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The performance of the ATLAS Inner Detector alignment has been studied using 𝑝𝑝 collision

data at
√
𝑠 = 13 TeV collected by the ATLAS experiment during Run 2 (2015 to 2018) of

the Large Hadron Collider (LHC). The goal of the detector alignment is to determine the

detector geometry as accurately as possible and correct for time-dependent movements. The

Inner Detector alignment is based on the minimization of track-hit residuals in a sequence of

hierarchical levels, from global mechanical assembly structures to local sensors. Subsequent

levels have increasing numbers of degrees of freedom; in total there are almost 750 000.

The alignment determines detector geometry on both short and long timescales, where short

timescales describe movements within an LHC fill. The performance and possible track

parameter biases originating from systematic detector deformations are evaluated. Momentum

biases are studied using resonances decaying to muons or to electrons. The residual sagitta bias

and momentum scale bias after alignment are reduced to less than ∼0.1 TeV−1 and 0.9×10−3,

respectively. Impact parameter biases are also evaluated using tracks within jets.
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1 Introduction

The precise reconstruction of the trajectories of charged particles created in proton–proton (𝑝𝑝) and

heavy-ion collisions at CERN’s Large Hadron Collider (LHC) is a key ingredient in many of the physics

processes studied by the ATLAS Collaboration. Almost every measurement performed using the ATLAS

detector [1], from Standard Model processes to searches for new physics phenomena, relies on the accurate

reconstruction of charged particles.

In order to reconstruct the trajectories of charged particles, ATLAS uses the Inner Detector (ID) tracking

system to provide efficient, robust and precise position measurements of charged particles as they traverse

the detector. The energy deposits from charged particles (hits) recorded in individual detector elements of
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the ID are used to reconstruct their trajectories (tracks) and estimate the associated track parameters. The

precision achieved for the track parameters is determined by several factors: the intrinsic resolution of

sensitive devices; the knowledge of the magnetic field; the distribution of material in and before the ID and

the knowledge of it; and the knowledge of the geometry, i.e. the location and orientation, of the detector

elements. The purpose of the detector alignment is to determine, as precisely as possible, the actual

geometry of the active detector elements of the tracking system, and to follow changes in the geometry

with time.

Poor knowledge of the actual geometry of the active detector elements results in a deterioration of the

resolution of reconstructed track parameters. The criteria for the minimum precision required were defined

in order to limit the degradation of the resolution of the track parameters for high-momentum tracks to less

than 20% in comparison to a perfectly aligned detector [2]. In addition, correlated geometrical distortions

can lead to systematic biases in the reconstructed track parameters. Correlated systematic biases can be

introduced either by real detector deformations to which the alignment procedure has little sensitivity or by

the procedure used to determine the alignment parameters. These correlated biases are referred to as ‘weak

modes’ of the alignment.

In this document, the ATLAS ID alignment procedure and its performance during Run 2 of the LHC is

presented. A new layer of pixel sensors was included in the detector for Run 2, which posed additional

challenges for the alignment of the detector compared to those faced during Run 1 [3, 4]. The greatest new

challenge was the short-timescale movement of parts of the detector during data taking.

This paper is organised as follows: a brief description of the ATLAS detector is given in Section 2.

Section 3 presents the formalism of the ATLAS track-based ID alignment. Section 4 introduces the

different alignment levels and Section 5 discusses the detector stability and describes the time-dependent

alignment. The performance of the ATLAS Run 2 alignment is presented in terms of track parameter

biases in Sections 6 and 7. Concluding remarks are made in Section 8.

2 The ATLAS detector

The ATLAS detector [1] at the LHC is a multipurpose particle detector with a forward–backward symmetric

cylindrical geometry that covers nearly the entire solid angle around the collision point. The global ATLAS

reference frame is a right-handed Cartesian coordinate system, where the origin is at the nominal 𝑝𝑝
interaction point, corresponding to the centre of the detector. The positive 𝑥-axis points to the centre of

the LHC ring, the positive 𝑦-axis points upwards and the 𝑧-axis points along the beam direction. Polar

coordinates (𝑟, 𝜙) are used in the transverse plane, 𝜙 being the azimuthal angle around the beam pipe. The

pseudorapidity is defined in terms of the polar angle 𝜃 as 𝜂 = − ln tan(𝜃/2). Angular distance is measured

in units of Δ𝑅 ≡
√
(Δ𝜂)2 + (Δ𝜙)2.

ATLAS consists of the ID (described in Section 2.1), electromagnetic and hadronic calorimeters, a muon

spectrometer and a magnet system. Lead/liquid-argon sampling calorimeters provide electromagnetic

energy measurements with high granularity and a steel/scintillator-tile hadronic calorimeter covers the

central pseudorapidity range of |𝜂 | < 1.7. The endcap and forward regions are instrumented with

liquid-argon calorimeters for measurements of both electromagnetic and hadronic showers up to |𝜂 | = 4.9.

The outer part of the detector consists of a muon spectrometer with high-precision tracking chambers for

coverage up to |𝜂 | = 2.7, fast detectors for triggering over |𝜂 | < 2.4, and three large superconducting toroid
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magnets with eight coils each. The ATLAS detector has a two-level trigger system to select events for

offline analysis [5].

2.1 Inner Detector structure

The ATLAS ID [2, 6] consists of three subdetectors utilising three technologies: silicon pixel detectors,

silicon strip detectors and straw drift tubes, all surrounded by a thin superconducting solenoid providing a

2 T axial magnetic field [7]. The ID is designed to reconstruct charged particles within a pseudorapidity

range of |𝜂 | < 2.5 (see Figure 1 for a schematic view of the ID barrel region and Table 1 for a list of the

main detector characteristics). The material distribution inside the ID has been studied in data through use

of hadronic interactions and photon conversion vertices [8, 9]. During the second LHC data-taking run

(2015–2018) with 𝑝𝑝 collisions at a centre-of-mass energy
√
𝑠 = 13 TeV, the ID collected data with an

efficiency greater than 99% [10].

Figure 1: A 3D visualisation of the structure of the barrel of the ID. The beam pipe, the IBL, the Pixel layers, the four

cylindrical layers of the SCT and the three layers of TRT barrel modules consisting of 72 straw layers are shown.

The innermost part of the inner detector consists of a high-granularity silicon pixel detector and includes

the insertable B-layer (IBL) [11, 12], a new tracking layer added for Run 2 which is closest to the beam

line and designed to improve the precision and robustness of track reconstruction. The IBL consists of

280 silicon pixel modules arranged on 14 azimuthal carbon fibre staves surrounding the beam pipe at a

radius of 33.25 mm. Each stave is instrumented with 12 two-chip planar modules, covering the region of

|𝜂 | < 2.7, and 8 single-chip modules with 3D sensors [13, 14], four at each end of the stave (2.7 < |𝜂 | < 3).

The remainder of the Pixel detector [2, 6, 15] consists of 1744 silicon pixel modules arranged in three

barrel layers and two endcaps with three disks each. Each pixel module comprises 16 front-end chips

bump-bonded to the sensor substrate. The barrel modules were assembled on staves of 13 modules

each, whilst the endcap modules were assembled directly on the disks. In order to simplify the notation

throughout the rest of the paper, the term Pixel is used to refer only to the detector already in place during

Run 1 and the new layer is referred to explicitly as the IBL.
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The Semiconductor Tracker (SCT) [16–18] consists of 4088 silicon strip modules. They are arranged in four

barrel layers and two endcaps with nine disks each. Each module consists of two pairs of single-sided strip

sensors glued back-to-back with a 40 mrad angle between them. Each module comprises 12 128-channel

chips. Due to the stringent build tolerances each SCT module is considered a solid object for the purposes

of alignment. The barrel modules are mounted directly on the cylindrical support structures of each layer in

12 rings, whilst the endcap modules are assembled in 3 rings on the disks. The barrel SCT sensors have a

uniform pitch strip of 80 μm, while the endcap sensor strips run radially with a 161.5 μrad angular pitch.

The Transition Radiation Tracker (TRT) [19–21] is the outermost subdetector and extends track recon-

struction radially outwards to a radius of 1082 mm. It is made of 350 848 gas-filled straw tubes of 4 mm

diameter. The tubes are arranged in 96 barrel modules in 3 layers (32 modules per layer) and 40 disks in

each endcap. The expected hit resolutions for each subdetector are summarised in Table 1.

Table 1: Summary of the main characteristics of the ID subdetectors. The intrinsic resolution of the IBL and the Pixel

sensors are reported along 𝑟–𝜙 and 𝑧, while for SCT and TRT only the resolution along 𝑟–𝜙 is given [1, 11]. For SCT

and TRT the element size refers to the spacing of the read-out strips and the diameter of the straw tube, respectively.

Subdetector Element size Intrinsic resolution [μm] Barrel layer radii [mm] Disk layer |z| [mm]

IBL 50 μm × 250 μm 10 × 60 33.25

Pixel 50 μm × 400 μm 10 × 115 50.5, 88.5, 122.5 495, 580, 650

SCT 80 μm 17 299, 371, 443, 514 from 839 to 2735

TRT 4 mm 130 from 554 to 1082 from 848 to 2710

2.2 Local coordinate system

The local coordinate system of an individual sensor of the detector is a right-handed system frame with

the origin placed in the geometrical centre of the sensor. The local coordinate system for each subsystem

component is illustrated in Figure 2. The convention used is the following: the local-𝑥 axis points along

the most sensitive direction of the sensor. This corresponds to the shorter pitch side for Pixel and IBL

modules, and perpendicular to the strip-orientation for the SCT. In the silicon detectors, the local-𝑦 axis is

oriented along the long side of the sensor (i.e. longer pitch direction for the Pixels and IBL and the strip

direction in the SCT), while the local-𝑧 direction is orthogonal to the local 𝑥–𝑦 plane. In the case of the

TRT, the local-𝑦 axis points along the wire: either in the same direction as the global 𝑧-axis (barrel) or

radially outwards (endcaps). In the barrel, the local-𝑧 axis points radially outwards (from the origin of the

global frame to the straw centre). In the endcaps, the local-𝑧 axis points outwards (parallel to the beam

line). The local-𝑥 axis is perpendicular to both the TRT wire and the radial direction.

Hits are reconstructed in the local reference frame. The TRT measures the radial distance of the primary

ionisation from the wire as
√
𝑥2 + 𝑧2, taking both 𝑥 and 𝑧 in the local frame.

3 Alignment principles and formalism

This section reviews the formalism for in situ alignment of the ATLAS ID using reconstructed tracks. The

concept of Global 𝜒2 alignment is introduced, followed by a discussion of ‘weak modes’ (Sections 3.2.4

and 6) and how they can be avoided by adding constraints on track parameters. The section closes with a

detailed description of the alignment procedure and its implementation within the ATLAS software.
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Figure 2: Schematic representation of the ATLAS global reference frame (𝑥, 𝑦, 𝑧) and the local reference frame

of each component of the ID. The Pixel, IBL, and SCT modules are grouped in the ‘Silicon’ category. For each

component, the local-𝑥 axis points along the most sensitive direction; the local-𝑧 axis points away of the ATLAS

centre; and the local-𝑦 direction is chosen according to the right-handed frame. For TRT tubes, the local reference

frame is determined by the orientation of the module they are mounted on. For visualisation purposes only, the local

reference frame is referred to as (𝑥 ′, 𝑦′, 𝑧′) in the drawing.

The approach used is based on the Newton–Raphson method and determines both the trajectory parameters

and a set of alignment parameters, 𝜶. In this context, 𝜶 are chosen as the six degrees of freedom (DoF) of

each alignable structure that uniquely define its position and orientation in space. These correspond to

three translations (𝑇𝑥 , 𝑇𝑦 , 𝑇𝑧) and three rotations (𝑅𝑥 , 𝑅𝑦 , 𝑅𝑧). Translations are relative to the origin of the

reference frame of each alignable structure and rotations are around the Cartesian axes.

3.1 Track fitting with the Newton–Raphson method

The Newton–Raphson method uses an iterative approach to find the best fit to a set of measurements

of a track left in the detector by a charged particle traversing active detector elements. The quality of

the fit is characterised by a track 𝜒2, determined from the distances between the hits in the detector,

which constitutes the track measurements, and the fitted track (residuals). The trajectory of a track in a

magnetic field is parameterised by a set of five parameters. The chosen parameterisation in ATLAS is:

𝝉 = (𝑑0, 𝑧0, 𝜙0, 𝜃0, 𝑞/𝑝), where 𝑑0 and 𝑧0 are the transverse and longitudinal impact parameters and 𝜙0

and 𝜃0 the azimuthal and polar angles of the track, all defined at the point of closest approach to the 𝑧-axis

of the reference frame [22]. The ratio 𝑞/𝑝 is the inverse of the particle momentum (𝑝) multiplied by its

charge (𝑞) (see Ref. [4] for more details).

The track 𝜒2 is calculated from all measured track-hit residuals, 𝑟𝑖 = 𝑒𝑖 (𝝉) − 𝑚𝑖 . where 𝑚𝑖 is the position

of the 𝑖th measurement, and 𝑒𝑖 is the position of the intersection of the fitted track with the surface on which

the 𝑖th measurement is made. The determination of the intersection position (𝑒𝑖) includes the measurement

in question, which causes 𝑟𝑖 to be a biased residual. The track 𝜒2 is defined, using vector notation, as

𝜒2 = 𝒓�Ω−1𝒓, (1)

6



where 𝒓 is the vector of track residuals and Ω is the covariance matrix of the corresponding measurements.1

The parameters of a track’s trajectory, 𝝉, are those that minimise this 𝜒2. The minimisation is done

using the first and second derivatives of the 𝜒2 with respect to 𝝉. Defining the derivative 𝐺 = d𝒓/d𝝉, the

condition for the minimisation of the 𝜒2 is

(
d𝜒2

d𝝉

)�
= 2 𝐺�Ω−1𝒓 = 0 . (2)

𝝉

𝑚𝑖−2

𝑒𝑖−1(𝝉)

𝑟𝑖 = 𝑒𝑖 (𝝉) − 𝑚𝑖

Figure 3: Schematic representation of a charged particle crossing detector planes. The measurement, 𝑚𝑖 , on each the

𝑖th layer is indicated by a red star. Also shown are the fitted track trajectory for a given set of track parameters, 𝝉
(black line), the position of the intersection of the fitted track with the surface on which the 𝑖th measurement is made,

𝑒𝑖 (𝝉) (green ellipse), and the residuals, 𝑟𝑖 (blue line).

In practical terms, the values of 𝝉 satisfying Eq. (2) are found using an iterative procedure by evaluating

the first and second derivatives of 𝜒2 with respect to the track parameters of the current iteration, 𝝉0. If the

derivative 𝐺 were constant, then the problem would be linear and the solution would be exact. In general,

the derivative 𝐺 depends on the track parameters themselves. Therefore, the procedure is repeated until a

convergence criterion is met.

The track fit is further improved by taking into account the impact of material interactions on the trajectory

of the particle. Energy loss is treated as point-like at the center of material layers and for hadrons and

muons, which are used during the alignment, deterministic as the variance of the energy loss processes is

small. Additional parameters, 𝜽 , are added to account for the effects of multiple Coulomb scattering (MCS)

of the particle with the detector components, as detailed in Appendix A. Consequently, the residuals now

also depend on 𝜽 and the variance of the scattering angles, Θ:

𝜒2
Track = 𝒓�Ω−1𝒓 + 𝜽�Θ−1𝜽 . (3)

Thus, 𝜒2
Track

has to be minimised for 𝝉 and 𝜽 simultaneously. The derivatives of residuals with respect to

track and scattering parameters are defined as 𝐺 ≡ 𝜕𝒓/𝜕𝝉 and 𝑆 ≡ 𝜕𝒓/𝜕𝜽, respectively. In the following,

1 The local position and uncertainty of each measurement are provided by the corresponding subsystem after applying its own

clustering and hit reconstruction techniques. The Pixel detector uses an artificial neural network, trained on simulation, to

determine the position of a cluster and its uncertainty [23]. The SCT parameterises the position of the cluster and its uncertainty,

using simulation, as a function of the number of strips in the cluster and the incident angle of the particle. For the TRT the drift

radius and its uncertainty is calibrated using an iterative procedure in data and simulation [21].
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the Global 𝜒2 method for alignment including MCS is described and the following simplified notation is

adopted:

𝝆 ≡
(
𝒓
𝜽

)
, 𝑉 ≡

(
Ω 0

0 Θ

)
, 𝝅 ≡

(
𝝉
𝜽

)
, and 𝐻 ≡

(
𝐺 𝑆

𝜕𝜽
𝜕𝝉 = 0 𝜕𝜽

𝜕𝜽 = I

)
. (4)

It should be noted that refinements are made to the track fit by performing multiple iterations of the fit

during which: material effects are recalculated; measurements are recalibrated based on the particles

incident angle; and outliers are removed.

3.2 The Global 𝝌2 method for alignment

3.2.1 General definition of the Global 𝝌2 method for alignment

The Global 𝜒2 is a track-based alignment method which uses a 𝜒2 built from a large sample of reconstructed

tracks and their associated hits in the detector elements being aligned. The alignment parameters are

determined by minimising the Global 𝜒2 with respect to the alignment parameters:

𝜒2
Global =

∑
𝑖

𝜒2
Track 𝑖 , (5)

where 𝜒2
Track 𝑖 is the 𝜒2 of the 𝑖th track as given by Eq. (3). The residuals used in Eq. (5) depend on the

alignment parameters (𝜶) as both, the measurements and the track extrapolations depend on 𝜶, the former

directly and the latter through the fitted track parameters. Therefore, the minimisation of 𝜒2
Global

with

respect to 𝜶 uses the total derivative operator with respect to 𝜶, which can be expressed as:

d

d𝛼𝑖
=

𝜕

𝜕𝛼𝑖
+
∑
𝑗

d𝜋 𝑗

d𝛼𝑖

𝜕

𝜕𝜋 𝑗
. (6)

The d𝝅/d𝜶 term is determined from the condition that, once 𝜒2
Global

is at a minimum, 𝜒2
Track

is also at a

minimum with respect to the track parameters:

d

d𝜶

𝜕𝜒2
Track

𝜕𝝅
= 0 . (7)

Using Eq. (7) in Eq. (6), this results in:

d𝝅

d𝜶
= −

(
𝜕2𝜒2

Track

𝜕𝝅2

)−1
𝜕2𝜒2

Track

𝜕𝜶𝜕𝝅
,

which allows the nested dependence of the 𝝅 on 𝜶 to be resolved, thereby removing the need to determine

both (the track parameters and alignment parameters) simultaneously.

Ignoring second-order derivatives in the residuals, using the covariance matrix of the track parameters, 𝐶,

expressed as

𝐶 = 2

(
𝜕2𝜒2

Track

𝜕𝝅2

)−1

=
(
𝐻�𝑉−1𝐻

)−1

, (8)
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and defining 𝐴 as the derivative of the residuals with respect to the alignment parameters:

𝐴 ≡ 𝜕𝝆

𝜕𝜶
, (9)

the total derivative operator with respect to 𝜶 can be written as:(
d

d𝜶

)�
=

(
𝜕

𝜕𝜶

)�
− 𝐴�𝑉−1𝐻𝐶

(
𝜕

𝜕𝝅

)�
.

The first- and second-order derivatives of 𝜒2
Global

with respect to 𝜶 are thus:

𝒀 ≡
(
d𝜒2

Global

d𝜶

)�
= 2

∑
tracks

𝐴�𝑉−1(𝑉 − 𝐻𝐶𝐻�)𝑉−1𝝆 , (10)

M ≡ d2𝜒2
Global

d𝜶2
= 2

∑
tracks

𝐴�𝑉−1(𝑉 − 𝐻𝐶𝐻�)𝑉−1𝐴 . (11)

Here, the term 𝐻𝐶𝐻� represents the covariance of the track parameters in the measurement space, whereas

the covariance of the residuals of the track fit is given by

𝑅 = 𝑉 − 𝐻𝐶𝐻� .

3.2.2 Newton–Raphson method for Global 𝝌2 alignment

In analogy to the general method for track fitting (Section 3.1) an iterative approach is used to solve for the

alignment parameters. The first- and second-order derivatives are obtained using Eqs. (10) and (11) and

evaluated for an initial set of alignment parameters, 𝜶0. Such an initial geometry description is available

from design drawings, survey measurements, or previous alignment results. The alignment corrections, to

the initial geometry, are given by

𝑿 ≡ Δ𝜶 = −
(

d2𝜒2
Global

d𝜶2







𝜶0

)−1 (
d𝜒2

Global

d𝜶

)�





𝜶0

≡ −M−1𝒀 . (12)

The above step is repeated for successive iterations until a convergence criterion is met and Δ𝜶 is negligible2.

This requires re-fitting the tracks using the updated geometry (initial alignment constants 𝜶0 plus their

corrections Δ𝜶), to obtain new residuals and new derivatives, and solving again to compute the next set of

corrections to the alignment constants.

3.2.3 Locality ansatz

If the initial track parameters, 𝝅0, minimise 𝜒2
Global

for a given 𝜶0, Eq. (10) simplifies to(
d𝜒2

Global

d𝜶

)�





𝝅𝑜 ,𝜶0

= 2
∑
tracks

𝐴�𝑉−1𝝆 , (13)

2 This typically refers to a correction threshold of < 0.1 μm. However, it should be noted that the convergence criteria can vary

between specific alignment level and degrees of freedom chosen.
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as the term 𝐻�𝑉−1𝝆 is zero. Consequently, if the measurements are independent and 𝑉 is diagonal, the

derivative with respect to a particular parameter 𝜶𝑖 only receives contributions from residuals for which

the related entries in the derivative matrix 𝐴 are non-zero. In other words, if 𝜶𝑖 is an alignment parameter

of a given detector module, only the measurements in this module contribute to the first-order derivative of

𝜒2
Global

with respect to 𝜶𝑖 . Therefore, contributions to the 𝜒2
Global

from measurements in other subdetectors

and MCS effects can be ignored. This useful property is labelled as the so-called locality ansatz [24] and

provides an important simplification for the software implementation.

3.2.4 Adding constraints on track parameters

It is of particular importance to assure that the determination of the track parameters is free from systematic

biases that can occur due to poorly determined ‘weak modes’ of the alignment. These modes are geometry

distortions that leave the 𝜒2 of the fitted tracks nearly unchanged and typically lead to an incorrect solution of

the alignment. They can be controlled by imposing constraints on track parameters [25]. Examples of such

constraints, discussed in detail in Sections 6 and 7, are the beam-spot constraint, track parameter constraints

from external detector systems (e.g. calorimeters), and constraints determined using reconstructed physics

events (e.g. mass constraints from narrow resonances). These constraints are included in the Global 𝜒2

method by adding extra terms to the expression for the 𝜒2 in Eq. (5). For one track the modified contribution

to 𝜒2 is

𝜒2
cons = 𝝆�𝑉−1𝝆 + (𝝅 − 𝒒)�𝑇−1(𝝅 − 𝒒) , (14)

where 𝒒 is a vector defining the constraint on 𝝅 and 𝑇 is its covariance matrix.

In the ATLAS implementation, this constraint is implemented by adding a pseudo-measurement on a

track [22]. The solution for the alignment parameters is given by Eq. (12), where for each constrained track

the covariance matrix is now defined as

𝐶 = 2

(
d2𝜒2

d𝝅2
cons

)−1

=
(
𝐻�𝑉−1𝐻 + 𝑇−1

)−1

.

In this context, the first-order derivative of the Global 𝜒2 is given by

(
d𝜒2

d𝜶

)�





𝜶0

= 2
∑
tracks

𝐴�𝑉−1(𝑉 − 𝐻𝐶𝐻�)𝑉−1𝝆(𝜶0) − 𝐴�𝑉−1𝐻𝐶𝑇−1(𝝅(𝜶0) − 𝒒) . (15)

If the tracks have been re-fitted with the imposed constraint, the locality ansatz drastically simplifies

Eq. (15), reducing it to Eq. (13). This property is used in the ATLAS implementation.

3.2.5 Constraints on alignment parameters

Often one has some prior knowledge of the geometry from either survey measurements or mechanical

constraints. These constraints can be included by adding terms to the 𝜒2 in Eq. (5). In the general case,

one can write

𝜒2
cons =

∑
tracks

𝝆�𝑉−1𝝆 + (𝜶 − 𝜶cons)�𝑊−1(𝜶 − 𝜶cons) , (16)
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where 𝜶cons is a vector defining the constraint on 𝜶 and 𝑊 is its covariance matrix. The added term leads

to extended expressions for the first and second derivatives of 𝜒2 with respect to 𝜶 (Eqs. (10) and (11)):

𝒀 −→ 𝒀 + 2 𝑊−1(𝜶 − 𝒂) , (17)

M −→ M + 2 𝑊−1,

while the solution is computed using 𝒀 and M in Eq. (12).

The special case when 𝒂 ≡ 𝜶0 and 𝑊 is diagonal, i.e. when the alignment parameters are constrained to

their initial values, is further discussed in Section 3.3.3.

3.2.6 The Local 𝝌2 method

The main advantage of the Global 𝜒2 method arises from its rigorous treatment of correlations between

alignable objects through the tracks connecting them. However, this approach becomes technically

challenging when the number of alignment parameters is very large, such as in the case of the alignment of

individual TRT straws (≈ 700 000 parameters). In order to overcome this challenge, a simplified version of

the 𝜒2 approach (the Local 𝜒2 method) is used. It is based on the minimisation of the same 𝜒2, Eq. (5), but

the implicit dependence on the fitted track parameters is dropped, reducing Eq. (6) to a simpler form:

d

d𝜶
=

𝜕

𝜕𝜶
.

Consequently, Eqs. (10) and (11) are reduced to:(
d𝜒2

Local

d𝜶

)�
= 2

∑
tracks

𝐴�Ω−1𝒓

d2𝜒2
Local

d𝜶2
= 2

∑
tracks

𝐴�Ω−1𝐴 .

In addition, the problem is reduced to separate systems of equations describing individual alignable

modules. The Local 𝜒2 method eliminates the numerical challenges of the Global 𝜒2 since only systems of

equations with up to six parameters (albeit many of them) need to be solved. However, due to the loss of

the correlations between alignable objects, the Local 𝜒2 method needs a much larger number of iterations

to converge.

3.3 Solving the linear system of alignment equations

In general, the properties of the matrix representing a system of linear equations determine the most suitable

solution technique. The matrix M in Eq. (11) as defined in the Global 𝜒2 ansatz is found to be symmetric

and singular and to have a poor matrix condition number if no constraints are applied. The addition of

appropriate constraints generally renders the matrix positive definite. The singular nature of the matrix

is the result of detector movements that leave a track’s 𝜒2 unchanged. The simplest examples are global

transformations of the detector (either translations or rotations), which are generally singular modes.3 A

3 Rotations within a magnetic field or translations in an inhomogeneous magnetic field may not be singular modes but for practical

purposes may essentially be so. They are typically extremely poorly constrained because track trajectories are not significantly

modified by small changes in the magnetic field.
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trivial way to remove these global degrees of freedom is to fix a detector element, making it the reference

point for all other detector elements. This method has the unwanted drawback of arbitrarily selecting one

detector module as the reference frame. In the following section, two methods used to obtain a solution

to the alignment system of linear equations are discussed along with how ‘weak modes’ are removed or

mitigated.

3.3.1 Diagonalisation of the matrix

The symmetric matrix M is decomposed into its diagonal basis: 𝑃D𝑃� where D is a diagonal matrix

containing the eigenvalues of M, and 𝑃 is a matrix containing the eigenvectors of M. Of course, in the

diagonal basis all parameters (directions) are linearly independent, and the solutions plus their associated

uncertainties are given by the eigenvalues (𝜆𝑖) with:

𝑋 𝑖
D = − 1

𝜆𝑖
𝑌 𝑖
D and 𝜎(𝑋 𝑖

D) = 1√
𝜆𝑖

, (18)

where 𝑋 𝑖
D and 𝑌 𝑖

D are the 𝑖th component of vectors 𝑋𝑋𝑋D and𝑌𝑌𝑌D in the diagonal basis, with𝑌𝑌𝑌D = 𝑃� 𝑌𝑌𝑌 .

Singular and weak modes must be excluded as their eigenvalues are zero or have an arbitrarily large

associated uncertainty, respectively. Although this can be achieved in many ways, the primary method

employed is to set D−1
𝑖,𝑖 = 0 for the modes that need to be removed, thereby creating a new diagonal matrix

D′−1 which provides the solution:

𝑋𝑋𝑋 = −𝑃D′−1𝑃�𝑌𝑌𝑌 .

The DSPEV function in the LAPACK [26] software package is used as a baseline in the ATLAS

implementation to diagonalise large matrices. Alternative implementations using ROOT [27], EIGEN [28]

and CLHEP [29] linear algebra classes are also available. In general, the computation time for matrix

diagonalisation scales as O(DoF3) and solutions for very large systems become untenable on a single

machine. If the initial matrix is poorly conditioned, the accuracy of the numerical solution can be limited

by the precision of 64-bit floating-point computations for problems exceeding O(10 000) DoFs.

3.3.2 Direct solving

Even for very large problems, direct solvers offer an accurate and CPU-efficient method for solving sparse

linear equations. In addition, less memory is required as no matrix is inverted or diagonalised in the

process. The LDLT Cholesky factorisation method provided within EIGEN [28] is used within the ATLAS

ID alignment and takes less than 10 minutes to solve an alignment problem with 35 000 parameters (the

approximate number of parameters needed to align all modules in the ID simultaneously) on a modern

CPU. Direct solving is used when aligning thousands of degrees of freedom (usually when aligning at

individual module level). Obtaining a direct solution does not offer the possibility of eliminating specific

eigenmodes. Thus, other preconditioning techniques are used in order to extract a meaningful solution

(e.g. Section 3.3.3). It is noteworthy that, although not extensively utilised within ATLAS, it is possible to

iteratively find the eigenvalues and associated eigenvectors of large systems by solving Mx = 𝜆x for x and

𝜆 [30], which can be useful in understanding the weak modes of very large systems and identifying the

underconstrained degrees of freedom.
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3.3.3 Constraining alignment parameters in the solution (the Soft Mode Cut)

As introduced in Section 3.2.5, setting 𝒂 ≡ 𝜶0 and having a diagonal𝑊 constrains the alignment parameters

to their initial values. Here, 𝑊 denotes a diagonal matrix with diagonal elements: 𝜎(𝛼𝑖)2, providing the

tolerances to the corrections of the alignment parameters.

For this special case, the top row of Eq. (17) simplifies to Eq. (10) and the diagonal of the matrix M in

Eq. (11) is incremented by the reciprocal of assumed variances of alignment corrections:(
M + 2 𝑊−1

)
𝑋𝑋𝑋 = −𝑌𝑌𝑌 .

The above equation can be rearranged as

∑
𝑗

(
𝜎(𝛼𝑖)𝜎(𝛼 𝑗) M𝑖 𝑗 + 2 𝐼𝑖 𝑗

) 𝑋 𝑗

𝜎(𝛼 𝑗)
= −𝜎(𝛼𝑖) 𝑌𝑖 (19)

yielding an equation in which the corrections to the alignment parameters are normalised to their assumed

uncertainties Δ𝛼𝑖 −→ Δ𝛼𝑖/𝜎(𝛼𝑖). Apart from the extra identity matrix 𝐼, Eq. (19) is exactly equivalent to

Eq. (12).

To illustrate the effect of such a constraint, consider the case that all 𝜎(𝛼𝑖) are equal (𝜎(𝛼𝑖) = 𝜎𝑐).

The extra identity matrix does not affect the eigenmodes of M, but adds an offset to its spectrum of

eigenvalues:

M′ = M + 2 𝐼/𝜎2
𝑐 , D′ = D + 𝐼/𝜎2

𝑐 , 𝜆′𝑖 = 𝜆𝑖 + 1/𝜎2
𝑐 .

The solution in the diagonal basis, Eq. (18), takes the form:

𝑋 𝑖
D =

1

𝜆𝑖 + 1/𝜎2
𝑐

𝑌 𝑖
D and 𝜎(𝑋 𝑖

D) = 1√
𝜆𝑖 + 1/𝜎2

𝑐

. (20)

Hence, one obtains a solution explicitly free from ill-defined (weak) modes. This operation does not require

an explicit diagonalisation and can be used as preconditioning prior to fast solving, providing powerful

control over solutions for an arbitrarily large number of DoFs. Due to the typically exponential nature of

the eigenspectrum, Eq. (20) represents a solution with a clear cut-off in the diagonal basis for 𝜆𝑖 	 1/𝜎2
𝑐 .

This technique is extensively used in the ATLAS implementation.

4 Inner Detector alignment

The ID is composed of a large number of active detector components (see Section 2.1 for details). Each

component or grouped collection of modules (e.g. a subdetector) can be treated as an alignable structure.

The alignment is performed at different hierarchical levels following the assembly structure of the ID.

Starting with the largest physical structures at level 1, the detector subsystems are aligned separated into

endcaps and barrel regions in order to correct for collective movements. Level 2 treats individual barrel

layers and endcap disks as physical structures (barrel modules and endcap wheels in the case of the TRT).

Level 3 corresponds to a silicon module or TRT wire alignment. In this context, the SCT modules are

considered as a single element in the alignment procedure due to their high construction precision [16, 17].

The levels are addressed sequentially during the alignment procedure, see Table 2.
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In Run 2, the alignment levels were updated to accommodate the IBL. These changes are straightforward

for levels 2 and 3, as the IBL represents merely an additional Pixel layer or additional silicon modules,

respectively. The support structure of the IBL is mechanically independent from the previously installed

Pixel subdetector, so IBL movement is not expected to be correlated with collective Pixel movements.

Consequently, the IBL is treated as a separate physical structure at level 1.

4.1 Time-dependent alignment

Time-dependent alignment is performed for each LHC fill prior to data reconstruction to determine if the

detector, or individual subsystems, have moved significantly compared to a reference alignment. Such

detector movements occur on different timescales, which are classified as short, medium, or long.

Short timescales describe movements during a single LHC fill that are a result of variations of the thermal

load of the ID. These movements are caused by fluctuations in the power consumption of the front-end

electronics, due to variations in the trigger rate, that additionally affect the temperature of the cooling

system. On medium timescales, in the range of days to a month, changes to the environmental conditions

of the detector, such as ramping the magnetic field or cycling the power or cooling systems, often lead to

significant movements of the detector. Slow gradual movements of the subsystems over several months

(long timescales) were also observed and attributed to mechanical relaxations after sudden changes.

An automated time-dependent level 1 alignment is performed within the ATLAS prompt calibration

loop [10] to address all known time-dependent movements, as detailed in Section 5. These results are

monitored and new alignment corrections are automatically obtained during the calibration period. They

serve as input for the bulk reconstruction of the corresponding dataset.

4.2 Baseline alignment constants

The baseline alignment constants are a set of reference constants that serve as initial estimates for the

time-dependent refinements of the alignment. In order to achieve an accurate detector alignment and a

minimisation of track parameter biases over a data-taking period, a large quantity of data are used (typically

∼ 2 fb−1). The levels of alignment performed are summarised in Table 2. The alignment using the global

𝜒2 method typically converges within two to four iterations for levels 1 and 2, while at least four iterations

are required at level 3 (silicon). The TRT level 3 (straw level) uses the local 𝜒2 method and requires up to

30 iterations to converge, owing to the large number of DoFs.

Depending on the alignment level, some DoFs may be fixed during the alignment procedure if poor

sensitivity is expected. Alignment levels targeting the silicon subdetectors use all tracks, whereas alignment

levels including the TRT require tracks based on silicon and TRT hits. In order to remove weak modes

from the alignment solution, appropriate constraints are added to the global 𝜒2 method (see Section 3.2.4).

Different constraints are considered depending on the expected misalignment and DoF for each alignable

structure, listed in Table 2. Additionally, each subsystem can be aligned at any required level independently

from the others. Further subdivision of alignment levels into smaller physical detector components, e.g.

the division of individual barrel layers into staves, is also supported and used. At level 1, the SCT barrel is

kept fixed due to its good stability and to serve as reference for the rest of the structures.
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Table 2: Typical alignment configurations used throughout Run 2 data taking to derive baseline alignment constants.

Translational degrees of freedom (DoF) are denoted by a 𝑇 , rotational ones by an 𝑅. As shown in Figure 2, TRT

barrel straws run parallel to the beam line. That corresponds to 𝑇𝑧 at level 1 and 𝑇𝑦 at level 2.

Level Description Structures DoF Additional constraints

1 IBL 1 All

Pixel detector 1 All

SCT endcaps (SCT barrel fixed) 2 All except 𝑇𝑧
TRT split into barrel and 2 endcaps 3 All except 𝑇𝑧

Si 2 Pixel and IBL barrel split into layers 4 All Beam spot,

Pixel endcaps split into disks 6 All momentum bias, and

SCT barrel split into layers 4 All impact parameter bias

SCT endcaps split into disks 18 All

Si 3 Pixel and IBL barrel modules 1736 All Beam spot,

Pixel endcaps modules 288 𝑇𝑥 , 𝑇𝑦 , 𝑅𝑧 momentum bias,

SCT barrel modules 2112 All impact parameter bias, and

SCT endcaps modules 1976 𝑇𝑥 , 𝑇𝑦 , 𝑅𝑧 module placement accuracy

TRT 2 TRT barrel split into barrel modules 96 All except 𝑇𝑦 Momentum bias and

TRT endcaps split into wheels 80 𝑇𝑥 , 𝑇𝑦 , 𝑅𝑧 impact parameter bias

Pixel and SCT detectors fixed

TRT 3 TRT straws 351k 𝑇𝑥 , 𝑅𝑧

Pixel and SCT detectors fixed

4.3 Residuals

As described in Section 3.2, the solution of the Global 𝜒2 is the one that minimises the unbiased4 track-hit

residuals. Figures 4 to 6 show track-hit residual distributions for data and simulation in different ID

subdetectors.

Data and simulation correspond to a set of muons selected in 𝑍 → 𝜇+𝜇− candidate events triggered by the

lowest-threshold unprescaled single and dimuon triggers. The simulation sample was generated with the

Powheg-Box v1 Monte Carlo event generator [31–33] at next-to-leading order (NLO) in 𝛼S interfaced

to Pythia 8.186 [34] for the modelling of the parton shower, hadronisation, and underlying event, with

parameter values set according to the AZNLO tune [35]. The CT10 (NLO) set of parton distribution

functions (PDF) [36] was used for the hard-scattering processes, whereas the CTEQ6L1 PDF set [37] was

used for the parton shower. Events are required to contain two muons (satisfying ‘medium’ quality criteria

as defined in Ref. [38]) with opposite charge and 𝑝T > 20 GeV. In addition, requirements on the opening

angle between the two muons, 𝛾(𝜇+, 𝜇−) > 45◦, and their invariant mass, 70 GeV < 𝑚𝜇+𝜇− < 110 GeV,

are imposed. In Figures 4 to 6, both data and simulation correspond to 2 fb−1 of data collected during 2018.

Statistical uncertainties in data and simulation are included in all the figures, although barely visible as

they are negligible.

Adequate agreement is seen between data and simulation in the residual distributions, where differences

are quantified in terms of the ‘full width at half maximum’ (FWHM) figure of merit. A similar level of

4 The unbiased residual does not include the measurement in question when determining the intersection position (𝑒𝑖) of the

fitted track with the surface.
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agreement is observed for the data collected during the other years of Run 2. In the case of the IBL, Pixel

and SCT barrel, larger residual widths are observed in data. As shown in Section 5.3, the Run 2 alignment

accuracy and stability in the central pseudorapidity range for both the Pixel and SCT barrel modules is

controlled to a precision better than 0.5 μm and 2 μm in local-𝑥 and local-𝑦, respectively. Consequently,

several other possible causes of the observed discrepancy between data and simulation are considered, such

as imperfect modelling of the interactions of muons with detector material in the simulation, the material

description, delta ray production modelling, mis-modelling of the detector response (and resolution) in

simulation, and residual biases not uniform across individual modules in data. The latter particularly

impacts the local-𝑦 track-hit residuals in Figure 4. The poorest agreement is seen for the IBL residuals,

which have not yet been corrected for sensor distortions, in contrast to the Pixel layers. The sensor distortion

can result in track-hit residual biases of up to 10 μm within a given module, thus causing a broadening of the

overall distribution [39]. The shape of the IBL modules was recently parameterised with Bernstein–Bézier

functions and will be corrected in the track fitting procedure for Run 3 data taking. The cause of the

small bias of 4 μm in the IBL local-𝑦 track-hit residuals in simulation in Figure 4 is currently unidentified.

Simulated samples use a perfectly aligned detector with no track-based alignment correction, hence this

bias originates from the track or cluster reconstruction. On data, this small reconstruction bias is removed

by the alignment without a significant effect on alignment precision.
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Figure 4: The IBL local-𝑥 (left) and local-𝑦 (right) residual distributions for the 𝑍 → 𝜇+𝜇− data sample compared

with simulated data. The distributions are integrated over all hits on tracks in barrel modules.

5 Detector stability and time-dependent alignment

This section discusses the main sources of time variation in ID geometry and the methods implemented

to mitigate these effects within the ATLAS prompt calibration loop [10]. In addition, the stability of the

ID in Run 2 is summarised, final time-dependent corrections for all subsystems are presented, and the

precision of the alignment is determined. All results use 𝑝𝑝 collision data at
√
𝑠 = 13 TeV. The alignment

precision for heavy-ion data in Run 2 is at least as good as the final precision of 𝑝𝑝 collision data, as the

instantaneous luminosity, and therefore the thermal load variations in the ID, is typically lower.
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Figure 5: The Pixel local-𝑥 (left) and local-𝑦 (right) residual distributions for the 𝑍 → 𝜇+𝜇− data sample compared

with simulated data. The distributions are integrated over all hits on tracks in barrel modules.
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Figure 6: The local-𝑥 residual distributions in the SCT (left) and TRT (right) for the 𝑍 → 𝜇+𝜇− data sample compared

with simulated data. The distributions are integrated over all hits on tracks in barrel modules.

5.1 Short-timescale movements

Detector movements on short timescales are particularly challenging, since the ID track-based alignment

calculates an average position correction for the time interval under study.5

The procedure used to correct for rapid movements must balance two competing effects: the alignment

corrections must be determined in time intervals that are short enough to capture the motion of the particular

deformation, but long enough to include sufficient data to obtain precise corrections.

5 This time interval varies from a few minutes to several hours depending on the configuration of the alignment task.
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5.1.1 Temperature-dependent IBL distortions

During the Run 2 commissioning of the IBL, it was already noticed that the IBL staves can be distorted

by hundreds of micrometers relative to the design geometry. It was soon observed that these distortions

depend on the operating temperature and correspond to module displacement in the azimuthal direction

of the staves, equivalent to their local-𝑥 direction. The distortion was understood to be caused by tight,

asymmetric mechanical coupling of materials with different coefficients of thermal expansion (CTE). The

correlation between temperature and the size of the IBL distortion was studied using cosmic-ray data in

March 2015 with a controlled variation of the IBL temperature, 𝑇set, in the range −20 °C to 15 °C [40]. The

size of the distortion was measured in situ using the track-based alignment and a fit to a model determined

from a three-dimensional finite-element analysis. This model parameterises the IBL distortion in local-𝑥,

𝛿𝑥(𝑧), using a parabolic function,

𝛿𝑥(𝑧) = 𝐵 − 𝑀

𝑧2
0

(
𝑧2 − 𝑧2

0

)
, (21)

where 𝑧 is the global-𝑧 coordinate of the module, 𝑧0 ≡ 366.5 mm is the coordinate of the stave mount at

both ends, 𝐵 is the baseline describing the overall translation of the stave in local-𝑥, and 𝑀 is the magnitude

of the distortion at the stave centre. The temperature gradient of 𝑀 with respect to 𝑇set is found to be

d𝑀/d𝑇set = (−10.6 ± 0.7) μm/K. The local-𝑦 position shows no temperature-dependent effect within

20 μm uncertainty, whereas the local-𝑧 (bending out of the plane of the stave) was not included in this study.

The IBL distortion is shown in Figure 7 for different 𝑇set values using 2015 and 2016 𝑝𝑝 collision data.

From the initial data taking in Run 2 through September 2015, the IBL power consumption per module

was found to be stable, and fluctuations in 𝑇set were within ∼ 0.2 K resulting in a stable detector

(𝛿𝑥(𝑧) < 3 μm) [40]. This situation changed with the rapid increase in integrated luminosity per LHC fill

after September, which induced an increase in the low-voltage (LV) currents in the IBL module front-end

electronics. This increase was traced back to radiation-induced leakage current in transistors [41]. The

change in LV currents depends on the total ionisation dose. Studies show that the increase reaches a peak

value for radiation doses between 10 and 30 kGy and decreases for higher doses to a value close to the

pre-irradiation case.

These variations in the LV currents caused an increase in IBL module temperatures that resulted in changes

in IBL distortions on short timescales. In this context, values of 𝛿𝑥(𝑧) of up to 30 μm were observed

between LHC fills and up to 10 μm within a single fill, corresponding to a variation of 0.5 μm h−1.

5.1.2 Vertical movements of the Pixel detector

Another systematic deformation on short timescales is a change in the vertical position (global-𝑦 direction)

of the Pixel detector by up to 8 μm at the start of an LHC fill. Figure 8 shows the Pixel detector vertical

movement from the start of an LHC fill. The position is computed every 20 minutes, which is the shortest

time interval used in the ATLAS prompt calibration loop. As is evident from Figure 8, the average position

across an LHC fill does not accurately describe the position of the Pixel detector.

The cause of this movement is understood to be the following. When the Pixel detector is switched on

at the start of a fill, modules reach their new temperature almost immediately as a result of the strong

thermal coupling between the modules and the evaporative cooling system [1, 42]. The LV current in the
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LHC luminosity. The error bars represent the statistical uncertainty.

read-out electronics also increases immediately, while the temperature in the Pixel detector volume rises

gradually during the first 60 minutes. The smaller mass load due to the change in density of the bi-phase
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cooling liquid causes the Pixel detector to rise. After this initial rise, as the instantaneous luminosity and

thus the occupancy decreases over the course of the fill, LV digital currents, module temperature and Pixel

volume temperature gradually decrease as well. This in turn causes an additional slow drift in the direction

opposite to the initial movement. The speed of this slow drift depends on the peak luminosity per LHC fill.

This speed increased during 2016 to reach values of 0.2 μm h−1, as shown in Figure 9. The vertical speed is

determined as the average speed of the Pixel detector excluding the first hour after the start of data taking.

This vertical drift was monitored and corrected for throughout Run 2.
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Figure 9: Vertical speed of the Pixel detector as a function of the peak luminosity of an LHC fill, extracted from

alignment corrections. Only fills longer than 8 hours are considered.

5.2 Dynamic alignment on short timescales

In an effort to mitigate the effects of systematic short-timescale distortions and ensure adequate data quality

for all analyses relying on tracking, conceptual improvements within the alignment framework and strategy

were made. A key improvement was the introduction of a new alignment DoF, 𝐵𝑥 , to parameterise the IBL

distortion deformation magnitude 𝑀 . The 𝐵𝑥 DoF correlates the local-𝑥 coordinate of each module along

the IBL stave using the parabolic function defined in Eq. (21). Minimising the global 𝜒2 with respect to

𝐵𝑥 provides corrections for varying degrees of IBL stave distortion using a single DoF, which can be done

with small amounts of data. In contrast, a full level 3 alignment, which relies on a large amount of data,

had been required previously, which did not allow short-timescale movements to be determined.

The automated alignment scheme that is performed within the ATLAS prompt calibration loop in Run 2

data taking determines level 1 and IBL 𝐵𝑥 (per stave) dynamic alignment constants every 20 minutes at the

start of a fill and every 100 minutes for the rest of the fill. This level of granularity in time is adequate to

mitigate the effects of short-timescale vertical movements on track parameter resolution. The alignment is

performed in two iterations of the level 1 calibration loop (level 1 CL) followed by two dedicated iterations

to correct for IBL distortions. The 𝐵𝑥 correction in the level 1 CL corresponds to a collective, uniform

correction for all IBL staves. The dedicated IBL bowing iterations determine 𝐵𝑥 individually for each

stave, as summarised in Table 3. The SCT barrel is used as the reference in the dynamic alignment.
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Table 3: Typical alignment configurations used throughout Run 2 data taking to derive dynamic alignment corrections.

Level Description Structures DoF

1 CL IBL 1 All DoF incl. 𝐵𝑥 , except 𝑅𝑧

Pixel detector 1 All

SCT endcaps (SCT barrel fixed) 2 All except 𝑇𝑧
TRT split into barrel and 2 endcaps 3 All except 𝑇𝑧

IBL bowing IBL staves 14 𝐵𝑥

Pixel, SCT, and TRT detectors fixed

5.3 Inner Detector stability during Run 2 data taking

5.3.1 Time-dependent corrections for all subsystems

The performance of the dynamic alignment scheme using 2016 𝑝𝑝 collision data is shown in Figures 10

and 11. The average bowing magnitude of the 14 IBL staves relative to the baseline alignment is compared

with the results of the dynamic alignment in Figure 10. Figure 11 shows the average IBL distortion

computed after different alignment corrections versus time in the form of luminosity blocks (LB), which

correspond to stable data-taking conditions in periods of approximately one minute. It also compares the

unbiased local-𝑥 residuals computed using the a fill-averaged correction (for illustration only) with those

obtained after computing the full dynamic alignment correction, which is derived in short time-intervals.

A clear improvement in the residual distributions is seen after applying dynamic alignment corrections.

Figures 10 and 11 illustrate that, averaged over an LHC fill, even very large values of 𝑀 (up to 30 μm) are

accurately corrected for using 𝐵𝑥 as an alignment DoF. These features were present for all Run 2 data,

although there was some saturation of the effect in the later years of Run 2, as observed in the radiation

damage studies of the IBL [41].

The long-term trend of the Pixel and IBL detector movements relative to the baseline alignment correction

is shown in Figure 12 for the average 𝐵𝑥 correction, the global 𝑇𝑥 correction, and the global 𝑇𝑦 correction.

For the sake of clarity, the plots in Figure 12 show only a fraction of the Run 2 data; the remaining data

follow the same trend.

5.3.2 Final alignment precision of each subsystem

The final alignment precision of each ID subsystem is determined from the track-hit residuals of individual

silicon modules for each LHC fill in 2015 and 2016 data taking after the dynamic alignment corrections

are applied. These dynamic alignment corrections are computed either for large structures (e.g. the Pixel

detector) as a collective movement of all modules or using a simplified parameterisation (like 𝐵𝑥). In this

context, less significant module-to-module movements remain uncorrected by the dynamic alignment. This

effect is seen as a residual time-dependent misalignment or ‘instability’ of the modules. This instability

is estimated for each silicon layer and module 𝑧-position by integrating modules over 𝜙 into one group.

Results are presented for the ‘in-plane’ translation DoFs only (local-𝑥 and local-𝑦).

For each module, the average track-hit residual, 〈𝑟𝑥,𝑦〉, is computed for each LHC fill, for both local-𝑥 and

local-𝑦, on a set of calibration data, whose size is approximately independent from the fill conditions. Its
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Figure 10: Bowing magnitude averaged over the 14 IBL staves relative to the baseline alignment (blue full circles)

and the geometry after dynamic alignment (red open circles) with its statistical uncertainty. The IBL operation
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statistical uncertainty, 𝜎𝑟𝑥,𝑦/
√
𝑁 , where 𝑁 is given by the number of tracks per module and 𝜎𝑟𝑥,𝑦 is the

standard deviation of the residuals, is computed assuming that the residual distribution is approximately

Gaussian. The dispersion 𝜎〈𝑟𝑥,𝑦 〉 of the distribution in 〈𝑟𝑥,𝑦〉 obtained from all LHC fills is an estimate of

the total instability of the module position after all alignment corrections are applied. This total uncertainty

can be divided into a statistical component (𝜎𝑟𝑥,𝑦/
√
𝑁) and a component describing residual instability
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Figure 12: Average correction of the IBL bowing magnitude, 𝐵𝑥 , (top), IBL and Pixel detector’s horizontal position,
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collision runs between LHC technical shutdown period 1 and LHC machine development period 1. The correction

is calculated every 20 minutes for the first 60 minutes of the data taking, and every 100 minutes for the rest of the

data-taking period. Each connected series of points represents a continuous data-taking period.

due to uncorrected time-dependent movements and stochastic fluctuations, 𝜎time
𝑥,𝑦 :

𝜎〈𝑟𝑥,𝑦 〉 ∼ 𝜎time
𝑥,𝑦 ⊕ 𝜎𝑟𝑥,𝑦√

𝑁
.

As the size of the statistical contribution per module per LHC fill is generally small, 𝜎time
𝑥,𝑦 is estimated by

𝜎time
𝑥,𝑦 ≡

√
𝜎2
〈𝑟𝑥,𝑦 〉 −

(
𝜎𝑟𝑥,𝑦√
𝑁

)2

.
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Figures 13 to 15 show the estimated instability in local-𝑥 and local-𝑦 of the Pixel and SCT barrel layers as

a function of module 𝑧-position. Figure 16 shows the local-𝑥 and local-𝑦 instabilities of the modules in the

Pixel endcap layers. The alignment in the central pseudorapidity range for both the Pixel and SCT barrel

modules is controlled to a precision better than 0.5 μm and 2 μm in local-𝑥 and local-𝑦, respectively. This

level of control is considered to be very good given the time-dependent corrections of O(10 μm) due to the

IBL distortion and the vertical movement of the Pixel detector. The same level of precision is not achieved

for the outermost IBL modules (3D sensors) corresponding to the range |𝜂 | > 2.5. There the alignment

precision in local-𝑥 (local-𝑦) is measured with an uncertainty better than 3 μm (15 μm). This region is

particularly challenging due to the low number of tracks. Moreover, the tracks in this region have only

small overlap with other ID tracking layers. Furthermore, the large IBL local-𝑦 uncertainty may be related

to a deformation of IBL staves in local-𝑧 over time, which is not corrected for in the prompt calibration

loop.

The instability for Pixel endcap modules is larger than for barrel modules; the local-𝑥 and local-𝑦 instabilities

are 2–4 μm and 4–7 μm, respectively. This instability corresponds to the size of the movements of the

Pixel endcap modules relative to the baseline alignment over time. The precision achieved is nearly one

order of magnitude better than the required precision [2]. This required precision was defined in order

to limit the degradation of the resolution of the track parameters for high-momentum tracks to less than

20% in comparison with a perfectly aligned detector. While succeeding in its primary goal, these results,

specifically the residual Pixel endcap movements, also imply that the current dynamic alignment scheme,

which allows time-dependent alignment of the entire Pixel detector as one unit, is not optimal. A higher

level of precision might be achieved if the Pixel endcap disks were aligned individually. This improvement

is under study for LHC Run 3, including detailed cross-checks for new weak modes that may be introduced

due to the additional DoFs within the calibration loop.
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Figure 13: Estimated 𝜎time
𝑥 as a function of the module global-𝑧 position for the IBL and Pixel barrel layers. The

vertical bar on each marker represents the standard deviation of the estimated value over modules at the same

𝑧-position along different staves. The global-𝑧 position is slightly modified from its true value for visualisation

purposes.
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Figure 14: Estimated 𝜎time
𝑦 as a function of the module global-𝑧 position for Pixel barrel layers. The vertical bar

on each marker represents the standard deviation of the estimated value over modules at the same 𝑧-position along

different staves. The global-𝑧 position is slightly modified for the different Pixel layers for visualisation purposes.
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Figure 15: Estimated 𝜎time
𝑥 as a function of module global-𝑧 position for SCT barrel layers. The vertical bar on each

marker represents the standard deviation of the estimated value over modules at the same 𝑧-position along different

staves. The global-𝑧 position is slightly modified for the different SCT layers for visualisation purposes.
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6 Momentum biases

The alignment corrections described in Sections 4 and 5 target misalignments that change the 𝜒2 of the

track fit in Eq. (1). In contrast, correlated geometrical distortions referred to as weak modes leave the 𝜒2

of the fitted tracks virtually unchanged and can systematically bias the reconstructed track parameters.

Momentum biases induced by correlated detector misalignments can generally be classified into two

categories:

• Sagitta deformations consist of detector geometry distortions in the bending plane that affect the

reconstructed track curvature differently for positively and negatively charged particles (Figure 17

left).

• Length scale biases are characterised by detector geometry distortions along the track trajectory

and affect the reconstructed curvature identically for positively and negatively charged particles

(Figure 17 right).

These biases can be mitigated through the use of constraints either on track parameters (Section 3.2.4) or

on alignment parameters (Section 3.2.5), or on both simultaneously. Residual momentum biases, after

corrections to the detector alignment have been made, are sufficiently small that they can be accounted for

by directly correcting track parameters.

detector layers � real hit position � reconstructed hit position real trajectory fitted track

Figure 17: A simplified representation of two common weak modes that bias the track momentum. A sagitta bias

(left) is caused by a deformation in the bending plane of the tracks, e.g. a rotation of the detector layers depending

linearly on the radius. A length scale bias (right) caused by a deformation along the track trajectory, e.g. a radial

expansion of the detector layers depending linearly on the radius. The real (dashed black line) and fitted (solid

black line) particle trajectories are shown. Red stars indicate real measurement positions and grey stars show the

reconstructed hit positions (biased measurements).

6.1 Sagitta bias

Displacements of the reconstructed hits in the bending plane orthogonal to the track path result in a

charge-antisymmetric alteration of the track curvature, which is parameterised as

𝑝′ = 𝑝 (1 + 𝑞 𝑝T 𝛿sagitta)−1 , (22)
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where the un-primed quantities correspond to the true values, the primed quantities correspond to the

reconstructed values, 𝑞 refers to the sign of the electric charge of the particle and 𝛿sagitta is a bias parameter

common to all measured momenta and uniquely defines the detector geometry deformation.

Two iterative methods are used to determine the sagitta biases. The first method uses 𝑍 → 𝜇+𝜇− decays.

The second uses the electromagnetic calorimeter as a reference, and utilises the ratio of the measured energy

deposited in the calorimeter (𝐸) to the momentum (𝑝) measured by the ID for electrons and positrons.

Both methods allow the detector to be segmented arbitrarily in 𝜂 and 𝜙, allowing the study of localised

sagitta biases. Sagitta biases have, to a great extent, been corrected for during the determination of the

alignment constants by adding constraints to the parameters of the tracks used to perform the detector

alignment, as given by Eqs. (14) and (16) and explained in Sections 3.2.4 and 3.2.5, and also in Refs. [3,

43]. The methods used to calculate the constraints are described below, and the residual sagitta biases after

alignment corrections are shown.

6.1.1 Measuring sagitta biases using 𝒁 → 𝝁+𝝁− decays

The invariant mass, 𝑚, of two highly relativistic opposite-charge particles is given approximately by

𝑚2 = 2𝑝+𝑝−(1 − cos 𝛾) ,
where 𝑝+ and 𝑝− are the magnitudes of the momenta of the positively and negatively charged particles, and

𝛾 is defined as their opening angle. In the following, + and − superscripts refer to the properties of the

positively and negatively charged muons respectively. Sagitta biases can be measured using any particle

(of reasonably narrow width) that decays into pairs of stable particles. In LHC conditions, resonances that

decay into pairs of muons (such as 𝐽/𝜓, Υ and 𝑍) present the advantage that the dimuon signature can

be clearly distinguished from the large hadronic background. For 𝛿sagitta studies, 𝑍 → 𝜇+𝜇− decays are

preferred due to the high momentum of the 𝑍 decay products. Data quality selection criteria, summarised

in Table 4, are applied to both the selected muon candidates and the dimuon system. In total, more than

70 million 𝑍 → 𝜇+𝜇− candidate events were selected.

In general, geometrical distortions that bias sagitta measurements can be localised in specific regions

of the detector. As a result, the sagitta bias parameter explicitly depends on the path of the track,

which can be approximated by the direction of the track at the 𝑝𝑝 interaction point, given by 𝜂 and 𝜙:

𝛿sagitta → 𝛿sagitta(𝜂, 𝜙). The difference at leading order in 𝛿sagitta(𝜂, 𝜙) between the reconstructed dimuon

invariant mass using the uncorrected geometry (𝑚𝜇𝜇) and the expected mass (𝑚𝑍 ) for each event is given

by:

𝑚2
𝜇𝜇 − 𝑚2

𝑍 ≈ 𝑚2
𝑍

(
𝑝′+T 𝛿sagitta(𝜂+, 𝜙+) − 𝑝′−T 𝛿sagitta(𝜂−, 𝜙−)

)
. (23)

where 𝑚2
𝑍 is a reference mass (in this case the world average mass for the Z boson [44]).

An iterative procedure is used to determine 𝛿sagitta(𝜂, 𝜙). For the 𝑖-th iteration, 𝛿sagitta,𝑖 (𝜂, 𝜙) is computed

for every muon in the 𝑍 → 𝜇+𝜇− sample with:

Δ𝛿sagitta,𝑖 (𝜂, 𝜙) = −𝑞
𝑚2

𝜇𝜇 − 𝑚2
𝑍

2 𝑚2
𝑍

(
1 + 𝑞 𝑝′

T
〈𝛿sagitta,𝑖−1(𝜂, 𝜙)〉

)
𝑝′

T

, (24)

where 〈𝛿sagitta,𝑖−1(𝜂, 𝜙)〉 is the result of the previous iteration. The corrections are updated by adding the

average of the current iteration to the result of the previous iteration:

〈𝛿sagitta,𝑖 (𝜂, 𝜙)〉 = 〈𝛿sagitta,𝑖−1(𝜂, 𝜙)〉 + 〈Δ𝛿sagitta,𝑖 (𝜂, 𝜙)〉, (25)
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Table 4: Event selection criteria for 𝑍 → 𝜇+𝜇− (Section 6.1.1) and 𝑍 → 𝑒+𝑒− (Section 6.1.2) candidate events for the

analyses of the sagitta biases in data. Events triggered by the lowest-threshold unprescaled single and double electron

and muon triggers are used to select 𝑍 → 𝜇+𝜇− and 𝑍 → 𝑒+𝑒− event candidates. 𝛾(𝜇+, 𝜇−) is the opening angle

between the muons. Δ𝑑0(𝜇+, 𝜇−) and Δ𝑧0 (𝜇+, 𝜇−) are defined as the difference in 𝑑0 and 𝑧0 between the two muons.

Selection criteria 𝑍 → 𝜇+𝜇− 𝑍 → 𝑒+𝑒−

Lepton selection Two muons1 associated Two electrons5 associated

with the primary vertex2 with the primary vertex2

𝑝T > 12 GeV 𝐸T > 25 GeV

|𝜂 | < 2.5 |𝜂 | < 2.47 3

𝑑0 significance4 < 4

Dilepton selection 70 GeV < 𝑚𝜇+𝜇− < 110 GeV |𝑚𝑒+𝑒− − 𝑚𝑍 | < 30 GeV

|Δ𝑑0(𝜇+, 𝜇−) | < 0.1 mm

|Δ𝑧0(𝜇+, 𝜇−) | < 0.6 mm

𝛾(𝜇+, 𝜇−) > 45◦
1Both muon candidates are required to satisfy the ‘medium’ quality criteria as defined in Ref. [38].
2The reconstructed vertex with the largest

∑
𝑝2

T
of its tracks.

3Excluding the transition region between the barrel and forward calorimeters.
4The significance is defined as |𝑑0 |/𝜎(𝑑0), where 𝜎(𝑑0) is the uncertainty on the 𝑑0 from the track fit.
5Both electron candidates are required to satisfy the ‘loose’ quality criteria as defined in Ref. [46].

where 〈Δ𝛿sagitta,𝑖 (𝜂, 𝜙)〉 is the average bias in a (𝜂, 𝜙) region. The value of 𝑚2
𝜇𝜇 is computed using Eq. (23)

with the values of 𝛿sagitta from the previous iteration. The iterations are repeated until convergence is

reached.

The method, as described by Eq. (23), is only sensitive to relative sagitta biases in different sectors of the

detector. An alternative method, comparing the 𝑝T spectrum of the 𝜇+ and 𝜇− [45] was also tested. This

method is sensitive to global sagitta biases, although it is also subject to detector acceptance effects and

requires more data to achieve the same statistical precision as the mass-based method.

Figure 18 shows the measured sagitta distortions depending on the track direction using this technique.

The central barrel region of the detector is largely free of sagitta bias, while the endcap regions exhibit

some areas of small residual sagitta bias. The distribution of 𝛿sagitta for the full Run 2 data is shown in

Figure 18. Figure 19 shows the average 𝛿sagitta versus 𝜂 and 𝜙, as well as its RMS. The distributions, split

by data-taking year, have compatible shapes indicating a consistent and stable detector geometry during

Run 2.

6.1.2 Measuring sagitta biases using the 𝑬/ 𝒑 ratio of electrons and positrons

Assuming that the calorimeter response is independent of the charge of the incoming particle and that a

perfectly aligned detector reconstructs the momentum of charged particles correctly, charge-dependent

momentum biases are expected to result in differences in the 𝐸/𝑝 ratio of positive and negative particles.

This ratio is defined as the ratio of the calorimeter energy measurement (𝐸) to the track momentum

measurement (𝑝). This technique is mainly suitable for electrons and positrons. In the presence of a sagitta

bias, the 〈𝐸/𝑝〉 ratio would be modified as 〈𝐸/𝑝′〉 = 〈𝐸/𝑝〉 + 𝑞 〈𝐸T〉 𝛿sagitta, where 𝐸T ≡ 𝐸/cosh 𝜂 is
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Figure 18: Sagitta biases versus 𝜂 and 𝜙 (left) for 2018 data and the overall sagitta biases in the Run 2 data (right) for

the 𝑍 → 𝜇+𝜇− method. The error bars represent the statistical uncertainty.

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

η

0.2−

0.1−

0

0.1

0.2

0.3

0.4]
-1

 [T
eV

sa
gi

tta
δ

 M
ea

n 

Data 2016
Data 2017
Data 2018

 ATLAS
-1Data 2016-18, 137.2 fb

−μ+μ → = 13 TeV, Z s

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

η

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35]
-1

 [T
eV

sa
gi

tta
δ

 R
M

S
 

Data 2016
Data 2017
Data 2018

 ATLAS
-1Data 2016-18, 137.2 fb

−μ+μ → = 13 TeV, Z s

3− 2− 1− 0 1 2 3

φ

0.2−

0.1−

0

0.1

0.2

0.3

0.4]
-1

 [T
eV

sa
gi

tta
δ

 M
ea

n 

Data 2016
Data 2017
Data 2018

 ATLAS
-1Data 2016-18, 137.2 fb

−μ+μ → = 13 TeV, Z s

3− 2− 1− 0 1 2 3

φ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35]
-1

 [T
eV

sa
gi

tta
δ

 R
M

S
 

Data 2016
Data 2017
Data 2018

 ATLAS
-1Data 2016-18, 137.2 fb

−μ+μ → = 13 TeV, Z s

Figure 19: Measured sagitta biases versus 𝜂 (top) and 𝜙 (bottom) using the 𝑍 → 𝜇+𝜇− method. The average (left)

and the RMS (right) of the sagitta bias is shown. The markers of the data points of the different years are slightly

shifted in 𝜂 and 𝜙 for better visibility. The error bars represent the statistical uncertainty.
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Figure 20: Sagitta biases versus 𝜂 and 𝜙 (left) for 2018 data and the overall sagitta biases of the Run 2 data (right) for

the 𝐸/𝑝 method. The error bars represent the statistical uncertainty.

referred to as the transverse energy. Assuming that the average transverse momentum of positrons and

electrons is equal, the sagitta bias can be estimated [3] as

𝛿sagitta =
〈𝐸/𝑝′〉+ − 〈𝐸/𝑝′〉−

2 〈𝐸T〉
.

To take into account any biases introduced by the aforementioned assumptions the value of 𝛿sagitta is

determined iteratively, correcting the momentum using Eq. (22) at each iteration. It should be noted

that biases in the calorimeter energy scale cancel out to first order and any residual dependence would

be reduced by this iterative procedure. In addition, this method is, by construction, sensitive to global

sagitta biases. Data quality selection criteria are applied to both the selected electron candidates and the

electron–positron system and are summarised in Table 4.

Figure 20 shows the 𝛿sagitta as obtained from the 𝐸/𝑝 method. These results support the observations from

Section 6.1.1: the central barrel region of the detector is largely free of sagitta bias, while the endcap

regions exhibit regions of small residual sagitta bias. Compared to Figure 18 (right) a global offset of

∼0.05 TeV−1 can be seen in Figure 20 (right) indicating the presence of a small global sagitta bias. Figure 21

shows the average 𝛿sagitta versus 𝜂 and 𝜙, as well as its RMS. The 𝛿sagitta distributions from the 𝐸/𝑝 method

split by data-taking year have comparable shape to those obtained from the 𝑍 → 𝜇+𝜇− mass method,

further supporting the observation of a consistent and stable detector geometry during Run 2. The change

in position due to the residual sagitta bias (∼0.1 TeV−1) when extrapolating a track from the detector origin

to the outermost SCT endcap disk (radius of 500 mm and a 𝑧-axis distance of 2720 mm from the detector

origin) is less than 10 μm.

6.2 Length scale biases

Displacements of the reconstructed hits parallel to the track direction result in a charge-symmetric alteration

of the measured track curvature. In a tracker with a solenoidal magnetic field these can be induced by

changes in the radial or longitudinal length scale of the detector with little impact on the track fit quality.
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Figure 21: Sagitta biases versus 𝜂 (top) and 𝜙 (bottom) for the 𝐸/𝑝 method. The average (left) and the RMS (right)

of the sagitta bias is shown. The markers of the data points of the different years are slightly shifted in 𝜂 and 𝜙 for

better visibility. The error bars represent the statistical uncertainty.

If the actual radius of a detector module, 𝑅, is assumed to be 𝑅 (1 + 𝜀𝑟 ), then for small distortions

(|𝜀𝑟 | 	 1), the reconstructed momentum will be:

𝑝′T = 𝑝T (1 + 𝜀𝑟 )
𝑝′z = 𝑝z .

(26)

Equation (26) assumes that the length scale in the bending plane also expands by a factor (1 + 𝜀𝑟 ), which

implies that dimensions of sensitive detector modules would also expand by the same factor. If it is assumed

that detector modules do not expand in the bending plane then the reconstructed transverse momentum will

be biased by a factor of (1 + 2𝜀𝑟 ).
Similarly, if the actual longitudinal dimension of a detector module, 𝑧, is assumed to be 𝑧 (1 + 𝜀𝑧), the

reconstructed momentum will be :

𝑝′T = 𝑝T

𝑝′z = 𝑝z (1 + 𝜀𝑧) .
(27)
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Linear combinations of both the radial and longitudinal biases are also considered. It is worth noting that

there is a degeneracy between the effects of a bias in the magnetic field and a global scaling of the detector

(radial and longitudinal: 𝜀𝑠), as both lead to a momentum bias of the form 𝑝𝑝𝑝 (1 + 𝜀𝑠). Consequently, if 𝐵
is assumed to be 𝐵 (1 + 𝜀𝑠) the particle momentum scales as 𝑝𝑝𝑝 (1 + 𝜀𝑠).
The relationship between the reconstructed invariant mass of a particle decaying into two muons (𝑚′

𝜇𝜇),

and the true mass (𝑚𝜇𝜇), assuming that the radial and longitudinal biases in Eqs. (26) and (27) are both

small, is given by:

𝑚′2
𝜇𝜇 ≈ 𝑚2

𝜇𝜇 + 2𝐸+𝐸−
[ (
𝛽+T

)2 − 𝛽𝛽𝛽+T · 𝛽𝛽𝛽−T
]
𝜀𝑟 (𝜂+, 𝜙+)

+ 2𝐸+𝐸−
[ (
𝛽−T

)2 − 𝛽𝛽𝛽+T · 𝛽𝛽𝛽−T
]
𝜀𝑟 (𝜂−, 𝜙−)

+ 2𝐸+𝐸−
[ (
𝛽+z

)2 − 𝛽𝛽𝛽+z · 𝛽𝛽𝛽−z
]
𝜀𝑧 (𝜂+, 𝜙+)

+ 2𝐸+𝐸−
[ (
𝛽−z

)2 − 𝛽𝛽𝛽+z · 𝛽𝛽𝛽−z
]
𝜀𝑧 (𝜂−, 𝜙−) ,

where the 𝛽𝛽𝛽 = 𝑝𝑝𝑝/𝐸 is the velocity of the particle. This approximation is valid to first order in 𝜀.

In a simpler case, where only a global radial and longitudinal bias are present, the reconstructed mass is:

𝑚′2
𝜇𝜇 ≈ 𝑚2

𝜇𝜇 + 2𝐸+𝐸− [
𝛽𝛽𝛽+T − 𝛽𝛽𝛽−T

]2
𝜀𝑟

+ 2𝐸+𝐸− [
𝛽𝛽𝛽+z − 𝛽𝛽𝛽−z

]2
𝜀𝑧 ,

which, in the limit where the muon mass is ignored leads to

𝑚′2
𝜇𝜇 ≈ 𝑚2

𝜇𝜇 + 2𝑚2
𝜇𝜇𝜀𝑟 sin2 𝛼 + 2𝑚2

𝜇𝜇 𝜀𝑧 cos2 𝛼

≈ 𝑚2
𝜇𝜇 + 2𝑚2

𝜇𝜇

(
𝜀𝑠 + 𝜀𝑟 ′ sin2 𝛼

)
,

where

sin2 𝛼 = 𝐸+𝐸− [
𝛽𝛽𝛽+T − 𝛽𝛽𝛽−T

]2 /𝑚2
𝜇𝜇 , (28)

𝜀𝑠 = 𝜀𝑧 , and 𝜀𝑟 ′ = 𝜀𝑟 − 𝜀𝑧 is the difference between the radial and longitudinal components of the

momentum scale.6

Thus, by measuring the mass as function of sin2 𝛼 it is possible to differentiate between radial and scale

biases. Figure 22 shows the measured scale using 𝐽/𝜓 and 𝑍 decays into 𝜇+𝜇− in the barrel of the ID. The

results show a clear momentum scale bias but no significant radial scale (𝜀𝑟 ′) as the reconstructed mass is

constant as a function of sin2 𝛼.

An analysis using an iterative procedure similar to the 𝛿sagitta method, Eq. (24), is also performed. Here,

the momentum scale factor (𝜀𝑠) is computed and consequently used to update the momentum of the tracks

at the next iteration. This method allows biases to be measured as a function of any kinematic or geometric

parameter. The results as a function of the track 𝑝T are presented in Figure 23. The magnitude of the

momentum scale bias is observed to be constant as a function of track 𝑝T as expected from a length scale

or magnetic field strength bias.

6 For the massless case, defining cos2 𝛼 = 𝐸+𝐸− [
𝛽𝛽𝛽+z − 𝛽𝛽𝛽−z

]2 /𝑚𝜇𝜇 one obtains sin2 𝛼 + cos2 𝛼 = 1.
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Figure 22: Ratio of the measured mass to the reference as a function of sin2 𝛼. Due to event kinematics, 𝐽/𝜓 → 𝜇+𝜇−

events (left) cover the entire sin2 𝛼 range while 𝑍 → 𝜇+𝜇− events (right) cover a smaller range. Error bars represent

the statistical uncertainty. The red lines show the fit to Eq. (28) from which the values of 𝜀𝑠 and 𝜀𝑟 ′ are extracted.

The magnitude of the measured scale bias is consistent for the two studies, demonstrating that there is a

global momentum scale bias of 𝜀𝑠 ≈ −0.9 × 10−3. This result is in agreement with the momentum scale at

the ID for muons [38]. As previously highlighted, the origin of such a global momentum scale bias cannot

be unambiguously resolved by these studies. It should be noted that: the measurement of the absolute

scale of the magnetic field has an uncertainty, which is about four times smaller than the observed scale

bias [7].
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Figure 23: The measured momentum scale bias 𝜀𝑠 as a function of track 𝑝T. Error bars represent the statistical

uncertainty. Left: 𝐽/𝜓 → 𝜇+𝜇− decays; right: 𝑍 → 𝜇+𝜇− decays.
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7 Impact parameter biases

The weak modes of the alignment can also lead to a bias in the transverse (𝑑0) and longitudinal (𝑧0) impact

parameters. For example, a rotation of the IBL or radial distortions of the Pixel layers can lead to transverse

impact parameter biases. The quality of the detector alignment can be assessed by analysing impact

parameter biases as a function of track 𝑝T and 𝜂. For this study, events are selected using a combination of

single-jet triggers with several jet 𝑝T thresholds starting at 100 GeV. The standard ATLAS event cleaning

selection is applied, ensuring that all detectors were fully operational. In order to disentangle the biases due

to residual misalignment from those originating from the track reconstruction algorithms, recorded data

are compared with a dĳet Monte Carlo simulation sample generated with Pythia [47]. The primary vertex

of each selected event must have at least three tracks associated with it. Tracks are selected by requiring

them to be assigned to jets using ghost association [48], a procedure that treats them as four-vectors of

infinitesimal momentum magnitude during the jet reconstruction and assigns them to the jet with which

they are clustered. Jets are reconstructed using the anti-𝑘𝑡 algorithm [49] with radius parameter 𝑅 = 0.4. In

addition, tracks are required to have at least 9 silicon (Pixels + SCT) hits for |𝜂 | ≤ 1.65, at least 11 silicon

hits for |𝜂 | > 1.65, a maximum of 2 SCT holes7, no Pixel hole, 𝑝T > 3 GeV, |𝜂 | < 2.5, and an opening

angle Δ𝑅(track, jet) < 0.4 relative to the reconstructed jet axis. A track 𝑝T of 3 GeV corresponds to the

lowest momentum threshold typically used within the alignment to reduce MCS effects (see Section 3.1).

The impact parameters are obtained relative to the primary vertex by extrapolating the particle trajectory to

its position. This is particularly relevant for the longitudinal impact parameter, as the width of the luminous

region in the 𝑧 direction is very broad. The impact parameter biases are extracted by iteratively8 fitting

the distribution of impact parameters relative to the primary vertex with a Gaussian function within a

±2𝜎 range until the fitted 𝜇 and 𝜎 are stable within 1%. The resulting value of the Gaussian mean (𝜇)

represents the estimate of the impact parameter bias.

Figure 24 shows the transverse and longitudinal impact parameter biases as a function of the delivered

luminosity in Run 2. Data collected in 2016 have a period-dependent 𝑑0 bias of −4 μm (early 2016) and

+3 μm (late 2016). This bias was introduced by a change in the underlying geometry description of the

ATLAS ID and a misconfiguration of the beam-spot constraint.9 Data collected in 2017 and 2018 show

overall 𝑑0 biases of less than 1 μm. The longitudinal impact parameter bias is negligible and constant across

the years (below 0.5 μm). In Figures 25 and 26 the transverse and longitudinal impact parameter biases

are shown as function of the track transverse momentum and track 𝜂, respectively. The small bias in the

longitudinal impact parameter as a function of track 𝜂 is present in simulation and data and is consequently

not introduced by the track-based alignment because it is not applied to simulation (where perfect alignment

is assumed). The resulting bias has no significant effect on the ATLAS tracking performance as the

longitudinal impact parameter resolution is on the order of 100 μm for tracks with 𝑝T > 10 GeV.

7 A hole is defined as a missing hit in a module where a hit is expected, based on the extrapolation of the particle trajectory to the

module surface.
8 This procedure is adopted as the impact parameter distributions have long tails.
9 The impact parameters of tracks used in ATLAS physics analyses are corrected by a time-dependent constant to remove the

observed biases. In addition, this bias will be corrected in future data processing campaigns.
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Figure 24: The transverse (left) and longitudinal (right) impact parameter biases as function of the Run 2 delivered

luminosity. The red dotted line indicate the change in the underlying ATLAS ID alignment geometry description.

This splits the 2016 data in two periods. The grey dotted lines indicate the change of the data-taking years. The

∼ 4 fb−1 corresponding to 2015 data are not shown in this plot. Only statistical uncertainties are shown.
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Figure 25: The transverse (left) and longitudinal (right) impact parameter biases as function of the track 𝑝T. The

2016 data entries in this figure are taken from the second part of the 2016 data visible in Figure 24; the first part of

the 2016 data also show no impact parameter dependence on track 𝑝T.

37



η

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5

m
]

μ [〉 0d〈

10−

5−

0

5

10

Simulation

Data 2016

Data 2017

Data 2018

ATLAS
 = 13 TeVs

η

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5

m
]

μ [〉 0z〈

10−

5−

0

5

10

Simulation

Data 2016

Data 2017

Data 2018

ATLAS
 = 13 TeVs

Figure 26: The transverse (left) and longitudinal (right) impact parameter biases as function of the track 𝜂. The 2016

data entries in this figure are taken from the second part of the 2016 data visible in Figure 24; the first part of 2016

data also shows no impact parameter dependence on track 𝜂.
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8 Conclusion

This paper describes the precision alignment of the ATLAS Inner Detector (ID) for Run 2 and quantifies

the impact of alignment uncertainties on track parameter biases. The alignment procedure consists of

a track-based algorithm that minimises track-hit residuals. It calculates the track parameters at each

measurement surface and encodes the relationship between track-hit residuals and the alignment parameters

of each alignable structure. To resolve ambiguities, it imposes externally determined constraints on track

parameters, e.g. using tracks from resonance decays. The alignment procedure is performed at different

hierarchical levels, starting from the largest physical structures and proceeding to individual detector

modules or sensor elements. The number of degrees of freedom increases for each subsequent alignment

level. In total, more than 36 000 degrees of freedom are considered when aligning all silicon modules

(IBL, Pixel and SCT) and more than 700 000 degrees of freedom are added for the TRT.

It has been observed that operational conditions affect the positions of ID elements. The Pixel detector

moves rapidly upwards every time the data acquisition is activated. The staves of the IBL bow depending on

the temperature; the degree of variation depends on the thermal load and is a function of the accumulated

radiation dose and of the luminosity. The remaining detector structures are quite stable during an LHC fill;

the movements of individual modules in the barrel have an RMS at the micrometer level while those in the

endcap regions range from 2 μm to O(10 μm).

An automated alignment procedure that corrects for relatively rapid movements of the Pixel detector and

IBL and the relative positions of all of other subdetectors is executed for every LHC fill for which the

ID collects data. The detailed alignment of all the other structures (subdetectors, barrel, endcaps, layers,

disks, modules or wires) is determined in dedicated alignment campaigns. The impact of alignment weak

modes, namely distortions that leave the track fit quality largely unchanged and can bias the measured track

parameters, is minimised during these campaigns by employing external constraints on track parameters.

Independent measurements are performed to quantify potential biases, enabling them to be largely removed.

The residual sagitta bias and momentum scale bias after the full Run 2 alignment are reduced to less than

∼0.1 TeV−1 and 0.9×10−3, respectively. Remaining track parameter biases do not significantly impact

ATLAS physics analyses.
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Appendix

A Track fitting with multiple Coulomb scattering effects

The track fit can be improved by considering the charged particle scattering as it passes through material in

the detector. Knowing the detector material description, one can estimate and fit the scattering angles in

the sensor planes [50]. To include the effects of multiple scattering, terms are added directly to the track

𝜒2 as it is done in Eq. (3), which can be written as:

𝜒2
Track =

∑
𝑖

(
𝑟𝑖 (𝝉, 𝜽)
𝜎𝑖

)2

+
∑
𝑗

(𝜃 − 𝜃 𝑗)2

Θ 𝑗 𝑗
.

It should be noted that the residuals now also depend on the scattering angles, 𝜽 . The scattering expectation

value, 𝜃, is zero and its variance, Θ 𝑗 𝑗 , depends on the particle momentum and amount of material traversed.

The uncertainty of the 𝑖-th measurement is denoted by 𝜎𝑖 .

The 𝜒2 has to be minimised for 𝝉 and 𝜽 simultaneously. Defining the derivative of residuals with respect to

track and scattering parameters to be:

𝐺 ≡ 𝜕𝒓

𝜕𝝉
𝑆 ≡ 𝜕𝒓

𝜕𝜽

the derivatives of 𝜒2 with respect to the track and scattering parameters are:

1

2

d𝜒2

d𝝉
= 𝐺�Ω−1𝒓,

1

2

d𝜒2

d𝜽
= 𝑆�Ω−1𝒓 + Θ−1𝜽 .

Neglecting second-order derivatives of residuals, the second derivatives of 𝜒2 with respect to perigee and

scattering parameters are:

1

2

d2𝜒2

d𝝉2
= 𝐺�Ω−1𝐺,

1

2

d2𝜒2

d𝜽2
= 𝑆�Ω−1𝑆 + Θ−1,

1

2

d2𝜒2

d𝜽d𝝉
= 𝐺�Ω−1𝑆.

The above can be written down in a compact form using Eq. (4):

1

2

d𝜒2

d𝝅
= 𝐻�𝑉−1𝝆,

1

2

d2𝜒2

d𝝅2
= 𝐻�𝑉−1𝐻.
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