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1 Introduction

The search for physics beyond the Standard Model (SM) is a major focus of the physics program at the
Large Hadron Collider (LHC). Since its discovery [1, 2], the Higgs boson has become a tool in this search.
In particular, one may expect new heavy resonances to couple to Higgs bosons and weak vector bosons
(V =W or Z). Such resonances are expected to occur in a number of theories beyond the Standard Model.
Theories that aim to solve the naturalness problem predict the existence of vector resonances as expected in
composite Higgs models [3, 4], Little Higgs models [5], or models with extra dimensions [6, 7]. Theories
with extended Higgs sectors predict scalar resonances as in two-Higgs-doublet models [8].

In this article, a search for W H and Z H resonances produced in proton—proton (pp) collisions at /s = 13 TeV
is reported with a sample corresponding to an integrated luminosity of 139 fb~! collected with the ATLAS
detector during Run 2 of the LHC in 2015-2018. The search is designed for resonances with a mass of
at least 1.5 TeV and with both the V and H bosons decaying hadronically in the modes V — ¢g") and
H — bb, as shown in Figure 1. In this regime, the V and H bosons are produced with high transverse
momentum (pr), resulting in each boson being reconstructed as a single large-radius hadronic jet, and the
invariant mass of this dijet system provides the final discriminating variable. Jet substructure techniques
and b-tagging are then used to discriminate those jets from background jets originating from multijet,
V+jets, and #7 events — with QCD multijet events representing at least 85% of the total background. Due to
difficulties in modeling the background from simulation, all background estimates are derived from the
data.

Figure 1: Feynman diagram for the production of a V’ resonance with decay into a VH pair.

The results of the search are interpreted in the context of the heavy vector triplet (HVT) model [9], which is
a simplified model providing a broad phenomenological framework for heavy resonances coupling to SM
fermions and bosons. In this model, W’ and Z’ vector bosons interact with quarks and the Higgs field with
coupling strength of g, and gy, respectively.! Coupling to the Higgs field gives rise to interactions with
longitudinally polarized W and Z bosons. Two scenarios are considered as benchmarks for interpretation
in this article. Model A corresponds to the choice g, = —0.55 and gy = —0.56, which reproduces
the phenomenology of weakly coupled models based on an extended gauge symmetry [11]. Model B
corresponds to g, = 0.14 and g = —2.9, which implements a strongly coupled scenario as in composite
Higgs models.

! Further details about the use of the HVT model in ATLAS analyses can be found in Ref. [10].



Previous searches for VH resonances have been carried out at 4/s = 13 TeV in the semileptonic final state
(vvbb, tvbb, and £(bb) [12—14] and fully hadronic final state (gqbb) [15, 16]. The ATLAS and CMS
collaborations report similar lower limits on the masses of W’ and Z’ bosons in these two sets of final states
with about 36 fb~! of integrated luminosity collected in 2015-2016. The strongest lower limit on the W’
mass is set by CMS in the {vbb channel [13] with a value of 2.9 TeV at the 95% confidence level (CL) in
the context of HVT model B. For Z’ bosons, the strongest lower limit on the mass is set by ATLAS in the
combination of the vvbb and ££bb channels [12] with a value of 2.83 TeV at the 95% CL in HVT model
B.

The results presented in this article differ from those previously published by ATLAS in the ggbb
channel [15] thanks to the following improvements. The integrated luminosity has increased by a factor of
nearly four, an improved clustering algorithm combining measurements from the calorimeter and tracking
systems is used to reconstruct V- and H-candidate jets, the b-tagging procedure used to identify H-candidate
jets is performed on track-jets with a pr-dependent radius that allows double b-tagging of H-candidate
jets up to considerably higher pt values, and the Higgs-candidate selection has been reoptimized with
increased sensitivity.

2 ATLAS detector

The ATLAS experiment [17] at the LHC is a multipurpose particle detector with a forward—backward
symmetric cylindrical geometry and a near 47 coverage in solid angle.” It consists of an inner detector
(ID) for tracking surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field,
electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer (MS). The inner detector covers
the pseudorapidity range |n7| < 2.5. It consists of silicon pixel, silicon microstrip, and transition radiation
tracking detectors. An additional innermost pixel layer [18, 19] inserted at a radius of 3.3 cm has been
used since 2015. Liquid-argon (LAr) sampling calorimeters provide EM energy measurements with high
granularity. A hadronic scintillator-tile calorimeter covers the central pseudorapidity range (|| < 1.7).
The endcap and forward regions are instrumented with LAr calorimeters for both the EM and hadronic
energy measurements up to || = 4.9. The muon spectrometer surrounds the calorimeters and features
three large air-core toroidal superconducting magnet systems with eight coils each. The field integral of the
toroids ranges between 2.0 and 6.0 Tm across most of the detector. The muon spectrometer includes a
system of precision tracking chambers and fast detectors for triggering. A two-level trigger system [20] is
used to select events. The first-level trigger is implemented in hardware and uses a subset of the detector
information to reduce the accepted rate to at most 100 kHz. This is followed by a software-based trigger
level that reduces the accepted event rate to 1 kHz on average.

3 Data and Monte Carlo simulation

The data sample for the analysis was collected by the ATLAS detector with high-p single-jet triggers
utilizing the anti-k, clustering algorithm [21] with a radius R = 1.0. The lowest unprescaled triggers were

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points
upwards. Cylindrical coordinates (r, ¢) are used in the transverse plane, ¢ being the azimuthal angle around the z-axis. The
pseudorapidity is defined in terms of the polar angle 6 as = — Intan(6/2). The rapidity is defined relative to the beam axis as
y=(1/2)In[(E + p;)/(E — p;)]. Angular distance is measured in units of AR = v/(An)2 + (A¢)2.



used with the following pr thresholds: 360 GeV in 2015, 420 GeV in 2016, and 460 GeV in 2017-2018.
After requiring that the data were recorded with stable beam conditions and satisfied detector and data
quality requirements, the integrated luminosity was measured to be 139 fb~! using the methodology from
Ref. [22].

The analysis relies on Monte Carlo (MC) samples to model signal events. Background MC samples are
used only to optimize the signal event selection and to validate the data-driven background estimation
method (Section 5).

Signal W’ and Z’ events for HVT model A were produced at leading-order (LO) precision in the
strong coupling constant (@) with the MADGrAaPHS_aMC@NLO 2.2.2 [23] event generator using the
NNPDF23LO parton distribution function (PDF) set [24]. Separate generation of signal events for HVT
model B is not required as both models A and B give rise to dijet mass peaks with a width that is dominated
by the experimental resolution. The events were interfaced with PyTtaia 8.186 [25] for parton showering,
hadronization, and the underlying event, and relied on the A14 set of tuned parameters [26]. Higgs boson
decays to heavy-flavor final states H — bb and H — c¢¢ were included, corresponding to branching
fractions of 58.2% and 2.9%, respectively [27].

Multijet events were produced with the Pytria 8.186 event generator, the NNPDF23LO PDF set, and the
A14 tune. Samples of events with top-quark pairs were produced at next-to-leading order (NLO) with
PownEig-Box [28] and the NNPDF30 NLO PDF set, interfaced with PyTaia 8.183 and the A14 tune. The
hgamp parameter was set to 1.5 times the top-quark mass [29]. Samples of W+jets and Z+jets events were
produced with Suerpra 2.1.1 [30] and the CT10 PDF set [31] for up to two partons at NLO and up to four
partons at LO. The cross sections used to normalize the multijet and the V+jets MC samples were computed
with PyTHia and SHERPA, respectively, and the top-quark pair cross section was taken to be 832‘:‘;3 pb
for a top-quark mass of 172.5 GeV. This value was calculated at next-to-next-to-leading order in a,
including the resummation of next-to-next-to-leading logarithmic soft gluon terms, with Top++2.0 [32-38].
Other SM backgrounds originating from diboson production (VV) and weak vector-boson production in
association with a Higgs boson (V H) are negligible and not considered.

For all MC samples, except those produced with SHERPA, b-hadron and c-hadron decays were handled
by EvTGen 1.2.0 [39]. Inelastic pp events generated using PyTHia 8.186 with the A3 tune [40] and the
NNPDF23LO PDF set were added to the hard-scattering interaction in such a way as to reproduce the
effects of additional pp interactions (pileup) in each bunch crossing during data collection. The detector
response was simulated with GEANT 4 [41, 42], and the events were processed with the same reconstruction
software as for the data. Energy/momentum scale and efficiency corrections are applied to the results of the
simulation to account for small differences between the simulation and the performance measured directly
from the data.

4 Event reconstruction and selection

The analysis relies on the reconstruction of charged particles with pp > 500 MeV in the inner detector to
reconstruct pp collision vertices for each crossing of the LHC beams. The primary vertex is chosen to be
the vertex with the largest ), p% for the tracks associated with the vertex.

Jets are built from a combination of tracks and calibrated clusters of energy deposits in calorimeter cells [43],
with the anti-k, clustering algorithm using a radius parameter R = 1.0 as implemented in FastJeT [44].
The tracks are selected with the same requirements as in Ref. [45], except for the minimum pt value, which



has been increased to 500 MeV. By combining calorimeter and tracking information, one benefits from
both the better energy resolution of the calorimeter at high energy and the superior angular resolution
for the tracks. This combination becomes highly beneficial at large jet pt due to the small number of
clusters produced and the limited angular resolution of the calorimeter. The resulting jets are referred
to as Track-CaloCluster (TCC) jets. A detailed description of the algorithm can be found in Ref. [46]
and its application to a search for high-mass diboson resonances is described in Ref. [47]. A trimming
algorithm [48] is applied to minimize the impact of pileup. In this algorithm, the constituents of each jet
are reclustered with the k, algorithm [49] into smaller R = 0.2 subjets. Trimmed large-R jets are made up
of constituents of those subjets with pSTUbJet / pJ;t > (.05, where per'bJet and pJTet are the transverse momenta
of the subjet and original untrimmed jet, respectively. The energy and mass calibration of TCC jets is
based on the simulation as described in Ref. [50]. As a result of the improved angular resolution of the
energy distribution within the jet, the discrimination between signal W or Z jets and background QCD jets
is noticeably improved. In addition to their masses, a powerful variable to discriminate between those jets
is Dy, defined as the ratio of three-point to two-point energy correlation functions that are based on the
energies of the jet constituents and their pairwise angular separation [51, 52]. The D, variable exploits the
two-body structure of the V — gg” decays, absent from typical QCD jets. Another variable that provides
discrimination between signal and background jets is the number of tracks (nx) matched to the jets by
ghost association [53]. This quantity is significantly higher for gluon-induced jets that are a component of
the background than for quark-induced jets in signal events, due to the distinct energy scales involved and
the different color factors for gluons and quarks.

To identify Higgs-boson jets, a separate collection of jets is built from tracks with the anti-k, algorithm
using a pr-dependent radius R = p/pt [54], where the parameter p is set to 30 GeV and the radius is
constrained to remain in the range between 0.02 and 0.4 [55]. The track-jets are assigned to specific large-R
jets by ghost association with the original untrimmed large-R jets. The main advantage of using such
variable-radius track-jets is that one can resolve the track-jets from H — bb decays at high pt and retain
the ability to double H-tag the large-R Higgs-candidate jets.

Track-jets are tagged as likely to contain b-hadrons if they satisfy the selection criteria of the MV2c10
algorithm [56, 57] that takes advantage of the relatively long lifetime and large mass of b-hadrons. A
working point corresponding to a b-tagging efficiency of 77% for true b-jets is used. For this efficiency
value, rejection factors of 5 and 110 are obtained against c-quark and light-quark jets, with the efficiency
and rejection factors determined in 7 MC simulation [58].

Electrons are reconstructed by matching ID tracks to energy clusters in the EM calorimeter. The identification
of electrons relies on a likelihood discriminant that takes the characteristic shape of electromagnetic
showers into account [59]. Electrons are required to have pt > 7 GeV and || < 2.47, and satisfy the loose
identification criteria [59]. The associated tracks must have a transverse impact parameter significance
|do| /o, < 5 relative to the beam axis and a longitudinal impact parameter |z sin 8] < 0.5 mm relative to
the primary vertex. Muons are reconstructed and identified by matching ID and MS tracks, and performing
a global fit with all ID and MS measurements, taking the energy loss in the calorimeter into account [60].
Muons are required to have pr > 7 GeV and || < 2.5, and satisfy the loose identification criteria [60].
The following track requirements are applied: |dg|/og, < 3 and |z sinf| < 0.5 mm. Both the electrons
and muons are required to satisfy loose isolation criteria [59, 60] based on the total transverse momentum
of tracks surrounding the leptons within a cone of radius AR = min(10 / pé [GeV], ARmax), where p% is
the lepton pr, and AR,,x = 0.2 for electrons and 0.3 for muons. The isolation criteria have an efficiency of
99% with negligible dependence on the lepton pt value.



Events must satisfy the trigger requirements and contain a primary vertex. In addition, non-collision
backgrounds originating from calorimeter noise, beam halo interactions or cosmic rays are suppressed by
rejecting events that contain any R = 0.4 anti-k, calorimeter jet failing to satisfy a set of quality criteria.
These are based on the LAr pulse shape, the energy profile of the jet in different parts of the calorimeter,
and track variables [61]. Events with one or more charged leptons (electrons or muons) are also rejected to
retain orthogonality with other VH search channels.

The signal topology requires the presence of two large-R jets with || < 2.0 and pt > 200 GeV. The
leading (highest p) jet must satisfy pt > 500 GeV. The invariant mass of the dijet system consisting of the
two highest-pr jets in the event (myy) is required to be larger than 1.3 TeV. These kinematic requirements
guarantee that the trigger is fully efficient. To suppress z-channel multijet production, the difference
between the rapidities of the two leading jets must satisfy |Ay| < 1.6. Only the two leading-pr jets are
retained for further consideration.

As an initial step, the jet with the larger mass is taken to be the H-boson candidate while the other jet is
taken to be the V-boson candidate. Discrimination between these V-boson or H-boson candidates and
background jets relies on several properties of the large-R jets: mass, D,, and ny. An optimization
procedure is applied to adjust the selection criteria involving those variables to maximize the significance
of the resonance signal under study. In the case of V-boson jets, the selection is based on the three
discriminating variables as developed in the search for heavy diboson resonances in the fully hadronic
channel [47], with the exception that the ngy selection is loosened slightly. In the case of the H-boson
candidates, the selection criteria are optimized with regard to the jet mass and nyx. The successful H-boson
candidate has at least one associated track-jet and can be classified as either 1-tag or 2-tag, depending
on the number of track-jets satisfying the b-tagging requirements. Only the two highest-pt associated
track-jets are considered for b-tagging. The variable D, provides little additional discrimination and is
thus dropped.

The pr-dependent jet mass windows for the W(Z)-boson candidates that result from the optimization
procedure vary from 80-100 (85—-110) GeV for jets with pt around 500 GeV to 55-130 (65-135) GeV for
jets with pr around 3000 GeV. The upper bounds on D, for the V-boson candidates vary approximately
from 1.0 to 1.5, for the same pr values. The upper cut on the nyy variable varies between 25 (26) and 31
(29) for W(Z)-boson candidates, with looser requirements for higher-pr jets. Given the experimental jet
mass resolution, no exclusive selection of W or Z bosons is performed and the WH and ZH final states
are searched for independently. For H-boson candidates, the mass windows applied to events in the 1-tag
(2-tag) category vary from 80-135 (95-150) GeV to 105-155 (100-170) GeV for jets with pt of 500 and
3000 GeV, respectively. The H-boson candidates classified as 1(2)-tag are required to have an associated
nyk value below 32 (35) to 44 (55), looser at higher pr.

The event selection defining the signal region (SR) is summarized in Table 1. The resulting signal
acceptance times efficiency (A X ) for events in each category is shown in Figure 2. In the 1-tag category,
A X ¢ rises from approximately 3% to 10% for WH resonance masses increasing from 1.5 to 5.0 TeV. In
the 2-tag category, A X € remains essentially constant at 4% for WH resonances. The different trends for
the 1-tag and 2-tag selections as a function of m (V") are the result of a combination of effects including the
pr dependence of both V- and H-tagging as well as the signal to background ratio. The A X ¢ values are
about 0.5% lower for ZH resonances due to the smaller mass separation between Z and H bosons. The
experimental mass resolution for resonance masses of 2 (4) TeV is 3.5% (2.6%).



Table 1: Event selection requirements and definition of the different regions used in the analysis. Events in the signal,
control, and validation regions must satisfy the preselection requirements.

Preselection

Veto non-ggqq channels:
No e (u) with pt > 7 GeV and |n| < 2.47 (2.5)

Event kinematics:
> 2 large-R jets with pt > 200 GeV and || < 2.0
leading large-R jet with pr > 500 GeV
leading and subleading large-R jets with my; > 1.3 TeV
leading and subleading large-R jets with |[Ay| < 1.6

V/H assignment

V-boson (H-boson) candidate is large-R jet with lower (higher) mass

Signal region
(SRWH / SRZH)

V and H bosons:
W-boson candidate within W jet mass, D>, and ngx windows
Z-boson candidate within Z jet mass, D5, and ny, windows
H-boson candidate within H jet mass, nyx windows, with 1 or 2 b-tagged track-jets

Control region
(CR)

Fail both SRWH and SRZH

Pass H-boson candidate 7y

(my <65GeV&myg <70GeV) or (my > 110 GeV & mpy > 150 GeV) or
(my <65GeV&my > 150 GeV)

Validation region
(VR1A)

Fail both SRWH and SRZH
Pass V-boson candidate 7

Pass H-boson candidate
65 <my <110 GeV & my > 150 GeV

Validation region
(VR1B)

Fail both SRWH and SRZH

Fail V-boson candidate 7y

Pass H-boson candidate gy

65 <my <110 GeV & myg > 150 GeV

Validation region
(VR2A)

Fail both SRWH and SRZH
Pass V-boson candidate n
Pass H-boson candidate
my < 65GeV& 70 < myg < 150 GeV

Validation region
(VR2B)

Fail both SRWH and SRZH

Fail V-boson candidate 7y

Pass H-boson candidate 7y

my < 65GeV&70 <my < 150 GeV
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Figure 2: Signal acceptance times efficiency as a function of the resonance mass, for events in the WH (solid lines)
and ZH (dashed lines) signal regions, in the 1-tag and 2-tag categories, with respect to the total number of generated
events in each sample. The HVT MC samples include only V/ — VH decays with V — ¢g") and H — bb or c¢.

5 Background estimation and event yields

The dominant background in this search comes from multijet events, corresponding to at least 85% of the
total background in the signal regions, where the remaining events come from #7 and V+jets processes.

The totality of the background is estimated via a data-driven method that provides template mj; distributions
for the WH and ZH final states in the 1-tag and 2-tag categories. These background mj; templates are
obtained in three steps: (i) background templates for the WH and ZH final states are extracted from
data in the 0-tag category, where the H-boson candidate has zero associated b-tagged jets; (ii) yield and
shape corrections are derived from a control region and applied to these templates; and (iii) a rebinning
and smoothing of the resulting mjy distributions is performed, to ensure robustness against statistical
fluctuations. All steps are described in this section.

To define the O-tag templates from which the background in the 1-tag and 2-tag categories is extracted,
additional requirements are placed on 0O-tag events, such that at least 1(2) variable-radius track-jet(s) is(are)
associated with the H-boson jet, when estimating the background in the 1(2)-tag category. Events in the
0-tag category are not expected to directly describe either the yield or the mj; shape of the background in
the 1-tag and 2-tag categories without further corrections: the b-tagging requirements enhance heavy-flavor
components in the background and introduce kinematics-dependent effects.

Therefore, a control region (CR) is used to estimate the yield and shape corrections to the my;y distribution
needed to extrapolate the 0-tag background events to the 1(2)-tag SRs. The CR has negligible contamination
from signal. Validation regions (VR) with events that fail the SR selection are used to confirm the
effectiveness of the background model and derive the associated systematic uncertainties. The definitions
of the control and validation regions are shown in detail in Table 1 and illustrated in Figure 3. According to
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Figure 3: Illustration of control and validation regions, defined by the masses of the H-boson and V-boson candidates.
The regions VR1 and VR2 are further split into two regions each, according to the nyy requirement on the V-boson
candidate. The same definitions are applied across the number of b-tags (0-, 1-, and 2-tag categories).

simulation, multijet processes are responsible for 85% to 99% of the background composition across the
different control, validation, and signal regions. This variation and its impact on the background estimate
are taken into account by the uncertainties described in Section 6.

1(2)-tag i

To define the background normalization in the 1(2)-tag category, a normalization correction -,

extracted from the ratio of 1(2)-tag to 0-tag yields in the control region:

S

1(2)-tag

1(2)-tag _ NCR
CR - 0-tag ~’
NCR

0-tag 1(2)-tag
where NCR and NCR

The values of ylc'l;ag and ué‘l;ag are determined to be 0.160 = 0.014 and 0.0167 + 0.0028, respectively,
where the uncertainties are dominated by systematic effects discussed in Section 6. The difference in the
corrections for 1-tag and 2-tag events can be understood based on studies of simulated multijet events.
In 1-tag events, the two leading track-jets associated with Higgs candidate large-R jets are dominated by
one true b-jet accompanied by one true light-jet, whereas in 2-tag events they are dominated by two true
b-jets. This indicates that different processes are at work in 1-tag and 2-tag events. The expected number
of background 1(2)-tag events in the SR is calculated by applying the ué(Rz)_[ag
number of O-tag events that pass all SR requirements except for the b-tagging.

are the numbers of events observed in the 0-tag and 1(2)-tag CR event categories.

correction factor to the

To extract myy background templates from the O-tag category, a multidimensional kinematic reweighting [62]
is performed using the control region events. A boosted decision tree (BDT) is used to perform the
reweighting, by predicting the event weights needed to bring the shapes of kinematic distributions in the
O-tag and 1(2)-tag categories into agreement. The training is performed in the CR data and performed
separately for 1-tag and 2-tag events. Variables that are sensitive to the presence of b-jets associated
with the H-boson candidate and to the resulting kinematic differences are used to train the BDTs: the
four-momenta of the two leading variable-radius track-jets and their angular separation, the transverse



> N B e e R > R B e Bt e
= F ATLAS + 1-tag Data . [t F ATLAS 4 2-tag Data 7
~ | = 1 | ~ = = 1 —
~ 1 =13TeV 1301 ' bred Bofore 4 S 1 Ts-13Tev,139% ' hred Bofore g
.g E VR2B:0-tag — 1-tag — Pred. After 3 ',OE_J E VR2B:0-tag — 2-tag — Pred. After 3
107 = si0'g -
o E E kel E 3
(0] = = (0] E 3
~N F = ]
T 102 — © 102 =
£V ¢ ] EVE
(ZD E ] g E ]
10°e = 107 E
10 ' = 107 3

E 3 E I =

s ] s _
107, [P T BT = 10°g [\ E
2: T " ) | 2: T T ! |

8 15 I -IRT: : o
e = f@%ﬁﬂﬁg'ﬂf """"" == E
o] E o] E T L] EEE E
T 0.5E 3 & o0s5f !
o oo + 16 stat. error E a oo + 10 stat. error E|
095 —=2 25 3 35 4 45 5 05— =225 3 35 4 45 5

my, [TeV] my, [TeV]

Figure 4: Dijet mass distributions in the 1-tag (left) and 2-tag (right) VR2B regions compared with the predicted
background extracted from the 0O-tag events (histograms) before and after BDT reweighting.

momenta of the H- and V-boson jets, and the number of tracks and variable-radius track-jets associated
with the H-boson jet. The BDTs are built with 100 trees, a maximum depth of three layers, and a minimum
of 500 events per leaf, with a learning rate set to 0.1.

In order to quantify the effectiveness of the reweighting, a binary classifier was trained to differentiate
between the reweighted and target my; distributions in the validation regions, and observed to classify
them correctly at most 53% of the time, consistent with random guessing. The observed distributions of
kinematic variables, including myj, are found to be well described by the background model for 1-tag and
2-tag events in VR1A, VR1B, VR2A, and VR2B (defined in Table 1).

The modeling of the mjy distributions in the VR2B region is shown in Figure 4, for 1-tag and 2-tag events.
A residual disagreement between the data and the expected background after reweighting is accounted for
by a systematic uncertainty, as discussed in Section 6.

The numbers of 1-tag and 2-tag events observed in the control and validation regions are shown in Table 2
and compared with the predicted background yields.

After the normalization and reweighting corrections are applied to the events in the O-tag category, the
expected my; background distributions in 1-tag and 2-tag categories are produced with a variable bin width
that reflects the experimental mass resolution. Those distributions are then fit using a functional form that
captures the smoothly falling behavior of the background:

fBackground(x) =e POl —x) Pix P2,

where x = myj/+/s and pg, p1, and p; are the fit parameters. The results of these fits provide the background
estimates that are used in the statistical analysis (described in Section 7) for the different signal regions.
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Table 2: Data and estimated background yields for 1-tag and 2-tag events in the control and validation regions.
The uncertainties correspond to the combination of statistical and systematic components. By construction, the
uncertainties cover the differences between the observed and expected yields in the validation regions.

1-tag Data  Background prediction
Control region (CR) 48668 ——
Validation region (VR1A) 4440 4290 + 380
Validation region (VR1B) 18361 18000 + 1600
Validation region (VR2A) 11844 12600 + 1100
Validation region (VR2B) 29436 31200 + 2700
2-tag Data  Background prediction
Control region (CR) 4976 —
Validation region (VR1A) 507 443 + 74
Validation region (VR1B) 1922 1860 + 310
Validation region (VR2A) 1337 1290 + 220
Validation region (VR2B) 3065 3200 = 540

6 Systematic uncertainties

Systematic uncertainties arise from several different sources: the data-driven background estimate, the
modeling of experimental uncertainties affecting the signal, and the impact of signal theory uncertainties.
At a resonance mass of 2 TeV, the background normalization and shape uncertainties dominate, while at a
resonance mass of 4 TeV, the large-radius jet and boson tagging uncertainties dominate due to the small
background contribution at high mj;.

The uncertainties affecting both the normalization and shape of the background predictions are determined
from the validation regions. These uncertainties arise from limited sample sizes and from differences in the
background composition in the various regions. The normalization uncertainty is taken to be the difference
between the smallest and largest u' (2 values obtained in any of the validations regions, resulting in a
systematic error of 9% (17%) in the background estimate for the 1(2)-tag category. The uncertainty in the
shape of the background mjjy distribution is assessed from the ratio of data to prediction in the VR2B region,
where the differences are the largest. This uncertainty is determined after smoothing the m;j; distributions
for both the data and the background prediction with the same functional form as described in Section 5. It
results in changes to the background yield of approximately 5% at myy of 2 TeV and up to 24% at 4 TeV.

An additional shape uncertainty is assigned to account for the choice of fitting function, assessed by
fitting alternate empirical functions, amounting to a maximum uncertainty of 2% (14%) at an mj; value of
2 (4) TeVv.

Experimental uncertainties related to MC simulation are applicable only to signal samples, and are divided
into two categories: b-tagging and large-R jets. A set of b-tagging correction factors and corresponding
uncertainties are applied as a function of pt and 7 of the variable-radius track-jets to match the efficiencies
for tagging b-jets measured in data, determined with ¢7 events [58]. The uncertainties in the correction
factors are extrapolated for track-jets with pt larger than 400 GeV. An additional extrapolation uncertainty
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is obtained by varying the inputs to the b-tagging algorithm according to their modeling uncertainties and
by recomputing its efficiency in MC simulation [58].

Uncertainties in the pt and mass scales of the large-R jet are determined with the Ry method [63] adapted
to the jet collection used in this article, relying on independent measurements by the calorimeter and the
inner detector, and are of the order of 5% to 10% each. These uncertainties lead to shifts in mjy of the
resonant signal peak as well as differences in the signal selection efficiency. The effects of resolution
uncertainties on the p and mass measurements are estimated by degrading the resolution in MC simulation
according to a Gaussian smearing of width 0.02 in o-(pr)/pt and 0.20 X o-(m)/m in o (m)/m [64, 65].

The H- and V-boson tagging techniques are assigned dedicated uncertainties to take into account the
requirements on D, and nyk. An MC efficiency correction factor of 0.92 + 0.13 for V-boson tagging
was determined in the search for heavy diboson resonances in the fully hadronic channel [47], by taking
advantage of a control region in data that is enhanced in V+jets events. Given that the same method for
V-tagging is used in this analysis, the same scale factor and uncertainty of 14% is assigned to the signal
normalization.®> An efficiency correction and uncertainty in the ny requirement was also estimated in
Ref. [66] for V-jets. This uncertainty is applied to H-tagging, with an additional component to cover
topology differences, based on simulation studies, corresponding to a total 10% uncertainty. In particular,
these studies compare the large-radius jet mass distributions between the data and the simulation, and the
impact of the nyy requirement on the data-to-MC agreement in the V-mass and H-mass regions.

Signal cross sections computed at leading order are used in the interpretation of the results. The impact of
uncertainties in the PDF sets, initial- and final-state radiation, and multiparton interactions on the signal
acceptance are included. Uncertainties related to the PDF sets are derived by applying the methodology
outlined by the PDF4LHC group [24] and considering four additional PDF sets (CT14, MMHT2014,
NNPDF3.0, and ATLAS-epWZ12), resulting in <1% uncertainties in the signal acceptance. An uncertainty
due to choosing the A14 tune for the signal generation is estimated by varying the scales for initial- and
final-state radiation, as well as multiparton interactions, and results in an uncertainty of 2% (3%) for WH
(ZH) resonances.

Finally, an uncertainty in the Run 2 integrated luminosity of 1.7% [22] is considered, as obtained by
the LUCID-2 detector [67] for the main luminosity measurements. The impact of the main systematic
uncertainties on signal event yields is summarized in Table 3.

7 Results

The statistical analysis of the data is performed using a binned likelihood function, constructed from the
myjy distributions in the 1-tag and 2-tag signal regions, using the procedure described in Ref. [1] and the
RooStaTs framework [68]. The my; histograms derived from MC simulation are used for the HVT W’ and
Z’ processes, while the data-driven background estimates are used for the combined ¢z, V+jets, and QCD
multijet processes. The input myy distribution bounds are [1.3,6.0] TeV.

A test statistic based on the profile likelihood ratio [69] is used to test signal hypotheses, parameterized
by the signal strength value, y, acting as a scale factor on the predicted number of signal events for each

3 The only difference is in the nyy requirement, which is looser in this analysis. Studies of relative signal efficiencies for the
different nyy requirements show that this approximation is well motivated.
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Table 3: Systematic uncertainties affecting the signal event yields in the WH and ZH signal regions with 1-tag or
2-tag (denoted WH-1, WH-2, ZH-1, and ZH-2, respectively). The HVT model is used with resonance masses of 2
and 4 TeV.

Source Signal (2 TeV) Signal (4 TeV)

WH-1 WH-2 ZH-1 ZH-2 | WH-1 WH-2 ZH-1 ZH-2
Jet energy scale 28%  3.1% 1.6% 2.1% | 52% 84% 6.6% 8.0%
Jet mass scale 18% 18%  9.6%  14% 20% 17%  21%  18%
Jet mass resolution 43% 45% 37%  40% 22% 21% 21%  22%
Flavor tagging 17%  8.4% 16% 84% | 26% 12%  26%  13%
H-boson tagging 10% 10% 10%  10% 10% 10% 10%  10%
V-boson tagging 13% 13% 13%  13% 13% 13% 13%  13%
Luminosity 1.7% 1.7% 1.7% 1.7% | 1.7% 1.7% 1.7% 1.7%
MC statistical uncertainty | 1.5% 1.4% 1.6% 14% | 1.2% 14% 1.5% 1.7%

model assumption. The likelihood, L, is defined from the Poisson probability to observe N data events for
a given signal s and background b expectation in each bin of the final discriminant:

categories bins

Ludy= [ [ Pois (Neslusei® +ber(@®) [ ] 430,
c=1 i=1 jeé

where the index ¢ represents the 1-tag or 2-tag event categories and i represents the bin in the my;
distribution. Nuisance parameters 6 are included in the likelihood function with Gaussian or log-normal

constraint terms, f;(6;). Those nuisance parameters which produce bin variations smaller than 1% from
the nominal value are neglected.

Experimental uncertainties in the signal are fully correlated between the 1-tag and 2-tag signal regions,
whereas background modeling uncertainties are kept independent. In order to avoid an overconstraining of
the background modeling uncertainties in the high mass region due to the higher statistical power at low
masses, the mjy shape uncertainties above and below 2.5 TeV are allowed to vary independently in the fit.
The post-fit background expectation was found to be stable and independent of the particular choice of
splitting point.

The fits are performed separately for the W’ and Z’ models, using data in the 1-tag and 2-tag regions from
the SRWH and SRZH selections, respectively. The fit results are interpreted independently for the W’ and
Z’ hypotheses — the WH and ZH signal regions are not orthogonal and have approximately 40% of events
in common, in each category.

The pre- and post-fit my; distributions in the signal region are shown in Figure 5, for signal resonances with
a mass of 2 TeV. The numbers of data events in the signal regions are shown in Table 4, along with the
predicted background and signal yields, post-fit. No events with mjy values above 5 TeV are selected.

A test of the background-only hypothesis is performed by setting u equal to zero in the likelihood fit.
Deviations from the background-only hypothesis are quantified by determining the local py-value at each
signal mass point. The largest deviation is observed in the fit to the WH signal regions and corresponds to
a po-value of 0.03 for a resonance mass of 2.8 TeV.
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Figure 5: Dijet mass distributions in the WH (top) and ZH (bottom) signal regions, after the likelihood fit to events
in the 1-tag (left) and 2-tag (right) categories. The black points correspond to data and the solid blue histogram to the
post-fit background prediction. The WH and ZH signal regions are not orthogonal. The expected signal distributions
for a V' boson with mass of 2 TeV are also shown (dashed histograms). The bin width varies and corresponds to
the experimental mass resolution. Distributions of the significance of the observed deviations from the expected
background are presented in the bottom panels before and after the fit. The significance calculation assumes Poisson
probabilities and only accounts for statistical fluctuations.
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Table 4: Event yields for the data, predicted background, and signal in each of the signal regions. The signal
corresponds to that expected for HVT model B with resonance masses of 2 and 4 TeV.

Region Data Background Signal (2 TeV) Signal (4 TeV)

SRWH 1-tag 598 612 + 46 110 2.0
SRWH 2-tag 57 61 =13 100 1.0
SRZH 1-tag 717 725 £ 53 47 0.80
SRZH 2-tag 84 81 £17 44 0.42
5 10g——7 3 g 10—
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Figure 6: Observed and expected 95% CL upper limits on the cross section for pp — V' — VH in the WH (left) and
ZH (right) channels. The red solid (dashed) lines show the cross-section predictions as a function of the resonance
mass in the context of HVT model B (A).

The data are used to set upper limits on the production cross section of new resonances. Exclusion limits
are computed using the CLg method [70], with a value of u regarded as excluded at the 95% CL when
the CL value is less than 5%. The cross-section limits are shown in Figure 6. The observed limits range
from cross sections of 6.8 fb to 0.53 fb for WH and from 8.7 fb to 0.53 fb for ZH, corresponding to the
exclusion of W’ (Z’) resonances up to a mass of 2.90 TeV (2.20 TeV) in the context of HVT model A and
3.20 TeV (2.65 TeV) in the context of HVT model B. The 2-tag category dominates the sensitivity of the
search at low resonance mass while the impact of the 1-tag category increases at higher mass, surpassing
the 2-tag category at masses above 3.9 TeV. As a test of the asymptotic approximation used in the statistical
analysis, results are also obtained with ensembles of pseudoexperiments. The cross-section upper limits
obtained in that case are looser by 10-20%, with a larger difference at high m(V”), and the mass limits are
at most 0.05 TeV weaker.

These results can also be translated into exclusions in the {gy, gr } plane, where g represents a universal
coupling between the V’ bosons and fermions. Here, g, is taken to be equal to g s . Figure 7 shows the 95%
CL limits in this plane for several resonance masses.
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Figure 7: Limits at 95% CL in the g s vs. gg plane for resonance masses of 2, 3, and 4 TeV for the WH (left) and ZH
(right) channels in the context of the HVT model. The coupling values corresponding to HVT models A and B are
indicated by filled circles. The gray region indicates values of the couplings corresponding to V' resonances with
I'/m greater than 5%. In that region, the assumption that the V' signal mj; shape is dominated by the experimental
resolution is no longer valid.

8 Conclusion

A search for heavy resonances decaying into a W or Z boson and a Higgs boson is reported. The results
are based on a sample of pp collisions at 4/s = 13 TeV collected by the ATLAS detector at the Large
Hadron Collider, corresponding to 139 fb~! of integrated luminosity. The search exploits jet substructure
techniques to study the fully hadronic ggbb final state which results from the dominant decay modes of
the W/Z and Higgs bosons. The main background contribution arises from multijet production, with
a smaller contribution from top-quark pair and V+jets production. All background contributions are
extracted directly from the data. Compared with the previously available results, the search benefits from
an increased integrated luminosity, as well as from improvements in reconstruction and tagging of large-R
jets and track-jets with pr-dependent radius.

No significant excess of events is observed over the expected background and the upper limits set on the
cross section for pp — W' — WH and pp — Z’ — ZH range from 6.8 tb at m(W’) = 1.5 TeV to 0.53 tb
atm(W’) =5.0TeV, and from 8.7 fb at m(Z”) = 1.5 TeV to 0.53 tb at m(Z’) = 5.0 TeV, at 95% CL. These
results translate into lower limits on the mass of W’ (Z’) bosons of 2.90 TeV (2.20 TeV) in the context of
the weakly coupled HVT model A and of 3.20 TeV (2.65 TeV) in the context of the strongly coupled HVT
model B, at 95% CL.
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