[15]

[16]

Y. Golfand and E. Likhtman,
Extension of the Algebra of Poincare Group Generators and Violation of P Invariance,
JETP Lett. 13 (1971) 323, [Pisma Zh. Eksp. Teor. Fiz. 13 (1971) 452].

D. Volkov and V. Akulov, Is the neutrino a goldstone particle?, Phys. Lett. B 46 (1973) 109.

J. Wess and B. Zumino, Supergauge transformations in four dimensions,
Nucl. Phys. B 70 (1974) 39.

J. Wess and B. Zumino, Supergauge invariant extension of quantum electrodynamics,
Nucl. Phys. B 78 (1974) 1.

S. Ferrara and B. Zumino, Supergauge invariant Yang-Mills theories, Nucl. Phys. B 79 (1974) 413.
A. Salam and J. Strathdee, Super-symmetry and non-Abelian gauges, Phys. Lett. B 51 (1974) 353.

G. R. Farrar and P. Fayet, Phenomenology of the production, decay, and detection of new hadronic
states associated with supersymmetry, Phys. Lett. B 76 (1978) 575.

H. Goldberg, Constraint on the Photino Mass from Cosmology, Phys. Rev. Lett. 50 (1983) 1419,
Erratum: Phys. Rev. Lett. 103 (2009) 099905.

J. Ellis, J. Hagelin, D. V. Nanopoulos, K. A. Olive and M. Srednicki,
Supersymmetric relics from the big bang, Nucl. Phys. B 238 (1984) 453.

L. Evans and P. Bryant, LHC Machine, JINST 3 (2008) S08001.

P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions,
Phys. Lett. B 64 (1976) 159.

P. Fayet,
Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions,
Phys. Lett. B 69 (1977) 489.

ATLAS Collaboration, Search for squarks and gluinos in final states with jets and missing
transverse momentum using 36 fb~' of \s = 13 TeV pp collision data with the ATLAS detector,
Phys. Rev. D 97 (2018) 112001, arXiv: 1712.02332 [hep-ex].

P. Speckmayer, A. Hocker, J. Stelzer and H. Voss,
The toolkit for multivariate data analysis, TMVA 4, J. Phys.: Conf. Ser. 219 (2010) 032057.

CMS Collaboration, A search for new phenomena in pp collisions at \/s = 13 TeV in final states
with missing transverse momentum and at least one jet using the at variable,
Eur. Phys. J. C 77 (2017) 294, arXiv: 1611.00338 [hep-ex].

CMS Collaboration,
Inclusive search for supersymmetry using razor variables in pp collisions at \[s = 13 TeV,
Phys. Rev. D 95 (2017) 012003, arXiv: 1609.07658 [hep-ex].

39



[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

CMS Collaboration, Search for new physics with the MT2 variable in all-jets final states produced
in pp collisions at \s = 13 TeV, JHEP 10 (2016) 006, arXiv: 1603.04053 [hep-ex].

CMS Collaboration, Search for natural and split supersymmetry in proton-proton collisions at
Vs = 13 TeV in final states with jets and missing transverse momentum, JHEP 05 (2018) 025,
arXiv: 1802.02110 [hep-ex].

CMS Collaboration, Search for new phenomena with the M, variable in the all-hadronic final
state produced in proton-proton collisions at \/s = 13 TeV, Eur. Phys. J. C 77 (2017) 710,
arXiv: 1705.04650 [hep-ex].

CMS Collaboration, Search for supersymmetry in multijet events with missing transverse
momentum in proton-proton collisions at 13 TeV, Phys. Rev. D 96 (2017) 032003,
arXiv: 1704.07781 [hep-ex].

ATLAS Collaboration, Search for squarks and gluinos in events with an isolated lepton, jets, and
missing transverse momentum at \/s = 13 TeV with the ATLAS detector,
Phys. Rev. D 96 (2017) 112010, arXiv: 1708.08232 [hep-ex].

J. Alwall, M.-P. Le, M. Lisanti and J. G. Wacker,
Searching for directly decaying gluinos at the Tevatron, Phys. Lett. B 666 (2008) 34,
arXiv: 0803.0019 [hep-ph].

J. Alwall, P. Schuster and N. Toro,
Simplified models for a first characterization of new physics at the LHC,
Phys. Rev. D 79 (2009) 075020, arXiv: 8810.3921 [hep-ph].

D. Alves et al., Simplified models for LHC new physics searches, J. Phys. G 39 (2012) 105005,
arXiv: 1105.2838 [hep-ph].

ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider,
JINST 3 (2008) S08003.

ATLAS Collaboration, ATLAS Insertable B-Layer Technical Design Report,

ATLAS-TDR-19 (2010), urL: https://cdsweb.cern.ch/record/1291633,

ATLAS Insertable B-Layer Technical Design Report Addendum, ATLAS-TDR-19-ADD-1, 2012,
URL: https://cds.cern.ch/record/1451888.

B. Abbott et al., Production and integration of the ATLAS Insertable B-Layer,
JINST 13 (2018) T05008, arXiv: 1803.00844 [physics.ins-det].

ATLAS Collaboration, Performance of the ATLAS Trigger System in 2015,
Eur. Phys. J. C 77 (2017) 317, arXiv: 1611.09661 [hep-ex].

ATLAS Collaboration,
ATLAS data quality operations and performance for 2015-2018 data-taking,
JINST 15 (2020) P04003, arXiv: 1911.04632 [physics.ins-det].

ATLAS Collaboration,
Luminosity determination in pp collisions at \s = 13 TeV using the ATLAS detector at the LHC,
ATLAS-CONEF-2019-021, 2019, urL: https://cds.cern.ch/record/2677054.

G. Avoni et al., The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS,
JINST 13 (2018) PO7017.

A. Djouadi, M. Muhlleitner and M. Spira,
Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-Hdecay-InTerface),
Acta Phys. Polon. B 38 (2007) 635, arXiv: hep-ph/0609292 [hep-ph].

40



(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

J. Alwall et al., The automated computation of tree-level and next-to-leading order differential
cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079,
arXiv: 1405.0301 [hep-ph].

T. Sjostrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159,
arXiv: 1410.3012 [hep-ph].

L. Lonnblad and S. Prestel, Matching tree-level matrix elements with interleaved showers,
JHEP 03 (2012) 019, arXiv: 1109.4829 [hep-ph].

ATLAS Collaboration, Summary of ATLAS Pythia 8 tunes, ATL-PHYS-PUB-2012-003 (2012),
URL: https://cdsweb.cern.ch/record/1474107.

R. D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244,
arXiv: 1207.1303 [hep-ph].

W. Beenakker, C. Borschensky, M. Krimer, A. Kulesza and E. Laenen,
NNLL-fast: predictions for coloured supersymmetric particle production at the LHC with threshold
and Coulomb resummation, JHEP 12 (2016) 133, arXiv: 1607 .07741 [hep-ph].

W. Beenakker et al.,
NNLL Resummation for Squark-Antisquark and Gluino-Pair Production at the LHC,
JHEP 12 (2014) 023, arXiv: 1404.3134 [hep-ph].

W. Beenakker et al.,
Towards NNLL resummation: hard matching coefficients for squark and gluino hadroproduction,
JHEP 10 (2013) 120, arXiv: 1304.6354 [hep-ph].

W. Beenakker et al., NNLL resummation for squark-antisquark pair production at the LHC,
JHEP 01 (2012) 076, arXiv: 1110.2446 [hep-ph].

W. Beenakker et al., Soft-gluon resummation for squark and gluino hadroproduction,
JHEP 12 (2009) 041, arXiv: 0909.4418 [hep-ph].

A. Kulesza and L. Motyka, Soft gluon resummation for the production of gluino-gluino and
squark-antisquark pairs at the LHC, Phys. Rev. D 80 (2009) 095004,
arXiv: 0905.4749 [hep-ph].

A. Kulesza and L. Motyka,
Threshold Resummation for Squark-Antisquark and Gluino-Pair Production at the LHC,
Phys. Rev. Lett. 102 (2009) 111802, arXiv: 0807.2405 [hep-ph].

W. Beenakker, R. Hopker, M. Spira and P. Zerwas,
Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51,
arXiv: hep-ph/9610490.

J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001,
arXiv: 1510.03865 [hep-ph].

ATLAS Collaboration,
Improvements in tt modelling using NLO+PS Monte Carlo generators for Run 2,
ATL-PHYS-PUB-2018-009, 2018, urL: https://cds.cern.ch/record/2630327.

T. Gleisberg and S. Hoche, Comix, a new matrix element generator, JHEP 12 (2008) 039,
arXiv: 0808.3674 [hep-ph].

F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops,
Phys. Rev. Lett. 108 (2012) 111601, arXiv: 1111.5206 [hep-ph].

41



[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

S. Schumann and F. Krauss,
A Parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038,
arXiv: 0709.1027 [hep-ph].

S. Hoche et al., QCD matrix elements + parton showers: The NLO case, JHEP 04 (2013) 027,
arXiv: 1207.5030 [hep-ph].

T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007,
arXiv: 0811.4622 [hep-ph].

R. Gavin, Y. Li, F. Petriello and S. Quackenbush,
FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order,
Comput. Phys. Commun. 182 (2011) 2388, arXiv: 1011.3540 [hep-ph].

R. D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040,
arXiv: 1410.8849 [hep-ph].

S. Hoche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers,
JHEP 05 (2009) 053, arXiv: 0903.1219 [hep-ph].

S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations
in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043,
arXiv: 1002.2581 [hep-ph].

M. Czakon, P. Fiedler and A. Mitov,
Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through O(arg),
Phys. Rev. Lett. 110 (2013) 252004, arXiv: 1303.6254 [hep-ph].

M. Czakon and A. Mitov,
Top++: A program for the calculation of the top-pair cross-section at hadron colliders,
Comput. Phys. Commun. 185 (2014) 2930, arXiv: 1112.5675 [hep-ph].

ATLAS Collaboration, ATLAS Pythia 8 tunes to 7 TeV data, ATL-PHYS-PUB-2014-021, 2014,
URL: https://cds.cern.ch/record/1966419.

N. Kidonakis,

Two-loop soft anomalous dimensions for single top quark associated production with a W- or H-,

Phys. Rev. D 82 (2010) 054018, arXiv: 1005.4451 [hep-ph].

N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel
single top quark production, Phys. Rev. D 83 (2011) 091503, arXiv: 1103.2792 [hep-ph].

M. Aliev et al., HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR,
Comput. Phys. Commun. 182 (2011) 1034, arXiv: 1007.1327 [hep-ph].

P. Kant et al., HatHor for single top-quark production: Updated predictions and uncertainty
estimates for single top-quark production in hadronic collisions,
Comput. Phys. Commun. 191 (2015) 74, arXiv: 1406.4403 [hep-ph].

A. Lazopoulos, T. McElmurry, K. Melnikov and F. Petriello,
Next-to-leading order QCD corrections to ttZ production at the LHC, Phys. Lett. B 666 (2008) 62,
arXiv: 0804.2220 [hep-ph].

J. M. Campbell and R. K. Ellis, ##W* production and decay at NLO, JHEP 07 (2012) 052,
arXiv: 1204.5678 [hep-ph].

ATLAS Collaboration, The ATLAS Simulation Infrastructure, Eur. Phys. J. C 70 (2010) 823,
arXiv: 1005.4568 [physics.ins-det].

42



[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

S. Agostinelli et al., GEANT4: A simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250.

ATLAS Collaboration,
The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim,
ATL-PHYS-PUB-2010-013, 2010, urL: https://cds.cern.ch/record/1300517.

D. J. Lange, The EvtGen particle decay simulation package,
Nucl. Instrum. Meth. A 462 (2001) 152.

M. Cacciari, G. P. Salam and G. Soyez, The anti-k, jet clustering algorithm, JHEP 04 (2008) 063,
arXiv: 0802.1189 [hep-ph].

M. Cacciari, G. P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896,
arXiv: 1111.6097 [hep-ph].

ATLAS Collaboration,
Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1,
Eur. Phys. J. C 77 (2017) 490, arXiv: 1603.02934 [hep-ex].

M. Cacciari and G. P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119,
arXiv: 0707.1378 [hep-ph].

ATLAS Collaboration, Pile-up subtraction and suppression for jets in ATLAS,
ATLAS-CONF-2013-083, 2013, urL: https://cds.cern.ch/record/1570994.

ATLAS Collaboration, Jet energy scale measurements and their systematic uncertainties in
proton—proton collisions at /s = 13 TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 072002,
arXiv: 1703.09665 [hep-ex].

ATLAS Collaboration, Optimisation of the ATLAS b-tagging performance for the 2016 LHC Run,
ATL-PHYS-PUB-2016-012, 2016, urL: https://cds.cern.ch/record/2160731.

ATLAS Collaboration, Performance of b-jet identification in the ATLAS experiment,
JINST 11 (2016) P04008, arXiv: 1512.01094 [hep-ex].

ATLAS Collaboration, Tagging and suppression of pileup jets with the ATLAS detector,
ATLAS-CONF-2014-018 (2014), urL: https://cds.cern.ch/record/1700870.

ATLAS Collaboration, Characterisation and mitigation of beam-induced backgrounds observed in
the ATLAS detector during the 2011 proton-proton run, JINST 8 (2013) PO7004,
arXiv: 1303.0223 [hep-ex].

ATLAS Collaboration, Muon reconstruction performance of the ATLAS detector in proton—proton
collision data at \/s =13 TeV, Bur. Phys. J. C 76 (2016) 292, arXiv: 1603.05598 [hep-ex].

ATLAS Collaboration, Electron and photon performance measurements with the ATLAS detector
using the 2015-2017 LHC proton-proton collision data, JINST 14 (2019) P12006,
arXiv: 1908.00005 [hep-ex].

ATLAS Collaboration, Electron reconstruction and identification in the ATLAS experiment using
the 2015 and 2016 LHC proton-proton collision data at \s = 13 TeV,
Eur. Phys. J. C 79 (2019) 639, arXiv: 1902.04655 [physics.ins-det].

ATLAS Collaboration, Electron efficiency measurements with the ATLAS detector using 2012
LHC proton-proton collision data, Eur. Phys. J. C 77 (2017) 195, arXiv: 1612.01456 [hep-ex].

ATLAS Collaboration, Measurement of the photon identification efficiencies with the ATLAS
detector using LHC Run-1 data, Eur. Phys. J. C 76 (2016) 666, arXiv: 1606.01813 [hep-ex].

43



[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]
[97]
(98]

[99]

[100]

ATLAS Collaboration, Measurement of the photon identification efficiencies with the ATLAS
detector using LHC Run 2 data collected in 2015 and 2016, Eur. Phys. J. C 79 (2019) 205,
arXiv: 1810.05087 [hep-ex].

ATLAS Collaboration, Performance of missing transverse momentum reconstruction with the
ATLAS detector using proton—proton collisions at /s = 13 TeV, Eur. Phys. J. C 78 (2018) 903,
arXiv: 1802.08168 [hep-ex].

ATLAS Collaboration,
E;”"“ performance in the ATLAS detector using 2015-2016 LHC pp collisions,
ATLAS-CONF-2018-023, 2018, urL: https://cds.cern.ch/record/2625233.

J. D. Bjorken and S. J. Brodsky, Statistical Model for Electron-Positron Annihilation into Hadrons,
Phys. Rev. D 1 (1970) 1416.

ATLAS Collaboration, Evidence for the H — bb decay with the ATLAS detector,
JHEP 12 (2017) 024, arXiv: 1708.03299 [hep-ex].

ATLAS Collaboration,
Observation of H — bb decays and VH production with the ATLAS detector,
Phys. Lett. B 786 (2018) 59, arXiv: 1808.08238 [hep-ex].

ATLAS Collaboration, Search for squarks and gluinos with the ATLAS detector in final states with
jets and missing transverse momentum using 4.7 fb~' of \s = 7 TeV proton—proton collision data,
Phys. Rev. D 87 (2013) 012008, arXiv: 1208.0949 [hep-ex].

ATLAS Collaboration, Search for squarks and gluinos with the ATLAS detector in final states with
Jets and missing transverse momentum using /s = 8 TeV proton—proton collision data,
JHEP 09 (2014) 176, arXiv: 1405.7875 [hep-ex].

M. Baak et al., HistFitter software framework for statistical data analysis,
Eur. Phys. J. C 75 (2015) 153, arXiv: 1410.1280 [hep-ex].

R. D. Cousins, J. T. Linnemann and J. Tucker,

Evaluation of three methods for calculating statistical significance when incorporating a
systematic uncertainty into a test of the background-only hypothesis for a Poisson process,
Nucl. Instrum. Meth. A 595 (2008) 480, arXiv: physics/0702156 [physics.data-an].

ATLAS Collaboration, Jet Calibration and Systematic Uncertainties for Jets Reconstructed in the
ATLAS Detector at \s = 13 TeV, ATL-PHYS-PUB-2015-015, 2015,
URL: https://cds.cern.ch/record/2037613.

J. Bellm et al., Herwig 7.0/Herwig++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196,
arXiv: 1512.01178 [hep-ph].

ATLAS Collaboration, Studies on top-quark Monte Carlo modelling for Top2016,
ATL-PHYS-PUB-2016-020, 2016, urL: https://cds.cern.ch/record/2216168.

A. L. Read, Presentation of search results: the CLy technique, J. Phys. G 28 (2002) 2693.

G. Cowan, K. Cranmer, E. Gross and O. Vitells,
Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554,
arXiv: 1007.1727 [physics.data-an].

ATLAS Collaboration, ATLAS Computing Acknowledgements, ATL-SOFT-PUB-2020-001,
URL: https://cds.cern.ch/record/2717821.

44



The ATLAS Collaboration

G. Aad'??, B. Abbott!?®, D.C. Abbott!?3, A. Abed Abud’®, K. Abeling>?, D.K. Abhayasinghe®*,

S.H. Abidi'®’, O.S. AbouZeid*®, N.L. Abraham'>®, H. Abramowicz'®!, H. Abreu!®, Y. Abulaiti®,

B.S. Acharya67a'67b’“, B. Achkar?, L. Adam'%, C. Adam Bourdarios?, L. Adamczyk84a, L. Adamek'®’,
J. Adelman'?!, A. Adiguzellzc'ac, S. Adorni®*, T. Adyel43, A.A. Affolder'®, Y. Afik'®°, C. Agapopouloués,
M.N. Agaras®®, A. Aggarwal'!?, C. Agheorghiesei’’®, J.A. Aguilar-Saavedra'3°t13%.ab A - Ahmad?,

F. Ahmadov®®, W.S. Ahmed'™, X. Ai'8, G. Aielli’**74" S. Akatsuka®®, M. Akbiyik'®, T.P.A. Akesson”’,
E. Akilli**, A.V. Akimov'!", K. Al Khoury®, G.L. Alberghi>3®?3, J. Albert!’®, M.J. Alconada Verzini'®!,
S. Alderweireldt*®, M. Aleksa’®, I.N. Aleksandrov®?, C. Alexa®’®, T. Alexopoulos'®, A. Alfonsi'?,

F. Alfonsi>*®2% M. Alhroob!?®, B. Ali'*!, S. Ali'>®, M. Aliev!%®, G. Alimonti®®?, C. Allaire®,

B.M.M. Allbrooke!>®, B.W. Allen'3!, P.P. Allportzl, A. Aloisio’%70 E Alonso®?, C. Alpigianimg,

E. Alunno Camelia’74® M. Alvarez Estevez®?, M.G. Alviggi70a’70b, Y. Amaral Coutinho8'?,

A. Ambler'%, L. Ambroz!'3*, C. Amelung36, D. Amidei'®, S.P. Amor Dos Santos'%2, S. Amoroso?°,
C.S. Amrouche®*, F. An”°, C. Anastopoulosl49, N. Andari'**, T. Andeen!!, J.K. Anders?0,

S.Y. Andrean®®*? A Andreazza®>%" V. Andrei®?, C.R. Anelli!’®, S. Angelidakis9, A. Angerami39,
A.V. Anisenkov!Z2>:1222 A - Annovi’?2, C. Antel®*, M.T. Anthony149, E. Antipov129, M. Antonelli’!,
D.J.A. Antrim'®, F. Anulli’??, M. Aoki®?, J.A. Aparisi Pozo'’4, M.A. Aparo'®, L. Aperio Bella*,

N. Aranzabal®°, V. Araujo Ferraz8'2, R. Araujo Pereira®!®, C. Arcangelett15 I A.TH. Arce®,

J-F. Arguin''%, S. Argyropoulos?, J.-H. Arling*®, A.J. Armbruster®®, A. Armstrong!’!, O. Arnaez'®’,

H. Arnold'?°, Z.P. Arrubarrena Tame!'#, G. Artoni'3*, H. Asada'!’, K. Asai'2®, S. Asai!®3,

T. Asawatavonvanich'®, N. Asbah>®, E.M. Asimakopoulouln, L. Asquith156, J. Assahsah,

K. Assamaganzg, R. Astalos?®? R.J. Atkin?3, M. Atkinson'”?, N.B. Atlaylg, H. Atmani®,

P.A. Atmasiddha'%®, K. Augsten141, V.A. Austruplgz, G. Avolio®®, M.K. Ayoublsa, G. Azuelos!'10-4

D. Babal®%?, H. Bachacou'!#*, K. Bachas!®?, F. Backman*24® P, Bagnaia73a’73b, M. Bahmani®>,

H. Bahrasemani'>2, A.J. Bailey!”*, V.R. Bailey'’3, J.T. Baines'#, C. Bakalis'?, O.K. Baker'®3,

P.J. Bakker'?, E. Bakos'®, D. Bakshi Gupta®, S. Balaji'>’, R. Balasubramanian'?’, E.M. Baldin!?%>1222,
P. Balek!80, F. Balli!**, W.K. Balunas!?*, J. Balz!%°, E. Banas®, M. Bandieramonte!38,

A. Bandyopadhyay'®, Sw. Banerjee'8', L. Barak'®!, W.M. Barbe?®, E.L. Barberio'®, D. Barberis>>?>2,
M. Barbero!%2, G. Barbour”, T. Barillari'!®, M-S. Barisits3°, J. Barkeloo!3!, T. Barklow!>3, R. Barnea!%",
B.M. Barnett'43, R.M. Barnett!$, Z. Barnovska—Blenessy60a, A. Baroncelli®®, G. Barone®, A.J. Barr!3*,
L. Barranco Navarro*2%? F Barreiro?’, J. Barreiro Guimardes da Costa'?, U. Barron!®!, S. Barsov'?’,
F. Bartels®'2, R. Bartoldus'33, G. Bartolini'?2, A.E. Barton?°, P. Bartos%?, A. Basalaev*®, A. Basan'%?,
A. Bassalat®>¢, M.J. Basso'¢’, R.L. Bates®’, S. Batlamous>>¢, J.R. Batley32, B. Batool!>!, M. Battaglia145,
M. Bauce”?®73% F. Bauer'**, P. Bauer?*, H.S. Bawa’!, A. Bayirlilzc, J.B. Beacham®, T. Beau!3?,

P.H. Beauchemin!”", F. Becherer2, P. Bechtle?*, H.C. Beck™?, H.P. Beck?*P, K. Becker!’®, C. Becot™,
A. Beddall'?d, A.J. Beddall'??, V.A. Bednyakov®®, M. Bedognetti'?, C.P. Bee'>>, T.A. Beermann'#?,

M. Begalli®'®, M. Begel®, A. Behera'>®, J.K. Behr*®, F. Beisiegel**, M. Belfkir’, A.S. Bell”>, G. Bella'®!,
L. Bellagamba®®, A. Bellerive**, P. Bellos’, K. Beloborodov!'??*1222 K. Belotskiy'!?, N.L. Belyaev!'?,
D. Benchekroun®?, N. Benekos!?, Y. Benhammou!®!, D.P. Benjamin6, M. Benoit®, J.R. Bensinger26,

S. Bentvelsen'??, L. Beresford'34, M. Beretta®!, D. Bergel9, E. Bergeaas Kuutmann'”2, N. Berger5 s

B. Bergmann141, L.J. Bergstenzﬁ, J. Beringerlg, S. Berlendis’, G. Bernardi'®, C. Bernius'>3,

F.U. Bernlochner?*, T. Berry94, P. Berta'%, A. Berthold*®, I.A. Bertram®®, O. Bessidskaia Bylundlgz,

N. Besson144, S. Bethke!!5, A. Betti*?, AJ. Bevan93, J. Beyer”s, S. Bhatta!>%, D.S. Bhattacharya177,

P. Bhattarai’, V.S. Bhopatkar®, R. Bi!3®  R.M. Bianchi!?%, O. Biebel!'#, D. Biedermann'?, R. Bielski’®,
K. Bierwagen'%, N.V. Biesuz’?»7?*, M. Biglietti’>?, T.R.V. Billoud'#!, M. Bindi*3, A. Bingul'?9,

45



C. Bini’®*73", S, Biondi?*»?3, C.J. Birch-sykes'?!, M. Birman!®, T. Bisanz>¢, J.P. Biswal’,

D. Biswas'31i, A, Bitadze!?!, C. Bittrich*®, K. Bjgrke'>3, T. Blazek?®2, I. Bloch*®, C. Blocker?®, A. Blue®’,
U. Blumenschein??, G.J. Bobbink'?°, V.S. Bobrovnikov'??*1222 'S S Bocchetta®’, D. Bogavac'?,

A.G. Bogdanchikov!?2>1222 C. Bohm*?2, V. Boisvert’*, P. Bokan'7>33, T. Bold®**, A.E. Bolz®'®,

M. Bomben'33, M. Bona”?, J.S. Bonilla'3!, M. Boonekamp'#*, C.D. Booth™, A.G. Borbély”’,

H.M. Borecka-Bielska®!, L.S. Borgna95, A. Borisov!?3, G. Borissov®?, D. Bortoletto!3*, D. BoscheriniZ3?,
M. Bosman'?, J.D. Bossio Sola!®, K. Bouaouda®*?, J. Boudreau!'38, E.V. Bouhova-Thacker®°,

D. Boumediene33, A. Boveia'?’, J. Boyd36, D. Boye33c, LR. Boykogo, A.J. Bozson”, J. Bracinik?!,

N. Brahimi®®, G. Brandt'®2, O. Brandt32, F. Braren*®, B. Brau!?*, J.E. Brau'3!, W.D. Breaden Madden®’,
K. Brendlinger46, R. Brener'®, L. Brenner°, R. Brenner!'’2, S. Bressler!8?, B. Brickwedde!%,

D.L. Briglin?!, D. Britton®’, D. Britzger!'>, I. Brock?*, R. Brock'”’, G. Brooijmans3®, W.K. Brooks 464,
E. Brost??, P.A. Bruckman de Renstrom®, B. Briiers*®, D. Bruncko?®®, A. Bruni?*®, G. Bruni?®,

M. Bruschi?*®, N. Bruscino’*73®, L. Bryngemark '3, T. Buanes'’, Q. Buat!3, P. Buchholz!3!,

A.G. Buckley®’, I.A. Budagov®’, M.K. Bugge'**, O. Bulekov'!?, B.A. Bullard*’, T.J. Burch!?!,

S. Burdin’!, C.D. Burgardlzo, A.M. Burgerlzg, B. Burghgraveg, J.T.P. Burr*®, C.D. Burton!!,

J.C. Burzynski“B, V. Biischer'®, E. Buschmann?, P.J. Bussey57, J.M. Butler®, C.M. Buttar”’,

J.M. Butterworth®, P. Butti*®, W. Buttinger143, C.J. Buxo Vazquezlm, A. Buzatu!’8,

AR. Buzykaevlzzb’lzza, G. Cabras?3-23a S (Cabrera Urban'”#, D. Caforio®®, H. Cai'38, V.M.M. Cairo!3,
0. Cakir*, N. Calace®®, P. Calafiura'®, G. Calderini'?>, P. Calfayan®®, G. Callea®’, L.P. Caloba3'®,

A. Caltabiano’#74b S Calvente Lopez”®, D. Calvet®8, S. Calvet®®, T.P. Calvet!??, M. Calvetti’?*72b,

R. Camacho Toro!®, S. Camarda®®, D. Camarero Munoz”, P. Camarri’#*74® M. T. Camerlingo’®7°",
D. Cameron'33, C. Camincher®®, S. Campana®®, M. Campanelli®>, A. Camplani*’, V. Canale’%®70

A. Canesse!®, M. Cano Bret’8, J. Cantero'?’, T. Cao'¢!, Y. Cao'73, M. Capua*!®#!2 R. Cardarelli’*?,

F. Cardillo'”, G. Carducci*'®*2 1. Carli!*?, T. Carli*®, G. Carlino’®, B.T. Carlson!38,

E.M. Carlson!'7%-1082 1. Carminati®®®®, R. M.D. Carney153 ,S. Caron!!® E. Carquin146d, S. Carra®®,

G. Carratta®?232 J W.S. Carter'®”, T.M. Carter™®, M.P. Casado'*f, A.F. Casha!®’, E.G. Castiglia183,

F.L. Castillo'”, L. Castillo Garcia'®, V. Castillo Gimenez!”*, N.F. Castro!3913% A Catinaccio’®,

J.R. Catmore!33, A. Cattai®®, V. Cavaliere?, V. Cavasinni’?*7?® E. Celebi'?®, F. Celli'3*, K. Cerny130,
A.S. Cerqueira®'®, A. Cerri'®, L. Cerrito’**7#_ F. Cerutti'®, A. Cervelli?®*23, S A. Cetin'?®, Z. Chadi®>?,
D. Chakraborty'?!, J. Chan'8', W.S. Chan'?’, W.Y. Chan’!, J.D. Chapman??, B. Chargeishvili'>*®,

D.G. Charlton?!, T.P. Charman®?, M. Chatterjee?’, C.C. Chau’*, S. Che'?’, S. Chekanov®,

S.V. Chekulaev'®®, G.A. Chelkov®®2, B. Chen’?, C. Chen®®, C.H. Chen’®, H. Chen'¢, H. Chen?’,

J. Chen%%, J. Chen, J. Chen?®, S. Chen'3%, S.J. Chen'>°, X. Chen!*", Y. Chen®®?, Y-H. Chen*,

H.C. Cheng®?, H.J. Cheng'®, A. Cheplakov®’, E. Cheremushkina'??, R. Cherkaoui E1 Moursli®>®,

E. Cheu’, K. Cheung64, T.J.A. Chevalérias'**, L. Chevalier'#*, V. Chiarella®!, G. Chiarelli’??,

G. Chiodini®?, A.S. Chisholm?!, A. Chitan?’®, 1. Chiu'®, Y.H. Chiu'”®, M.V. Chizhov®, K. Choi'!,
A.R. Chomont”3*73 'Y, Chou'®, Y.S. Chow!?, L.D. Christopher®3¢, M.C. Chu®3%, X. Chu'>»15¢,

J. Chudoba'4?, J.J. Chwastowski®, L. Chytka!3?, D. Cieri'!3, K.M. Ciesla®, V. Cindro”?, I.A. Cioard>’®,
A. Ciocio'®, F. Cirotto’%7% 7 H. Citron'3% M. Citterio®?, D.A. Ciubotaru®’®, B.M. Ciungu'®’,

A. Clark>*, PJ. Clark®®, S.E. Clawson'?!, C. Clement*®*®_ Y. Coadou!?2, M. Cobal®’®%7¢ A Coccaro>P,
J. Cochran”®, R. Coelho Lopes De Sa'®, H. Cohen'®!, A.E.C. Coimbra®, B. Cole*®, A.P. Colijn'?°,

J. Collot>8, P. Conde Muifio!3%*13% 'S H. Connell®*, L.A. Connelly57, S. Constantinescu?’®,

F. Conventi’%2k A M. Cooper—Sarkar134, F. Cormier!”, K.J.R. Cormier'®’, L.D. Corpe95,

M. Corradi’?*73" E.E. Corrigan97, F. Corriveau!%*2, M.J. Costa!”, F. Costanza®, D. Costanzo'4?,

G. Cowan™, I.W. Cowley32, J. Crane!®! K. Cranmer'®, R.A. Creager136, S. Crépé-RenaudinSS,

F. Crescioli'®®, M. Cristinziani?*, V. Croft!”°, G. Crosetti*!®#12 A. Cueto®, T. Cuhadar Donszelmann!”!,
H. Cui®»!3d A R. Cukierman'®3, W.R. Cunningham57, S. Czekierda®®, P. Czodrowski°,

46



M.M. Czuryloﬁlb, M.J. Da Cunha Sargedas De Sousa®®, J.V. Da Fonseca Pinto3'?, C. Da Via!?!,

W. Dabrowski®*®, F. Dachs®, T. Dado*’, S. Dahbi**¢, T. Dai!?®, C. Dallapiccola!®3, M. Dam*’,

G. D’amen®, V. D’Amico”*73®, J. Damp'®, J.R. Dandoy'3, M.F. Daneri*’, M. Danninger'?, V. Dao,
G. Darbo™®, O. Dartsi®, A. Dattagupta'3!, T. Daubney*®, S. D’Auria®®%_ C. David'%®, T. Davidek'*?,
D.R. Davis?®, I. Dawson'%’, K. De8, R. De Asmundis’®, M. De Beurs!?°, S. De Castro?3b-232

N. De Groot'!?, P. de Jonglzo, H. De la Torre'%7, A. De Maria!>¢, D. De Pedis’??, A. De Salvo’3?,

U. De Sanctis’*74 M. De Santis’**7#", A. De Santo!°, J.B. De Vivie De Regie65 , D.V. Dedovich®,
A.M. Deiana*?, J. Del Peso”, Y. Delabat Diaz*°, D. Delgove65 , F. Deliot!**, C.M. Delitzsch’,

M. Della Pietra’%7% D Della V01p654, A. Dell’AcquaSG, L. Dell’Asta’74* M. Delmastro’,

C. Delporte65 , P.A. Delsart>8, S. Demers'83, M. Demichev®, G. Demontigny1 10 S P. Denisov'®,

L. D’Eramo'?!, D. Derendarz®, J.E. Derkaoui®*4, F. Derue!3%, P. Dervan®!, K. Desch?*, K. Dette!¢7,

C. Deutsch?*, M.R. Devesa’?, P.O. Deviveiros>®, F.A. Di Bello’?73® A. Di Ciaccio’**7#", L. Di Ciaccio’,
W.K. Di Clemente!'3®, C. Di Donato’%*7%_ A Di Girolamo>®, G. Di Gregorio’*>"?", A. Di Luca’6%76b,
B. Di Micco”73®, R. Di Nardo”>*73?, K_F. Di Petrillo®”, R. Di Sipio'®’, C. Diaconu'??, F.A. Dias!?°,

T. Dias Do Vale'®*, M.A. Diaz'4%, F.G. Diaz Capriles®*, J. Dickinson'8, M. Didenko!%, E.B. Diehl'%,
J. Dietrich'?, S. Diez Cornell*®, C. Diez Pardos!’!, A. Dimitrievska's, W. Dinngb, J. Dingfelder24,

S.J. Dittmeier®'®, F. Dittus®°, F. Djamaloz, T. Djobavalsgb, J.I. Djuvsland”, M.A.B. Do Vale!¥7,

M. Dobre?’, D. Dodsworth?®, C. Doglioni97, J. Dolejsi142, Z. Dolezal'*?, M. Donadelli3'¢, B. Dong60°,
J. Donini*®, A. D’onofrio’>¢, M. D’Onofrio®!, J. Dopkel43, A. Doria’® M.T. Dova®, A.T. Doyles7,

E. Drechsler'®2, E. Dreyerlsz, T. Dreyer53, A.S. Drobac'”®, D. Du®®, T.A. du Pree'?°, Y. Duan®%,

F. Dubinin'!", M. Dubovsky?®2, A. Dubreuil**, E. Duchovni'®, G. Duckeck''#, O.A. Ducu’®, D. Duda'',
A. Dudarev3®, A.C. Dudder'®, E.M. Duffield'®, M. D’uffizi!°!, L. Duflot®>, M. Diihrssen®, C. Diilsen'82,
M. Dumancic'®, A E. Dumitriu?’?, M. Dunford®'?, S. Dungs*’, A. Duperrin'®?, H. Duran Yildiz*?,

M. Diiren®®, A. Durglishvili'*®®, D. Duschinger*®, B. Dutta*®, D. Duvnjak', G.I. Dyckes'3¢, M. Dyndal?,
S. Dysch!®!, B.S. Dziedzic®, M.G. Eggleston*’, T. Eifert®, G. Eigen!’, K. Einsweiler'®, T. Ekelof!’?,

H. El Jarrari®®®, V. Ellajosyula172, M. Ellert!’2, F. Ellinghauslgz, A.A. Elliot®3, N. Ellis*°, J. Elmsheuser??,
M. Elsing36, D. Emeliyan0v143, A. Emerman®®, Y. Enari'®3, M.B. Epland49, J. Erdmann®’, A. Ereditato?°,
P.A. Erland® , M. Errenst'$2, M. Escalier®, C. Escobar174, O. Estrada Pastor!”*, E. Etzion'®!,

G.E. Evans'3°?, H. Evans®®, M.O. Evans'®, A. Ezhilov'?’, F. Fabbri®’, L. Fabbri2**23, V. Fabiani''®,

G. Facini'’®, R.M. Fakhrutdinov'?3, S. Falciano’??, P.J. Falke**, S. Falke®¢, J. Faltova'*?, Y. Fang'>?,

Y. Fang'>?, G. Fanourakis**, M. Fanti®®®%%® M. Faraj®’>67¢| A. Farbin®, A. Farilla’>®, E.M. Farina’'®71?,
T. Farooquem, S.M. FarringtonSO, P. Farthouat’®, F. Fassi>®¢, P. Fassnacht®, D. Fassouliotis’,

M. Faucci Giannelli*®, W.J. Fawcett’2, L. Fayard65, O.L. Fedin!37°, W. Fedorko!”, A. Fehr?,

M. Feickert!??, L. Feligioniloz, A. Fell'¥, C. Feng60b, M. Feng49, M.J. Fenton'”!, A.B. Fenyuk123,

S.wW. Ferguson43, J. Ferrando®, A. Ferrari'’2, P. Ferrari'2?, R. Ferrari’'?, D.E. Ferreira de Lima®'?,

A. Ferrer!™*, D. Ferrere™, C. Ferretti'?, F. Fiedler'%, A. Filipéiégz, F. Filthaut''®, K.D. Finelli®,
M.C.N. Fiolhais!39213%.2 [ Fiorini!’#, F. Fischer!'#, J. Fischer!%?, W.C. Fisher'"?, T. Fitschen?!,

I. Fleck'>!, P. Fleischmann'®, T. Flick!82, B.M. Flierl''4, L. Flores'3®, L.R. Flores Castillo®3,

F.M. Follega’®®76® N. Fomin!’, J.H. Foo'®’, G.T. Forcolin’6%7%® B.C. Forland®®, A. Formica'!#*,

F.A. Forster'*, A.C. Forti'°!, E. Fortin'?2, M.G. Foti!**, D. Fournier®, H. Fox’°, P. Francavilla’?272

S. Francescato’®73® M. Franchini?**%32, S. Franchino®'?, D. Francis®°, L. Franco’, L. FranconiZ’,

M. Franklin®®, G. Frattari’3*73®, A.N. Fray”?, PM. Freeman?!, B. Freund!'®, W.S. Freund®'®,

E.M. Freundlich*’, D.C. Frizzell'?8, D. Froidevaux>®, J.A. Frost'3*, M. Fujimoto'?®, C. Fukunaga'®*,

E. Fullana Torregrosa174, T. Fusayasu“(’, J. Fuster!”*, A. Gabrielli?®P232 A Gabrielli®®, S. Gadatsch>*,
P. Gadow'"?, G. GagliardiSSb’SSa, L.G. Gagnon“o, G.E. Gallardo'**, E.J. Gallas'**, B.J. Gallop143,

R. Gamboa Goni??, K.K. Gan'?’, S. Gangulylso, J. Gao® Y. Gao?, Y.S. Gao3'!, EM. Garay Walls!'46a,
C. Gareia!”, J.E. Garcia Navarro!”*, J.A. Garcia Pascual!?, C. Garcia-Argossz, M. Garcia-Sciveres!$,

47



R.W. Gardner®’, N. Garelli!>3, S. Gargiulosz, C.A. Garner167, V. Garonnel33, S.J. Gasiorowski!'*8,

P. Gaspar®'®, A. Gaudiello>>*>%, G. Gaudio’'?, P. Gauzzi’3*73, I.L. Gavrilenko!'!, A. Gavrilyuk'?*,

C. Gay'”, G. Gaycken*®, E.N. Gazis'?, A.A. Geanta?’®, C.M. Gee!®, C.N.P. Gee'*3, J. Geisen”’,

M. Geisen'?, C. Gemme>®, M.H. Genest>®, C. Geng'%, S. Gentile’3*73?_ S. George®*, T. Geralis*,
L.O. Gerlach>?, P. Gessinger-Befurt'®’, G. Gessner*’, M. Ghasemi Bostanabad'”®, M. Ghneimat'>!,

A. Ghosh®, A. Ghosh’®, B. Giacobbe?3®, S. Giagu73a'73b, N. Giangiacomil67, P. Giannetti’,

A. Giannini’%7% G. Giannini'4, S.M. Gibson’*, M. Gignac'*>, D.T. Gil®*®, B.J. Gilbert*°, D. Gillberg*,
G. Gilles'®?, N.E.K. Gillwald*®, D.M. Gingrich®¥, M.P. Giordani®’*¢7¢, PF. Giraud'#,

G. Giugliarelli67a’67°, D. Giugni69a, F. Giuli’*»74b S Gkaitatzis'2, I. Gkialas™€, E.L. Gkougkousis”,

P. Gkountoumislo, L.K. Gladilin''3, C. Glasman®®, J. Glatzer'*, P.C.F. Glaysher46, A. Glazov*®,

G.R. Gledhill®', I. Gnesi*!™®, M. Goblirsch-Kolb?®, D. Godin''?, S. Goldfarb!% T. Golling**,

D. Golubkov'??, A. Gomes'3*13% R. Goncalves Gama®3, R. Gongalo'3*13% G. Gonella'3!,

L. Gonella?', A. Gongadze®”, F. Gonnella®!, J.L. Gonski*®, S. Gonzilez de la Hoz'7*,

S. Gonzalez Fernandez'*, R. Gonzalez Lopez®', C. Gonzalez Renteria'®, R. Gonzalez Suarez!’?,

S. Gonzalez-Sevilla**, G.R. Gonzalvo Rodriguezl74, L. Goossens>®, N.A. Gorasia?!, P.A. Gorbounov!24,
H.A. Gordon?®, B. Gorini*®, E. Gorini®®® A . Gorisek??, A.T. Goshaw*’, M.I. Gostkin®°,

C.A. Gottardo!'?, M. Gouighri35b, A.G. Goussiou'®, N. Govender33¢, C. Goy5 , I. Grabowska-Bold3#2,
E.C. Graham®!, J. Gramlingm, E. Gramstad'33, S. Grancagnololg, M. Grandi'>®, V. Gratchev!'?7,

P.M. Gravila?”f, F.G. Gravili®308b (. Gray57, H.M. Graylg, C. Grefe?*, K. Gregersen97, .M. Gregor46,
P. Grenier'>3, K. Grevtsov*®, C. Grieco!*, N.A. Grieser!?8, A.A. Grillo'*, K. Grimm>'¥, S. Grinstein!*",
J.-F. Grivaz®, S. Groh!%, E. Gross!%, J. Grosse-Knetter, Z.J. Grout®, C. Grud'®®, A. Grummer''8,
J.C. Grundy'3*, L. Guan'%, W. Guan'8!, C. Gubbels'”>, J. Guenther’’, A. Guerguichon®,

J.G.R. Guerrero Rojas!”*, F. Guescini''>, D. Guest””, R. Gugel'?’, A. Guida*®, T. Guillemin’,

S. Guindon3°, J. Guo®®, W. Guo!%, Y. Guo®?, Z. Guo!2, R. Gupta46, S. Gurbuz!?®, G. Gustavino'28,
M. Guth®2, P. Gutierrez!23, C. Gutschow®>, C. Guy0t144, C. Gwenlan'3*, C.B. Gwilliam®!,

E.S. Haaland'3, A. Haas'®, C. Haber'®, H.K. Hadavand®, A. Hadef!®, M. Haleem!””, J. Haleylzg,

J.J. Hall'*, G. Halladjian107, G.D. Hallewell'2, K. Hamano'”®, H. Hamdaoui’>¢, M. Hamer?*,

G.N. Hamityso, K. Han®% L. Han'>¢, L. Han®%, S. Han!®, Y.F. Han'®’, K. Hanagakigz’t, M. Hance!®,
D.M. Hand1''*, M.D. Hank’’, R. Hankache!'?, E. Hansen”’, J.B. Hansen, J.D. Hansen*?,

M.C. Hansen?*, P.H. Hansen*’, E.C. Hanson'?!, K. Hara!®®, T. Harenberglgz, S. Harkusha'%8,

P.F. Harrison!’®, N.M. Hartman'>3, N.M. Hartmann''#, Y. Hasegawa!?, A. Hasib®, S. Hassani'**,

S. Haug?’, R. Hauser'””, M. Havranek'#!, C.M. Hawkes?!, R.J. Hawkings®¢, S. Hayashida'!”,

D. Haydenlm, C. Hayesl%, R.L. Hayes175, C.P. Hays134, J.M. Hays93, H.S. Haywardgl, S.J. Haywoodl43,
F. He%%?, Y. He!%, M.P. Heath®®, V. Hedberg”’, A.L. Heggelund'??, N.D. Hehir®?, C. Heidegger?,

K.K. Heideggersz, W.D. Heidorn”, J. Heilman3*, S. Heim*®, T. Heim!®, B. Heinemann*®-2",

J.G. Heinlein!3°, J.J. Heinrich'3!, L. Heinrich3°, J. Hejba1140, L. Helary46, A. Held'?®, S. Hellesund!33,
C.M. Helling145 , S. Hellman®343®_ C. Helsens?¢, R.C.W. Henderson’?, L. Henkelmann?2,

A.M. Henriques Correia36, H. Herde?®, Y. Herndndez Jiménez33¢, H. Herr]OO, M.G. Herrmann!'4,

T. Herrmann*®, G. Herten’2, R. Hertenberger] 14 1. Hervas®, G.G. Hesketh®, N.P. Hesseylﬁga, H. Hibi%?,
S. Higashino®?, E. Higén-Rodriguez'’#, K. Hildebrand®’, J.C. Hill*?, K.K. Hill**, K.H. Hiller*,

S.J. Hillier?', M. Hils*}, I. Hinchliffe'®, F. Hinterkeuser®*, M. Hirose'??, S. Hirose'®”, D. Hirschbuehl'®?,
B. Hiti2, O. Hladik!*°, J. Hobbs!>®, R. Hobincu?’¢, N. Hod'8°, M.C. Hodgkinson149, A. Hoecker?®,

D. Hohn”2, D. Hohov®, T. Holm?*, T.R. Holmes>’, M. Holzbock!">, L.B.A.H. Hommels3Z, T.M. Hongl38,
J.C. Honigsz, A. Honle!!3, B.H. Hooberman!”3, W.H. Hopkins(’, Y. Horii!!?, P. Horn*®, L.A. Horyn37,

S. Hou!"8, A. Hoummada®?, J. Howarth®’, J. Hoyagg, M. Hrabovsky130, J. Hrivnac®, A. Hrynevich109,
T. Hryn’ovas, P.J. Hsu®, S.-C. Hsu!48, Q. Hu¥, S. Hu®%, Y.F. Hu!%&!5dal p p, Huang%, X. Huanglsc,
Y. Huang®®?, Y. Huang'3?, Z. Hubacek'*!, F. Hubaut'%?, M. Huebner?*, F. Huegging?*, T.B. Huffman'3*,

48



M. Huhtinen°, R. Hulskensg, R.F.H. Hunter**, N. Huseynovgo’aa, J. Huston'97, J. Huth59, R. Hyneman153,
S. Hyrych?%?, G. Tacobucci®*, G. Takovidis??, I. Ibragimov'>!, L. Iconomidou-Fayard®, P. Iengo?®,

R. Ignazzi*’, R. Iguchi'®3, T. lizawa>*, Y. Tkegami®?, M. Tkeno®?, N. Ilic!'%167% F. Iltzsche*®, H. Imam>3?,
G. Introzzi’'»71® M. Todice”?, K. Iordanidou'%®, V. Ippolito’3*73", M.F. Isacson!’?, M. Ishino'®3,

W. Islam'?, C. Issever!%46, S. Istin'®, J.M. Iturbe Ponce®?, R. Tuppa’®®76°, A Ivina'®", J.M. Izen®?,

V. 122079, P, Jacka!*Y, P. Jackson!, R.M. Jacobs*®, B.P. Jaegerlsz, V. Jain?, G. Jikel'®2, K.B. Jakobi'®,
K. Jakobs’Z, T. Jakoubek!89, J. Jamieson’’, K.W. Janas®*?, R. Jansky54, M. Janus>?, P.A. Janus®2,

G. Jarlsk0g97, AE.J aspangl, N. Javadov394 T, Javirek3®, M. Javurkova!®, F. Jeanneau!#*, L. Jeanty131,
J. Jejelava159ﬂ, P. Jenni®>¢, N. Jeong46, S. Jézéquels, J. Jia'%, 7. Jia'>c H. Jiang79, Y. Jiang6oa, Z. Jiang153,
S. Jigginssz, F.A. Jimenez Morales>8, J. Jimenez Pena!!>, S. JinlSC, A. Jinaru27b, 0. Jinnouchi165,

H. Jivan33¢, P. Johansson!*?, K.A. Johns’, C.A. Johnson®, E. Jones!”®, R W.L. Jones®, S.D. Jones!,
T.J. Jones”!, J. Jovicevic®®, X. Ju'®, J.J. Junggeburth!'>, A. Juste Rozas'*", A. Kaczmarska®’,

M. Kado”3*73 H. Kagan'?’, M. Kagan'33, A. Kahn*’, C. Kahra!®, T. Kaji'”®, E. Kajomovitz'®?,

C.W. Kalderon®, A. Kaluza'?®, A. Kamenshchikov'??, M. Kaneda'?, N.J. Kang!4, S. Kang”,

Y. Kano!!7, J. Kanzaki®?, L.S. Kaplanlgl, D. Kar?3¢, K. Karava'*, M..J. Kareem!%® I. Karkanias'®?,
S.N. Karpov®, Z.M. Karpova®, V. Kartvelishvili®, A.N. Karyukhin'?3, E. Kasimi'®?, A. Kastanas*%#®
C. Kato®d, J. Katzy46, K. Kawade'™°, K. Kawagoegg, T. Kawaguchi“7, T. Kawamoto!**, G. Kawamura?,
E.F. Kay176, FlI Kaya”o, S. Kazakos!4, V.F. Kazanin'220-1222_J M, Keaveney33a, R. Keeler'7°,

J.S. Keller34, E. Kellermann97, D. Kelsey156, J.J. Kempsterﬂ, J. Kendrick?!, K.E. Kennedy39, 0. Kepka140,
S. Kersten'3?, B.P. KerSevan®?, S. Ketabchi Haghighat!®’, F. Khalil-Zada'3, M. Khandoga'#,

A. Khanov'?, A.G. Kharlamov!22»!1222 T Kharlamova!?2*1222 E E. Khoda!”®, T.J. Khoo”’,

G. Khoriauli'””, E. Khramov®, J. Khubua!>®®, S. Kido®}, M. Kiehn®, E. Kim'®®, Y.K. Kim?’,

N. Kimura®, A. Kirchhoff>3, D. Kirchmeier*®, J. Kirk'4?, A.E. Kiryunin'"3, T. Kishimoto'®3,

D.P. Kisliuk'®’, V. Kitali*®, C. Kitsaki'?, O. Kivernyk®*, T. Klapdor-Kleingrothaus>?, M. Klassen®'?,

C. Klein**, M.H. Klein'%, M. Klein®!, U. Klein”!, K. Kleinknecht'%, P. Klimek?°, A. Klimentov??,

F. Klimpel36, T. Kling124, T. Klioutchnikova3?, E.F. Klitzner''4, P. Kluit'2°, S. Kluth!!3, E. Kneringer77,
E.B.F.G. Knoopsloz, A. Knue®?2, D. Kobayashigg, M. Kobel*®, M. Kocian'>3, T. Kodama'®3, P. Kodys142,
D.M. Koeck!3®, P.T. Koenig?*, T. Koffas**, N.M. Kéhler®®, M. Kolb'#*, 1. Koletsou’, T. Komarek'3?,

T. Kondo®?, K. Koneke™?, A.X.Y. Kongl, A.C. Kijnig1 19 T Kono!2°, V. Konstantinides®?,

N. Konstantinidis®, B. Konya”’, R. Kopeliansky®, S. Koperny®#, K. Korcyl®®, K. Kordas'®?,

G. Koren'®!, A. Korn®, I. Korolkov'4, E.V. Korolkova'#?, N. Korotkova!'3, O. Kortner' >, S. Kortner!!3,
V.V. Kostyukhin!#%16¢ A Kotsokechagia®, A. Kotwal*®, A. Koulouris !,

A. Kourkoumeli-Charalampidi’'®7'°, C. Kourkoumelis’, E. Kourlitis®, V. Kouskoura®’, R. Kowalewski'’®,
W. Kozanecki'®!, A.S. Kozhin!?*, V.A. Kramarenko''3, G. Kramberger®?, D. Krasnopevtsev®?,

M.W. Krasny135, A. Krasznahorkay36, D. Krauss''>, J.A. Kremer!®, J. Kretzschmar®!, K. Kreul'?,

P. Krieger167, F. Krieter!!4, S. Krishnamurthy103 , A. Krishnan®'®, M. Krivos'#2, K. Krizka!8,

K. Kroeninger‘”, H. Kroha''®, J. Kroll'#9, J. Kroll!3°, K.S. Krowpmanlm, U. Kruchonak®, H. Kriiger24,
N. Krumnack”, M.C. Kruse®, J.A. Krzysiak85 , A Kubota'®, O. Kuchinskaia166, S. Kuday4b,

D. Kuechler*®, J.T. Kuechler*®, S. Kuehn?®, T. Kuhl*®, V. Kukhtin®’, Y. Kulchitsky!?®2d, S Kuleshov'4°?,
Y.P. Kulinich'”3, M. Kuna’®, A. Kupco'*°, T. Kupfer*’, O. Kuprash®?, H. Kurashige®3,

L.L. Kurchaninov'®®, Y.A. Kurochkin'®, A. Kurova'!2, M.G. Kurth!32154 E.S. Kuwertz3°, M. Kuze!%?,
AK. Kvam!*8, J. Kvita!®*, T. Kwan'%*, C. Lacasta!’*, F. Lacava’*73®, D.P.J. Lack!!, H. Lacker!®,

D. Lacour!33, E. Ladygingo, R. Lafayes, B. Laforgel35, T. Lagouri146°, S. Lai’3, LK. Lakomiec®*?,

J.E. Lambert'2®, S. Lammers®, W. Lampl7, C. Lampoudislﬁz, E. Langonzg, U. Landgrafsz,

M.PJ. Landon®3, V.S. Lang52, J.C. LangeS3, R.J. Langenberg103 , A.J. Lankford!”!, F. Lanni®®,

K. Lantzsch?*, A. Lanza’'?®, A. LapertosaSSb’ssa, J.F. Laportel44, T. Lari®®, F. Lasagni Manghi23b’23a,

M. Lassnig36, V. Latonova!4?, T.S. Lau“a, A. Laudrainloo, A. Laurier™*, M. Lavorgnama’mb,

49



S.D. Lawlor94, M. Lazzaroni®%% B 1e!%l E. Le Guirriec'%?, A. Lebedev’®, M. LeBlanc’,

T. LeCompte®, F. Ledroit-Guillon*®, A.C.A. Lee®, C.A. Lee”, G.R. Lee!’, L. Lee*®, S.C. Lee !,

S. Lee’, B. Lefebvre!%%2, H.P. Lefebvre®*, M. Lefebvre!’®, C. Leggett'®, K. Lehmann'>?, N. Lehmann®,
G. Lehmann Miotto®®, W.A. Leight*, A. Leisos'®*", M.A.L. Leite®!¢, C.E. Leitgeb!'#, R. Leitner'*?,
K.J.C. Leney*?, T. Lenz?*, S. Leone’**, C. Leonidopoulos®®, A. Leopold'?’, C. Leroy'!%, R. Les'?7,

C.G. Lester’?, M. Levchenko'?’, J. Levéque’, D. Levin'?®, L.J. Levinson'3’, D.J. Lewis?!, B. Li"*®,

B. Li!%, C-Q. Li®060d E 160 H i H. Li0®, J. Li®0 K. Li'8 L. Li%, M. Lil>13d Q.Y. Li%%,

S. Li%0d60c % 1i% v, Li%, 7. Li®®, Z Li!3* 7. Li'%, 7. Li®!, Z. Liang!%?, M. Liberatore*,

B. Liberti’*?, K. Lie®*, S. Lim?°, C.Y. Lin*?, K. Lin'"?, R.A. Linck®, R.E. Lindley’, J.H. Lindon?',

A. Linss*, AL. Lionti*, E. Lipeles'?°, A. Lipniacka'”, T.M. Liss'’3#, A. Lister!”, J.D. Little®, B. Liu’°,
B.X. Liu'32, H.B. Liu®, J.B. Liu%®, J K K. Liv*’, K. Liu®®, M. Liu®%, M.Y. Liu®%, P. Liu'%, X. Liu®02,
Y. Liu*, Y. Liu™*14 Y.L, Liu'%, Y.W. Liu®%?, M. Livan’!>71®_ A_ Lleres’®, J. Llorente Merino'>?,

S.L. Lloyd”, C.Y. Lo%®, E.M. Lobodzinska*®, P. Loch’, S. Loffredo’®7#", T. Lohse!?, K. Lohwasser'*’,
M. Lokajicek'*?, J.D. Long'73, R.E. Long”, I. Longarini’**73", L. Longo’°, I. Lopez Paz'?!,

A. Lopez Solis'*, J. Lorenz!'%, N. Lorenzo Martinez>, A.M. Lory' !4, A. Losle>?, X. Lou*%b,

X. Lou'®, A. Lounis®, J. Love®, P.A. Love™, J.J. Lozano Bahilo'”*, M. Lu®®, Y.J. Lu®*, H.J. Lubatti'4%,
C. Luci”™7" EL. Lucio Alves' >, A. Lucotte®®, F. Luehring“, I. Luise!®, L. Luminari’??,

B. Lund-Jensen!>*, N.A. Luong0131, M.S. Lutz!®!, D. Lynn29, H. Lyonsgl, R. Lysak140, E. Lytken97,

F. Lyu'>?, V. Lyubushkin®, T. Lyubushkina®’, H. Ma?’, L.L. Ma®®, Y. Ma®3, D.M. Mac Donell'7%,

G. Maccarrone® 1, C.M. Macdonald149, J.C. MacDonald'#?, J. Machado Miguensl36, R. Madar8,

W.E. Mader*®, M. Madugoda Ralalage Don'?, N. Madysa48, J. Maeda®, T. Maeno?®, M. Maerker®,

V. Magerl>2, N. Magini’®, J. Magro®’67¢4, D.J. Mahon3°, C. Maidantchik3!?, A. Maio!3%%1390.139d_

K. Maj¥*2, 0. Majersky?3?, S. Majewski'3!, Y. Makida®?, N. Makovec®, B. Malaescu'!3>, Pa. Malecki®’,
V.P. Maleev!??, F. Malek®, D. Malito*'>#*2 U. Mallik’8, C. Malone®2, S. Maltezos'?, S. Malyukovgo,

J. Mamuzic'”*, G. Mancini®!, J.P. Mandalia®®, I. Mandi¢®2, L. Manhaes de Andrade Filho®!2,

I.M. Maniatis'®2, J. Manjarres Ramos*®, K.H. Mankinen®’, A. Mann!'#, A. Manousos’’, B. Mansoulie'#*,
I. Manthos!2, S. Manzoni'??, A. Marantis!®?, G. Marceca’, L. Marchese!3*, G. Marchiori'?>,

M. Marcisovsky140, L. Marcoccia’#74b C. Marcon®’, M. Marjanoviclzg, 7. Marshall'8,

M.U.F. Martensson'’2, S. Marti-Garcia!’*, C.B. Martin'?’, T.A. Martin!’®, V.J. Martin™°,

B. Martin dit Latour'”, L. Martinelli’>*75®, M. Martinez'*", P. Martinez Agullo'"*,

V.I. Martinez Outschoorn'®, S. Martin-Haugh'#3, V.S. Martoiu?’?, A.C. Martyniuk®®, A. Marzin®,

S.R. Maschek!!3, L. Masetti'%, T. Mashimo'®3, R. Mashinistov!!!, J. Masik!?!, A.L. Maslennikov!22b-122a,
L. Massa?3*232 P Massarotti’%7% P, Mastrandrea’?*72®, A. Mastroberardino®!*#12 T, Masubuchi!®3,
D. Matakias?®, A. Matic!!4, N. Matsuzawa!®3, P. Méittig24, J. Maurer?’®, B. Macek”?,

D.A. Maximov'221222 R Mazini'8, I. Maznas!®?, S.M. Mazza'®, J.P. Mc Gowan'%*, S.P. Mc Kee!%,
T.G. McCarthy“S, W.P. McCormack!®, E.F. McDonald!%, A.E. McDougallle, J.A. Mcfaydenlg,

G. Mchedlidze'>°®, M.A. McKay*?, K.D. McLean!’®, S.J. McMahon'#3, P.C. McNamara!®>,

C.J. McNicol!78, R.A. McPherson'’%*, J.E. Mdhluli®3¢, Z.A. Meadows'?3, S. Meehan®, T. Megy>®,

S. Mehlhase!'*, A. Mehta®!, B. Meirose*?, D. Melini'®?, B.R. Mellado Garcia®3¢, J.D. Mellenthin>?,

M. Melo?2, E. Meloni*®, A. Melzer?*, E.D. Mendes Gouveia!3%%13%_ A M. Mendes Jacques Da Costa?!,
H.Y. Meng'%’, L. Meng3®, X.T. Meng!%®, S. Menke!'>, E. Meoni*!**12, S. Mergelmeyer'?,

S.A.M. Merkt'3®, C. Merlassino!**, P. Mermod>*, L. Merola’%7% C. Meroni®®?, G. Merz!'%,

0. Meshkov! 13111 J K R. Meshrekild!, J. Metcalfe®, A.S. Mete®, C. Meyer“’, J-P. Meyer144,

M. Michetti'®, R.P. Middleton'*, L. Mijovi¢>°, G. Mikenberg'®, M. Mikestikova'4?, M. Mikuz°?,

H. Mildner'*°, A. Milic!®’, C.D. Milke*?, D.W. Miller’’, L.S. Miller**, A. Milov'®’, D.A. Milstead*243°,
A.A. Minaenko'2, I.A. Minashvili'®®", L. Mince®?, A.I. Mincer!?®, B. Mindur®*?, M. Mineev®°,

Y. Minegishi'®?, Y. Mino®, L.M. Mir'4, M. Mironova!34, T. Mitani'”?, J. Mitrevski''#, V.A. Mitsou'74,

50



M. Mittal®%, 0. Miu'%’, A. Miucci?’, P.S. Miyagawa”, A. Mizukami®?, J.U. Mjornmark®’,

T. Mkrtchyan®!2, M. Mlynarikova'?!, T. Moa*%%® S Mobius>3, K. Mochizuki''?, P. Moder*,

P. Mogg1 143, Mohapatra39, R. Moles-Valls2*, K. Ménig46, E. Monnier'%2, A. Montalbano!%2,

J. Montejo Berlingen36, M. Montella®®, F. Monticelli®®, S. Monzani®®?, N. Morange65,

A.L. Moreira De Carvalho'?%?, D. Moreno???, M. Moreno Lldcer'’*, C. Moreno Martinez'?,

P. Morettini>>®, M. Morgenstern“’o, S. Morgenstern48, D. Mori!*2, M. Morii*®, M. Morinaga”g,

V. Morisbak!'3?, A K. Morley36, G. Mornacchi’®, A.P. Morris?, L. Morvaj36, P. Moschovakos3®,

B. Moser'2°, M. Mosidze!>°?, T. Moskalets'#4, P. Moskvitina!'?, J. Moss3!'™, E.J.W. MoyselO3,

S. Muanza!®?, J. Mueller'38, R.S.P. Mueller''*, D. Muenstermann®®, G.A. Mullier?’, D.P. Mung069a’69b,
J.L. Munoz Martinez'#, F.J. Munoz Sanchez!?', P. Murin?8?, W.J. Murray178’143, A. Murrone®969

J.M. Muse'?®, M. Muskinja'®, C. Mwewa®3?, A.G. Myagkov'?>%, A A. Myers'3®, G. Myers®®, J. Myers'3!,
M. Myska“”, B.P. Nachman'®, O. Nackenhorst*’, A.Nag Nag48, K. Nagai134, K. Naganogz, Y. Nagasaka62,
J.L. Nagle®, E. Nagy'?2, A.M. Nairz3®, Y. Nakahama'!”, K. Nakamura®?, T. Nakamura'®®, H. Nanjo'3?,
F. Napolitano®'2, R.F. Naranjo Garcia*®, R. Narayan*?, 1. Naryshkin'?’, M. Naseri**, T. Naumann®,

G. Navarro???, P.Y. Nechaeva'!!, F. Nechansky*®, T.J. Neep?!, A. Negri’'®71®, M. Negrini>3®, C. Nellist!!®,
C. Nelson'%, MLE. Nelson®®%" S, Nemecek!4?, M. Nessi?®€, M.S. Neubauer'’?, F. Neuhaus'%,

M. Neumann'®2, R. Newhouse!”>, PR. Newman?!', C.W. Ng138, Y.S. Ng19, YWY. Ngm, B. Ngair35",
H.D.N. NguyenlOZ, T. Nguyen Manh!!?, E. Nibigira38, R.B. Nickerson'**, R. Nicolaidou!#*,

D.S. Nielsen*, J. Nielsen!*>, M. Niemeyer53, N. Nikiforou!!, V. Nikolaenko!'?32¢, I, Nikolic-Audit'3,
K. Nikolopoulos®!, P. Nilsson?’, H.R. Nindhito>*, A. Nisati’3?, N. Nishu®®, R. Nisius'!", I. Nitsche*’,

T. Nitta!”®, T. Nobe!93, D.L. Noel*?, Y. Noguchi®®, I. Nomidis'3*>, M.A. Nomura?®, M. Nordberg>°,

J. Novak®?, T. Novak??, O. Novgorodova*®, R. Novotny'!8, L. Nozka'3?, K. Ntekas!”!, E. Nurse”,

F.G. Oakham®*¥, J. Ocariz!®, A. Ochi®3, 1. Ochoa!®*2, J.P. Ochoa-Ricoux'#%?, K. O’Connor?®, S. Oda8,
S. Odaka®, S. Oerdek™3, A. Ogrodnik84a, A. Oh!91 C.C. Ohm'**, H. 0ide'%, R. Oishi!®3, M.L. Ojeda167,
H. Okawa'®, Y. Okazaki®®, M.W. O’Keefe®!, Y. Okumura!®3, A. Olariu?’®, L.F. Oleiro Seabra'3%2,

S.A. Olivares Pino!*%2, D. Oliveira Damazio?®, J.L. Oliver', M.J.R. Olsson'’!, A. Olszewski®’,

J. Olszowska®®, 0.0. Oncel?*, D.C. O’Neil'32, A.P. O’neill'34, A. Onofre!3°*13% P.UE. Onyisi'!,

H. Oppen'3?, R.G. Oreamuno Madriz'?!, M.J. Oreglia’’, G.E. Orellana®, D. Orestano’>*73®,

N. Orlando', R.S. Orr!®7, V. O’Shea®’, R. Ospanov6oa, G. Otero y Garzon®, H. Otono®8, P.S. Ott®!2,
G.J. Ottino'8, M. Ouchrif>*?, J. Ouellette?, F. Ould-Saada'3?, A. Ouraou'***, Q. Ouyang'>?, M. Owen®’,
R.E. Owen'®3, V.E. Ozcan'?®, N. Ozturk®, J. Pacalt'3*, H.A. Pacey??, K. Pachal*®, A. Pacheco Pages'*,
C. Padilla Aranda'?, S. Pagan Griso'®, G. Palacino®, S. Palazzo”, S. Palestini*®, M. Palka*", P. Palni®%,
C.E. Pandini**, J.G. Panduro Vazquez94, P. Pani*®, G. Panizzo®7#%7¢ 1. Paolozzi**, C. Papadatos“o,

K. Papageorgioug’g, S. Paraju1i42, A. Paramonov®, C. Paraskevopoulosm, D. Paredes Hernandez®",

S.R. Paredes Saenz'3*, B. Parida'®®, T.H. Park'®’, A.J. Parker’!, M.A. Parker’2, F. Parodi>>-3%2,

E.W. Parrish'2!, J.A. Parsons®?, U. Parzefall®2, L. Pascual Dominguez135 , V.R. Pascuzzi!8,
J.M.P. Pasner'® F. Pasqualilzo, E. Pasqualucci73a, S. PassaggioSSb, F. Pastore®*, P. Pasuwan
S. Pataraia!® J R. Pater!?', A. Pathak!3!4 J. Patton®!, T. Pauly36, J. Pearkes!>3, M. Pedersen!?3,

L. Pedraza Diaz!'?, R. Pedro'3?2, T. Peiffer>3, S.V. Peleganchuk'??®1222 0. Penc'#’, C. Peng®®,

H. Pengﬁoa, B.S. Peralva®!2, M.M. Perego“, A.P. Pereira Peixoto!3%, L. Pereira Sanchez¥*%",

D.V. Perepelitsa®®, E. Perez Codina'%?, L. Perini®®%°", H. Pernegger®, S. Perrella®®, A. Perrevoort!?°,
K. Peters?®, R.EY. Peters!?!, B.A. Petersen3?, T.C. Petersen?’, E. Petit'%2, V. Petousis'#!, C. Petridou!%?,
F. Petrucci®73® M. Pettee!®3, N.E. Pettersson!?3, K. Petukhova!#Z, A. Peyaudl44, R. Pezoa!40d,

L. Pezzotti’'»7!® T, Pham!%, P.W. Phil]ipsl43, M.W. Phippsl73, G. Piacquadiolss, E. Pianori!8,

A. Picazio'®, R.H. Pickles'°!, R. Piegaia30, D. Pietreanu?’?, J.E. Pilcher?’, A.D. Pilkingtonlm,

M. Pinamonti®’»¢7¢_ J L. Pinfold3, C. Pitman Donaldson®>, M. Pitt!®!, L. Pizzimento’#*74* A. Pizzini'?",
M.-A. Pleier?®, V. Plesanovs”2, V. Pleskot!*2, E. Plotnikova®®, P. Podberezko!220:1222 R Poettgen97,

45a,45b

51



R. Poggi®*, L. Poggioli!®, I. Pogrebnyak!?’, D. Pohl**, 1. Pokharel>3, G. Polesello’!2, A. Poley!>%1682,
A. Policicchio”?*730, R. Polifka!4?, A. Polini**", C.S. Pollard*®, V. Polychronakos®’, D. Ponomarenko!!?,
L. Pontecorvo, S. Popa27a, G.A. Popeneciu27d, L. Portales®, D.M. Portillo Quinterosg, S. Pospisill‘”,
K. Potamianos*®, I.N. Potrap%’, C.J. Potter>2, H. Potti!!, T. Poulsen”’, J. Poveda!”*, T.D. Powell'*,

G. Pownall*®, M.E. Pozo Astigarraga®, A. Prades Ibanez!’*, P. Pralavorio'%?, M.M. Prapa**, S. Prell’®,
D. Price!®!, M. Primavera®?, M.L. Proffitt'*®, N. Proklova!'2, K. Prokofiev®3, F. Prokoshin®°,

S. Protopopescu??, I. Proudfoot®, M. Przybycien®*, D. Pudzha'®’, A. Puri!”?, P. Puzo®,

D. Pyatiizbyantseva“z, J. Qian106, Y. QinlOI, A. Quadt53, M. Queitsch—Maitland36, G. Rabanal Bolanos”?,
M. Racko?®?, F. Ragusaéga’é%, G. Rahal®®, J.A. Raine>*, S. Rajagopalan”, A. Ramirez Morales®?,

K. Ranlsa’lsd, D.F. Rassloff®!2, D.M. Rauch?*®, F. Rauscher! 14, S. Rave'® B. Ravina¥’, L. Ravinovichlgo,
J.H. Rawling'”', M. Raymond?®, A.L. Read'3?, N.P. Readioff'*°, M. Reale®®%8* D M. Rebuzzi’'>7!P,
G. Redlinger?, K. Reeves®3, D. Reikher!®!, A. Reiss'®, A. Rej">!, C. Rembser®®, A. Renardi*®,

M. Renda?’®, M.B. Rendel' ', A.G. Rennie”’, S. Resconi®®?, E.D. Resseguie!®, S. Rettie®, B. Reynolds'?’,
E. Reynolds?!, O.L. Rezanova'?2>1222 P, Reznicek!*?, E. Ricci’®*7%?, R. Richter' 3, S. Richter*,

E. Richter-Was®*, M. Ridel'?, P. Rieck!', O. Rifki*®, M. Rijssenbeek'3, A. Rimoldi’!®7'®,

M. Rimoldi*®, L. Rinaldi?*", T.T. Rinn!”3, G. Ripellino'>*, I. Riu'4, P. Rivadeneira*®,

J.C. Rivera Vergara176, F. Rizatdinova'??, E. Rizvi®?, C. Rizzi?°, S.H. Robertson!?*Z, M. Robin?*°,

D. Robinson32, C.M. Robles Gajard0146d, M. Robles Manzano!'%, A. Robson®’, A. Rocchi’4&74b,
C.Roda’?72b s, Rodriguez Bosca!'”4, A. Rodriguez Rodriguezsz, A.M. Rodriguez Vera!%8, S Roe,

J. Roggel'®, 0. Rghne'33, R. Rohrig'!', R.A. Rojas'#%, B. Roland>?, C.P.A. Roland®®, J. Roloff?°,

A. Romaniouk!!?, M. Romano?3»-232 N, Rompotisgl, M. Ronzani'®, L. Roos'33, S. Rosati’*?, G. Rosin!%3,
B.J. Rosser'3°, E. Rossi*®, E. Rossi??®7?, E. Rossi’%7% 1. P. Rossi>®®, L. Rossini*®, R. Rosten!*,

M. Rotaru®’®, B. Rottler’?, D. Rousseau®®, G. Rovelli’!®71 A Roy'!, D. Roy?**¢, A. Rozanov'??,

Y. Rozen!®, X. Ruan®¢, T.A. Ruggeril, F. Riihr’2, A. Ruiz-Martinez!”*, A. Rummler3°, Z. Rurikova’Z,
N.A. Rusakovich®, H.L. Russell'%, L. Rustige®®*’, J.P. Rutherfoord’, E.M. Riittinger!4’, M. Rybar'4?,
G. Rybkin65 ,E.B. Rye133 ,A. Ryzhov123, J.A. Sabater Iglesias46, P. Sabatini!”*, L. Sabetta’373b,

S. Sacerdoti®, H.F-W. Sadrozinski'®, R. Sadykovgo, F. Safai Tehrani’??, B. Safarzadeh Samani'>°,

M. Safdari'>3, P. Saha!?!, S. Saha!®*, M. Sahinsoy”s, A. Sahu'$2, M. Saimpert36, M. Saito'%3, T. Saito!3,
H. Sakamoto!®3, D. Salamani®*, G. Salamanna”?7°® A. Salnikov!3, J. Salt!7*, A. Salvador Salas'4,

D. Salvatore*'>#12 F. Salvatore!>®, A. Salvucci®®?, A. Salzburger36, J. Samarati®®, D. Sammel®2,

D. Sampsonidis'®?, D. Sampsonidou®®®%%_ J. Sanchez!’*, A. Sanchez Pineda®’®36:67¢ H. Sandaker!'33,
C.0. Sander*, I.G. Sanderswood”®, M. Sandhoff'®?, C. Sandoval??®, D.P.C. Sankey'43, M. Sannino>>?->32,
Y. Sano'!’, A. Sansoni®!, C. Santoni®®, H. Santos!3°213% S N. Santpurlg, A. Santra!’, K.A. Saoucha'#?,
A. Sapronovgo, J.G. Saraiva'3%2139d_ (O, Sasaki®?, K. Sato!®°, F. Sauerburger”, E. Sauvan®, P. Savard!®74
R. Sawada!®?, C. Sawyerl“, L. Sawyer%, I. Sayago Galvan'”#, C. Sbarraz?®, A. Sbrizzi®767¢,

T. Scanlon®, J. Schaarschmidt'#®, P. Schacht'!>, D. Schaefer?’, L. Schaefer!3°, U. Schifer!®,

A.C. Schaffer®, D. Schaile!'*, R.D. Schambergerlss, E. Schanet'!*, C. Scharf'®, N. Scharmberglm,
V.A. Schegelsky'??, D. Scheirich!#?, F. Schenck!®, M. Schernau'”!, C. Schiavi®*®3?2, L K. Schildgen®*,
Z.M. Schillaci?®, E.J. Schioppa68a’68b, M. Schioppa‘”b*“a, K.E. Schleicher’2, S. Schlenker°,

K.R. Schmidt-Sommerfeld!'", K. Schmieden!?, C. Schmitt!®, S. Schmitt*®, L. Schoeffel'#4,

A. Schoening®®, P.G. Scholer’?, E. Schopf!3*, M. Schott!?’, J.E.P. Schouwenberg!'®, J. Schovancova®®,
S. Schramm®*, F. Schroeder!82, A. Schulte'%°, H-C. Schultz-Coulon®!?, M. Schumacher?,

B.A. Schumm!#, Ph. Schune'#*, A. Schwartzman'>?, T.A. Schwarz!%, Ph. Schwemling'#*,

R. Schwienhorst!?7, A. Sciandra'#’, G. Sciolla%, F. Scuri’®, F. Scutti!?, L.M. Scyboz“s,

C.D. Sebastiani’!, K. Sedlaczek?’, P. Seema!?, S.C. Seidel!!8, A. Seiden'#, B.D. Seidlitz?°, T. Seiss®’,
C. Seitz*®, J.M. Seixas3'?, G. Sekhniaidze’®, S.J. Sekula*?, N. Semprini—Cesari23b’23a, S. Sen®,

C. Serfon?, L. Serin®, L. Serkin®72670 M. Sessa®?, H. Severini!23, S. Sevova!“3, F. Sforza®">5,

52



A. Sfyrla>*, E. Shabalina®3, J.D. Shahinian!3®, N.W. Shaikh®**® D. Shaked Renous'®’, L.Y. Shan'>?,
M. Shapiro'®, A. Sharma®®, A.S. Sharma', P.B. Shatalov'?*, K. Shaw'>®, S.M. Shaw'?!, M. Shehade'3",
Y. Shen'?®| A.D. Sherman®, P. Sherwood”, L. Shi®>, C.O. Shimmin'®3, Y. Shimogama'”®,

M. Shimojima''®, J.D. Shinner®*, I.P.J. Shipsey'34, S. Shirabe!3, M. Shiyakova®®*, J. Shlomi'®,

A. Shmeleva!'!, M.J. Shochet®”, J. Shojaii'®®, D.R. Shope!, S. Shrestha'?’, E.M. Shrif33¢, M.J. Shroff!7®,
E. Shulgalgo, P. Sicho'°, A.M. Sickles!”3, E. Sideras Haddad?*¢, O. Sidiropoulou36, A. Sidoti23b-23a

F. Siegert“, D;j. Sijacki“’, M.Jr. Silva'8!, M. V. Silva Oliveira3®, S.B. Silverstein*®?, S. Simion®,

R. Simoniello'?, C.J. Simpson—allsop21, S. Simsek!??, P, Sinervo!%’, V. Sinetckii'!3, S. Singh152,

S. Sinha3, M. Sioli>*®232_ 1. Siral'3!, S.Yu. Sivoklokov!!3, J. Sj6lin®*%" A Skaf>3, E. Skorda”’,

P. Skubic!?®, M. Slawinska®, K. Sliwa'”, V. Smakhtin'%°, B.H. Smart'43, J. Smiesko?®®, N. Smirnov!'?,
S.Yu. Smirnov!!?, Y. Smirnov'!?, L.N. Smirnova!'3*, O. Smirnova’’, E.A. Smith®’, H.A. Smith!3*,

M. Smizanska”, K. Smolek'*!, A. Smykiewicz®, A.A. Snesarev!!'!, H.L. Snoek'?°, .M. Snyder'3!,

S. Snyder?®, R. Sobie'7%%, A. Soffer'®', A. Sggaard>®, F. Sohns3, C.A. Solans Sanchez’®,

E.Yu. Soldatov'!?, U. Soldevila'’*, A.A. Solodkov'?}, A. Soloshenko®’, O.V. Solovyanov!%3,

V. Solovyevl37, P. Sommer'#, H. Son!’%, A. Sonay”, W. Songm, W.Y. Songl(’Sb, A. Sopczakl‘”,

AL. Sopio95 .F. Sopkovang, S. Sottocornola’!271? R, Soualah®267¢ A M. Soukharev!22b-1222 D South?®,
S. Spagnolo®®68> M. Spalla'!>, M. Spangenberg!’®, F. Spano®*, D. Sperlich®?, T.M. Spiekerf'?,

G. Spigo36, M. Spina156, D.P. Spiteri57, M. Spousta142, A. Stabile®®2%% B 1, Stamas!?!, R. Stamen®'?,
M. Stamenkovic!?°, A. Stampek1521, E. Stanecka®, B. Stanislaus!3*, M.M. Stanitzki*®, M. Stankaitytel34,
B. Stapf!?%, E.A. Starchenko'?3, G.H. Stark!®, J. Stark®, P. Staroba!4?, P. Starovoitov®'?, S. Stirz!'%4,

R. Staszewski®’, G. Stavropoulos44, M. Stegler46, P. Steinbergzg, A.L. Steinhebel'3!, B. Stelzer'32168a
H.J. Stelzer!3®, O. Stelzer-Chilton'®2, H. Stenzel’®, T.J. Stevenson!>®, G.A. Stewart>®, M.C. Stockton?®,
G. Stoicea®’®, M. Stolarski'3®2, S. Stonjek'!3, A. Straessner*®, J. Strandberg'>*, S. Strandberg®»43®,

M. Strauss!?3, T. Strebler!?2, P, Strizenec?®®, R. Strohmer!””, D.M. Strom!3!| R. Stroynowski42,

A. Strubig45a’45b, S.A. Stucci?, B. Stugu”, T Stupaklzg, N.A. Styles46, D. Sul33, W, Syu60d.148.60c

X. Su® N.B. Suarez!3%, V.V. Sulin''!, M.J. Sullivan®!, D.M.S. Sultan®?, S. Sultans0y4°, T. Sumida®®,
S. Sun!®, X. Sun'®!, C.J.E. Suster!®’, M.R. Sutton'>®, S. Suzuki®?, M. Svatos'*?, M. Swiatlowski'©82,
S.P. Swift?, T. Swirski!””, A. Sydorenkoloo, 1. Sykorazga, M. Sykora142, T. Sykora142, D. Tal!%0,

K. Tackmann*®¥, J. Taenzer'®!, A. Taffard!”!, R. Tafirout!o%2, E. Tagievm, R.H.M. Taibah!3%,

R. Takashima®”, K. Takeda®?, T. Takeshita'?, E.P. Takeva®?, Y. Takubo%2, M. Talbyloz,

A.A. Talyshev!'??01222 K C. Tam®®, N.M. Tamir'®!, J. Tanaka'®3, R. Tanaka®, S. Tapia Araya'’3,

S. Tapprogge'®, A. Tarek Abouelfadl Mohamed'?’, S. Tarem'®", K. Tariq®°, G. Tarna?’4,

G.F. Tartarelli®®?, P, Tas'4%, M. Tasevsky”'o, E. Tassi*!®*2 G, Tateno'®3, A. Tavares Delgadowga,

Y. Tayalati356, Al. Taylorso, G.N. Taylorlos, W. Taylor”’gb, H. Teag1e91, A.S. Tee%,

R. Teixeira De Lima!>3, P. Teixeira-Dias®*, H. Ten Kate3°, J.J. Teoh!?°, K. Terashi!®3, J. Terron®?,

S. Terzo'*, M. Testa®!, R.J. Teuscher!®”, N. Themistokleous®?, T. Theveneaux-Pelzer!®, D.W. Thomas®?,
J.P. Thomas?!, E.A. Thompson46, P.D. Thomps0n21, E. Thomson'3¢, E.J. Thorpe%, V.0. Tikhomiroy!!!-Af,
Yu.A. Tikhonov!22>-1222 S Timoshenko!!2, P. Tipt0n183, S. Tisserant!22, K. Todome?3b-232

S. Todorova-Nova'#2, S. Todt*8, J. Tojogg, S. Tokar%2, K. Tokushuku®?, E. Tolley]27, R. Tombs?2,

K.G. Tomiwa33¢, M. Tomoto®>!7, L. Tompkins'>3, P. Tornambe!?3, E. Torrence'3!, H. Torres*?,

E. Torr6 Pastor'”*, M. Toscani?, C. Tosciri!3*, J. Toth!%%Y, D.R. Tovey'4?, A. Traeet!”, C.J. Treado'?,
T. Trefzgerl77, F. Tresoldi!®®, A. Tricoli?%, LM. Triggermga, S. Trincaz-Duvoid!'?, D.A. Trischuk!”>,

W. Trischuk!®?, B. Trocmé’®, A. Trofymov®, C. Troncon®?, F. Trovato!, L. Truong*3¢, M. Trzebinski®?,
A. Trzupek®®, F. Tsai%, P.V. Tsiareshka!%®2d, A Tsirigotis'®>V, V. Tsiskaridze'3, E.G. Tskhadadze'>%?,
M. Ts0p0u10u162, LI Tsukerman'?*, V. Tsulaia'®, S. Tsuno%2, D. Tsybychevlss, Y. Tu®P, A. Tudorache?™,
V. Tudorache?™, A.N. Tuna3°, S. Turchikhin3°, D. Turgemanlso, I. Turk Cakir*®, R.J. Turner?!,

R. Turra®?, PM. Tuts®®, S. Tzamarias'®2, E. Tzovara'®, K. Uchida!®, F. Ukegawa169, G. Unal’®,

53



M. Unal'l, A. Undruszg, G. Unel'”', EC. Ungarolos, Y. Unno®2, K. Uno'%3, J. Urban?8®, P. Urquijolos,
G. Usai®, Z. Uysal'?¢, V. Vacek!4!, B. Vachon!®, K.O.H. Vadla'3}, T. Vafeiadis®, A. Vaidya”™,

C. Valderanis''#, E. Valdes Santurio®**®, M. Valente'%%2, S. Valentinetti?>*232, A Valero!”*, L. Valéry*°,
R.A. Vallance?!, A. Vallier’®, J.A. Valls Ferrer'’*, T.R. Van Daalen'?, P. Van Gemmeren®, S. Van Stroud®?,
I. Van Vulpen'?’, M. Vanadia’#*74® W. Vandelli*®, M. Vandenbroucke'#*, E.R. Vandewall'*°,

D. Vannicola’373" R. Vari’32, E.W. Varnes’, C. Varni®®*>52 T. Varol!>®, D. Varouchas®, K.E. Varvell!’,
M.E. Vasile?’®, G.A. Vasquez176, F. Vazeille®®, D. Vazquez Furelos!'4, T. Vazquez Schroeder®, J. Veatch>3,
V. Vecchio!®', M.J. Veen'??, L.M. Veloce!®?, F. Veloso!3°213%¢ S Veneziano’3?, A. Ventura®82:68b

A. Verbytskyi“S, V. Vercesi’!?, M. Verducci’?72b C.M. Vergel Infante’, C. Vergisz“, W. Verkerke!20,
A.T. Vermeulen'?°, J.C. Vermeulenlzo, C. Vernieri'>3, PJ. Verschuuren®*, M.C. Vetterli!524i s

N. Viaux Maira!4%4, T. Vickey'*°, O.E. Vickey Boeriu'*’, G.H.A. Viehhauser'3*, L. Vigani®!®,

M. VillaZ3:232 M, Villaplana Perez!7*, E.M. Villhauer™?, E. Vilucchi®', M.G. Vincter*, G.S. Virdee?!,
A. Vishwakarma®’, C. Vittori>*®»23 I. Vivarelli'>®, M. Vogel'®?, P. Vokac!*!, J. Von Ahnen*®,

S.E. von Buddenbrock33¢, E. Von Toerne?*, V. Vorobel#2, K. Vorobev!!2, M. Vos!'74, J.H. Vossebeld®!,
M. Vozak'9! N. Vranjesl6, M. Vranjes Milosavljeviclé, V. Vrba!*!, M. Vreeswijklzo, N.K. vul02,

R. Vuillermet’, I. Vukotic®?, S. Wada'®®, P. Wagner24, W. Wagnerlgz, J. Wagner—Kuhr““, S. Wahdan'82,
H. Wahlberg89, R. Wakasa!®, V.M. Walbrecht!!?, J. Walder!'*3, R. Walker!!4, S.D. Walker®*,

W. Walkowiak!'3!, V. Wallangen45a'45b, A.M. Wang59, AZ. Wanglgl, C. Wangf‘oa, C. Wang60°, H. Wanglg,
H. Wang?, J. Wang®%, P. Wang*?, Q. Wang'?®, R.-J. Wang'® R. Wang®® R. Wang®, S.M. Wang!3%,
W.T. Wang®®2, W. Wang'>¢, W.X. Wang®®?, Y. Wang®®?, Z. Wang!®, C. Wanotayaroj*®, A. Warburton'%*,
C.P. Ward®?, R.J. Ward?', N. Warrack>’, A.T. Watson?!, M.F. Watson?!, G. Watts'4®, B.M. Waugh®>,
A.F. Webb!!, C. Weber?”, M.S. Weber??, S.A. Weber**, S.M. Weber®'?, Y. Wei!3*, A.R. Weidberg'3*,

J. Weingarten*’, M. Weirich'?, C. Weiser’?, P.S. Wells*, T. Wenaus?’, B. Wendland*’, T. Wengler?°,

S. Wenig36, N. Wermes?*, M. Wessels®!2, T.D. Weston??, K. Whalen'3!, A.M. Wharton®°, A.S. White!%,
A. White3, M.J. White!, D. Whiteson'”!, B.W. Whitmore?®, W. Wiedenmann'8!, C. Wiel*®, M. Wielers'43,
N. Wieseotte!%, C, Wiglesworth4o, L.A.M. Wiik-Fuchs?, H.G. Wilkens*®, L.J. Wilkins®*,

D.M. Williams*°, H.H. Williams'3°, S. Williams32, S. Willocq103, P.J. Windischhofer!3*,

1. Wingerter—Seezs, E. Winkels!>®, F. Winklmeier'3!, B.T. Winter>2, M. Wittgen153, M. Wobisch®®,

A. Wolf'% R. Wolker'3*, J. Wollrath>2, M.W. Wolter®>, H. Wolters'3%13% V. W.S. Wong!”>,

A.F. Wongel*®, N.L. Woods'*, S.D. Worm*®, B.K. Wosiek®>, K.W. Wozniak®, K. Wraight®’, S.L. Wu'3!,
X. Wut, Y. Wu®%?, J. Wuerzinger'3*, T.R. Wyatt'%!, B.M. Wynne?, S. Xella*’, L. Xia!’®, J. Xiang®°,
X. Xiao'%, X. Xie®%, I. Xiotidis'*®, D. Xu'®?, H. Xu®%?, H. Xu®®, L. Xu?’, R. Xu'*®, T. Xu'#*, W. Xu'0®,
Y. Xu!®t, 7. Xu% 7. Xu!53 B. Yabsley157, S. Yacoob®3?, D.P. Yallup95, N. Yamaguchigg,

Y. Yamaguchi'®, A. Yamamoto®?, M. Yamatani'®3, T. Yamazaki'®?, Y. Yamazaki®?, J. Yan%, Z. Yan?>,
H.J. Yang60°’60d, H.T. Yanglg, S. Yang(’oa, T. Yang63°, X. Yang(’oa, X. Yang60b’58, Y. Yang163, Z. Yang6oa,
W-M. Yao'®, Y.C. Yap*®, H. Ye'>¢, J. Ye*?, S. Ye?, I. Yeletskikh®’, M.R. Yexley”’, E. Yigitbasi>®,

P. Yin?, K. Yorita'”®, K. Yoshihara”, C.J.S. Young36, C. Young153, J. Yu”, R. Yuan®®h X Yue®!?,

M. Zaazoua>>¢, B. Zabinski®®, G. Zacharis'?, E. Zaffaroni®*, J. Zahreddine!'?>, A.M. Zaitsev!23-2¢,

T. Zakareishvili'*®", N. Zakharchuk?*, S. Zambito®®, D. Zanzi*°, S.V. ZeiBner*’, C. Zeitnitz!82,

G. Zemaityte'3*, J.C. Zeng'"3, O. Zenin'?3, T. Zenis?®?, D. Zerwas®, M. Zgubi¢'3*, B. Zhang'>°,

D.F. Zhang'®, G. Zhang!*®, J. Zhang®, Kaili. Zhang'%?, L. Zhang'¢, L. Zhang®®®, M. Zhang!"3,

R. Zhang'®!, S. Zhang!%, X. Zhang®®, X. Zhang®®, Y. Zhang!3*13¢, Z. Zhang®3?, Z. Zhang®, P. Zhao*,
Y. Zhao'®, Z. Zhao®%, A. Zhemchugov®?, Z. Zheng'%, D. Zhong'"3, B. Zhou'%, C. Zhou'3!, H. Zhou’,
M. Zhou'>3, N. Zhou®%, Y. Zhou’, C.G. Zhu®®, C. Zhu'*®13¢ H.L. Zhu®*, H. Zhu'>?, J. Zhu'%,

Y. Zhu%, X, Zhuannga, K. Zhukov'!!, V. Zhulanov'?2*1222 D Zieminska®®, N.I. Zimine®°,

S. Zimmermann>%", Z. Zinonos!'?, M. Ziolkowski!!, L. Zivkovié¢'®, G. Zoberniglgl, A. Zoccoliz3b-23a,
K. Zoch¥, T.G. Zorbas'¥, R. Zou*’, L. Zwalinski’.

54



'Department of Physics, University of Adelaide, Adelaide; Australia.

ZPhysics Department, SUNY Albany, Albany NY; United States of America.

3Department of Physics, University of Alberta, Edmonton AB; Canada.

4(@) Department of Physics, Ankara University, Ankara;?)Istanbul Aydin University, Application and
Research Center for Advanced Studies, Istanbul;(¢) Division of Physics, TOBB University of Economics
and Technology, Ankara; Turkey.

SLAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy; France.
®High Energy Physics Division, Argonne National Laboratory, Argonne IL; United States of America.
7Department of Physics, University of Arizona, Tucson AZ; United States of America.

8Department of Physics, University of Texas at Arlington, Arlington TX; United States of America.
Physics Department, National and Kapodistrian University of Athens, Athens; Greece.

10Physics Department, National Technical University of Athens, Zografou; Greece.

""Department of Physics, University of Texas at Austin, Austin TX; United States of America.

12(a) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul; (®) Istanbul Bilgi
University, Faculty of Engineering and Natural Sciences, Istanbul;(¢) Department of Physics, Bogazici
University, Istanbul; ¥ Department of Physics Engineering, Gaziantep University, Gaziantep; Turkey.
Blnstitute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.

41nstitut de Fisica d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona;
Spain.

15(a@) [nstitute of High Energy Physics, Chinese Academy of Sciences, Beijing;?) Physics Department,
Tsinghua University, Beijing; () Department of Physics, Nanjing University, Nanjing; (%) University of
Chinese Academy of Science (UCAS), Beijing; China.

16Tnstitute of Physics, University of Belgrade, Belgrade; Serbia.

"Department for Physics and Technology, University of Bergen, Bergen; Norway.

18Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA;
United States of America.

Onstitut fiir Physik, Humboldt Universitit zu Berlin, Berlin; Germany.

20 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of
Bern, Bern; Switzerland.

2I'School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom.
22(@)Facultad de Ciencias y Centro de Investigaciénes, Universidad Antonio Narifio,
Bogoté;(b)Departamento de Fisica, Universidad Nacional de Colombia, Bogotd, Colombia; Colombia.
23(4)INFN Bologna and Universita’ di Bologna, Dipartimento di Fisica;”) INFN Sezione di Bologna; Italy.
24Physikalisches Institut, Universitit Bonn, Bonn; Germany.

25 Department of Physics, Boston University, Boston MA; United States of America.

26Department of Physics, Brandeis University, Waltham MA; United States of America.

27(@) Transilvania University of Brasov, Brasov;(®) Horia Hulubei National Institute of Physics and Nuclear
Engineering, Bucharest;©) Department of Physics, Alexandru Ioan Cuza University of Iasi,

Tasi; (9 National Institute for Research and Development of Isotopic and Molecular Technologies, Physics
Department, Cluj-Napoca;¢) University Politehnica Bucharest, Bucharest; /) West University in Timisoara,
Timisoara; Romania.

28(“)Fa(:ulty of Mathematics, Physics and Informatics, Comenius University, Bratislava;(® )Department of
Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak
Republic.

2Physics Department, Brookhaven National Laboratory, Upton NY; United States of America.
30Departamento de Fisica, Universidad de Buenos Aires, Buenos Aires; Argentina.

3lCalifornia State University, CA; United States of America.

55



32 Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom.

3(@Department of Physics, University of Cape Town, Cape Town;?)iThemba Labs, Western

Cape;(“) Department of Mechanical Engineering Science, University of Johannesburg,
Johannesburg; () University of South Africa, Department of Physics, Pretoria; ¢ School of Physics,
University of the Witwatersrand, Johannesburg; South Africa.

34Department of Physics, Carleton University, Ottawa ON; Canada.

35(@)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université
Hassan II, Casablanca;?) Faculté des Sciences, Université Ibn-Tofail, Kénitra;(¢)Faculté des Sciences
Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (9 Faculté des Sciences, Université Mohamed
Premier and LPTPM, Oujda;(e)Faculté des sciences, Université Mohammed V, Rabat; Morocco.
36CERN, Geneva; Switzerland.

37Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America.

31 PC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand; France.

INevis Laboratory, Columbia University, Irvington NY; United States of America.

“4ONiels Bohr Institute, University of Copenhagen, Copenhagen; Denmark.

4l(@)Dipartimento di Fisica, Universita della Calabria, Rende;®) INFN Gruppo Collegato di Cosenza,
Laboratori Nazionali di Frascati; Italy.

42Physics Department, Southern Methodist University, Dallas TX; United States of America.

43Physics Department, University of Texas at Dallas, Richardson TX; United States of America.
44National Centre for Scientific Research "Demokritos", Agia Paraskevi; Greece.

4 (“)Department of Physics, Stockholm University;(b )Oskar Klein Centre, Stockholm; Sweden.
4Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen; Germany.

47 ehrstuhl fiir Experimentelle Physik IV, Technische Universitidt Dortmund, Dortmund; Germany.
“nstitut fiir Kern- und Teilchenphysik, Technische Universitit Dresden, Dresden; Germany.
49Department of Physics, Duke University, Durham NC; United States of America.

S0SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom.
SIINFN e Laboratori Nazionali di Frascati, Frascati; Italy.

>2Physikalisches Institut, Albert-Ludwigs-Universitit Freiburg, Freiburg; Germany.

3311. Physikalisches Institut, Georg-August-Universitit Gottingen, Gottingen; Germany.

>*Département de Physique Nucléaire et Corpusculaire, Université de Genéve, Genéve; Switzerland.

35 (“)Dipartimento di Fisica, Universita di Genova, Genova;(b JINEN Sezione di Genova; Italy.

311, Physikalisches Institut, Justus-Liebig-Universitit Giessen, Giessen; Germany.

STSUPA - School of Physics and Astronomy, University of Glasgow, Glasgow; United Kingdom.
S8LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble; France.

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA; United States of
America.

60(@) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics,
University of Science and Technology of China, Hefei;(? Institute of Frontier and Interdisciplinary Science
and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University,
Qingdao;©)School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC,
Shanghai;(d )Tsung-Dao Lee Institute, Shanghai; China.

61(a)Kirchhoff-Institut fiir Physik, Ruprecht-Karls-Universitit Heidelberg, Heidelberg;?) Physikalisches
Institut, Ruprecht-Karls-Universitéit Heidelberg, Heidelberg; Germany.

2Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima; Japan.
63(@)Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong; ) Department
of Physics, University of Hong Kong, Hong Kong; ¢ Department of Physics and Institute for Advanced
Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; China.

56



%Department of Physics, National Tsing Hua University, Hsinchu; Taiwan.

65TJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay; France.

% Department of Physics, Indiana University, Bloomington IN; United States of America.

67(a)INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine;®ICTP, Trieste;(")Dipartimento
Politecnico di Ingegneria e Architettura, Universita di Udine, Udine; Italy.

68(a)INFN Sezione di Lecce;(b)Dipartimento di Matematica e Fisica, Universita del Salento, Lecce; Italy.
69(@)INFN Sezione di Milano;(b)Dipartimento di Fisica, Universita di Milano, Milano; Italy.
70(&)INFN Sezione di Napoli;?) Dipartimento di Fisica, Universita di Napoli, Napoli; Italy.
TH@INFN Sezione di Pavia;(b)Dipartimento di Fisica, Universita di Pavia, Pavia; Italy.

72(a)INFN Sezione di Pisa;(b)Dipartimento di Fisica E. Fermi, Universita di Pisa, Pisa; Italy.
73(a)INFN Sezione di Roma;(b)Dipartimento di Fisica, Sapienza Universita di Roma, Roma; Italy.
74(@)INFN Sezione di Roma Tor Vergata;”) Dipartimento di Fisica, Universita di Roma Tor Vergata,
Roma; Italy.

75(A)INFN Sezione di Roma Tre;?) Dipartimento di Matematica e Fisica, Universita Roma Tre, Roma;
Italy.

76(4)INFN-TIFPA;®) Universita degli Studi di Trento, Trento; Italy.

TTInstitut fiir Astro- und Teilchenphysik, Leopold-Franzens-Universitét, Innsbruck; Austria.
78University of Iowa, Towa City IA; United States of America.

Department of Physics and Astronomy, Iowa State University, Ames IA; United States of America.
80Joint Institute for Nuclear Research, Dubna; Russia.

81(@) Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de
Fora;(b ) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de J aneiro;(c)lnstituto de Fisica,
Universidade de Sao Paulo, Sdo Paulo; Brazil.

82KEK, High Energy Accelerator Research Organization, Tsukuba; Japan.

83Graduate School of Science, Kobe University, Kobe; Japan.

84(a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science,
Krakow; (® Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow; Poland.
85nstitute of Nuclear Physics Polish Academy of Sciences, Krakow; Poland.

86Faculty of Science, Kyoto University, Kyoto; Japan.

87Kyoto University of Education, Kyoto; Japan.

88Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka ;
Japan.

891nstituto de Fisica La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina.
90Physics Department, Lancaster University, Lancaster; United Kingdom.

10liver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom.

9 Department of Experimental Particle Physics, JoZef Stefan Institute and Department of Physics,
University of Ljubljana, Ljubljana; Slovenia.

93School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom.
%Department of Physics, Royal Holloway University of London, Egham; United Kingdom.

% Department of Physics and Astronomy, University College London, London; United Kingdom.

9] ouisiana Tech University, Ruston LA; United States of America.

9TFysiska institutionen, Lunds universitet, Lund; Sweden.

%Centre de Calcul de I'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3),
Villeurbanne; France.

99Departamento de Fisica Teorica C-15 and CIAFF, Universidad Auténoma de Madrid, Madrid; Spain.
100 ngtitut fiir Physik, Universitdt Mainz, Mainz; Germany.

101School of Physics and Astronomy, University of Manchester, Manchester; United Kingdom.

57



102CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.

103Department of Physics, University of Massachusetts, Amherst MA; United States of America.
104Department of Physics, McGill University, Montreal QC; Canada.

1055chool of Physics, University of Melbourne, Victoria; Australia.

1%6Department of Physics, University of Michigan, Ann Arbor MI; United States of America.
107Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of
America.

108g 1, Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk; Belarus.
109Research Institute for Nuclear Problems of Byelorussian State University, Minsk; Belarus.

"19Group of Particle Physics, University of Montreal, Montreal QC; Canada.

TP N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow; Russia.

12National Research Nuclear University MEPhI, Moscow; Russia.

1Bp v, Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow;
Russia.

H4Eakultit fiir Physik, Ludwig-Maximilians-Universitdt Miinchen, Miinchen; Germany.
15SMax-Planck-Institut fiir Physik (Werner-Heisenberg-Institut), Miinchen; Germany.

16Nagasaki Institute of Applied Science, Nagasaki; Japan.

7 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya; Japan.
"8Department of Physics and Astronomy, University of New Mexico, Albuquerque NM; United States of
America.

9Tnstitute for Mathematics, Astrophysics and Particle Physics, Radboud University/Nikhef, Nijmegen;
Netherlands.

120Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam;
Netherlands.

121Department of Physics, Northern Illinois University, DeKalb IL; United States of America.

122(a) Bydker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk;?) Novosibirsk State University
Novosibirsk; Russia.

123Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino; Russia.
124nstitute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research
Centre "Kurchatov Institute", Moscow; Russia.

125Department of Physics, New York University, New York NY; United States of America.
1260chanomizu University, Otsuka, Bunkyo-ku, Tokyo; Japan.

1270hio State University, Columbus OH; United States of America.

128Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK; United
States of America.

129Department of Physics, Oklahoma State University, Stillwater OK; United States of America.
130palacky University, RCPTM, Joint Laboratory of Optics, Olomouc; Czech Republic.

B1nstitute for Fundamental Science, University of Oregon, Eugene, OR; United States of America.
132Graduate School of Science, Osaka University, Osaka; Japan.

133Department of Physics, University of Oslo, Oslo; Norway.

134Department of Physics, Oxford University, Oxford; United Kingdom.

35T PNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris; France.

136Department of Physics, University of Pennsylvania, Philadelphia PA; United States of America.

137K onstantinov Nuclear Physics Institute of National Research Centre "Kurchatov Institute", PNPI, St.
Petersburg; Russia.

138Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of
America.

58



139(a)_aboratério de Instrumentagio e Fisica Experimental de Particulas - LIP, Lisboa;?) Departamento de
Fisica, Faculdade de Ciéncias, Universidade de Lisboa, Lisboa;(C)Departamento de Fisica, Universidade
de Coimbra, Coimbra;(d)Centro de Fisica Nuclear da Universidade de Lisboa, Lisboa;(e)Departamento de
Fisica, Universidade do Minho, Braga;(f )Departamento de Fisica Tedrica y del Cosmos, Universidad de
Granada, Granada (Spain); ¢ Dep Fisica and CEFITEC of Faculdade de Ciéncias e Tecnologia,
Universidade Nova de Lisboa, Caparica;(h)lnstituto Superior Técnico, Universidade de Lisboa, Lisboa;
Portugal.

140Institute of Physics of the Czech Academy of Sciences, Prague; Czech Republic.

141Czech Technical University in Prague, Prague; Czech Republic.

142Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic.

143Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom.

1441RFU, CEA, Université Paris-Saclay, Gif-sur-Yvette; France.

145Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United
States of America.

l46(“)Depalrtamento de Fisica, Pontificia Universidad Catolica de Chile, Santiago;(b)Universidad Andres
Bello, Department of Physics, Santiago;(c)lnstituto de Alta Investigacion, Universidad de
Tarapacé;(d)Departamento de Fisica, Universidad Técnica Federico Santa Maria, Valparaiso; Chile.
147Universidade Federal de Sdo Jodo del Rei (UFSJ), Sao Jodo del Rei; Brazil.

148Department of Physics, University of Washington, Seattle WA; United States of America.
149Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.
159Department of Physics, Shinshu University, Nagano; Japan.

SIDepartment Physik, Universitit Siegen, Siegen; Germany.

152Department of Physics, Simon Fraser University, Burnaby BC; Canada.

I533SL.AC National Accelerator Laboratory, Stanford CA; United States of America.

154Physics Department, Royal Institute of Technology, Stockholm; Sweden.

155Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of
America.

156Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom.

157School of Physics, University of Sydney, Sydney; Australia.

1381nstitute of Physics, Academia Sinica, Taipei; Taiwan.

159(@)E, Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi;?) High
Energy Physics Institute, Tbilisi State University, Tbilisi; Georgia.

160Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel.

161Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel.
162Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece.

163International Center for Elementary Particle Physics and Department of Physics, University of Tokyo,
Tokyo; Japan.

164Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo; Japan.
165Department of Physics, Tokyo Institute of Technology, Tokyo; Japan.

166 Tomsk State University, Tomsk; Russia.

167Department of Physics, University of Toronto, Toronto ON; Canada.

168(«) TRIUMF, Vancouver BC;(? )Department of Physics and Astronomy, York University, Toronto ON;
Canada.

199Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied
Sciences, University of Tsukuba, Tsukuba; Japan.

170Department of Physics and Astronomy, Tufts University, Medford MA; United States of America.
"TDepartment of Physics and Astronomy, University of California Irvine, Irvine CA; United States of

59



America.

172Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden.

173Department of Physics, University of Illinois, Urbana IL; United States of America.

74 nstituto de Fisica Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia; Spain.
175Department of Physics, University of British Columbia, Vancouver BC; Canada.

l76Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada.

177 Fakultit fiir Physik und Astronomie, Julius-Maximilians-Universitit Wiirzburg, Wiirzburg; Germany.
178Department of Physics, University of Warwick, Coventry; United Kingdom.

179Waseda University, Tokyo; Japan.

180Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot; Israel.
181Department of Physics, University of Wisconsin, Madison WI; United States of America.

182Fakultit fiir Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universitit
Wuppertal, Wuppertal; Germany.

183Department of Physics, Yale University, New Haven CT; United States of America.

¢ Also at Borough of Manhattan Community College, City University of New York, New York NY; United
States of America.

b Also at Centro Studi e Ricerche Enrico Fermi; Italy.

¢ Also at CERN, Geneva; Switzerland.

4 Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.

¢ Also at Département de Physique Nucléaire et Corpusculaire, Université de Geneéve, Geneve;
Switzerland.

/' Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona; Spain.

& Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece.
" Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI; United
States of America.

I Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of
America.

J'Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva; Israel.

k Also at Department of Physics, California State University, East Bay; United States of America.

! Also at Department of Physics, California State University, Fresno; United States of America.

" Also at Department of Physics, California State University, Sacramento; United States of America.

" Also at Department of Physics, King’s College London, London; United Kingdom.

¢ Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg; Russia.
P Also at Department of Physics, University of Fribourg, Fribourg; Switzerland.

4 Also at Dipartimento di Matematica, Informatica e Fisica, Universita di Udine, Udine; Italy.

" Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow; Russia.

* Also at Giresun University, Faculty of Engineering, Giresun; Turkey.

" Also at Graduate School of Science, Osaka University, Osaka; Japan.

* Also at Hellenic Open University, Patras; Greece.

v Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain.

W Also at Institut fiir Experimentalphysik, Universitit Hamburg, Hamburg; Germany.

* Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of
Sciences, Sofia; Bulgaria.

Y Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest;
Hungary.

¢ Also at Institute of Particle Physics (IPP); Canada.

44 Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.

60



ab Algo at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid; Spain.

“¢ Also at Istanbul University, Dept. of Physics, Istanbul; Turkey.

ad Also at Joint Institute for Nuclear Research, Dubna; Russia.

“¢ Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.
af Also at National Research Nuclear University MEPhI, Moscow; Russia.

48 Also at Physics Department, An-Najah National University, Nablus; Palestine.

ah Also at Physikalisches Institut, Albert-Ludwigs-Universitit Freiburg, Freiburg; Germany.
ai Also at The City College of New York, New York NY; United States of America.

aj Also at TRIUMF, Vancouver BC; Canada.

@k Also at Universita di Napoli Parthenope, Napoli; Italy.

al’ Also at University of Chinese Academy of Sciences (UCAS), Beijing; China.

* Deceased

61



