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Observation and measurement of forward proton
scattering in association with lepton pairs produced

via the photon fusion mechanism at ATLAS

The ATLAS Collaboration

The observation of forward proton scattering in association with lepton pairs (𝑒+𝑒− + 𝑝 or

𝜇+𝜇− + 𝑝) produced via photon fusion is presented. The scattered proton is detected by

the ATLAS Forward Proton spectrometer while the leptons are reconstructed by the central

ATLAS detector. Proton-proton collision data recorded in 2017 at a center-of-mass energy of√
𝑠 = 13 TeV are analyzed, corresponding to an integrated luminosity of 14.6 fb−1. A total of

57 (123) candidates in the 𝑒𝑒+ 𝑝 (𝜇𝜇+ 𝑝) final state are selected, allowing the background-only

hypothesis to be rejected with a significance exceeding 5 standard deviations in each channel.

Proton-tagging techniques are introduced for cross-section measurements in the fiducial

detector acceptance, corresponding to 𝜎𝑒𝑒+𝑝 = 11.0 ± 2.6 (stat) ± 1.2 (syst) ± 0.3 (lumi) and

𝜎𝜇𝜇+𝑝 = 7.2 ± 1.6 (stat) ± 0.9 (syst) ± 0.2 (lumi) fb in the dielectron and dimuon channel,

respectively.

© 2021 CERN for the benefit of the ATLAS Collaboration.

Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
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Electromagnetic fields sourced by protons at the Large Hadron Collider (LHC) are sufficiently intense to

exceed the Schwinger limit of 1018 V m−1 [1–3] and produce lepton pairs via photon fusion, 𝛾𝛾 → ℓ+ℓ−,

where ℓ denotes electrons or muons [4–7]. This process occurs in a wide range of astrophysical phenomena,

such as cosmic gamma rays [8, 9] and neutron stars [10, 11]. Measurements of 𝛾𝛾 → ℓ+ℓ− at the LHC

provide a unique laboratory probe of these natural phenomena and are fundamental tests of quantum

electrodynamics [12–17]. These complement lower-energy probes using heavy-ion collisions [18–26]

and high-intensity laser beams [27–30]. A hallmark prediction of photon fusion processes at the LHC is

the forward scattering of incident protons. Near-beam instruments known as proton spectrometers can

detect the scattered protons, which is a technique referred to as proton tagging. The CMS and TOTEM

Collaborations reported proton-tagged dielectron (dimuon) production with 2.6𝜎(4.3𝜎) significance,

which exceeds 5𝜎 when statistically combined [31], but no cross sections were measured. Previous

measurements of 𝛾𝛾 → ℓ+ℓ− by the ATLAS Collaboration were performed without proton tagging [4,

5].

Measuring proton-tagged dilepton production, 𝑝𝑝 → 𝑝(𝛾𝛾 → ℓ+ℓ−)𝑝 (∗) , where 𝑝 (∗) denotes a proton

that remains intact or dissociates following electromagnetic excitation, is important for several reasons.

Predictions of photon fusion processes have significant uncertainties associated with modeling strong-force

interactions between scattered protons, which suppress cross sections by factors known as soft-survival

probabilities [32–35]. This suppression is poorly constrained, especially at high 𝛾𝛾 invariant masses

important for new physics searches, as existing probes indirectly infer dissociation rates using only

central-detector information [4–7]. Proton tagging overcomes this longstanding experimental ambiguity

by directly detecting the scattered protons. Detecting a proton also directly suppresses background

processes and events involving proton dissociation, while providing information on the initial 𝛾𝛾 system

independently of central-detector information. The successful demonstration of proton-tagging techniques

for cross-section measurements accomplishes the crucial first step toward a diverse program using proton

tagging in measurements of Standard Model processes [36–41] and searches for new phenomena [42–46].

This Letter introduces proton tagging for cross-section measurements of 𝑝𝑝 → 𝑝(𝛾𝛾 → ℓ+ℓ−)𝑝 (∗) . The

ATLAS Forward Proton (AFP) spectrometer detects one of the intact protons and the central ATLAS

detector reconstructs the leptons. The dataset was collected in 2017 and corresponds to 14.6 fb−1 of√
𝑠 = 13 TeV proton-proton (𝑝𝑝) collisions. The average number of interactions per bunch crossing was 36.

Several methods specific to proton tagging are introduced: in situ calibration of proton kinematics using

the dimuon system, a novel data-mixing background estimation method, and tag-and-probe determination

of the AFP reconstruction efficiency.

The ATLAS experiment [47–49] is a general-purpose particle detector with nearly 4𝜋 coverage [50] around

the interaction point. It comprises an inner detector tracker, calorimeters, and a muon spectrometer. A

two-level trigger system [51] is employed to select events containing same-flavor lepton pairs, each lepton

with 𝑝
𝑒 (𝜇)
T

> 17 (14) GeV [52–54], after which standard data-quality requirements are applied [55].

The AFP spectrometer [56, 57] consists of four tracking units located along the beam pipe at 𝑧 = ±205 m

and ±217 m, referred to as near and far stations, respectively. The +𝑧 (−𝑧) direction is labeled side 𝐴 (𝐶).

Each station houses a silicon tracker comprising four planes of edgeless silicon pixel sensors [58–61].

The sensors have 336 × 80 pixels with area 50 × 250 𝜇m2. The direction normal to each sensor is tilted

14◦ relative to the beam to improve hit efficiency and 𝑥-position resolution, resulting in an overall spatial

resolution of 𝜎𝑥 = 6 𝜇m [62]. Movable near-beam devices at each station, known as Roman pots, insert

the tracker along the 𝑥 direction in the beampipe. Data taking with the AFP commences once the trackers

are at a position where the innermost silicon edge is within 2 mm of the beam center during stable beams.
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Data quality for this analysis requires that every AFP station has at least three silicon planes operational at

high voltage, and the AFP data acquisition system [63] must report no problems.

Simulated events of the exclusive signal 𝑝𝑝 → 𝑝(𝛾𝛾 → ℓ+ℓ−)𝑝 were produced using the herwig7 Monte

Carlo (MC) generator [64, 65]. The single-dissociative signal 𝑝𝑝 → 𝑝(𝛾𝛾 → ℓ+ℓ−)𝑝∗ was generated

using lpair4.0 [66], with proton dissociation modeled using the Brasse et al. [67] and Suri-Yennie [68]

structure functions interfaced with jetset7.408 [69, 70]. Simulation of these processes is detailed in Ref. [5].

To model the central-detector response, the exclusive signal sample underwent full detector simulation

based on geant4 [71]. The single-dissociative samples employed a fast simulation [72], which uses a

parametrization of the calorimeter response [73]. The response of the AFP spectrometer is modeled by a

fast simulation, where a Gaussian smearing is applied to track positions based on the AFP spatial resolution.

Simulated samples include the effect on the central detector of multiple 𝑝𝑝 interactions in the same and

neighboring bunch crossing (pileup), as detailed in Ref. [5].

Reconstructed events must contain at least one interaction vertex with two or more associated inner-detector

tracks that satisfy 𝑝T > 500 MeV, |𝜂 | < 2.5, and the “Loose” criterion [74, 75]. Electrons (muons) must

satisfy 𝑝T > 18 (15) GeV, |𝜂 | < 2.47 (2.4), the “LooseAndBLayer” [76] (“Medium” [77]) identification

criterion, and |𝑧0 sin 𝜃 | < 0.5 mm [78]. Electrons sharing an inner-detector track with a muon are

discarded. To suppress fake and/or nonprompt lepton backgrounds, remaining electrons (muons) must

satisfy transverse impact parameter significance
��𝑑0/𝜎𝑑0

�� < 5 (3) and isolation requirements described

in Ref. [79] (Ref. [80]). Electrons must also satisfy “Medium” identification [76]. Small corrections are

applied to leptons in simulated samples to match reconstruction and trigger efficiencies measured in data,

as described in Refs. [76, 77].

Selected events must have exactly two same-flavor leptons with opposite electric charge (𝑒+𝑒− or 𝜇+𝜇−)

and be matched to the leptons that triggered the event. To suppress quarkonia and 𝑍 boson resonances, the

dilepton invariant mass must satisfy 𝑚ℓℓ > 20 and 𝑚ℓℓ ∉ [70, 105] GeV. To select events compatible with

𝑝𝑝 → 𝑝(𝛾𝛾 → ℓ+ℓ−)𝑝 (∗) processes based on the simulated signals, the dilepton transverse momentum

must satisfy 𝑝ℓℓ
T

< 5 GeV. This set of criteria is referred to as the preselection. Signal event candidates must

additionally have small acoplanarity 𝐴ℓℓ
𝜙 = 1 − |Δ𝜙ℓℓ |/𝜋 < 0.01. These events must have no inner-detector

tracks (𝑁0.5 mm
tracks

= 0) that satisfy Δ𝑅(track, ℓ) > 0.01 for both leptons and |𝑧track
0

− 𝑧ℓℓ
0
| < 0.5 mm, where

𝑧track
0

is the track 𝑧0 position and 𝑧ℓℓ
0

= (𝑧ℓ1

0
+ 𝑧ℓ2

0
)/2 with ℓ1,2 denoting the two leptons. The expected

proton energy loss based on lepton kinematics 𝜉ℓℓ is determined from 𝑚ℓℓ and the dilepton rapidity 𝑦ℓℓ by

momentum conservation 𝜉±ℓℓ = (𝑚ℓℓ/
√
𝑠)𝑒±𝑦ℓℓ , where + (−) corresponds to the proton on side 𝐴 (𝐶).

Reconstruction of scattered protons combines information from the AFP tracker and LHC magnet lattice [81].

Protons transported to the AFP leave hits in the silicon tracker, which are processed by clustering and

track-finding algorithms detailed in Ref. [59]. Tracks are reconstructed from clusters in at least two

planes. Small corrections of around 0.1 mm are applied to ensure the cluster positions between planes

are compatible within the spatial resolution. The proton transport function 𝑥AFP = 𝑇 (𝜉AFP) relates the

track 𝑥 position 𝑥AFP to the fractional energy loss of the scattered proton 𝜉AFP = 1− 𝐸scattered/𝐸beam, where

𝐸scattered (𝐸beam) is the scattered (beam) proton energy. The LHC magnets and beam optics [82] govern the

form of 𝑇 (𝜉AFP) [83], which is simulated in the mad-x package [84, 85] with further details discussed

in Refs. [56, 86, 87]. Determination of 𝜉AFP uses both the near and far stations if tracks are within their

common acceptance, otherwise only the far station is used.

The absolute scale of 𝐸scattered depends on the closest separation 𝑥𝑠
0

between each AFP station 𝑠 and the

beam center [87]. The beam positions relative to the detectors were determined in dedicated runs with

beam-based alignment procedures [88] using beam loss monitors [89], and cross-checked with beam
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position monitor measurements [90]. There were three data-taking periods in 2017. In the first data-taking

period, the 𝑥𝑠
0

values were initially set to −4.0 (−3.0) mm on side 𝐴 and −3.8 (−2.9) mm on side 𝐶 for

the near (far) stations; during a second data-taking period, all stations were moved 0.5 mm closer to the

beam to improve acceptance. This first (second) data-taking period corresponds to 5% (17%) of the

analyzed dataset. For the remaining dataset, the far stations were moved a further 0.2 mm toward the

beam. The initially measured 𝑥AFP values relative to 𝑥𝑠
0

are calibrated in situ using the dimuon data sample

passing the signal event selection. The 𝑥𝑠ℓℓ − 𝑥𝑠
AFP

distribution is peaked for signal processes due to the

kinematic correlation between 𝑥𝑠ℓℓ and 𝑥𝑠
AFP

, where 𝑥ℓℓ = 𝑇 (𝜉ℓℓ) is the expected position calculated using

the transport function. Additive corrections are applied to 𝑥𝑠
AFP

in data to center the maximum of the peak

at zero. These corrections are found to be −0.28 (−0.34) mm on side 𝐴 and −0.17 (−0.36) mm on side 𝐶
for the near (far) stations. Selected dielectron events are used to verify that the signal is centered at zero.

After applying these corrections, the lower value of the acceptance corresponds to 𝜉A
AFP

> 0.028 (0.018)
on side 𝐴 and 𝜉C

AFP
> 0.026 (0.019) on side 𝐶 for the near (far) stations. The upper value of the acceptance

is bounded by 𝜉AFP < 0.12 due to the presence of beam collimators [56].

To select events with one or more proton candidates, the 𝜉ℓℓ and 𝜉AFP values for at least one AFP side are

required to be within the range [0.02, 0.12]. If there is more than one proton candidate on the same AFP

side, which occurs in 35% of selected events, the proton with 𝜉AFP closest to 𝜉ℓℓ is chosen. Proton-tagged

dilepton candidates, denoted ℓℓ + 𝑝, are selected by requiring kinematic matching on at least one AFP side,

|𝜉AFP − 𝜉ℓℓ | < 0.005, which retains (rejects) more than 95% (85%) of the signal (background).

The dominant source of background after this selection arises from lepton pairs produced in a 𝑝𝑝 interaction

different from that of the detected proton. In this case, the lepton pairs are produced via the Drell-Yan

mechanism as well as 𝛾𝛾 → ℓ+ℓ− processes, in which any outgoing protons are either outside the AFP

acceptance or not reconstructed in AFP due to detector inefficiency. These events are collectively referred

to as combinatorial backgrounds and are estimated using a data-driven method. A mixed-data sample is

constructed by randomly pairing each measured 𝜉ℓℓ value, passing AFP acceptance 𝜉AFP ∈ [0.02, 0.12],
with 100 values of 𝜉AFP from a large control sample of > 106 events. This control sample is constructed

from the preselected events and requiring 𝐴ℓℓ
𝜙 > 0.01. The 123 selected data events failing kinematic

matching, |𝜉AFP − 𝜉ℓℓ | > 0.005, result mostly from combinatorial background processes, which are used to

normalize the mixed-data sample using a background-only profile-likelihood fit [91, 92].

Systematic uncertainties in the background normalization arise from the limited size of the data sample

satisfying |𝜉AFP − 𝜉ℓℓ | > 0.005. An uncertainty in the background shape arises from kinematic changes

in the control sample of protons due to the acoplanarity requirement. This uncertainty is estimated by

replacing the 𝐴ℓℓ
𝜙 > 0.01 condition with 𝑁0.5 mm

tracks
≥ 1 and comparing the two background predictions in

the region |𝜉AFP − 𝜉ℓℓ | < 0.005; they are found to differ by 14%. Further shape uncertainties arise from

instrumental effects, which are expected to be dominated by the sensitivity to the number of interactions

per bunch crossing, 𝜇. The background predictions for 𝜇 < 35 and 𝜇 ≥ 35 are found to differ by 8% in the

|𝜉AFP − 𝜉ℓℓ | < 0.005 region. These two shape differences are assigned as additional uncertainties.

The background estimation method is validated by applying it to the orthogonal 𝑚ℓℓ ∈ [70, 105] GeV

region. The region |𝜉AFP − 𝜉ℓℓ | > 0.005 is dominated by Drell-Yan events, which have no correlated

protons. In this region, the data and prediction from the mixed-data sample are found to be compatible

within the uncertainties across the 𝜉AFP − 𝜉ℓℓ range for both sides 𝐴 and 𝐶.

After applying the event selection including kinematic matching, |𝜉AFP − 𝜉ℓℓ | < 0.005, a total of 57 (123)

candidates in the 𝑒𝑒 + 𝑝 (𝜇𝜇 + 𝑝) final state are observed compared with a background-only expectation of

6.2±1.2 (13.4±2.5) events. Using the asymptotic profile-likelihood method [91, 92], the background-only
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Figure 1: Distributions of 𝜉AFP − 𝜉ℓℓ with 𝜉ℓℓ and 𝜉AFP satisfying [0.02, 0.12] for side 𝐴 (left) and side 𝐶 (right).

The total prediction comprises the signal and combinatorial background processes, where 𝑝∗ denotes a dissociated

proton. The simulated predictions are normalized to data to illustrate the expected signal composition. The first (last)

bin includes underflow (overflow). The hatched band indicates the combined statistical and systematic uncertainties

of the prediction. Error bars denote statistical uncertainties of the data.

hypothesis is rejected with a significance exceeding 5𝜎 in each channel [93]. This provides direct evidence

of forward proton scattering in association with electron and muon pairs produced via photon fusion. The

𝜉AFP − 𝜉ℓℓ distributions of data, signal, and background at detector level before kinematic matching are

shown in Fig. 1. To illustrate the expected composition of the signal, the simulated samples are normalized

to data with sides 𝐴 and 𝐶 combined and fit separately in the 𝑒𝑒 and 𝜇𝜇 channels. Figure 2 displays

positions in the 𝑦ℓℓ–𝑚ℓℓ plane of data candidates satisfying |𝜉AFP − 𝜉ℓℓ | < 0.005 on at least one side and

the corresponding acceptance regions of the four AFP stations. The highest-mass 𝑒𝑒 candidate has an

invariant mass 𝑚ℓℓ = 717 GeV and rapidity 𝑦ℓℓ = 0.252, so the scattered protons would be within the

acceptance of both AFP sides if this were an exclusive process. However, it is found that the proton on

side 𝐴 fails kinematic matching |𝜉AFP − 𝜉ℓℓ | < 0.005, so this event is likely a single-dissociative process

where the side 𝐴 proton candidate originates from a pileup interaction. The corresponding quantities for

the highest-mass 𝜇𝜇 candidate are 𝑚ℓℓ = 319 GeV and 𝑦ℓℓ = 0.255. Figure 3 illustrates detector-level

distributions of dilepton acoplanarity, mass, and rapidity after kinematic matching with the signal samples

normalized to 𝑁obs − 𝑁bkg.

Cross sections are measured in a fiducial region defined at particle level with an event selection similar to

that applied at detector level [94]. To reliably estimate AFP reconstruction efficiencies using tag-and-probe

techniques, the 𝜉AFP and 𝜉ℓℓ values are restricted to a tighter range [0.035, 0.08] and each proton candidate

is required to have an associated track in both near and far stations. The measured cross sections are defined

by 𝜎fid. =
(
𝑁obs − 𝑁bkg

) /(L · 𝐶cent · 𝐶AFP). Here, 𝑁obs (𝑁bkg) is the number of observed data (expected

background) events passing event selection, and 𝐶cent (𝐶AFP) is an overall correction factor accounting for

the central-detector (AFP) efficiency. The integrated luminosity, L = 14.6 fb−1, is measured using the

LUCID-2 detector [95] and the uncertainty is determined to be 2.4% [96]. In this tighter region, 𝑁obs is

found to be 19 (23) for the 𝑒𝑒 (𝜇𝜇) channel and 𝑁bkg = 1.7 ± 0.3 (2.3 ± 0.5). The event rate between the

two channels differs more for the 𝜉 ∈ [0.02, 0.12] than 𝜉 ∈ [0.035, 0.08] region because 𝜇𝜇 events with

low 𝑚ℓℓ and high |𝑦ℓℓ | have greater selection efficiency due to trigger and reconstruction requirements.

The 𝐶cent factor is defined as the ratio of the number of MC events passing detector-level selection to the

number passing the particle-level fiducial requirements. Uncertainties in 𝐶cent are estimated by varying the

electron (muon) energy (momentum) scale and resolution, and data-to-MC correction factors described in
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Figure 3: Distributions of dilepton acoplanarity 𝐴ℓℓ
𝜙 (left), invariant mass 𝑚ℓℓ (center), rapidity 𝑦ℓℓ (right) satisfying

𝜉ℓℓ , 𝜉AFP ∈ [0.02, 0.12], and |𝜉AFP − 𝜉ℓℓ | < 0.005 for at least one AFP side. Events with 70 < 𝑚ℓℓ < 105 GeV are

vetoed. The total prediction comprises the signal and combinatorial background processes, where 𝑝∗ denotes a

dissociated proton. The simulated predictions are normalized to data to illustrate the expected signal composition.

The rightmost bin of the 𝑚ℓℓ distribution includes overflow. The hatched band indicates the combined statistical and

systematic uncertainties of the prediction. Error bars denote statistical uncertainties of the data.

Refs. [76, 77], together with corrections applied to account for pileup modeling. The dominant uncertainties

for 𝑒𝑒 events arise from pileup modeling (2%) and identification (1%), while for 𝜇𝜇 events, these correspond

to pileup modeling (3%), resolution (3%), and scale (2%); other sources such as trigger and isolation

efficiencies contribute 1% or less. Using data-driven methods described in Ref. [5], a further correction of

0.89 ± 0.04 is applied to 𝐶cent to account for differences between data and simulation when modeling the

luminous region at the interaction point. The 5% uncertainty in this correction is evaluated as the difference

between either applying this data-driven method to simulated signal samples or imposing the 𝑁0.5 mm
tracks

= 0

requirement on these samples. Overall, this results in 𝐶𝑒𝑒
cent = 0.12 ± 0.01

(
𝐶

𝜇𝜇
cent = 0.22 ± 0.02

)
for the 𝑒𝑒

(𝜇𝜇) channel.

The 𝐶AFP factor is defined by the product 𝜖track · 𝜖smear. The track reconstruction efficiency 𝜖track is found to
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Table 1: Fiducial cross sections from the combined herwig and lpair predictions with 𝑆surv = 1 and 𝑆surv estimated

using Refs. [33, 34] as described in the main text. superchic 4 [97] predictions include fully kinematically dependent

𝑆surv. Uncertainties of 7% (17%) are assigned for predictions of the exclusive (single-dissociative) processes [98].

The bottom row displays the measured cross sections with statistical and systematic uncertainties combined.

𝜎herwig+lpair × 𝑆surv 𝜎fid.
𝑒𝑒+𝑝 (fb) 𝜎fid.

𝜇𝜇+𝑝 (fb)

𝑆surv = 1 15.5 ± 1.2 13.5 ± 1.1
𝑆surv using Refs. [33, 34] 10.9 ± 0.8 9.4 ± 0.7

superchic 4 [97] 12.2 ± 0.9 10.4 ± 0.7

Measurement 11.0 ± 2.9 7.2 ± 1.8

be 0.92 ± 0.02 for sides 𝐴 and 𝐶. The near-station efficiency is estimated using a tag-and-probe method by

first selecting events with exactly one track in the far (tag) station in the acceptance common to both stations,

−12 < 𝑥AFP < −5 mm. The efficiency is the fraction of these events that also have one or more tracks in

the near (probe) station satisfying |𝑥near − 𝑥far | < 2 mm. The tag and probe stations are inverted to measure

the far-station efficiency. It is found that 𝜖track varies with 𝜉AFP by 2%, which is assigned as an additional

uncertainty. The proton resolution correction 𝜖smear is found to be 0.98 ± 0.02 (0.96 ± 0.04) for the 𝑒𝑒
(𝜇𝜇) channel. This is evaluated as the fraction of simulated signal events passing 𝜉AFP, 𝜉ℓℓ ∈ [0.035, 0.08],
and |𝜉AFP − 𝜉ℓℓ | < 0.005 out of those satisfying 𝜉ℓℓ ∈ [0.035, 0.08]. Uncertainties in 𝐶AFP are dominated

by global alignment (6%) evaluated by ±0.3 mm variations of 𝑥AFP, and beam optics (5%) evaluated by

varying the beam crossing angle by 50 𝜇rad in the mad-x package. Uncertainties involving track and

cluster reconstruction are found to be less than 1%. The overall uncertainty in 𝐶AFP is 9%.

The measured fiducial cross sections in the 𝑒𝑒 and 𝜇𝜇 channels are 𝜎fid.
𝑒𝑒+𝑝 = 11.0± 2.6 (stat) ± 1.2 (syst) ±

0.3 (lumi) and 𝜎fid.
𝜇𝜇+𝑝 = 7.2 ± 1.6 (stat) ± 0.9 (syst) ± 0.2 (lumi) fb, respectively. Table 1 compares these

with the combined herwig and lpair predictions assuming unit soft-survival factors 𝑆surv = 1. Soft-survival

effects are included using an 𝑚ℓℓ-dependent reweighting of these predictions to 𝑆surv calculated for exclusive

processes from Ref. [34]; lpair predictions are additionally scaled down by 15% to account for 𝑆surv

being lower for single-dissociative processes [33]. superchic 4 [97] predictions include full kinematic

dependence on 𝑆surv for exclusive, single-, and double-dissociative processes. The predictions for 𝑒𝑒 are

higher than for 𝜇𝜇 due to the looser 𝜂(𝑒) requirement [94].

In summary, forward proton scattering in association with lepton pairs produced via photon fusion,

𝑝𝑝 → 𝑝(𝛾𝛾 → ℓ+ℓ−)𝑝 (∗) , is observed with a significance exceeding 5𝜎 in both the 𝑒𝑒 + 𝑝 and 𝜇𝜇+ 𝑝 final

states using 14.6 fb−1 of
√
𝑠 = 13 TeV 𝑝𝑝 collisions at the LHC. These results demonstrate that the ATLAS

Forward Proton spectrometer performs well in high-luminosity data taking. Furthermore, proton tagging is

introduced for cross-section measurements of photon fusion processes at the electroweak scale.
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