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1 Introduction

The precise reconstruction of the trajectories of charged particles created in proton—proton (pp) and
heavy-ion collisions at CERN’s Large Hadron Collider (LHC) is a key ingredient in many of the physics
processes studied by the ATLAS Collaboration. Almost every measurement performed using the ATLAS
detector [1], from Standard Model processes to searches for new physics phenomena, relies on the accurate
reconstruction of charged particles.

In order to reconstruct the trajectories of charged particles, ATLAS uses the Inner Detector (ID) tracking
system to provide efficient, robust and precise position measurements of charged particles as they traverse
the detector. The energy deposits from charged particles (hits) recorded in individual detector elements of



the ID are used to reconstruct their trajectories (tracks) and estimate the associated track parameters. The
precision achieved for the track parameters is determined by several factors: the intrinsic resolution of
sensitive devices; the knowledge of the magnetic field; the distribution of material in and before the ID and
the knowledge of it; and the knowledge of the geometry, i.e. the location and orientation, of the detector
elements. The purpose of the detector alignment is to determine, as precisely as possible, the actual
geometry of the active detector elements of the tracking system, and to follow changes in the geometry
with time.

Poor knowledge of the actual geometry of the active detector elements results in a deterioration of the
resolution of reconstructed track parameters. The criteria for the minimum precision required were defined
in order to limit the degradation of the resolution of the track parameters for high-momentum tracks to less
than 20% in comparison to a perfectly aligned detector [2]. In addition, correlated geometrical distortions
can lead to systematic biases in the reconstructed track parameters. Correlated systematic biases can be
introduced either by real detector deformations to which the alignment procedure has little sensitivity or by
the procedure used to determine the alignment parameters. These correlated biases are referred to as ‘weak
modes’ of the alignment.

In this document, the ATLAS ID alignment procedure and its performance during Run 2 of the LHC is
presented. A new layer of pixel sensors was included in the detector for Run 2, which posed additional
challenges for the alignment of the detector compared to those faced during Run 1 [3, 4]. The greatest new
challenge was the short-timescale movement of parts of the detector during data taking.

This paper is organised as follows: a brief description of the ATLAS detector is given in Section 2.
Section 3 presents the formalism of the ATLAS track-based ID alignment. Section 4 introduces the
different alignment levels and Section 5 discusses the detector stability and describes the time-dependent
alignment. The performance of the ATLAS Run 2 alignment is presented in terms of track parameter
biases in Sections 6 and 7. Concluding remarks are made in Section 8.

2 The ATLAS detector

The ATLAS detector [1] at the LHC is a multipurpose particle detector with a forward—backward symmetric
cylindrical geometry that covers nearly the entire solid angle around the collision point. The global ATLAS
reference frame is a right-handed Cartesian coordinate system, where the origin is at the nominal pp
interaction point, corresponding to the centre of the detector. The positive x-axis points to the centre of
the LHC ring, the positive y-axis points upwards and the z-axis points along the beam direction. Polar
coordinates (r, ¢) are used in the transverse plane, ¢ being the azimuthal angle around the beam pipe. The
pseudorapidity is defined in terms of the polar angle 6 as n = —Intan(6/2). Angular distance is measured
in units of AR = /(An)? + (A¢)2.

ATLAS consists of the ID (described in Section 2.1), electromagnetic and hadronic calorimeters, a muon
spectrometer and a magnet system. Lead/liquid-argon sampling calorimeters provide electromagnetic
energy measurements with high granularity and a steel/scintillator-tile hadronic calorimeter covers the
central pseudorapidity range of || < 1.7. The endcap and forward regions are instrumented with
liquid-argon calorimeters for measurements of both electromagnetic and hadronic showers up to || = 4.9.
The outer part of the detector consists of a muon spectrometer with high-precision tracking chambers for
coverage up to |n| = 2.7, fast detectors for triggering over || < 2.4, and three large superconducting toroid



magnets with eight coils each. The ATLAS detector has a two-level trigger system to select events for
offline analysis [5].

2.1 Inner Detector structure

The ATLAS ID [2, 6] consists of three subdetectors utilising three technologies: silicon pixel detectors,
silicon strip detectors and straw drift tubes, all surrounded by a thin superconducting solenoid providing a
2 T axial magnetic field [7]. The ID is designed to reconstruct charged particles within a pseudorapidity
range of 5| < 2.5 (see Figure 1 for a schematic view of the ID barrel region and Table 1 for a list of the
main detector characteristics). The material distribution inside the ID has been studied in data through use
of hadronic interactions and photon conversion vertices [8, 9]. During the second LHC data-taking run
(2015-2018) with pp collisions at a centre-of-mass energy /s = 13 TeV, the ID collected data with an
efficiency greater than 99% [10].
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Figure 1: A 3D visualisation of the structure of the barrel of the ID. The beam pipe, the IBL, the Pixel layers, the four
cylindrical layers of the SCT and the three layers of TRT barrel modules consisting of 72 straw layers are shown.

The innermost part of the inner detector consists of a high-granularity silicon pixel detector and includes
the insertable B-layer (IBL) [11, 12], a new tracking layer added for Run 2 which is closest to the beam
line and designed to improve the precision and robustness of track reconstruction. The IBL consists of
280 silicon pixel modules arranged on 14 azimuthal carbon fibre staves surrounding the beam pipe at a
radius of 33.25 mm. Each stave is instrumented with 12 two-chip planar modules, covering the region of
In| < 2.7, and 8 single-chip modules with 3D sensors [13, 14], four at each end of the stave (2.7 < |n| < 3).
The remainder of the Pixel detector [2, 6, 15] consists of 1744 silicon pixel modules arranged in three
barrel layers and two endcaps with three disks each. Each pixel module comprises 16 front-end chips
bump-bonded to the sensor substrate. The barrel modules were assembled on staves of 13 modules
each, whilst the endcap modules were assembled directly on the disks. In order to simplify the notation
throughout the rest of the paper, the term Pixel is used to refer only to the detector already in place during
Run 1 and the new layer is referred to explicitly as the IBL.



The Semiconductor Tracker (SCT) [16—18] consists of 4088 silicon strip modules. They are arranged in four
barrel layers and two endcaps with nine disks each. Each module consists of two pairs of single-sided strip
sensors glued back-to-back with a 40 mrad angle between them. Each module comprises 12 128-channel
chips. Due to the stringent build tolerances each SCT module is considered a solid object for the purposes
of alignment. The barrel modules are mounted directly on the cylindrical support structures of each layer in
12 rings, whilst the endcap modules are assembled in 3 rings on the disks. The barrel SCT sensors have a
uniform pitch strip of 80 um, while the endcap sensor strips run radially with a 161.5 urad angular pitch.

The Transition Radiation Tracker (TRT) [19-21] is the outermost subdetector and extends track recon-
struction radially outwards to a radius of 1082 mm. It is made of 350 848 gas-filled straw tubes of 4 mm
diameter. The tubes are arranged in 96 barrel modules in 3 layers (32 modules per layer) and 40 disks in
each endcap. The expected hit resolutions for each subdetector are summarised in Table 1.

Table 1: Summary of the main characteristics of the ID subdetectors. The intrinsic resolution of the IBL and the Pixel
sensors are reported along r—¢ and z, while for SCT and TRT only the resolution along r—¢ is given [1, 11]. For SCT
and TRT the element size refers to the spacing of the read-out strips and the diameter of the straw tube, respectively.

Subdetector Element size Intrinsic resolution [um]  Barrel layer radii [mm]  Disk layer |z| [mm]
IBL 50 um x 250 pm 10 x 60 33.25

Pixel 50 um X 400 um 10x 115 50.5, 88.5, 122.5 495, 580, 650
SCT 80 um 17 299, 371, 443, 514 from 839 to 2735
TRT 4 mm 130 from 554 to 1082 from 848 to 2710

2.2 Local coordinate system

The local coordinate system of an individual sensor of the detector is a right-handed system frame with
the origin placed in the geometrical centre of the sensor. The local coordinate system for each subsystem
component is illustrated in Figure 2. The convention used is the following: the local-x axis points along
the most sensitive direction of the sensor. This corresponds to the shorter pitch side for Pixel and IBL
modules, and perpendicular to the strip-orientation for the SCT. In the silicon detectors, the local-y axis is
oriented along the long side of the sensor (i.e. longer pitch direction for the Pixels and IBL and the strip
direction in the SCT), while the local-z direction is orthogonal to the local x—y plane. In the case of the
TRT, the local-y axis points along the wire: either in the same direction as the global z-axis (barrel) or
radially outwards (endcaps). In the barrel, the local-z axis points radially outwards (from the origin of the
global frame to the straw centre). In the endcaps, the local-z axis points outwards (parallel to the beam
line). The local-x axis is perpendicular to both the TRT wire and the radial direction.

Hits are reconstructed in the local reference frame. The TRT measures the radial distance of the primary
ionisation from the wire as Vx?2 + z2, taking both x and z in the local frame.

3 Alignment principles and formalism

This section reviews the formalism for in situ alignment of the ATLAS ID using reconstructed tracks. The
concept of Global y? alignment is introduced, followed by a discussion of ‘weak modes’ (Sections 3.2.4
and 6) and how they can be avoided by adding constraints on track parameters. The section closes with a
detailed description of the alignment procedure and its implementation within the ATLAS software.
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Figure 2: Schematic representation of the ATLAS global reference frame (x, y, z) and the local reference frame
of each component of the ID. The Pixel, IBL, and SCT modules are grouped in the ‘Silicon’ category. For each
component, the local-x axis points along the most sensitive direction; the local-z axis points away of the ATLAS
centre; and the local-y direction is chosen according to the right-handed frame. For TRT tubes, the local reference
frame is determined by the orientation of the module they are mounted on. For visualisation purposes only, the local
reference frame is referred to as (x’, y’, z’) in the drawing.

The approach used is based on the Newton—Raphson method and determines both the trajectory parameters
and a set of alignment parameters, @. In this context, @ are chosen as the six degrees of freedom (DoF) of
each alignable structure that uniquely define its position and orientation in space. These correspond to
three translations (7, Ty, T;) and three rotations (R, Ry, R;). Translations are relative to the origin of the
reference frame of each alignable structure and rotations are around the Cartesian axes.

3.1 Track fitting with the Newton—-Raphson method

The Newton—Raphson method uses an iterative approach to find the best fit to a set of measurements
of a track left in the detector by a charged particle traversing active detector elements. The quality of
the fit is characterised by a track Xz’ determined from the distances between the hits in the detector,
which constitutes the track measurements, and the fitted track (residuals). The trajectory of a track in a
magnetic field is parameterised by a set of five parameters. The chosen parameterisation in ATLAS is:
T = (do, z0, ¢0, B0, q/p), where dy and zp are the transverse and longitudinal impact parameters and ¢
and 6y the azimuthal and polar angles of the track, all defined at the point of closest approach to the z-axis
of the reference frame [22]. The ratio ¢/p is the inverse of the particle momentum (p) multiplied by its
charge (q) (see Ref. [4] for more details).

The track )(2 is calculated from all measured track-hit residuals, r; = e;(T) — m;. where m; is the position
of the i measurement, and e; is the position of the intersection of the fitted track with the surface on which
the i measurement is made. The determination of the intersection position (e;) includes the measurement
in question, which causes r; to be a biased residual. The track 2 is defined, using vector notation, as

Y =rQ’lr, 1)



where r is the vector of track residuals and Q is the covariance matrix of the corresponding measurements.'
The parameters of a track’s trajectory, 7, are those that minimise this y?. The minimisation is done
using the first and second derivatives of the y? with respect to 7. Defining the derivative G = dr/dr, the
condition for the minimisation of the y? is

dy?\’
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Figure 3: Schematic representation of a charged particle crossing detector planes. The measurement, m;, on each the
i layer is indicated by a red star. Also shown are the fitted track trajectory for a given set of track parameters, T
(black line), the position of the intersection of the fitted track with the surface on which the i™ measurement is made,
e¢; (1) (green ellipse), and the residuals, r; (blue line).

In practical terms, the values of 7 satisfying Eq. (2) are found using an iterative procedure by evaluating
the first and second derivatives of y? with respect to the track parameters of the current iteration, 7. If the
derivative G were constant, then the problem would be linear and the solution would be exact. In general,
the derivative G depends on the track parameters themselves. Therefore, the procedure is repeated until a
convergence criterion is met.

The track fit is further improved by taking into account the impact of material interactions on the trajectory
of the particle. Energy loss is treated as point-like at the center of material layers and for hadrons and
muons, which are used during the alignment, deterministic as the variance of the energy loss processes is
small. Additional parameters, 6, are added to account for the effects of multiple Coulomb scattering (MCS)
of the particle with the detector components, as detailed in Appendix A. Consequently, the residuals now
also depend on € and the variance of the scattering angles, ©:

X =7 Q'r+0707'0. 3)

Thus, )(%rack has to be minimised for T and € simultaneously. The derivatives of residuals with respect to
track and scattering parameters are defined as G = dr/dt and S = 9r /90, respectively. In the following,

! The local position and uncertainty of each measurement are provided by the corresponding subsystem after applying its own
clustering and hit reconstruction techniques. The Pixel detector uses an artificial neural network, trained on simulation, to
determine the position of a cluster and its uncertainty [23]. The SCT parameterises the position of the cluster and its uncertainty,
using simulation, as a function of the number of strips in the cluster and the incident angle of the particle. For the TRT the drift
radius and its uncertainty is calibrated using an iterative procedure in data and simulation [21].



the Global y? method for alignment including MCS is described and the following simplified notation is
adopted:

r Q 0 T G S
pz( ),Vz( ),nz( ),andHE(a_ 90 _ ) 4)
6 0 © 6 2=-0 %=1

It should be noted that refinements are made to the track fit by performing multiple iterations of the fit
during which: material effects are recalculated; measurements are recalibrated based on the particles
incident angle; and outliers are removed.

3.2 The Global y? method for alignment
3.2.1 General definition of the Global y? method for alignment

The Global y? is a track-based alignment method which uses a 2 built from a large sample of reconstructed
tracks and their associated hits in the detector elements being aligned. The alignment parameters are
determined by minimising the Global y? with respect to the alignment parameters:

2 2
XGlobal = ZXTracki > %)
i

where )(%racki is the y? of the i track as given by Eq. (3). The residuals used in Eq. (5) depend on the
alignment parameters («) as both, the measurements and the track extrapolations depend on «, the former
directly and the latter through the fitted track parameters. Therefore, the minimisation of X(z}lobal with
respect to @ uses the total derivative operator with respect to @, which can be expressed as:

d 9 dr; 8
da'i B 604 b dai (97rj ’

(6)

The dz/de term is determined from the condition that, once xg,,; is at a minimum, y_ is also at a
minimum with respect to the track parameters:

i (9,\/ %rack =0

7
da orn @)
Using Eq. (7) in Eq. (6), this results in:
-1
d_ﬂ' - _ azx%rack azx%rack
da on? dadm

which allows the nested dependence of the r on a to be resolved, thereby removing the need to determine
both (the track parameters and alignment parameters) simultaneously.

Ignoring second-order derivatives in the residuals, using the covariance matrix of the track parameters, C,

expressed as
-1
2.2
d X'Track

c=2




and defining A as the derivative of the residuals with respect to the alignment parameters:

0
A=k, ©)
the total derivative operator with respect to @ can be written as:
d\" (a)\" a\"
[aa) =) ~avme(GE)
The first- and second-order derivatives of /\(élobal with respect to @ are thus:
y = [ Hciona o 23 ATV (V- HCHTV! (10)
B da tracks &
M= % =2 Z ATV YV - HCHT)V'A (11)
da? '

tracks

Here, the term HCH" represents the covariance of the track parameters in the measurement space, whereas
the covariance of the residuals of the track fit is given by

R=V-HCH'.

3.2.2 Newton-Raphson method for Global y? alignment

In analogy to the general method for track fitting (Section 3.1) an iterative approach is used to solve for the
alignment parameters. The first- and second-order derivatives are obtained using Egs. (10) and (11) and
evaluated for an initial set of alignment parameters, @g. Such an initial geometry description is available
from design drawings, survey measurements, or previous alignment results. The alignment corrections, to
the initial geometry, are given by

-1 T
2.2
d“XGlobal

da?

2
X Giobal

X=Aa=-
@ da

=-M7y. (12)

@ @

The above step is repeated for successive iterations until a convergence criterion is met and A« is negligible”.
This requires re-fitting the tracks using the updated geometry (initial alignment constants @ plus their
corrections Aa), to obtain new residuals and new derivatives, and solving again to compute the next set of
corrections to the alignment constants.

3.2.3 Locality ansatz

If the initial track parameters, 7ro, minimise xg, . for a given e, Eq. (10) simplifies to
2 T
X Giobal

=2 ATvlp, 13
o > p (13)

o, tracks

2 This typically refers to a correction threshold of < 0.1 um. However, it should be noted that the convergence criteria can vary
between specific alignment level and degrees of freedom chosen.



as the term H' V™! p is zero. Consequently, if the measurements are independent and V is diagonal, the
derivative with respect to a particular parameter a; only receives contributions from residuals for which
the related entries in the derivative matrix A are non-zero. In other words, if ; is an alignment parameter
of a given detector module, only the measurements in this module contribute to the first-order derivative of
)(élobal with respect to ;. Therefore, contributions to the Xélobal from measurements in other subdetectors
and MCS effects can be ignored. This useful property is labelled as the so-called locality ansatz [24] and
provides an important simplification for the software implementation.

3.2.4 Adding constraints on track parameters

It is of particular importance to assure that the determination of the track parameters is free from systematic
biases that can occur due to poorly determined ‘weak modes’ of the alignment. These modes are geometry
distortions that leave the y? of the fitted tracks nearly unchanged and typically lead to an incorrect solution of
the alignment. They can be controlled by imposing constraints on track parameters [25]. Examples of such
constraints, discussed in detail in Sections 6 and 7, are the beam-spot constraint, track parameter constraints
from external detector systems (e.g. calorimeters), and constraints determined using reconstructed physics
events (e.g. mass constraints from narrow resonances). These constraints are included in the Global y>
method by adding extra terms to the expression for the yZ in Eq. (5). For one track the modified contribution
to y? is

Xeos =PV p+ (- T (m~q), (14)
where ¢q is a vector defining the constraint on 7 and 7 is its covariance matrix.

In the ATLAS implementation, this constraint is implemented by adding a pseudo-measurement on a
track [22]. The solution for the alignment parameters is given by Eq. (12), where for each constrained track
the covariance matrix is now defined as

d2,2 -1 1
sz(—X ) - (HTV‘1H+T‘1)
(17!'2 cons

In this context, the first-order derivative of the Global y? is given by
dy? "
(&)

If the tracks have been re-fitted with the imposed constraint, the locality ansatz drastically simplifies
Eq. (15), reducing it to Eq. (13). This property is used in the ATLAS implementation.

=2 Z ATV YV -HCH")YV ' p(ay) - ATVIHCT ' (n(ap) — q) . (15)

g tracks

3.2.5 Constraints on alignment parameters

Often one has some prior knowledge of the geometry from either survey measurements or mechanical
constraints. These constraints can be included by adding terms to the y? in Eq. (5). In the general case,
one can write

Xgons = Z pTV_lp +(a - Q’cons)TVV_1 (0’ — Qcons) » (16)

tracks

10



where @y 1s a vector defining the constraint on @ and W is its covariance matrix. The added term leads
to extended expressions for the first and second derivatives of /\(2 with respect to @ (Egs. (10) and (11)):

Y >Y+2W l(a-a), (17)

M— M+2W
while the solution is computed using ¥ and M in Eq. (12).

The special case when a = @ and W is diagonal, i.e. when the alignment parameters are constrained to
their initial values, is further discussed in Section 3.3.3.

3.2.6 The Local y? method

The main advantage of the Global y? method arises from its rigorous treatment of correlations between
alignable objects through the tracks connecting them. However, this approach becomes technically
challenging when the number of alignment parameters is very large, such as in the case of the alignment of
individual TRT straws (= 700 000 parameters). In order to overcome this challenge, a simplified version of
the y? approach (the Local y? method) is used. It is based on the minimisation of the same y2, Eq. (5), but
the implicit dependence on the fitted track parameters is dropped, reducing Eq. (6) to a simpler form:

d 0
de oo’
Consequently, Egs. (10) and (11) are reduced to:

dXLocal ) Z ATQ r

tracks

XLocal T
— =2 Z ATQIA

tracks

In addition, the problem is reduced to separate systems of equations describing individual alignable
modules. The Local y? method eliminates the numerical challenges of the Global y? since only systems of
equations with up to six parameters (albeit many of them) need to be solved. However, due to the loss of
the correlations between alignable objects, the Local y> method needs a much larger number of iterations
to converge.

3.3 Solving the linear system of alignment equations

In general, the properties of the matrix representing a system of linear equations determine the most suitable
solution technique. The matrix M in Eq. (11) as defined in the Global y? ansatz is found to be symmetric
and singular and to have a poor matrix condition number if no constraints are applied. The addition of
appropriate constraints generally renders the matrix positive definite. The singular nature of the matrix
is the result of detector movements that leave a track’s y? unchanged. The simplest examples are global
transformations of the detector (either translations or rotations), which are generally singular modes.®> A

3 Rotations within a magnetic field or translations in an inhomogeneous magnetic field may not be singular modes but for practical
purposes may essentially be so. They are typically extremely poorly constrained because track trajectories are not significantly
modified by small changes in the magnetic field.
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trivial way to remove these global degrees of freedom is to fix a detector element, making it the reference
point for all other detector elements. This method has the unwanted drawback of arbitrarily selecting one
detector module as the reference frame. In the following section, two methods used to obtain a solution
to the alignment system of linear equations are discussed along with how ‘weak modes’ are removed or
mitigated.

3.3.1 Diagonalisation of the matrix

The symmetric matrix M is decomposed into its diagonal basis: POPT where D is a diagonal matrix
containing the eigenvalues of M, and P is a matrix containing the eigenvectors of M. Of course, in the
diagonal basis all parameters (directions) are linearly independent, and the solutions plus their associated
uncertainties are given by the eigenvalues (A;) with:

1

where X ;) and Y, é) are the /™ component of vectors X  and Y o in the diagonal basis, withY o, = PT Y.

. | .
Xp=-7Vp and o(Xp) = (18)

Singular and weak modes must be excluded as their eigenvalues are zero or have an arbitrarily large
associated uncertainty, respectively. Although this can be achieved in many ways, the primary method
employed is to set D ll = 0 for the modes that need to be removed, thereby creating a new diagonal matrix

D'~ which provides the solution:

X=-PD"'PTY.

The DSPEV function in the LAPACK [26] software package is used as a baseline in the ATLAS
implementation to diagonalise large matrices. Alternative implementations using ROOT [27], EIGEN [28]
and CLHEP [29] linear algebra classes are also available. In general, the computation time for matrix
diagonalisation scales as O(DoF?) and solutions for very large systems become untenable on a single
machine. If the initial matrix is poorly conditioned, the accuracy of the numerical solution can be limited
by the precision of 64-bit floating-point computations for problems exceeding O(10 000) DoFs.

3.3.2 Direct solving

Even for very large problems, direct solvers offer an accurate and CPU-efficient method for solving sparse
linear equations. In addition, less memory is required as no matrix is inverted or diagonalised in the
process. The LDLT Cholesky factorisation method provided within EIGEN [28] is used within the ATLAS
ID alignment and takes less than 10 minutes to solve an alignment problem with 35 000 parameters (the
approximate number of parameters needed to align all modules in the ID simultaneously) on a modern
CPU. Direct solving is used when aligning thousands of degrees of freedom (usually when aligning at
individual module level). Obtaining a direct solution does not offer the possibility of eliminating specific
eigenmodes. Thus, other preconditioning techniques are used in order to extract a meaningful solution
(e.g. Section 3.3.3). It is noteworthy that, although not extensively utilised within ATLAS, it is possible to
iteratively find the eigenvalues and associated eigenvectors of large systems by solving Mx = Ax for x and
A [30], which can be useful in understanding the weak modes of very large systems and identifying the
underconstrained degrees of freedom.
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3.3.3 Constraining alignment parameters in the solution (the Soft Mode Cut)

As introduced in Section 3.2.5, setting @ = @ and having a diagonal W constrains the alignment parameters
to their initial values. Here, W denotes a diagonal matrix with diagonal elements: o (a;)?, providing the
tolerances to the corrections of the alignment parameters.

For this special case, the top row of Eq. (17) simplifies to Eq. (10) and the diagonal of the matrix M in
Eq. (11) is incremented by the reciprocal of assumed variances of alignment corrections:

(M+2W—1)X:—Y.

The above equation can be rearranged as

X:
Z(U(ai)o'(a'j) Mij+2 1) —— = -0 () ¥ (19)
> o(a;)

yielding an equation in which the corrections to the alignment parameters are normalised to their assumed
uncertainties Aa; — Aa; /o (a;). Apart from the extra identity matrix 7, Eq. (19) is exactly equivalent to

Eq. (12).

To illustrate the effect of such a constraint, consider the case that all o («;) are equal (o (@;) = o).
The extra identity matrix does not affect the eigenmodes of M, but adds an offset to its spectrum of

eigenvalues:

M =M+21/c?, D' =D+I/o?, A=A+1/c%

The solution in the diagonal basis, Eq. (18), takes the form:
1

X =———VYL and o(X))=
27 1o ? (*o)

I
Vi +1jo2

Hence, one obtains a solution explicitly free from ill-defined (weak) modes. This operation does not require
an explicit diagonalisation and can be used as preconditioning prior to fast solving, providing powerful
control over solutions for an arbitrarily large number of DoFs. Due to the typically exponential nature of
the eigenspectrum, Eq. (20) represents a solution with a clear cut-off in the diagonal basis for 4; < 1/ 0'3..
This technique is extensively used in the ATLAS implementation.

(20)

4 Inner Detector alignment

The ID is composed of a large number of active detector components (see Section 2.1 for details). Each
component or grouped collection of modules (e.g. a subdetector) can be treated as an alignable structure.
The alignment is performed at different hierarchical levels following the assembly structure of the ID.
Starting with the largest physical structures at level 1, the detector subsystems are aligned separated into
endcaps and barrel regions in order to correct for collective movements. Level 2 treats individual barrel
layers and endcap disks as physical structures (barrel modules and endcap wheels in the case of the TRT).
Level 3 corresponds to a silicon module or TRT wire alignment. In this context, the SCT modules are
considered as a single element in the alignment procedure due to their high construction precision [16, 17].
The levels are addressed sequentially during the alignment procedure, see Table 2.

13



In Run 2, the alignment levels were updated to accommodate the IBL. These changes are straightforward
for levels 2 and 3, as the IBL represents merely an additional Pixel layer or additional silicon modules,
respectively. The support structure of the IBL is mechanically independent from the previously installed
Pixel subdetector, so IBL movement is not expected to be correlated with collective Pixel movements.
Consequently, the IBL is treated as a separate physical structure at level 1.

4.1 Time-dependent alignment

Time-dependent alignment is performed for each LHC fill prior to data reconstruction to determine if the
detector, or individual subsystems, have moved significantly compared to a reference alignment. Such
detector movements occur on different timescales, which are classified as short, medium, or long.

Short timescales describe movements during a single LHC fill that are a result of variations of the thermal
load of the ID. These movements are caused by fluctuations in the power consumption of the front-end
electronics, due to variations in the trigger rate, that additionally affect the temperature of the cooling
system. On medium timescales, in the range of days to a month, changes to the environmental conditions
of the detector, such as ramping the magnetic field or cycling the power or cooling systems, often lead to
significant movements of the detector. Slow gradual movements of the subsystems over several months
(long timescales) were also observed and attributed to mechanical relaxations after sudden changes.

An automated time-dependent level 1 alignment is performed within the ATLAS prompt calibration
loop [10] to address all known time-dependent movements, as detailed in Section 5. These results are
monitored and new alignment corrections are automatically obtained during the calibration period. They
serve as input for the bulk reconstruction of the corresponding dataset.

4.2 Baseline alignment constants

The baseline alignment constants are a set of reference constants that serve as initial estimates for the
time-dependent refinements of the alignment. In order to achieve an accurate detector alignment and a
minimisation of track parameter biases over a data-taking period, a large quantity of data are used (typically
~ 2fb™1). The levels of alignment performed are summarised in Table 2. The alignment using the global
? method typically converges within two to four iterations for levels 1 and 2, while at least four iterations
are required at level 3 (silicon). The TRT level 3 (straw level) uses the local y? method and requires up to
30 iterations to converge, owing to the large number of DoFs.

Depending on the alignment level, some DoFs may be fixed during the alignment procedure if poor
sensitivity is expected. Alignment levels targeting the silicon subdetectors use all tracks, whereas alignment
levels including the TRT require tracks based on silicon and TRT hits. In order to remove weak modes
from the alignment solution, appropriate constraints are added to the global y? method (see Section 3.2.4).
Different constraints are considered depending on the expected misalignment and DoF for each alignable
structure, listed in Table 2. Additionally, each subsystem can be aligned at any required level independently
from the others. Further subdivision of alignment levels into smaller physical detector components, e.g.
the division of individual barrel layers into staves, is also supported and used. At level 1, the SCT barrel is
kept fixed due to its good stability and to serve as reference for the rest of the structures.
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Table 2: Typical alignment configurations used throughout Run 2 data taking to derive baseline alignment constants.
Translational degrees of freedom (DoF) are denoted by a T, rotational ones by an R. As shown in Figure 2, TRT
barrel straws run parallel to the beam line. That corresponds to 77 at level 1 and T, at level 2.

Level  Description Structures  DoF Additional constraints
1 IBL 1 All
Pixel detector 1 All
SCT endcaps (SCT barrel fixed) 2 All except T,
TRT split into barrel and 2 endcaps 3 All except T,
Si2 Pixel and IBL barrel split into layers 4 All Beam spot,
Pixel endcaps split into disks 6 All momentum bias, and
SCT barrel split into layers 4 All impact parameter bias
SCT endcaps split into disks 18 All
Si3 Pixel and IBL barrel modules 1736 All Beam spot,
Pixel endcaps modules 288 T, Ty, R, momentum bias,
SCT barrel modules 2112 All impact parameter bias, and
SCT endcaps modules 1976 T.,Ty, R, module placement accuracy
TRT 2 TRT barrel split into barrel modules 96 All except 7, Momentum bias and
TRT endcaps split into wheels 80 T.,Ty, R, impact parameter bias
Pixel and SCT detectors fixed
TRT 3 TRT straws 351k T, R,

Pixel and SCT detectors fixed

4.3 Residuals

As described in Section 3.2, the solution of the Global y? is the one that minimises the unbiased* track-hit
residuals. Figures 4 to 6 show track-hit residual distributions for data and simulation in different ID
subdetectors.

Data and simulation correspond to a set of muons selected in Z — u*u~ candidate events triggered by the
lowest-threshold unprescaled single and dimuon triggers. The simulation sample was generated with the
PowneGg-Box v1 Monte Carlo event generator [31-33] at next-to-leading order (NLO) in ayg interfaced
to Pythia 8.186 [34] for the modelling of the parton shower, hadronisation, and underlying event, with
parameter values set according to the AZNLO tune [35]. The CT10 (NLO) set of parton distribution
functions (PDF) [36] was used for the hard-scattering processes, whereas the CTEQ6L1 PDF set [37] was
used for the parton shower. Events are required to contain two muons (satisfying ‘medium’ quality criteria
as defined in Ref. [38]) with opposite charge and pt > 20 GeV. In addition, requirements on the opening
angle between the two muons, y(u*, u~) > 45°, and their invariant mass, 70 GeV < m,+,- < 110 GeV,
are imposed. In Figures 4 to 6, both data and simulation correspond to 2 fb~! of data collected during 2018.
Statistical uncertainties in data and simulation are included in all the figures, although barely visible as
they are negligible.

Adequate agreement is seen between data and simulation in the residual distributions, where differences
are quantified in terms of the ‘full width at half maximum’ (FWHM) figure of merit. A similar level of

4 The unbiased residual does not include the measurement in question when determining the intersection position (e;) of the
fitted track with the surface.
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agreement is observed for the data collected during the other years of Run 2. In the case of the IBL, Pixel
and SCT barrel, larger residual widths are observed in data. As shown in Section 5.3, the Run 2 alignment
accuracy and stability in the central pseudorapidity range for both the Pixel and SCT barrel modules is
controlled to a precision better than 0.5 pm and 2 pm in local-x and local-y, respectively. Consequently,
several other possible causes of the observed discrepancy between data and simulation are considered, such
as imperfect modelling of the interactions of muons with detector material in the simulation, the material
description, delta ray production modelling, mis-modelling of the detector response (and resolution) in
simulation, and residual biases not uniform across individual modules in data. The latter particularly
impacts the local-y track-hit residuals in Figure 4. The poorest agreement is seen for the IBL residuals,
which have not yet been corrected for sensor distortions, in contrast to the Pixel layers. The sensor distortion
can result in track-hit residual biases of up to 10 um within a given module, thus causing a broadening of the
overall distribution [39]. The shape of the IBL modules was recently parameterised with Bernstein—Bézier
functions and will be corrected in the track fitting procedure for Run 3 data taking. The cause of the
small bias of 4 um in the IBL local-y track-hit residuals in simulation in Figure 4 is currently unidentified.
Simulated samples use a perfectly aligned detector with no track-based alignment correction, hence this
bias originates from the track or cluster reconstruction. On data, this small reconstruction bias is removed
by the alignment without a significant effect on alignment precision.

10° 10°

£ 160 ?\ T T T = £ i< L L B B B L T T ™)
‘E‘ r ATLAS IBL ] :‘ 160 [~ ATLAS IBL -
— 140 — Vs =13 TeV Data 2018 - - L Vs=13TeV Data 2018 ]
@ EZowue (mean: 0 FWHM/2.35: 12) um P 140 =z (mean: 0 FWHM/2.35: 86)um |
§ 120 j+ Data 2018 Simulation -] % [ —+-Data 2018 Simulation ]
pa F Simulation (mean: 0 FWHM/2.35: 10)um ~: 120 - Simulation (mean: -4 FWHM/2.35: 66)um |
o C . o C ]
g 100F Y 1S 10b Y E
T C ] 1 . . ]
80 - < ~ 80 |- % i
60 [- 4 - 60 - ., E
C .-' !-' ] r .n. . q
af s -, . a0 s - 7
20 } 9?'[ .' { 20 } o T, {
O: /\ \ s, ] 0: e AR PPN AP B . J

-40 -20 0 20 40 -300 -200 -100 0 100 200 300
Local-x residual [um] Local-y residual [um]

Figure 4: The IBL local-x (left) and local-y (right) residual distributions for the Z — u*u~ data sample compared
with simulated data. The distributions are integrated over all hits on tracks in barrel modules.

S Detector stability and time-dependent alignment

This section discusses the main sources of time variation in ID geometry and the methods implemented
to mitigate these effects within the ATLAS prompt calibration loop [10]. In addition, the stability of the
ID in Run 2 is summarised, final time-dependent corrections for all subsystems are presented, and the
precision of the alignment is determined. All results use pp collision data at v/s = 13 TeV. The alignment
precision for heavy-ion data in Run 2 is at least as good as the final precision of pp collision data, as the
instantaneous luminosity, and therefore the thermal load variations in the ID, is typically lower.
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with simulated data. The distributions are integrated over all hits on tracks in barrel modules.
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Figure 6: The local-x residual distributions in the SCT (left) and TRT (right) for the Z — u*u~ data sample compared
with simulated data. The distributions are integrated over all hits on tracks in barrel modules.

5.1 Short-timescale movements

Detector movements on short timescales are particularly challenging, since the ID track-based alignment
calculates an average position correction for the time interval under study.’

The procedure used to correct for rapid movements must balance two competing effects: the alignment
corrections must be determined in time intervals that are short enough to capture the motion of the particular
deformation, but long enough to include sufficient data to obtain precise corrections.

5 This time interval varies from a few minutes to several hours depending on the configuration of the alignment task.
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5.1.1 Temperature-dependent IBL distortions

During the Run 2 commissioning of the IBL, it was already noticed that the IBL staves can be distorted
by hundreds of micrometers relative to the design geometry. It was soon observed that these distortions
depend on the operating temperature and correspond to module displacement in the azimuthal direction
of the staves, equivalent to their local-x direction. The distortion was understood to be caused by tight,
asymmetric mechanical coupling of materials with different coefficients of thermal expansion (CTE). The
correlation between temperature and the size of the IBL distortion was studied using cosmic-ray data in
March 2015 with a controlled variation of the IBL temperature, Ty, in the range —20 °C to 15 °C [40]. The
size of the distortion was measured in situ using the track-based alignment and a fit to a model determined
from a three-dimensional finite-element analysis. This model parameterises the IBL distortion in local-x,
0x(z), using a parabolic function,

_ _ M 2_ .2
5x(z) = B z (-4 @1

where z is the global-z coordinate of the module, zg = 366.5 mm is the coordinate of the stave mount at
both ends, B is the baseline describing the overall translation of the stave in local-x, and M is the magnitude
of the distortion at the stave centre. The temperature gradient of M with respect to Ty is found to be
dM /dTg = (=10.6 £0.7) um/K. The local-y position shows no temperature-dependent effect within
20 um uncertainty, whereas the local-z (bending out of the plane of the stave) was not included in this study.
The IBL distortion is shown in Figure 7 for different Ty, values using 2015 and 2016 pp collision data.

From the initial data taking in Run 2 through September 2015, the IBL power consumption per module
was found to be stable, and fluctuations in Ty were within ~ 0.2K resulting in a stable detector
(6x(z) < 3 um) [40]. This situation changed with the rapid increase in integrated luminosity per LHC fill
after September, which induced an increase in the low-voltage (LV) currents in the IBL. module front-end
electronics. This increase was traced back to radiation-induced leakage current in transistors [41]. The
change in LV currents depends on the total ionisation dose. Studies show that the increase reaches a peak
value for radiation doses between 10 and 30 kGy and decreases for higher doses to a value close to the
pre-irradiation case.

These variations in the LV currents caused an increase in IBL module temperatures that resulted in changes
in IBL distortions on short timescales. In this context, values of dx(z) of up to 30 um were observed
between LHC fills and up to 10 um within a single fill, corresponding to a variation of 0.5 umh™".

5.1.2 Vertical movements of the Pixel detector

Another systematic deformation on short timescales is a change in the vertical position (global-y direction)
of the Pixel detector by up to 8 um at the start of an LHC fill. Figure 8 shows the Pixel detector vertical
movement from the start of an LHC fill. The position is computed every 20 minutes, which is the shortest
time interval used in the ATLAS prompt calibration loop. As is evident from Figure 8, the average position
across an LHC fill does not accurately describe the position of the Pixel detector.

The cause of this movement is understood to be the following. When the Pixel detector is switched on
at the start of a fill, modules reach their new temperature almost immediately as a result of the strong
thermal coupling between the modules and the evaporative cooling system [1, 42]. The LV current in the
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Figure 7: IBL local-x position in the transverse plane averaged over all 14 IBL staves for 2015 data using Ty = —10 °C
(red open squares), and for 2016 data using different Ty (+15 °C, solid blue circles; +5 °C, solid green triangles).
No error bars associated with data are shown. The IBL distortion was constant during all three LHC fills. Here,
only the correction due to the IBL distortion is shown. The baseline, which describes the overall translation of the
whole stave, is subtracted using Eq. (21). The fit represents only a first-order correction. Additional corrections are
computed as part of the detailed alignment corrections at a later stage.
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Figure 8: The Pixel detector vertical (7y) movement as a function of the time since the start of an LHC fill. The
average Pixel T}, for the entire run (dashed blue line) is compared with its time evolution and with the instantaneous
LHC luminosity. The error bars represent the statistical uncertainty.

read-out electronics also increases immediately, while the temperature in the Pixel detector volume rises
gradually during the first 60 minutes. The smaller mass load due to the change in density of the bi-phase
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cooling liquid causes the Pixel detector to rise. After this initial rise, as the instantaneous luminosity and
thus the occupancy decreases over the course of the fill, LV digital currents, module temperature and Pixel
volume temperature gradually decrease as well. This in turn causes an additional slow drift in the direction
opposite to the initial movement. The speed of this slow drift depends on the peak luminosity per LHC fill.
This speed increased during 2016 to reach values of 0.2 umh~', as shown in Figure 9. The vertical speed is
determined as the average speed of the Pixel detector excluding the first hour after the start of data taking.
This vertical drift was monitored and corrected for throughout Run 2.
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Figure 9: Vertical speed of the Pixel detector as a function of the peak luminosity of an LHC fill, extracted from
alignment corrections. Only fills longer than 8 hours are considered.

5.2 Dynamic alignment on short timescales

In an effort to mitigate the effects of systematic short-timescale distortions and ensure adequate data quality
for all analyses relying on tracking, conceptual improvements within the alignment framework and strategy
were made. A key improvement was the introduction of a new alignment DoF, B, to parameterise the IBL
distortion deformation magnitude M. The B, DoF correlates the local-x coordinate of each module along
the IBL stave using the parabolic function defined in Eq. (21). Minimising the global y? with respect to
B provides corrections for varying degrees of IBL stave distortion using a single DoF, which can be done
with small amounts of data. In contrast, a full level 3 alignment, which relies on a large amount of data,
had been required previously, which did not allow short-timescale movements to be determined.

The automated alignment scheme that is performed within the ATLAS prompt calibration loop in Run 2
data taking determines level 1 and IBL B, (per stave) dynamic alignment constants every 20 minutes at the
start of a fill and every 100 minutes for the rest of the fill. This level of granularity in time is adequate to
mitigate the effects of short-timescale vertical movements on track parameter resolution. The alignment is
performed in two iterations of the level 1 calibration loop (level 1 CL) followed by two dedicated iterations
to correct for IBL distortions. The B, correction in the level 1 CL corresponds to a collective, uniform
correction for all IBL staves. The dedicated IBL bowing iterations determine B, individually for each
stave, as summarised in Table 3. The SCT barrel is used as the reference in the dynamic alignment.
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Table 3: Typical alignment configurations used throughout Run 2 data taking to derive dynamic alignment corrections.

Level Description Structures  DoF

1CL IBL 1 All DoF incl. By, except R,
Pixel detector 1 All
SCT endcaps (SCT barrel fixed) 2 All except T,
TRT split into barrel and 2 endcaps 3 All except T,

IBL bowing IBL staves 14 By

Pixel, SCT, and TRT detectors fixed

5.3 Inner Detector stability during Run 2 data taking
5.3.1 Time-dependent corrections for all subsystems

The performance of the dynamic alignment scheme using 2016 pp collision data is shown in Figures 10
and 11. The average bowing magnitude of the 14 IBL staves relative to the baseline alignment is compared
with the results of the dynamic alignment in Figure 10. Figure 11 shows the average IBL distortion
computed after different alignment corrections versus time in the form of luminosity blocks (LB), which
correspond to stable data-taking conditions in periods of approximately one minute. It also compares the
unbiased local-x residuals computed using the a fill-averaged correction (for illustration only) with those
obtained after computing the full dynamic alignment correction, which is derived in short time-intervals.
A clear improvement in the residual distributions is seen after applying dynamic alignment corrections.
Figures 10 and 11 illustrate that, averaged over an LHC fill, even very large values of M (up to 30 um) are
accurately corrected for using B, as an alignment DoF. These features were present for all Run 2 data,
although there was some saturation of the effect in the later years of Run 2, as observed in the radiation
damage studies of the IBL [41].

The long-term trend of the Pixel and IBL detector movements relative to the baseline alignment correction
is shown in Figure 12 for the average B, correction, the global T’ correction, and the global 7}, correction.
For the sake of clarity, the plots in Figure 12 show only a fraction of the Run 2 data; the remaining data
follow the same trend.

5.3.2 Final alignment precision of each subsystem

The final alignment precision of each ID subsystem is determined from the track-hit residuals of individual
silicon modules for each LHC fill in 2015 and 2016 data taking after the dynamic alignment corrections
are applied. These dynamic alignment corrections are computed either for large structures (e.g. the Pixel
detector) as a collective movement of all modules or using a simplified parameterisation (like B,). In this
context, less significant module-to-module movements remain uncorrected by the dynamic alignment. This
effect is seen as a residual time-dependent misalignment or ‘instability’ of the modules. This instability
is estimated for each silicon layer and module z-position by integrating modules over ¢ into one group.
Results are presented for the ‘in-plane’ translation DoFs only (local-x and local-y).

For each module, the average track-hit residual, (rx,y), is computed for each LHC fill, for both local-x and
local-y, on a set of calibration data, whose size is approximately independent from the fill conditions. Its
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Figure 10: Bowing magnitude averaged over the 14 IBL staves relative to the baseline alignment (blue full circles)
and the geometry after dynamic alignment (red open circles) with its statistical uncertainty. The IBL operation
temperature (Te) for each period is shown.
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Figure 11: IBL distortion magnitude in the transverse plane per luminosity block (LB) range (left) and the IBL local-x
unbiased residual distributions (right) for an LHC fill averaged over all 14 IBL staves. The open blue squares (baseline
alignment) show the average IBL distortion in the transverse plane after the baseline ID alignment. The open red
circles show the fill-averaged correction and the solid black circles show the full dynamic alignment correction.

statistical uncertainty, o JVN, where N is given by the number of tracks per module and 07, is the
standard deviation of the residuals, is computed assuming that the residual distribution is approximately
Gaussian. The dispersion o, ) of the distribution in (ry,y) obtained from all LHC fills is an estimate of
the total instability of the module position after all alignment corrections are applied. This total uncertainty
can be divided into a statistical component (o7, , / VN) and a component describing residual instability
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Figure 12: Average correction of the IBL bowing magnitude, By, (top), IBL and Pixel detector’s horizontal position,
T, (middle), IBL and Pixel detector’s vertical position, 7y, (bottom) relative to the baseline alignment in 2016 pp
collision runs between LHC technical shutdown period 1 and LHC machine development period 1. The correction
is calculated every 20 minutes for the first 60 minutes of the data taking, and every 100 minutes for the rest of the
data-taking period. Each connected series of points represents a continuous data-taking period.

due to uncorrected time-dependent movements and stochastic fluctuations, oy"}:

. T
time X,y
Olrey) ~ Oxy & ——

X,y \/N :

As the size of the statistical contribution per module per LHC fill is generally small, o-}ci?;e is estimated by
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Figures 13 to 15 show the estimated instability in local-x and local-y of the Pixel and SCT barrel layers as
a function of module z-position. Figure 16 shows the local-x and local-y instabilities of the modules in the
Pixel endcap layers. The alignment in the central pseudorapidity range for both the Pixel and SCT barrel
modules is controlled to a precision better than 0.5 pm and 2 um in local-x and local-y, respectively. This
level of control is considered to be very good given the time-dependent corrections of O(10 um) due to the
IBL distortion and the vertical movement of the Pixel detector. The same level of precision is not achieved
for the outermost IBL modules (3D sensors) corresponding to the range |77 > 2.5. There the alignment
precision in local-x (local-y) is measured with an uncertainty better than 3 ym (15 um). This region is
particularly challenging due to the low number of tracks. Moreover, the tracks in this region have only
small overlap with other ID tracking layers. Furthermore, the large IBL local-y uncertainty may be related
to a deformation of IBL staves in local-z over time, which is not corrected for in the prompt calibration
loop.

The instability for Pixel endcap modules is larger than for barrel modules; the local-x and local-y instabilities
are 2—4 um and 4-7 um, respectively. This instability corresponds to the size of the movements of the
Pixel endcap modules relative to the baseline alignment over time. The precision achieved is nearly one
order of magnitude better than the required precision [2]. This required precision was defined in order
to limit the degradation of the resolution of the track parameters for high-momentum tracks to less than
20% in comparison with a perfectly aligned detector. While succeeding in its primary goal, these results,
specifically the residual Pixel endcap movements, also imply that the current dynamic alignment scheme,
which allows time-dependent alignment of the entire Pixel detector as one unit, is not optimal. A higher
level of precision might be achieved if the Pixel endcap disks were aligned individually. This improvement
is under study for LHC Run 3, including detailed cross-checks for new weak modes that may be introduced
due to the additional DoFs within the calibration loop.
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Figure 13: Estimated o™ as a function of the module global-z position for the IBL and Pixel barrel layers. The
vertical bar on each marker represents the standard deviation of the estimated value over modules at the same

z-position along different staves. The global-z position is slightly modified from its true value for visualisation
purposes.
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6 Momentum biases

The alignment corrections described in Sections 4 and 5 target misalignments that change the y? of the
track fit in Eq. (1). In contrast, correlated geometrical distortions referred to as weak modes leave the x>
of the fitted tracks virtually unchanged and can systematically bias the reconstructed track parameters.
Momentum biases induced by correlated detector misalignments can generally be classified into two
categories:

* Sagitta deformations consist of detector geometry distortions in the bending plane that affect the
reconstructed track curvature differently for positively and negatively charged particles (Figure 17
left).

» Length scale biases are characterised by detector geometry distortions along the track trajectory
and affect the reconstructed curvature identically for positively and negatively charged particles
(Figure 17 right).

These biases can be mitigated through the use of constraints either on track parameters (Section 3.2.4) or
on alignment parameters (Section 3.2.5), or on both simultaneously. Residual momentum biases, after
corrections to the detector alignment have been made, are sufficiently small that they can be accounted for
by directly correcting track parameters.

—— detector layers % real hit position Y reconstructed hit position - -» real trajectory — fitted track

Figure 17: A simplified representation of two common weak modes that bias the track momentum. A sagitta bias
(left) is caused by a deformation in the bending plane of the tracks, e.g. a rotation of the detector layers depending
linearly on the radius. A length scale bias (right) caused by a deformation along the track trajectory, e.g. a radial
expansion of the detector layers depending linearly on the radius. The real (dashed black line) and fitted (solid
black line) particle trajectories are shown. Red stars indicate real measurement positions and grey stars show the
reconstructed hit positions (biased measurements).

6.1 Sagitta bias

Displacements of the reconstructed hits in the bending plane orthogonal to the track path result in a
charge-antisymmetric alteration of the track curvature, which is parameterised as

p'=p(+gqpr (Ssagitta)_1 > (22)
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where the un-primed quantities correspond to the true values, the primed quantities correspond to the
reconstructed values, g refers to the sign of the electric charge of the particle and dagita 1S a bias parameter
common to all measured momenta and uniquely defines the detector geometry deformation.

Two iterative methods are used to determine the sagitta biases. The first method uses Z — u*u~ decays.
The second uses the electromagnetic calorimeter as a reference, and utilises the ratio of the measured energy
deposited in the calorimeter (E) to the momentum (p) measured by the ID for electrons and positrons.
Both methods allow the detector to be segmented arbitrarily in 17 and ¢, allowing the study of localised
sagitta biases. Sagitta biases have, to a great extent, been corrected for during the determination of the
alignment constants by adding constraints to the parameters of the tracks used to perform the detector
alignment, as given by Eqs. (14) and (16) and explained in Sections 3.2.4 and 3.2.5, and also in Refs. [3,
43]. The methods used to calculate the constraints are described below, and the residual sagitta biases after
alignment corrections are shown.

6.1.1 Measuring sagitta biases using Z — u*u~ decays

The invariant mass, m, of two highly relativistic opposite-charge particles is given approximately by
m* =2p*p~(1 - cosy),

where p* and p~ are the magnitudes of the momenta of the positively and negatively charged particles, and
v is defined as their opening angle. In the following, + and — superscripts refer to the properties of the
positively and negatively charged muons respectively. Sagitta biases can be measured using any particle
(of reasonably narrow width) that decays into pairs of stable particles. In LHC conditions, resonances that
decay into pairs of muons (such as J/, Y and Z) present the advantage that the dimuon signature can
be clearly distinguished from the large hadronic background. For dgugiita studies, Z — u*u~ decays are
preferred due to the high momentum of the Z decay products. Data quality selection criteria, summarised
in Table 4, are applied to both the selected muon candidates and the dimuon system. In total, more than
70 million Z — u*u~ candidate events were selected.

In general, geometrical distortions that bias sagitta measurements can be localised in specific regions
of the detector. As a result, the sagitta bias parameter explicitly depends on the path of the track,
which can be approximated by the direction of the track at the pp interaction point, given by n and ¢:
Osagitta — Osagitta (17, ¢). The difference at leading order in dagina (77, @) between the reconstructed dimuon
invariant mass using the uncorrected geometry (m,,,,) and the expected mass (m) for each event is given
by:

m?, —my ~my (P Ssgia(mt, 0%) = P Ssagia(n™, 07)) - (23)

where m% is a reference mass (in this case the world average mass for the Z boson [44]).

An iterative procedure is used to determine dgagiwa (77, ¢). For the i-th iteration, dsagita,i (17, ¢) is computed
for every muon in the Z — u*u~ sample with:

2 2
My = M7 (1+ g pi (Ssagita,i-1 (0, 4)))
Abgagiva.i (1. ¢) = —q —2——2 e : (24)
2m3z P

where (Osagita,i~1 (77, ¢)) is the result of the previous iteration. The corrections are updated by adding the
average of the current iteration to the result of the previous iteration:

<5sagitta,i (n,9)) = <6sagitta,i—l (n,9)) + <A6sagitta,i(77a ?)), (25)
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Table 4: Event selection criteria for Z — u*u~ (Section 6.1.1) and Z — e*e™ (Section 6.1.2) candidate events for the
analyses of the sagitta biases in data. Events triggered by the lowest-threshold unprescaled single and double electron
and muon triggers are used to select Z — u*u~ and Z — e*e” event candidates. y(u*, u”) is the opening angle
between the muons. Ady(u*, u~) and Azg(u*, u™) are defined as the difference in dy and z between the two muons.

Selection criteria ‘ Z — utu Z — ete”
Lepton selection Two muons! associated Two electrons® associated
with the primary vertex? with the primary vertex?
pr > 12GeV Er > 25GeV
Inl <2.5 In| <2.473

dy significance* < 4

Dilepton selection | 70 GeV < m+,~ < 110 GeV [Mmete- —myz| < 30 GeV

|[Ado(u*, 17)] < 0.1 mm

[Azo(u*, 17)] < 0.6 mm
y(ut o po) > 45°

TBoth muon candidates are required to satisfy the ‘medium’ quality criteria as defined in Ref. [38].

2The reconstructed vertex with the largest }, p_zr of its tracks.

3Excluding the transition region between the barrel and forward calorimeters.

4The significance is defined as |dg|/o(dp), where o (dy) is the uncertainty on the d from the track fit.
3Both electron candidates are required to satisfy the ‘loose’ quality criteria as defined in Ref. [46].

where (Adgagita,i (17, ¢)) is the average bias in a (7, ¢) region. The value of mi .« 1s computed using Eq. (23)
with the values of s from the previous iteration. The iterations are repeated until convergence is
reached.

The method, as described by Eq. (23), is only sensitive to relative sagitta biases in different sectors of the
detector. An alternative method, comparing the pr spectrum of the u* and p~ [45] was also tested. This
method is sensitive to global sagitta biases, although it is also subject to detector acceptance effects and
requires more data to achieve the same statistical precision as the mass-based method.

Figure 18 shows the measured sagitta distortions depending on the track direction using this technique.
The central barrel region of the detector is largely free of sagitta bias, while the endcap regions exhibit
some areas of small residual sagitta bias. The distribution of g for the full Run 2 data is shown in
Figure 18. Figure 19 shows the average dagiia versus i and ¢, as well as its RMS. The distributions, split
by data-taking year, have compatible shapes indicating a consistent and stable detector geometry during
Run 2.

6.1.2 Measuring sagitta biases using the E/ p ratio of electrons and positrons

Assuming that the calorimeter response is independent of the charge of the incoming particle and that a
perfectly aligned detector reconstructs the momentum of charged particles correctly, charge-dependent
momentum biases are expected to result in differences in the E/p ratio of positive and negative particles.
This ratio is defined as the ratio of the calorimeter energy measurement (E) to the track momentum
measurement (p). This technique is mainly suitable for electrons and positrons. In the presence of a sagitta
bias, the (E/p) ratio would be modified as (E/p") = (E/p) + g (ET) Osagitta, Where Et = E /coshn is
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referred to as the transverse energy. Assuming that the average transverse momentum of positrons and
electrons is equal, the sagitta bias can be estimated [3] as

(E/p")" = (E/p’)”
2(ET)

0 sagitta =

To take into account any biases introduced by the aforementioned assumptions the value of gugia is
determined iteratively, correcting the momentum using Eq. (22) at each iteration. It should be noted
that biases in the calorimeter energy scale cancel out to first order and any residual dependence would
be reduced by this iterative procedure. In addition, this method is, by construction, sensitive to global
sagitta biases. Data quality selection criteria are applied to both the selected electron candidates and the
electron—positron system and are summarised in Table 4.

Figure 20 shows the g,giia as obtained from the E/p method. These results support the observations from
Section 6.1.1: the central barrel region of the detector is largely free of sagitta bias, while the endcap
regions exhibit regions of small residual sagitta bias. Compared to Figure 18 (right) a global offset of
~0.05 TeV~! can be seen in Figure 20 (right) indicating the presence of a small global sagitta bias. Figure 21
shows the average Ogagita Versus n and ¢, as well as its RMS. The 6agiia distributions from the £/p method
split by data-taking year have comparable shape to those obtained from the Z — u*y~ mass method,
further supporting the observation of a consistent and stable detector geometry during Run 2. The change
in position due to the residual sagitta bias (~0.1 TeV~!) when extrapolating a track from the detector origin
to the outermost SCT endcap disk (radius of 500 mm and a z-axis distance of 2720 mm from the detector
origin) is less than 10 um.

6.2 Length scale biases
Displacements of the reconstructed hits parallel to the track direction result in a charge-symmetric alteration

of the measured track curvature. In a tracker with a solenoidal magnetic field these can be induced by
changes in the radial or longitudinal length scale of the detector with little impact on the track fit quality.
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of the sagitta bias is shown. The markers of the data points of the different years are slightly shifted in n and ¢ for
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If the actual radius of a detector module, R, is assumed to be R (1 + &,), then for small distortions
(ler| < 1), the reconstructed momentum will be:

pr=pr(l+g)

’ (26)
Pz =Dz

Equation (26) assumes that the length scale in the bending plane also expands by a factor (1 + &), which
implies that dimensions of sensitive detector modules would also expand by the same factor. If it is assumed
that detector modules do not expand in the bending plane then the reconstructed transverse momentum will
be biased by a factor of (1 +2¢;).

Similarly, if the actual longitudinal dimension of a detector module, z, is assumed to be z (1 + &;), the
reconstructed momentum will be :

P'T=pT

27
p,=p(1+e2) . 0
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Linear combinations of both the radial and longitudinal biases are also considered. It is worth noting that
there is a degeneracy between the effects of a bias in the magnetic field and a global scaling of the detector
(radial and longitudinal: &), as both lead to a momentum bias of the form p (1 + &5). Consequently, if B
is assumed to be B (1 + &) the particle momentum scales as p (1 + &5).

The relationship between the reconstructed invariant mass of a particle decaying into two muons (m’,,),
and the true mass (m,,,), assuming that the radial and longitudinal biases in Eqgs. (26) and (27) are both
small, is given by:

2~ ml + 2B E | (B7) - By By e (. 6%)
+2EE” :(,8{)2 - B -B;i e, ¢7)
+2EE" :(,8;)2 -B; B g.(n", ¢")
+2B°E|(B,)° - B} - B; | e=(r7.47).

where the B = p/E is the velocity of the particle. This approximation is valid to first order in &.
In a simpler case, where only a global radial and longitudinal bias are present, the reconstructed mass is:
72 2 _ _12
m',, xmy,, + 2E*E [ﬂ% —BT] &y
+2EE” B -B; ] -,
which, in the limit where the muon mass is ignored leads to

72 ~ 2 2 102
m ~mW+2mW8, sin“ a + 2m

2 2
Ly €z COS" @

~ 92 2 L «in?
~mW+2mW (Ss + & sin a) ,

where
sina = EYE™ [B% - By]” /m?,. (28)

&g = &;, and &, = g, — g, is the difference between the radial and longitudinal components of the
momentum scale.®

Thus, by measuring the mass as function of sin? a it is possible to differentiate between radial and scale
biases. Figure 22 shows the measured scale using J/y and Z decays into u* ™ in the barrel of the ID. The
results show a clear momentum scale bias but no significant radial scale (g,+) as the reconstructed mass is
constant as a function of sin’ a.

An analysis using an iterative procedure similar to the dg,giita method, Eq. (24), is also performed. Here,
the momentum scale factor (&) is computed and consequently used to update the momentum of the tracks
at the next iteration. This method allows biases to be measured as a function of any kinematic or geometric
parameter. The results as a function of the track pr are presented in Figure 23. The magnitude of the
momentum scale bias is observed to be constant as a function of track pr as expected from a length scale
or magnetic field strength bias.

. _ ) L
6 For the massless case, defining cos?a =E*E [ﬁ;’ -B; ] /myy, one obtains sin @ +cos? @ = 1.
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The magnitude of the measured scale bias is consistent for the two studies, demonstrating that there is a
global momentum scale bias of £; ~ —0.9 x 1073, This result is in agreement with the momentum scale at
the ID for muons [38]. As previously highlighted, the origin of such a global momentum scale bias cannot
be unambiguously resolved by these studies. It should be noted that: the measurement of the absolute
scale of the magnetic field has an uncertainty, which is about four times smaller than the observed scale

bias [7]
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Figure 23: The measured momentum scale bias &, as a function of track pr. Error bars represent the statistical
uncertainty. Left: J/yy — pu*u~ decays; right: Z — p*u~ decays.
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7 Impact parameter biases

The weak modes of the alignment can also lead to a bias in the transverse (d() and longitudinal (zo) impact
parameters. For example, a rotation of the IBL or radial distortions of the Pixel layers can lead to transverse
impact parameter biases. The quality of the detector alignment can be assessed by analysing impact
parameter biases as a function of track pt and n. For this study, events are selected using a combination of
single-jet triggers with several jet p thresholds starting at 100 GeV. The standard ATLAS event cleaning
selection is applied, ensuring that all detectors were fully operational. In order to disentangle the biases due
to residual misalignment from those originating from the track reconstruction algorithms, recorded data
are compared with a dijet Monte Carlo simulation sample generated with PyThia [47]. The primary vertex
of each selected event must have at least three tracks associated with it. Tracks are selected by requiring
them to be assigned to jets using ghost association [48], a procedure that treats them as four-vectors of
infinitesimal momentum magnitude during the jet reconstruction and assigns them to the jet with which
they are clustered. Jets are reconstructed using the anti-k, algorithm [49] with radius parameter R = 0.4. In
addition, tracks are required to have at least 9 silicon (Pixels + SCT) hits for |r| < 1.65, at least 11 silicon
hits for || > 1.65, a maximum of 2 SCT holes’, no Pixel hole, pt > 3 GeV, || < 2.5, and an opening
angle AR (track, jet) < 0.4 relative to the reconstructed jet axis. A track pr of 3 GeV corresponds to the
lowest momentum threshold typically used within the alignment to reduce MCS effects (see Section 3.1).
The impact parameters are obtained relative to the primary vertex by extrapolating the particle trajectory to
its position. This is particularly relevant for the longitudinal impact parameter, as the width of the luminous
region in the z direction is very broad. The impact parameter biases are extracted by iteratively® fitting
the distribution of impact parameters relative to the primary vertex with a Gaussian function within a
+20 range until the fitted p and o are stable within 1%. The resulting value of the Gaussian mean (u)
represents the estimate of the impact parameter bias.

Figure 24 shows the transverse and longitudinal impact parameter biases as a function of the delivered
luminosity in Run 2. Data collected in 2016 have a period-dependent d bias of —4 um (early 2016) and
+3 um (late 2016). This bias was introduced by a change in the underlying geometry description of the
ATLAS ID and a misconfiguration of the beam-spot constraint.” Data collected in 2017 and 2018 show
overall d biases of less than 1 pm. The longitudinal impact parameter bias is negligible and constant across
the years (below 0.5 um). In Figures 25 and 26 the transverse and longitudinal impact parameter biases
are shown as function of the track transverse momentum and track 7, respectively. The small bias in the
longitudinal impact parameter as a function of track 7 is present in simulation and data and is consequently
not introduced by the track-based alignment because it is not applied to simulation (where perfect alignment
is assumed). The resulting bias has no significant effect on the ATLAS tracking performance as the
longitudinal impact parameter resolution is on the order of 100 um for tracks with pp > 10 GeV.

7 A hole is defined as a missing hit in a module where a hit is expected, based on the extrapolation of the particle trajectory to the
module surface.

8 This procedure is adopted as the impact parameter distributions have long tails.

9 The impact parameters of tracks used in ATLAS physics analyses are corrected by a time-dependent constant to remove the
observed biases. In addition, this bias will be corrected in future data processing campaigns.
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Figure 24: The transverse (left) and longitudinal (right) impact parameter biases as function of the Run 2 delivered
luminosity. The red dotted line indicate the change in the underlying ATLAS ID alignment geometry description.
This splits the 2016 data in two periods. The grey dotted lines indicate the change of the data-taking years. The
~ 4fb~! corresponding to 2015 data are not shown in this plot. Only statistical uncertainties are shown.

36



(2]

g T T — 7

= [ A7TLAs 1

Eo 4j Vs=13TeV -

Fr v v Y Y YYYVY VYVYVYYY VYyYVYYYYYVY v v v i

2 7

:‘L ° ;L&L—l—l—-ﬁt—l—wo o e o |

O ot 4 i i iaaa s s aaaassaaa a2

-2 — Simulation —

C v Data 2016 ]

—4— 4 Data 2017 —

- e Data 2018 B

—67 | L L L) ]
10 10°

P, [GeV]

g 67 T T T T T T T T T T T T T 7

= [ ATLAS ]

\rsf 4 Is=13TeV -]

2 7

oBdt ey TIT T TR BT

2 — Simulation —

C v Data 2016 ]

—4— 4 Data 2017 —

L e Data2018 -

) B . L ]
10 10°

p, [GeV]

Figure 25: The transverse (left) and longitudinal (right) impact parameter biases as function of the track pr. The
2016 data entries in this figure are taken from the second part of the 2016 data visible in Figure 24; the first part of
the 2016 data also show no impact parameter dependence on track pr.

37



=10 amas B
T s=13TeV ]
5, 7

L v Y OV v oy YVUYyyVV¥vy vy v VY v T

L o o o, ®e0 0 o o o 4
o e ——

C T i
5; — Simulation T

C v Data 2016 ]

= 4 Data 2017 -
-10— e Data 2018 —
N N PP ATAATAFI ARFATAT IR AR A AR
25 -2 -15 -1 - 05 1 15 25
n

210 amas .7
N Vs =13 TeV b
L L
5S¢ & -

C . i

C 0."033, . ]

L vy YIAb4ox —_— 3 -
0 i B T AT
[ i fia . —
Lo ]
r’ — Simulation B

-5— N -
C v Data 2016 ]

= [} 4 Data2017 -
-10— e Data 2018 —
I I N I W R R PN TN B
25 -2 - -1 -05 0.5 25
n

Figure 26: The transverse (left) and longitudinal (right) impact parameter biases as function of the track 7. The 2016
data entries in this figure are taken from the second part of the 2016 data visible in Figure 24; the first part of 2016

data also shows no impact parameter dependence on track 7,

38



8 Conclusion

This paper describes the precision alignment of the ATLAS Inner Detector (ID) for Run 2 and quantifies
the impact of alignment uncertainties on track parameter biases. The alignment procedure consists of
a track-based algorithm that minimises track-hit residuals. It calculates the track parameters at each
measurement surface and encodes the relationship between track-hit residuals and the alignment parameters
of each alignable structure. To resolve ambiguities, it imposes externally determined constraints on track
parameters, e.g. using tracks from resonance decays. The alignment procedure is performed at different
hierarchical levels, starting from the largest physical structures and proceeding to individual detector
modules or sensor elements. The number of degrees of freedom increases for each subsequent alignment
level. In total, more than 36 000 degrees of freedom are considered when aligning all silicon modules
(IBL, Pixel and SCT) and more than 700 000 degrees of freedom are added for the TRT.

It has been observed that operational conditions affect the positions of ID elements. The Pixel detector
moves rapidly upwards every time the data acquisition is activated. The staves of the IBL bow depending on
the temperature; the degree of variation depends on the thermal load and is a function of the accumulated
radiation dose and of the luminosity. The remaining detector structures are quite stable during an LHC fill;
the movements of individual modules in the barrel have an RMS at the micrometer level while those in the
endcap regions range from 2 pm to O (10 um).

An automated alignment procedure that corrects for relatively rapid movements of the Pixel detector and
IBL and the relative positions of all of other subdetectors is executed for every LHC fill for which the
ID collects data. The detailed alignment of all the other structures (subdetectors, barrel, endcaps, layers,
disks, modules or wires) is determined in dedicated alignment campaigns. The impact of alignment weak
modes, namely distortions that leave the track fit quality largely unchanged and can bias the measured track
parameters, is minimised during these campaigns by employing external constraints on track parameters.
Independent measurements are performed to quantify potential biases, enabling them to be largely removed.
The residual sagitta bias and momentum scale bias after the full Run 2 alignment are reduced to less than
~0.1TeV~! and 0.9x1073, respectively. Remaining track parameter biases do not significantly impact
ATLAS physics analyses.
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Appendix

A Track fitting with multiple Coulomb scattering effects

The track fit can be improved by considering the charged particle scattering as it passes through material in
the detector. Knowing the detector material description, one can estimate and fit the scattering angles in
the sensor planes [50]. To include the effects of multiple scattering, terms are added directly to the track
x? as it is done in Eq. (3), which can be written as:

2 A 2
2 ri(7,0) (0-06;)
XTrack = Z ( ) + : ®jj .
J

n g

It should be noted that the residuals now also depend on the scattering angles, 6. The scattering expectation
value, é, is zero and its variance, © ;, depends on the particle momentum and amount of material traversed.
The uncertainty of the i-th measurement is denoted by o;.

The y? has to be minimised for 7 and @ simultaneously. Defining the derivative of residuals with respect to
track and scattering parameters to be:

ar or

the derivatives of y? with respect to the track and scattering parameters are:

1dy?
ar -oTen
.
1dy?
§%=STQ_1r+®_]H.

Neglecting second-order derivatives of residuals, the second derivatives of y? with respect to perigee and
scattering parameters are:

1d2 2
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The above can be written down in a compact form using Eq. (4):
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