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1 Introduction

Events with a large number of high-transverse momentum (pr) jets originating from the fragmentation of
b-quarks (b-jets) are rarely produced by Standard Model (SM) processes in proton—proton (pp) collisions
at the LHC. As a result, this signature can provide sensitivity to certain phenomena beyond the SM
(BSM) [1-3]. Event signatures with five or more b-jets, no leptons (electrons or muons) and without any
requirements on missing transverse momentum are not covered by existing searches at the LHC.

Supersymmetry (SUSY) provides an extension to the SM by introducing partners of the known bosons
and fermions. It predicts the existence of superpartner states (with different statistics) associated to each
of the SM particles and fields. The lightest among such superpartners (LSP) may or may not be stable,
depending on the conservation of R-parity [4—6]. Final states with high leptonic or hadronic multiplicity
are commonly predicted by R-parity-violating (RPV) SUSY. Models of RPV SUSY do not provide stable
superpartners, and they give rise to a wide variety of experimental signatures whose nature depends on
which of the many RPV couplings are non-zero.

In the analysis presented here, a particular benchmark model is considered in order to interpret the
measurements in the different jet and H-jet multiplicity regions. The process under consideration is the pair
production of the top squark as the lightest of the coloured SUSY partners. The existence of light SUSY
partners of third-generation quarks, bottom squarks (b) and top squarks (7), is favoured by naturalness
considerations [7, 8]. The scenario assumes the LSP to be a triplet of two neutralino ()20, )?(2)) and one
chargino () states that are mass-degenerate and carry dominantly higgsino components (in the following
collectively referred to as “higgsinos”). The top squark decays either into a chargino, ¥{", and a bottom
quark or into a neutralino, )2?’2, and a top quark. The chargino and neutralino decay, respectively, to bbs
and tbs quark triplets, as shown in Figure 1; this decay is mediated through their higgsino components via
the non-zero baryon-number-violating RPV coupling /1/3/23 [9, 10].

When m; —m ©,.0 < myop (Figure 1(a)), the 7 — ¢ /\7?,2 decay is kinematically forbidden and the top-squark
branching ratio (B) to b X7 is equal to unity; when m; —m 2,0 > myop the value of B is taken to be
0.5. In the latter case, the rest of the decay rate is evenly divided between the two neutralino states:
F—t )2(1),2( )210’2 — tbhs) (Figure 1(b)). For the supersymmetric particle masses under consideration,
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the analysis considers only values of A;,, ~ 0(1072-107") [11] which ensure prompt neutralino and
chargino decays and omit more complex RPV decay patterns such as g — W** )2?( )2? — tbs) or
)2(2) — 7" )2(1) ( )2(1) — tbs) that could be substantial for very small values of /1/3/23 [3].

Previous searches targeting RPV SUSY models of pair-produced top squarks decaying through the coupling
/1'3'23 have been carried out by the ATLAS and CMS collaborations. Those searches already exclude
top-squark masses in the ranges 100 GeV < m; < 470 GeV and 480 GeV < m; < 610 GeV (ATLAS [12]),
and 80 GeV < my; < 270 GeV, 285 GeV < mj; < 340 GeV and 400 GeV < m; < 505 GeV (CMS [13])
in scenarios where the top squark is the LSP and decays directly via 7 — bs. For the direct top-squark
production and /1223—mediated decays of higgsino LSP scenarios, ATLAS has excluded top-squark masses
up to 1.10 TeV, depending on the higgsino mass considered, in the region where m; — m 0 > Myop, by
analysing lepton plus jets events [11]. CMS has excluded top-squark masses between 100 and 720 GeV for
top-squark decays into four quarks in boosted topologies and with the mass of the higgsinos set to 75% of
the squark mass [14].

This analysis considers events with six or more jets, of which at least four are identified as b-jets (b-tagged).
There must be no identified electron or muon, and no requirement is made on the missing transverse
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Figure 1: Diagrams of the signal processes involving pair production of top squarks 7: (a) with the decay into a
b-quark and the lightest chargino ¢} (i — bx7) with the subsequent decay of the chargino ¥ — bb5 and charge
conjugate (c.c.), and (b) the decay into a top quark and the two lightest neutralinos )2(1) , with the subsequent decay
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momentum. In this channel, the dominant background is the non-resonant production of multijet events,
referred to as ‘multijet’ in the following, and a data-driven method is applied to estimate its yield. Other
backgrounds arise from top-quark pair production accompanied by extra b-jets or by a Z or Higgs boson
decaying into a b-quark pair. Results are reported as 95% confidence level (CL) exclusion limits on the
top-squark mass in the benchmark models described above. Model-independent limits on the possible
contribution of BSM physics are also evaluated at large jet and b-tagged jet multiplicities.

2 ATLAS detector

The ATLAS experiment [15] at the LHC is a multipurpose particle detector with a forward—backward
symmetric cylindrical geometry and a near 47 coverage in solid angle.! It consists of an inner tracking
detector (ID) surrounded by a thin superconducting solenoid providing a 2T axial magnetic field,
electromagnetic and hadron calorimeters, and a muon spectrometer (MS). The inner tracking detector
covers the pseudorapidity range |n| < 2.5. It consists of silicon pixel, silicon microstrip, and transition
radiation tracking detectors. An additional innermost layer of the silicon pixel tracker, the insertable
B-layer [16, 17], was installed in 2014 at an average radial distance of 3.3 cm from the beam-line to improve
track reconstruction and flavour identification of quark-initiated jets. Lead/liquid-argon (LAr) sampling
calorimeters provide electromagnetic energy measurements with high granularity. A steel/scintillator-tile
calorimeter provides hadronic energy measurements and covers the central pseudorapidity range (|n| < 1.7).
The endcap and forward regions are instrumented with LAr calorimeters for both the electromagnetic and

I ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upwards. Cylindrical coordinates (r, ¢) are used in the transverse plane, ¢ being the azimuthal angle around the z-axis.
The pseudorapidity is defined in terms of the polar angle 6 as n = —Intan(6/2). Angular distance is measured in units of

AR = V(A2 + (Ag)2.



hadronic energy measurements up to || = 4.9. The muon spectrometer surrounds the calorimeters and is
based on three large air-core toroidal superconducting magnets with eight coils each. The field integral of
the toroids ranges between 2.0 and 6.0 T m across most of the detector. The muon spectrometer includes a
system of precision tracking chambers and fast detectors for triggering. A two-level trigger system is used
to select events to be recorded. The first-level trigger is implemented in hardware and uses a subset of the
detector information to accept events at a rate of at most 100 kHz. This is followed by a software-based
high-level trigger (HLT) that reduces the accepted event rate to ~1.2 kHz, on average.

3 Data collection and simulated event samples

This search is based on 139 fb~! of centre-of-mass energy /s = 13 TeV pp collision data, collected
between 2015 and 2018, that satisfy beam, detector and data-quality criteria. The uncertainty in the
combined 2015-2018 integrated luminosity is 1.7% [18], obtained using the LUCID-2 detector [19] for
the primary luminosity measurements. The average number of interactions ({x)) in the same and nearby
bunch crossings (pile-up) varies from (u) = 13.4 (2015 dataset) to (u) = 36.1 (2018 dataset), with a highest
(u) =37.8 (2017 dataset) and an average (u) = 33.7. Data were collected using a four-jet trigger which,
in the HLT, requires four jets each having |n| < 2.5, with pt > 100 GeV for the 2015-2016 data period
and pt > 120 GeV for the 2017-2018 data period. Data events used for the validation of the data-driven
multijet background were collected using the lowest unprescaled single-lepton triggers; the lowest trigger
prt threshold used for muons is 20 (26) GeV in 2015 (2016-2018), while for electrons the trigger pr
threshold is 24 (26) GeV in 2015-2017 (2018).

Monte Carlo (MC) simulations are used to model the SUSY signals, as well as to aid in the description of
the background processes. In the remainder of this section, the simulation of the signal and of the main
background processes contributing to the selected events in data is described. For all the simulated physics
processes, the top-quark mass is assumed to be m,, = 172.5 GeV and the Higgs boson mass is taken to
be my = 125 GeV. The generation of the simulated event samples includes the effect of multiple pp
interactions in the same and neighbouring bunch crossings, as well as the effect of pile-up on the detector
response. These interactions were produced using Pytnia 8.230 [20] with a set of tuned parameters called
the A3 tune [21] and the NNPDF2.3 leading-order (LO) [22] parton distribution function (PDF) set.

All generated MC samples were processed through a simulation [23] of the detector geometry and response
using either GEANT4 [24] or a fast simulation [25] of the calorimeter response and were then processed by
the same reconstruction software used on data. To model the parton shower, hadronisation, and underlying
event, the PytaiA 8§ generator was used with the NNPDF2.3 LO PDF set and the A14 [26] set of tunable
parameters. The decays of bottom and charm hadrons were modelled using EvTGen [27]. Simulated MC
events are weighted such that the object identification efficiencies, energy scales and energy resolutions
match those determined from data control samples [28, 29].

MC samples for multijet production were generated using PyTthia 8.230 with leading-order matrix elements
for dijet production and a pt-ordered parton shower. EvTGen v1.6.0 was used for bottom and charm
hadron decays. The renormalisation and factorisation scales were set to the geometric mean of the squared

transverse masses of the two outgoing partons, \/ (p3 | +m)(p3, +md).

The production of ¢f events (referred to as t7+jets) was modelled using the PowneG-Box v2 [30-33]
generator at next-to-leading order (NLO) with the NNPDF3.0 NLO [34] PDF set and with the Agamp



parameter2 set to 1.5 myop [35]. PyTHiA 8.230 was used for the parton shower and EvrGen v1.6.0 for
bottom and charm hadron decays. The t7+jets sample was generated inclusively in the number of jets
using fast simulation. The MC sample cross-section is corrected to the theory prediction at next-to-next-to
leading order (NNLO) in QCD including resummation of next-to-next-to-leading logarithmic (NNLL) soft
gluon terms by means of the Top++ (v2.0) program [36—42]. The generated events may have jets which
do not originate from the decay of the 77 system. These additional jets are used to categorise the events
depending on the flavour of the matching parton. Particle jets are reconstructed from all stable particles
generated in the event (excluding muons and neutrinos) using the anti-k, algorithm [43] with a radius
parameter R = 0.4 and are required to have pt > 15GeV and |5| < 2.5. Events having at least one such
particle jet, matched within AR < 0.3 to a generated b-hadron having pt > 5 GeV and not originating
from a top-quark decay, are labelled as t7+>1b events. Similarly, events which are not already categorised
as tt+>1b, and where at least one particle jet is matched to a c-hadron not originating from a W boson
decay, are labelled as t7+>1c events. Events labelled as either t7+>1b or tf+>1c are referred to as #7 +HF
events (HF for ‘heavy flavour’). The remaining events, including those with no additional jets, are labelled
as rf+light events (light for ‘light flavour’).

The Wt single-top-quark background was generated at NLO in QCD by Powneg-Box v2 with the
NNPDF3.0 NLO PDF set. Overlaps between the 7 and Wt final states were removed using the ‘diagram
removal’ scheme [44]. PytaIA 8.230 was used for the parton shower and EvrGen v1.6.0 for bottom and
charm hadron decays. Samples of single-top events are normalised to the cross-section calculated at NLO
in QCD with NNLL soft gluon corrections [45, 46].

The production of ¢7V events was modelled using the MADGraPHS_aMC@NLO v2.3.3 [47] generator at
NLO with the NNPDF3.0 NLO PDF set. PyTa1a 8.210 was used for the parton shower and EvrGen v1.2.0
for bottom and charm hadron decays.

The production of t7H events was modelled using the PowHEG-Box v2 generator to NLO with the
NNPDF3.0 NLO PDF set. PyTaia 8.230 was used for the parton shower and EvrGen v1.6.0 for bottom
and charm hadron decays. The cross-sections are calculated at NLO QCD and NLO electroweak accuracy
using MADGrAPHS_aMC@NLO [48].

Signal events were produced using the MADGRraPHS_aMC@NLO v2.3.3 generator at NLO with the
NNPDF2.3 LO PDF, and the fast simulation of the detector response. PyTHia 8.230 was used for the
parton shower and EvTGen v1.6.0 for bottom and charm hadron decays. Signal cross-section calculations
include approximate next-to-next-to-leading-order (NNLO approx) sSupersymmetric QCD corrections and the
resummation of soft gluon emission at NNLL accuracy [49]. The nominal cross-section and its uncertainty
are taken from an envelope of predictions using different PDF sets as well as different factorisation and
renormalisation scales. Top-squark masses between 600 GeV and 1 TeV and higgsino masses between
100 GeV and 950 GeV are considered.

4 Event reconstruction

Events are required to have a primary vertex reconstructed from at least two tracks with transverse
momentum pr > 500 MeV. When several vertices are found in a given bunch crossing, the vertex with the
largest summed p% of the associated tracks is selected as the primary vertex.

2 The hdamp parameter is a resummation damping factor and one of the parameters that controls the matching of PowHEG matrix
elements to the parton shower and thus effectively regulates the high-p radiation against which the 7 system recoils.



Electrons are reconstructed from energy deposits (clusters) in the electromagnetic calorimeter matched to
tracks reconstructed in the ID [50, 51] and are required to have pt > 10 GeV and || < 2.47. Candidates
in the calorimeter barrel-endcap transition region (1.37 < || < 1.52) are excluded. Electron tracks
must match the primary vertex of the event: the longitudinal impact parameter’ is required to satisfy
|zo| < 0.5 mm, while the transverse impact parameter is required to satisfy |do|/og, < 5, where oy,
represents the uncertainty in the measured |dy| values. Loose electrons are identified using the ‘Medium’
identification criterion provided by a likelihood-based discriminant [52]. Tight electrons are required to
pass the ‘TightLLH’ selection [52] and the ‘Gradient’ isolation criteria [52] and pt > 27 GeV.

Muons are reconstructed by matching either track segments or full tracks in the MS to tracks in the ID [53].
Combined tracks are then re-fitted using information from both detector systems. Muon tracks must match
the primary vertex of the event: the longitudinal impact parameter is required to satisfy |zo| < 0.5 mm,
while the transverse impact parameter is required to satisty |do|/cy, < 3. Loose muons are those that pass
the ‘Loose’ muon selection [53] and have pt > 10 GeV and || < 2.5, and Tight muons are those that pass
the ‘Medium’ muon selection [53], satisfy the ‘FixedCutTightTrackOnly’ isolation criterion [53], and have
pr > 27 GeV.

Jets are reconstructed from three-dimensional topological energy clusters [54] in the calorimeter using
the anti-k, jet algorithm [43] with a radius parameter of 0.4. Reconstructed jets are then corrected to the
particle level by the application of a jet energy scale calibration that is derived from simulation and by in
situ corrections obtained from 13 TeV data [55]. Jets used in this analysis are required to have pt > 25 GeV
and |n| < 2.5 after calibration.

To avoid selecting jets from pile-up, low-pt (pr < 120 GeV) jets in the central (|n| < 2.5) region of
the detector are required to satisfy the jet-vertex tagger [56] configured such that it has an efficiency of
approximately 92% to identify jets from a primary vertex. This requirement is applied to both data and
simulation. Quality criteria are imposed to identify jets arising from non-collision sources or detector
noise (using the BadLoose operating point [57]), and any event containing at least one such jet is removed.
This removal produces a negligible loss of efficiency for signal events.

The b-jets are identified via a b-tagging algorithm that uses multivariate techniques to combine information
from the impact parameters of displaced tracks as well as topological properties of secondary and tertiary
decay vertices reconstructed within the jet. This analysis uses the MV2c10 tagger [58], trained on a hybrid
sample of simulated 17 and Z’ events statistically enriched at high-p in order to discriminate b-jets from a
background consisting of light- (93%) and c-labelled (7%) jets [29]. A weight is calculated corresponding
to the probable presence of a b-quark or a c-quark, and jets are confirmed b-tagged if they satisfy a
minimum requirement on the MV2c10 b-tagging weight corresponding to an average efficiency in 77 events
of 60% for b-jets, 4% for c-jets and a rejection factor of approximately 1200 for light-flavour jets across
the jet p range.

An overlap removal procedure is carried out to resolve ambiguities between jets and lepton candidates.
To prevent treating electron energy deposits as jets, the closest jet within ARy, = v/(Ay)? + (A¢)? = 0.2
of a selected electron is removed.* If the nearest jet surviving that selection is within AR v = 0.4 of the
electron, the electron is discarded. To reduce the background from heavy-flavour decays inside jets, muons

3 The transverse impact parameter (dg) is defined as the distance of closest approach in the transverse plane between a track and
the beam-line. The longitudinal impact parameter (zg) corresponds to the z-coordinate difference between the point along the
track at which the transverse impact parameter is defined and the primary vertex.

4 The rapidit.y is defined as y = % In Etg"
the beam-line.

where E is the energy and p; is the longitudinal component of the momentum along

z



Table 1: The strategy of the analysis. For the model-dependent fit, the signal regions (SRy) consist of events with Nj =
6,7, 8 and > 9 jets and N, =4 and > 5. These are used independently in the final fit. For the model-independent fit,
two dedicated signal regions (SRgiscovery), With (Nj > 9, Ny, > 5) and (Nj > 8, Ny > 5), are used. The validation
regions (VR-MJ), which are based on a maximum value of the centrality mass, Chas,, introduced for the description
of the VRs in Section 5, are also indicated.

Analysis Ny
Regions 3 4 >5
6 SR; SR;
VR-MJ C& =1.2 VR-MJ Cp&% = 0.9
: SR; SRy
Nj VR-MJ CMax =12 VR-MJ CIMX = (.7
] SRf SR? P SRdiscovery
VR-MJ CR& = 0.9 VR-MJ Cpa% = 0.5
>9 SR; SRz', SRdiscovery

VR-MJ CR&X =0.7

mass

VR-MJ CP¥ = 0.4

mass

are removed if they are separated from the nearest jet by AR, < 0.4. However, if that jet has fewer than
three associated tracks, the muon is kept and the jet is removed instead.

5 Analysis strategy

Events selected for further analysis are required to have at least five jets, of which at least two must be
b-tagged. The four highest-pr jets are required to be on the trigger efficiency plateau, namely to have
pt > 120 GeV or pr > 140 GeV, depending on the jet-pr trigger requirement in 2015-2016 or 2017-2018,
and have || < 2.5. All other jets present in the event are required to have pt > 25 GeV and || < 2.5. A
lepton veto is applied: events that contain loose muons or electrons with pt > 10 GeV, whether isolated or
non-isolated, are discarded.

After the selections described above, the largest background contribution to the measurement is from
non-resonant multijet production from light-quark and gluonic final states. The next largest is from r7+jets
production. Other small background contributions originate from the production of a single top quark and
from the production of a 7 pair in association with either a vector boson or a Higgs boson. The estimation
of the multijet background using a data-driven method and the validation of this estimate without significant
bias from potential signal contamination are the main challenges for this analysis.

To probe top-squark pair production and estimate the contribution of signal top squarks in data, a model-
dependent fit of the yield of events with jet multiplicity N; = 6, 7, 8 and > 9 and b-tagged jet multiplicity
Ny = 4 and > 5 is performed. These (Nj, Ny) regions are indicated as SR; in Table 1. The signal
contribution predicted for different values of m; and m 2050 is considered in all bins and is scaled by
one common signal-strength parameter (u;7+). For the model considered here, the product of acceptance



and reconstruction efficiency (A x €) is of order ~ 5 x 1072 for Nj > 9 and Ny, > 5. Figure 2 shows the
number of signal events obtained from the model as a function of Nj and N, compared to the estimated
backgrounds. Their evaluation is described in Section 6. The signal yields are concentrated at high jet
and b-tagged jet multiplicity, while the backgrounds are concentrated at low b-tagged jet multiplicity. To
validate the background estimates, intervals with Nj = 6, 7, 8 and > 9, and N, = 3 and 4, subsequently
referred to as VR-MJ, are used. In these, a region-dependent selection is applied, based on a maximum
accepted value of the centrality mass (Cpass), defined as:

Hrt
VY B2 - (2N b

i.e. the ratio of the scalar sum of all jet pt in the event (H) to the invariant mass of the set of observed jets.
The signal-to-background ratio decreases monotonically with decreasing Cpy,gs for all Nj and N, values.
The value of the maximum value of Cass (Chnaag) 1S chosen such that the signal-to-background ratio is less
than 5%. Values of the Cinax limits used are listed in Table 1.
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Figure 2: Predicted numbers of events as a function of jet multiplicity, NJ, and b-tagged jet multlphclty, Ny, for (a)
SM background (multijet and top-quark production) and (b) top-squark pair production in the 7 — b} X Gy — bb3)
(and c.c.) channel, for m7 = 1000 GeV and m vr = =950 GeV.

A separate, model-independent test is used to search for, and to set generic exclusion limits on, potential
contributions from a hypothetical BSM signal by comparing the observed number of events with background
predictions in two dedicated signal regions, one with Nj > 9 and Ny, > 5 and the other with Nj > 8 and
Ny > 5 (labelled SRgjscovery in Table 1), that were not explored in previous searches at the LHC.

6 Multijet background estimation

The predominant multijet background is estimated via a data-driven method, subsequently referred to as
the tag-rate function method for multijet events (TRFyyy) [59, 60]. The aim is to extrapolate the b-tag
multiplicity distributions from Nj = 5, where the signal contamination for models not already excluded
by other LHC searches is negligible, to larger N; values. The TRFy;; method uses a tag-rate function to



quantify the experimental probability of b-tagging an additional jet in samples of events with at least two,
or at least three, b-tagged jets. This per-jet probability is then used to estimate the shape of the multijet
b-tag multiplicity distribution for each N;j value.

Events that satisfy the selection criteria described in Section 5 and that have exactly five jets, of which
at least two are b-tagged, are used to determine the b-tagging probability. The data are first corrected
by subtracting the expected non-multijet background found in simulation, approximately 5% of the total.
After excluding the two jets in each event with the highest b-tagging weight, the probability that each
remaining jet is b-tagged, denoted &,, is calculated for this jet. A similar procedure is used to calculate the
probability &3 of additional b-tagged jets in events with at least three b-tagged jets. These & probabilities
are parameterised as a function of both the pt of the remaining jet divided by Hr, and the minimum AR
between that jet and the two (for &;) or three (for g3) jets with the largest b-tagging weight in the event
(ARmin)- This choice of variables for the parameterisation is made to minimise the residual differences
(non-closure) between the TRFyy prediction and the number of events obtained when selecting b-jets
directly in the most sensitive signal regions in the multijet events simulated by MC. The dependence of &,
and &3 on both pt/Ht and ARy, is shown in Figure 3. The rapid variation with AR, is consistent with
the dependence expected from multi-b-jet production due to gluon-splitting. The pt/Ht dependence, more
visible at small ARy, reflects the variation of the b-tagging efficiency with jet pr.
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Figure 3: Two-dimensional distributions of the probability (a) &2 or (b) &3 of b-tagging an additional jet in a sample
of events with (a) at least two or (b) at least three b-tagged jets as a function of the ratio of jet transverse momentum
to Ht, pt/Ht, and the minimum AR between the jet and the (a) two or (b) three b-tagged jets with the highest
b-tagging weight in the event, AR,. The choice of binning is made so as to avoid empty bins.

Following the methods of Ref. [61], in the second step of the TRFy;; method the expected number of
events with each different number of b-tagged jets is estimated for each N; value by weighting all events
with Ny > 2 by the event probability of having Ny = 2, 3, 4 and >5, respectively. Upon subtracting the
non-multijet background contribution [59], the event probabilities are estimated using both &, and &3,
after first excluding the two jets with the highest b-tagging weight. For N, = 2 the event probabilities are
estimated directly from &;, treating the tagging probability for each jet as independent. For Ny, = 3, 4
and >5, a two-step procedure is employed. First, a ‘pseudodata sample’ with N, > 3 is emulated, using
& in events with N, > 2. The additional emulated b-tagged jet is chosen randomly from the remaining
Nj — 2 jets by using their probability-dependent b-tagging weights [60]. This emulated sample is then



used to estimate the event probabilities, this time relying on £3. The probability of finding Ny = 4 and
Ny, > 5 is estimated using the emulated N, > 3 sample via £3. Due to too few events in the control sample
from which the &, and &3 values are extracted, it is not possible to estimate the probability of b-tagging an
additional jet in a sample of events with at least four b-tagged jets.

6.1 Validation of TRFy;; method

The TRF)y; method is validated using two different comparisons with data: in the VR-MJ regions defined
in Section 5, and in a separate set of Z + jets-enriched events. Figure 4 shows a comparison between
measured and estimated event rates in VR-MJ. The data and predictions are in agreement within systematic
uncertainties (described in Section 7).
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Figure 4: Comparison between data and the predicted number of events with N; = 6,7, 8 and > 9 and N, = 3 and 4 in

the VR-MJ validation regions, which are based on a maximum value of the centrality mass, Ciia. The bottom panel

displays the ratios of data to the total prediction, uncertainty bars are statistical only. The systematic uncertainties
listed in Section 7 are represented by the blue hatched area.

An independent test of the method is performed in Z + jets-enriched events, referred as “VR-ZJ’, where
additional jets are produced by radiation and where bb pairs arise from gluon splitting. In order to select
events where a Z boson decays into pairs of electrons or muons, events are required to pass a single-lepton
trigger. Two opposite-sign, same-flavour, fight electrons or muons are required to each have pt > 27 GeV
and a pair mass larger than 60 GeV. Events are required to have at least five jets with pt > 25 GeV and
[n| < 2.5, of which at least two must be b-tagged. The tagging probabilities &, and &3 are derived from
five-jet VR-ZJ events and used to predict the number of events with Nj =6,7,8,> 9and N, =4, > 5. As
shown in Figure 5, this statistically limited test further validates the TRFys; method.
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Figure 5: Comparison between data and the number of events with Nj = 6, 7, 8 and > 9 and Ny, =4 and >5 predicted
by the TRFy;y method (grey histogram) in the VR-ZJ region, defined by the requirement of two isolated leptons with
invariant mass larger than 60 GeV. The bottom panel displays the ratios of data to the TRF)yy prediction, uncertainty
bars are statistical only. Systematic uncertainties in the TRFy; prediction are represented by the blue hatched area.

7 Systematic uncertainties

Several sources of systematic uncertainty are considered that can affect the overall normalisation of signal
and background samples and their relative contribution for different values of Nj and Ny. In estimating the
dominant multijet background from the data, systematic uncertainties arise from the assumptions made in
obtaining the TRF)y background estimates. Uncertainties related to the theoretical modelling and due to
the description of the detector response in simulated events are relevant only for the signal and background
MC samples.

The main assumption of the TRFy;; method is that it is possible to define per-jet b-tagging probabilities
(&2 and ¢&3) in events with at least two or at least three b-tagged jets and, in particular, that the variables
used for the parameterisation are sensitive to the heavy-flavour composition of the jet sample. A second
assumption is that the per-jet probabilities are independent of the jet multiplicity and, therefore, may be
derived in a specific region, namely that with exactly five jets, and applied to regions with N; = 6, 7, 8
and > 9 jets. The validity of these assumptions is verified using MC simulations. The TRFy;; method is
applied to Pytuia 8 MC dijet events, and the larger of a) the residual non-closure and b) the statistical
uncertainty in the number of events with a given b-tagged jet multiplicity, is symmetrised and taken to be the
systematic uncertainty associated with the method. Table 2 shows the final TRFy; systematic uncertainty
in the multijet background estimation in each (Nj, Ny) region. For Ny, = 4 the TRFyy; uncertainties are
dominated by the non-closure component, while for N, > 5, the statistical component dominates. The
TRFyy uncertainties are the source of the largest systematic uncertainty for the analysis.
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Table 2: Systematic uncertainties in the data-driven estimation of the multijet background using the TRFy;; method.
The uncertainties are assessed using Pytria 8 MC dijet events for each value of jet multiplicity (N;) and b-tagged jet
multiplicity (Ny) used in the final fit.

TRFuMy Ny
uncertainty 4 >5

6 9% 27%
7 9%  30%
8 13% 18%
>9 16% 14%

N;

The second largest contribution to the total systematic uncertainty arises from the modelling of the ¢7+jets
background. The diagrams that contribute to t7+>1b, tf+>1c, and t7 +light production are different, and
the associated uncertainties may affect these processes differently in different regions. As a result, all
uncertainties in ¢t7+jets background modelling, except the uncertainty in the inclusive cross-section, are
considered to be uncorrelated among t7+>1b, tf+>1c, and tf+light.

The uncertainty in the inclusive 1 NNLO+NNLL production cross-section is taken to be +6% [42]. This
uncertainty includes effects from varying the factorisation and renormalisation scales, the PDF, asg, and
the top-quark mass. The normalisations of the #7+>1c¢ and #7+>1b yields are taken from their fractional
contribution to the nominal ¢7+jets sample as generated using the PowHeG-Box program. In addition to the
uncertainty in the inclusive #f cross-section, an additional uncertainty of 50%, based on the measurement of
the 17+>1b and t7+>1c¢ normalisation factors reported in Ref. [62], is assigned to the 7+>1c and t7+>1b
production cross-sections.

The impact of the parton shower and hadronisation model uncertainties on the t7+jets, t7H and Wt
single-top-quark yields is evaluated by comparing the sample from the nominal generator set-up with a
sample produced with the NLO Powneg-Box v2 generator using the NNPDF3.0 NLO PDF set. The latter
events are interfaced with HErwic 7.04 [63, 64], using the H7UE set of tuned parameters [64] and the
MMHT2014LO PDF set [65], and processed using fast simulation of the detector response. The difference
between the two predictions of the t7+>1b event yield ranges from 20% (33%) for Nj = 6 and Ny, =4 (> 5)
t0 46% (60%) in the region with N; > 9 and Ny =4 (> 5).

To assess the uncertainty due to the choice of matching scheme, the Powneg-Box sample is compared
with a sample produced by MApGraPH5_aMC@NLO and Pythia 8. For the calculation of the hard
scattering, MADGrRAPHS_aMC@NLO v2.6.0 with the NNPDF3.0 NLO PDF set is used. The events are
processed with PyTHia 8.230, using the A14 set of tuned parameters and the NNPDF2.3 LO PDF set, and
the fast simulation of the detector response. The uncertainty, which is obtained from the difference in yield
between the two models and is symmetrised, affects both the normalisation and the Nj- and N,-dependence
of background rates. It is largest for large values of the jet and b-tagged jet multiplicities. For t7+>1b, it
reaches 25% for N; = 8, > 9 and Ny, = 4, and 41% (32%) for N; =8 (> 9) and Ny, > 5.

The effect of renormalisation and factorisation scale uncertainties and PDF uncertainties is evaluated for
ttH and t7V events. For the former, the scales are varied simultaneously by common factors of 2.0 and
0.5. For the latter, the envelope of the 100 variations for NNPDF3.0 NLO [34] are taken into account.
An uncertainty of +5% is assigned to the total cross-section for single-top production [45, 66, 67]. For
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both the #7H and single-top events, additional uncertainties due to initial- and final-state radiation and the
choice of generator are evaluated in a manner similar to that used for 77 + jets. The uncertainty in the
amount of interference between Wt and ¢7 production at NLO is assessed by comparing samples using
the default ‘diagram removal’ scheme with those using an alternative ‘diagram subtraction’ scheme [44].
All modelling uncertainties from non-f7+jets simulated backgrounds are, after investigation, found to be
negligible.

The uncertainties assigned to the expected signal yield for the SUSY benchmark processes considered
include the experimental uncertainties related to the luminosity and to the detector modelling, which are
dominated by the modelling of the jet energy scale and the b-tagging efficiencies. For example, for the
t—bxi(x{ — bbs and c.c.) signal model, the b-tagging uncertainties in the region N;>9and N, =4
are approximatively 10%, and the jet-related uncertainties of the signal yields are in the range of 3—5%.
The uncertainties in the signal yields related to the modelling of additional jet radiation are studied by
varying the factorisation, renormalisation, and jet-matching scales as well as the parton-shower tune in
the simulation. The corresponding uncertainties are small for most of the signal parameter space and are
largest for small top-squark masses, where they reach 7%. The uncertainty in the signal cross-section
ranges between 8% and 11% for a top-squark mass in the range 600—-1000 GeV.

8 Results

The events are allocated to (Nj, Np) regions with different signal-to-background ratios in order to constrain
systematic uncertainties and to improve the separation of signal and background. Then, in each region, the
total signal and background yields, shown in Tables 3 and 4, are used in combination as the input for the
statistical analysis to extract the final results.

Table 3: Event yields from background predictions and data in the regions with N; = 6,7, 8 or > 9 and N}, = 4. The
quoted uncertainties are the sum in quadrature of the statistical and systematic uncertainties in the yields for all
samples. The individual background uncertainties can be larger than the total uncertainty due to correlations between
parameters.

(Nj, Nv)
Process 6,4) (7,4) (8,4) (=9,4)
Multijet 1760 = 170 1920+ 180 1510 +210 1870 + 350
1 + light 6+4 80+34 6+4 8+7
tfr+>1c 4.1+£29 8+5 11+6 22 +17
tft+>1b 45 + 26 110 £ 70 160 = 100 350 = 260
tr+w 0.055+0.032 0.26+0.07 030+0.10 1.34+0.28
tr+27 1.8+04 43+1.0 6.0+1.5 109+2.3
Wt 1.7+2.0 5+5 5.1+3.1 10+ 11
ttH 49+0.9 10.5+ 1.7 142 +24 29 +8
Total background | 1820 + 170 2060+ 190 1710 £220 2300 = 400
Data 1660 1901 1624 2237

Hypothesis testing is performed using a modified frequentist method as implemented in RooStaTs [68]
and is based on a profile likelihood which takes into account the systematic uncertainties as nuisance
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Table 4: Event yields from background predictions and data in the regions with N; =6, 7, 8 or > 9 and Ny > 5. The
quoted uncertainties are the sum in quadrature of the statistical and systematic uncertainties in the yields for all
samples. The individual background uncertainties can be larger than the total uncertainty due to correlations between
parameters.

(Nj, Np)
Process (6, =5) (7, =5) (8, =5) (=9, >5)
Multijet 49 £ 13 75 + 23 74 £ 14 123 +£20
1t + light <0.01 0.3+0.6 <0.01 0.00 + 0.04
tt+>lc <0.01 0.016 = 0.029 03+04 0.26 £ 0.31
tt+>1b 1.2+09 39+27 7+6 28 + 25
tt+ W <0.01 0.005 £0.007 0.021 +£0.025 0.090 + 0.035
tt+ 27 0.05+0.05 0.22+0.12 0.7+04 0.7+0.7
Wt <0.01 <0.01 0.00 £0.13 09+1.2
ttH 0.12+0.05 049+0.13 0.82 £0.21 29+1.5
Total background 50+ 13 80 +23 84 + 15 156 =27
Data 35 75 80 179

parameters. This procedure minimises the impact of systematic uncertainties on the search sensitivity
by taking advantage of the highly populated, background-dominated (Nj, Ny) regions included in the
likelihood fit. The signal-strength parameter, u;;+, defined for positive values and corresponding to the
signal normalisation, is unconstrained in the profile-likelihood fit. The normalisation of each component of
the background and p;7+ are determined simultaneously from the fit to the data.

Individual sources of systematic uncertainty are taken as uncorrelated. Contributions from 7 + > 1b,
tt + > lc, tt + light, tf + V, ttH and single-top-quark backgrounds are constrained by the uncertainties
of the respective theoretical calculations, the uncertainty in the luminosity (described in Section 3), and
experimental data. The TRFyy; uncertainty is taken as uncorrelated across regions because of its large
statistical component. In all cases, the profile-likelihood-ratio test is used to establish 95% confidence
intervals using the CLg [69] prescription. The likelihood is configured differently for the model-independent
and model-dependent hypothesis tests.

For the model-independent test, a profile-likelihood fit is performed independently in the two SRgiscovery
regions with (Nj > 8, N, > 5) and (Nj 2 9, Ny, > 5). This test is used to search for, and to compute generic
exclusion limits on, the potential contribution from a hypothetical BSM signal in the given SRgjscovery
regions.

For the model-dependent test, assuming a specific top-squark model with variable mass values, tests of
the signal-plus-background hypothesis, i.e. uj7+ = 1, are formed for a series of values of m; and m 2,0
These are used to derive exclusion limits for the specific top-squark model. The full set of regions, N; =
6,7,8 and > 9 and N, =4 and > 5, is employed in the likelihood. The expected signal contribution, as

predicted by the given model, is considered in all regions and is scaled by uz-.

Figure 6 shows the observed numbers of data events compared with the fitted background model. The
likelihood fit is configured using the model-dependent set-up where all bins are input to the fit, and p;;z- is
set to zero. This configuration is also referred to as the background-only fit and includes no free-floating
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parameters, only nuisance parameters with Gaussian constraints. An example signal model is also shown
in the figure to illustrate the separation between the signal and the background.
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Figure 6: Expected background and observed number of events in different jet and b-tag multiplicity bins. The
background is estimated by including all bins in a background-only fit and is plotted separately for each contribution.
An example signal yield for 7 — bg} (¥7 — bb5 and c.c.) production with m; = 600 GeV and m v: =550 GeV is
overlaid. The bottom panel displays the ratios of data to the total prediction, uncertainty bars are statistical only. All
uncertainties, which can be correlated across bins, are included in the error bands (hatched regions).

8.1 Model-independent interpretation

The model-independent results are calculated from the observed number of events and the background
predictions in the two SRjscovery T€giOns. The observed number of events and the backgrounds obtained
from the fits are shown for both SRgjscovery regions in Table 5.

Model-independent 95% CL upper limits on the expected and observed number of BSM events, Ngfp and
o-flfs, that may contribute to the signal regions are computed from the observed number of events and the
fitted background. Normalising these results by the integrated luminosity, L, of the data sample, allows

them to be interpreted as upper limits on the visible BSM cross-section a'ggs, defined as:

95

b Q
0'335 = Oprod X AX € = %,
where 074 is the production cross-section. The resulting limits are presented in Table 6. In addition, the
po values, which quantify the probability that a background-only hypothesis results in a fluctuation giving
an event yield equal to or larger than the one observed in the data, are calculated, as are the corresponding

Gaussian significance values Z.
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Table 5: Fitted background yields in (N; > 8, Ny > 5) and (Nj > 9, Ny, > 5) signal regions. The individual background
uncertainties can be larger than the total uncertainty due to correlations between parameters.

Process Nj 28, N, 25 Nj 29, Ny 25
Multijet 200 + 40 123 +20
tr+>1c 0.6 +0.6 0.29 +0.33
tr+>1b 26 +20 20+ 15
tr+Ww 0.11 +0.05 0.09 +0.04
tr+7 1.4+0.7 0.8+0.7
Wt 09+0.8 09+12
trtH 37+1.6 29+14
Total background 230 + 40 147 £ 20
Data 259 179

Table 6: Observed 95% CL model-independent upper limits on the visible BSM cross-section, o-(?tfs,

along with the observed (expected) limits, N2p. (Ney,), on the number of excess events. The limits are determined
for two signal regions, (Nj > 8, Ny > 5) and (Nj > 9, Ny > 5). The p( value quantifies the probability that the
background-only hypothesis would result in a fluctuation that gives an event yield equal to or larger than the one

observed in the data, and Z is the corresponding Gaussian significance.

expressed in fb,

Signal region oo [fb] NY. Neo,  po(Z)

obs

Nj =8, Ny =5 0.76 105 8540 0.24(0.7)

Nj 29, Ny =5 0.54 75 5242 0.11(1.2)

8.2 Model-dependent interpretation

For each signal model probed, the fit is configured using the model-dependent set-up, as detailed in the
first part of Section 8. Figure 7 shows exclusion limits at the 95% confidence level in the top-squark
production model when B(7 — by{) is assumed to be unity. For this model, top-squark masses are
excluded up to 950 GeV for chargino masses close to the kinematic threshold for producing this final state.
For lower values of the chargino mass, the limit weakens such that for chargino masses of around 200 GeV,
the top-squark mass is constrained to be more than 800 GeV. In this phase space region, the signal is
concentrated at lower Nj and Ny, values where the background is larger.

The limits for higgsino LSPs are shown in Figure 8. In the region m; — m 0 > myop the sensitivity
of the analysis is lower than in the pure 7 — b ¥} case because contributions to the signal that have one
leptonically decaying top quark fail the lepton-veto requirement. The large contribution of the multijet
background reduces the present sensitivity relative to a previous ATLAS search that analysed events

characterised by the presence of a lepton plus jets [11].
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Figure 7: Observed and expected exclusion contours for the 7 and y{" masses in a top-squark production model
with RPV decays of the y{. Limits are shown for B(7 — bx7) equal to unity. The contours of the band around
the expected limit are the +1¢ variations, including all uncertainties except theoretical uncertainties in the signal
cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal
signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The
results are constrained by the kinematic limits of the top-squark decay into a chargino and a bottom quark (diagonal
line).
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Figure 8: Observed and expected exclusion contours for the 7 and ;" masses in a top-squark production model with
RPV decays of the " and of the )2?’2. Limits are shown in the case of a higgsino LSP. The contours of the band
around the expected limit are the +10 variations, including all uncertainties except theoretical uncertainties in the
signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the
nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95%
CL. The results are constrained by the kinematic limits of the top-squark decay into a chargino and a bottom quark
(upper diagonal line) and into a neutralino and a top quark (lower diagonal line), respectively. Also shown are the

limits from Ref. [11].
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9 Conclusion

A search for physics beyond the Standard Model in events with high jet multiplicity and a large number of
b-tagged jets is described in this paper. The search uses 139 fb~! of y/s = 13 TeV proton—proton collision
data collected by the ATLAS experiment at the LHC. In contrast to many previous searches in similar final
states, leptons are vetoed and no requirement is placed on the missing transverse momentum in the event.
The multijet background dominates the observed yields and is estimated using a data-driven technique
based on an extrapolation from events with low b-jet multiplicity to the high b-jet multiplicities. No
significant excess over the SM expectation is observed, and model-independent limits on the contribution of
new phenomena to the signal-region yields are computed. In the context of a model with direct top-squark
production and RPV decays of the higgsinos, the data exclude top squarks with masses up to 950 GeV in
the region m; — m 0, < myop, where this analysis has exclusive sensitivity. The results represent the
first limits from ATLAS on the production of top squarks that decay exclusively into a chargino and a
b-quark.
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