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With the advent of increasingly elaborate experimental techniques in physics, chemistry and materials

sciences, measured data are becoming bigger and more complex. The observables are typically

a function of several stimuli resulting in multidimensional data sets spanning a range of experimental

parameters. As an example, a common approach to study ferroelectric switching is to observe effects of

applied electric field, but switching can also be enacted by pressure and is influenced by strain fields,

material composition, temperature, time, etc. Moreover, the parameters are usually interdependent, so

that their decoupling toward univariate measurements or analysis may not be straightforward. On the

other hand, both explicit and hidden parameters provide an opportunity to gain deeper insight into the

measured properties, provided there exists a well-defined path to capture and analyze such data. Here,

we introduce a new, two-dimensional approach to represent hysteretic response of a material system to

applied electric field. Utilizing ferroelectric polarization as a model hysteretic property, we demonstrate

how explicit consideration of electromechanical response to two rather than one control voltages

enables significantly more transparent and robust interpretation of observed hysteresis, such as

differentiating between charge trapping and ferroelectricity. Furthermore, we demonstrate how the new

data representation readily fits into a variety of machine-learning methodologies, from unsupervised

classification of the origins of hysteretic response via linear clustering algorithms to neural-network-

based inference of the sample temperature based on the specific morphology of hysteresis.
Introduction

Nano- and mesoscale electromechanical behavior underpins
the performance of sensors, actuators, energy harvesters,
ferroelectric eld effect transistors and electrocaloric devices.1–9

Interesting phenomena arise from local defect chemistry,
chemical domains and interfaces such as domain walls, grain
boundaries and the surface itself, necessitating local probing
techniques to study functional material response.10–20 There-
fore, piezoresponse force microscopy (PFM) and related tech-
niques that probe piezoelectric properties on the nm to mm
scale have become increasingly popular.21–26 In these
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techniques, AC and DC voltages are applied to a conductive tip
in contact with the sample surface and the electromechanical
response of the surface to the voltage stimuli is detected. The
periodic cantilever deection Dac in response to the applied
voltage provides information on the strength of electrome-
chanical interaction and the direction of the ferroelectric
polarization.

Typically, electromechanical response is studied as
a univariate function of DC voltage, producing a characteristic
hysteresis loop which is reminiscent of macroscopic
polarization-switching measurements. Hysteresis exhibits vari-
ability, however, with the number of voltage cycles, time and
temperature. In order to analyze and extract meaning from
these data sets, machine learning has become increasingly
important.27–34 Dimensionality reduction without loss of
important information, de-noising, clustering and identifying
characteristic features in data sets have been achieved using
supervised and unsupervised machine-learning algorithms.

Despite the growing number of successful statistical anal-
yses, the previous efforts to probe and analyze hysteresis
attempt to separate interdependency of control parameters,
typically by varying one parameter while keeping the rest of the
conditions constant (for example measuring piezoresponse at
a xed voltage along the switching cycle – so-called switching
Nanoscale Adv., 2020, 2, 2063–2072 | 2063
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spectroscopy PFM35). To what extent such decoupling of control
variables can be systematically achieved is up to debate. But
more importantly, it is natural to ask whether there exist more
encompassing approaches, where coupling of control parame-
ters can be explicitly investigated.

For a model setting, we focus on hysteresis measured with
the technique of contact Kelvin probe force microscopy36,37

(cKPFM). cKPFM is conceptually analogous to commonly used
open-loop Kelvin probe force microscopy (KPFM), albeit with
the tip in mechanical contact with the measured surface. As is
the case with KPFM, cKPFM detects net changes of electrostatic
forces, this time acting on the leads of the capacitor, that
sandwiches the studied dielectric between the scanning probe
and the bottom electrode. Although less sensitive than KPFM
owing to much larger contact stiffness in comparison to the
unclamped cantilever, the demonstrated utility of cKPFM is to
tease out electrostatic contributions to the net force acting on
the capacitor, which can be complementary or competing to
other forces – for example piezoelectric deformation of the
dielectric. Therefore, cKPFM found application in distinguish-
ing between piezoelectric and electret response of dielectrics to
applied voltage,38 particularly relevant for new and/or nanoscale
materials, where piezoelectric response can be small and elec-
tromechanical properties unknown.

Here we introduce a two-dimensional (2D) representation of
the eld-induced hysteresis measured by cKPFM, which
explicitly considers two-parameter dependence of the net
measured signal on the “write” and “read” bias signals.
Remarkably, just the transition to 2D dependencies and repre-
sentation vastly simplies qualitative interpretation of the
measured signal, clearly separating, for example, ferroelectric
and electret behaviors. Subsequently, we demonstrate how this
2D approach holistically facilitates application and interpreta-
tion of a variety of machine-learning algorithms, including
articial neural networks (ANN), that extend the applicability of
this methodology to detect incomplete switching and
ferroelectric-relaxor phase transitions with minimum human
input. Even inference of the temperature of the sample from its
hysteretic response appears to be possible with fairly simple
neural networks. We believe that this data representation
technique will help advance the experimental methodologies of
hysteretic spectroscopy and spectro-microscopy to characterize
memory functions and hysteretic materials in general and will
also help bridge the theory and experiment in a more statisti-
cally robust setting.

Results and discussion

Hysteresis loops measured with cKPFM represent a basic
example of dependency of the response on a combination of two
electrical signals – one required to “write” the hysteretic state of
the system, and the other one – to “read” the state. And,
somewhat ironically, this two-parameter dependence presents
one of the primary difficulties with observational interpretation
of the cKPFM data. Indeed, a successful interpretation requires
considering not only the opening of the hysteresis loop, but also
the evolution of the loop with varying read-bias. Without
2064 | Nanoscale Adv., 2020, 2, 2063–2072
rigorous statistical metrics, such an interpretation is quite
challenging, especially in cases where electromechanical and
electrostatic signal contributions are of comparable strength.
This is particularly true for intermediate cases where subtle as
well as dramatic features may arise in the hysteresis loop.

To demonstrate our approach, we utilize cKPFM response for
different ratios of Vread and Vwrite on a model ferroelectric lead
zirconium titanate (PbZr0.2Ti0.8O3, PZT) lm before discussing
typical cKPFM response on a non-piezoelectric amorphous
hafnium dioxide (aHfO2) sample, where electrostatic effects can
lead to observation of hysteresis loops in standard switching
spectroscopy PFM.39 In a next step, we analyze spatially varying
cKPFM response measured on macroscopically pre-poled
lithium niobate (LN) that is subject to strong electrostatic
interactions typical for that ferroelectric material.10 To further
corroborate the applicability of our analysis approach we
process cKPFM response measured across the ferroelectric-
relaxor phase transition on multiple grains of lanthanum zirc-
onate titanate (PLZT), which even in the ferroelectric state
exhibits peculiarities in hysteresis loop, as commonly observed
for relaxors.31

Fig. 1(a) schematically depicts the DC voltage waveform used
in cKPFM, which consists of triangular write pulses Vwrite to
initiate ferroelectric switching and a probe voltage Vread that is
applied between the write pulses and stepwise changed with
every write cycle. Therefore, the measured response is a func-
tion of read and write voltage and spans a 2D parameter space
for each probed location. The cKPFM data (Fig. 1) were
measured on PZT, one of the most common ferroelectrics.

In the previous representation of the cKPFM data (Fig. 1(b)),
response Dac is depicted versus Vread and data acquired during
each Vwrite step is overlaid on the same plot, with different line
colors indicating the preceding write step.37,39 Interpretation of
these diagrams, however, can be challenging. cKPFM diagrams
typically show 40–100 lines in one graph, which oen overlap
and can therefore be hard to interpret. Moreover, it can be
difficult to exactly distinguish between color nuances that
correspond to the preceding Vwrite step. The classication as
ferroelectric switching or electrostatically driven artefacts,
which is oen the main reason to apply this technique, has
been only vaguely and qualitatively dened as the presence/
absence of formation of “two bands” and the cKPFM curve
shapes resembling a hysteresis loop, as opposed to electrostatic
artefacts which would appear as one band of straight lines.10,39

Such an assignment is highly dependent on the probing versus
writing voltage ratios, as well as the vagueness of the denition
of a “good” hysteresis loop.

Our proposed alternative is a 2D representation of the
cKPFM experiment, which (1) unfolds the individual hysteresis
loops so that they are a function of time or voltage step, rather
than applied bias; and (2) stacks the progression of the
unfolded loops into a matrix, where each row corresponds to
a certain Vread and each column to a certain Vwrite step. The
unfolding and stacking procedure is shown in Fig. 1(c and d).
The strength of the response at each Vread/Vwrite parameter pair
value is represented by the color scale. The magnitude of Vwrite
is indicated by the white, dashed triangular line for reference
This journal is © The Royal Society of Chemistry 2020
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Fig. 1 cKPFM on ferroelectric PZT. (a) Schematic of sequence of DC voltage pulses applied during cKPFM. Vwrite pulses are increasing and
decreasing in a triangular envelope, whereas the Vread is applied between write pulses and sequentially increased with each cycle. (b) Traditional
cKPFM diagram where response Dac is plotted as a function of Vread with Vwrite steps color coded. (c) Hysteresis loop extracted from Vread ¼ 0 as
a function of Vwrite (top) and unfolded as a function of Vwrite step #. (d) Unfolded loops for all Vread stacked along a third dimension. These loops
are projected on a 2D map where Dac is represented by the color scale, rows correspond to response during a certain Vread and columns
correspond to Vwrite steps. (e) cKPFM with decreased Vread window as indicated in the green box in panel (d), (f) cKPFM map with a further
decreased the probing window corresponding to the blue box in panel (e). The white dashed line in cKPFM maps in panels (d–f) indicate Vwrite.
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purposes. Slicing the cKPFM map along the columns corre-
sponds to Dac as a function of Vread, i.e., the traditional cKPFM
representation. A single slice at Vread ¼ 0 (followed by conver-
sion of the x-axis to Vwrite) corresponds to the oen used
“remnant” switching spectroscopy hysteresis loop. The diag-
onal slice at Vread¼ Vwrite produces the “in-eld” hysteresis loop.
This journal is © The Royal Society of Chemistry 2020
Of course, many other forms of 1D hysteresis can also be
created, via cuts in arbitrary directions in Vread–Vwrite space.

Therefore, right away, the cKPFM map generalizes the
measurement of the hysteretic response of the dielectric to
applied stimuli, encompassing, in principle, the response to all
possible combinations of read-write waveforms.
Nanoscale Adv., 2020, 2, 2063–2072 | 2065
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For the specic case of PZT, the cKPFM map shows sharp
horizontal and vertical edges where the measured Dac abruptly
changes, indicating ferroelectric switching events. Obviously,
because Vwrite and Vread both apply electric eld across the
dielectric, the response is not fully independent as a function of
these parameters. For example, if Vread exceeds the coercive
voltage, polarization will necessarily switch into the preferred
orientation. This is shown in Fig. 1(d), (e) and (f), where Vread
was changed from values between �4 V (Fig. 1(e)) and �2 V
(Fig. 1(f)), while Vwrite was kept the same triangular wave
between �10 V. The coercive voltages are approximately 4 V for
the lm (Fig. 1(c)). Thus, switching is induced by both Vread and
Vwrite in Fig. 1(e) whereas in Fig. 1(f), only Vwrite is ramped above
the coercive voltage. This is not, however, a limiting factor for
statistical analysis, since a properly trained classier can easily
incorporate the additional information on when switching
occurs during the Vwrite and Vread steps. One point of potential
inquiry is the time-dependence of the cKPFMmaps. We will not
address it here, but naturally there is always some level of time-
dependence for hysteretic processes, and under the right
approach this will enhance the level of understanding even
more. For now, we will proceed with the assumption that
cKPFMmaps are not strongly time-dependent, representing the
case of measurement much slower than the characteristic
response time of the material.

The immediate utility of cKPFM maps is that they represent
spectral information as images. Therefore, the data can be more
intuitive to interpret for the human mind and is more suitable
for image-based deep-learning algorithms that are becoming
increasingly important. To illustrate some of these advantages,
we begin with the simplest task of data interpolation.
Fig. 2 Maps of experimental cKPFM data, interpolated data and the gradie
where ferroelectric switching events are characterized by the sharp cont
for non-ferroelectric aHfO2 where Dac changes gradually dependent on

2066 | Nanoscale Adv., 2020, 2, 2063–2072
For experimental reasons, such as acquisition time and wear
of the conductive tip coating, response maps can only be
acquired for a limited amount of sampling points in voltage
space. 2D interpolation, however, provides higher-resolution
maps from which gradients can be obtained to further high-
light response function characteristics. Interpolation can be
calculated with a wide variety of algorithms (e.g., Gaussian
progress regression, linear, cubic, spline), many of which are
conveniently implemented in open-source packages such as
scikit-image, scipy.interpolate, etc.40,41

Interpolation of cKPFM maps for ferroelectric PZT and non-
ferroelectric aHfO2 are shown in Fig. 2. A simple check of the
quality of the interpolation, other than the 2D image itself, is
seen in the extracted 1D remnant hysteresis loop (ESI, Fig. S1†),
revealing arguably excellent quality of interpolated values. With
the interpolated values, one can extract gradients of the
dielectric response to Vread and Vwrite. The gradients present
a transparent and simple approach to differentiate character-
istic behaviors, e.g., to compare piezoresponse of ferroelectric to
electrostatic forces of a dielectric.

Fig. 2 shows experimental data, interpolated maps and the
gradients calculated from the interpolated data for ferroelectric
PZT using Vread amplitudes of 2 V and Vwrite amplitudes of 10 V
(Fig. 2(a)) and non-ferroelectric aHfO2 (Fig. 2(b)). The corre-
sponding gradients reveal sharp edges in the x-gradient for
ferroelectric switching and little contrast in the y-gradient, as
expected, based on abrupt switching of the sign of the piezo-
electric response at specic voltages on one hand, and weak
dependence of piezoelectric response with applied voltage on
the other. A composite gure showing cKPFM maps of experi-
mental data, interpolated data, x- and y-gradients for PZT upon
applying different Vread and Vwrite ratios is shown in the ESI,
nts in x- and y-direction calculated from interpolatedmaps. (a) For PZT
rast transition corresponding to thin lines in the x-gradient map and (b)
Vread and Vwrite, resulting in broad bands in the x-gradient map.

This journal is © The Royal Society of Chemistry 2020
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Fig. S2.† An interesting case is the hysteresis of aHfO2, which
previously was assigned to transient charging of the probed
volume by rechargeable traps.36 The aHfO2 cKPFM map is
sharply contrasting that of a ferroelectric. Fig. 2(b) shows that
there is no abrupt change of contrast in the x-direction (of
varying Vwrite), but rather a gradual wave-like modulation of the
response along the y-direction (of varying Vread). The corre-
sponding gradients in x-direction are very smooth (unlike the
sharp transitions of the ferroelectric case). Yet, there is also
a notable feature in the y-gradient, corresponding to the posi-
tion of the contact potential minimum, that shis with applied
Vwrite. Applying higher read and write voltages to increase
charge injection does not signicantly change the overall
contrast of experimental and interpolated data maps and x-
gradients still do not exhibit sharp vertical contrast but rather
exhibit V-shaped tilted lines of similar values as the background
(see Fig. S3 in the ESI†). Therefore, cKPFM maps in the absence
of polarization switching as in the presented aHfO2 data are very
clearly distinguishable from the case of ferroelectric switching,
and reveal useful features, such as the modulation of the
contact potential difference.

Due to the distinctive features of non-switching versus
switching cKPFM data, statistical clustering techniques can be
utilized to identify functional behavior in large data sets
dependent on material, spatial region within a sample,
temperature or time. In general, clustering algorithms nd
similarities in data and use those similarities to group data.
Two examples for suitable methods to break down the different
types of detected response are hierarchical agglomerative clus-
tering (HAC) and density based spatial clustering (DBSC).42
Fig. 3 Hierarchical agglomerative clustering. (a) Dendrogram indicating
vertical lines), (b) cKPFM maps of mean response for clusters indicated
where no polarization switching occurs either because a Vwrite below the
response is purely electrostatic (cluster #6). Cluster #2 groups data of s

This journal is © The Royal Society of Chemistry 2020
These algorithms can either be applied directly to the measured
response or aer de-noising and dimensionality reduction, e.g.,
through principal component analysis (PCA).

HAC initially assigns a cluster to each cKPFMmap in a given
data set. In a next step, the most similar clusters where the
response is closest in the feature space are paired. These
grouped clusters are then clustered again dependent on their
similarities. Clustering into a decreasing number of clusters
containing an increasing amount of cKPFM maps is continued
iteratively until all the data is grouped into two main clusters.
We apply HAC directly to a data set consisting of cKPFM data for
three types of behavior: (i) electret response measured on
aHfO2, (ii) ferroelectric switching measured on PZT and (iii)
response from ferroelectric PZT upon applying DC voltages
below the coercive voltage, which does not initiate polarization
switching. The total number of data sets was 3000, comprising
400 measured on PZT upon switching with different ratios
Vread/Vwrite ratios, 100 data sets for sub-coercive voltages on PZT
and 2500 measured on aHfO2 representing the electret
response. The results of HAC are depicted in Fig. 3. The
dendrogram in Fig. 3(a) shows the relationship between the
identied clusters with the vertical lines indicating similarities
between the grouped data. The shorter the vertical line, the
more similar is the response. The numbers in parentheses on
the x-axis correspond to the number of cKPFM data sets within
the clusters associated with the vertical lines. The two most
distinct clusters are indicated in blue in the dendrogram and
represent the cKPFM data in Fig. 3(b) for point 1 and 2 at
a numeric distance of 150. Clearly, cluster #1 exhibits non-
ferroelectric behavior similar to the map for aHfO2 depicted
distribution of clusters and their similarities (indicated by the length of
by color and numbers in panel (a). Cluster #1 identifies characteristics
coercive voltage is applied to a ferroelectric sample (cluster #5) or the
witching events occurring at different Vwrite steps (cluster #3 and #4).

Nanoscale Adv., 2020, 2, 2063–2072 | 2067

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9na00731h


Nanoscale Advances Paper

O
pe

n 
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d 
on

 1
5 

A
pr

il 
20

20
. D

ow
nl

oa
de

d 
on

 6
/2

3/
20

20
 5

:1
0:

08
 A

M
. 

 T
hi

s a
rti

cl
e 

is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
Li

ce
nc

e.
View Article Online
in Fig. 3(b). Contrary, cluster #2 corresponds to ferroelectric
switching associated with the sharp contrast as discussed
previously. Thus, unsupervised clustering immediately answers
the proverbial “To switch or not to switch” question, which
continues to dominate the studies of nanoscale ferroelectrics,
2D materials and other emerging members of the ferroelectric
family, where the signals are typically quite weak.38

If we further look into the next level of clustering, however,
both clusters #1 and #2 separate into methodologically mean-
ingful and useful categories. Cluster #1 correctly subdivides
cKPFM data where no polarization switching occurs either due
to sub-coercive voltages (cluster #5) or a non-ferroelectric
sample where contrast is governed by electrostatic interac-
tions (cluster #6), as shown in Fig. 3(b). Indeed, although the
material is itself ferroelectric, this fact cannot be inferred with
sub-coercive voltage spectroscopy, which generates no switch-
ing by electric eld (see maps in Fig. S2,† rst row). At the same
Fig. 4 Dimensionality reduction and density based spatial clustering of
scree plot indicating the data explained with each PCA component. (c) 3
clusters. (d) Spatial map of DBSC cluster assignment, (e) maps of mean re
switching, cluster #1 and #2 are characteristic for electrostatic response

2068 | Nanoscale Adv., 2020, 2, 2063–2072
time, cluster #2, partitions the data depending on the extent by
which Vread exceeds the coercive voltage (cluster #3 and #4),
which is a valuable methodological distinction, as discussed
earlier. Due to the hierarchical approach, clusters #3 to #6 can
be subdivided into more clusters that show similar behavior to
each of the parent clusters.

Apart from grouping data of different materials, clustering is
also able to identify local variability of hysteretic response
within a single sample. To this end, we combine PCA and
clustering to categorize cKPFM data measured on a spatial grid
of 40 � 40 pixels on LN. The LN sample had been macroscop-
ically pre-poled and dynamic response on this material is typi-
cally subject to strong electrostatic interactions even in the
presence of polarization switching.10

In a rst step, PCA projects cKPFM maps into a lower
dimensional feature space.28,42 This way, component #0
contains the most information on variance in the data, followed
cKPFM measured on LN. (a) Score maps of PCA components and (b)
D representation of PCA components #0 to #2, color indicates DBSC
sponse for each cluster. Cluster #0 (blue) corresponds to ferroelectric
.

This journal is © The Royal Society of Chemistry 2020
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by component #1 and so on. PCA scores are a projection of the
data points on the found eigenvectors. Fig. 4(a) shows scores for
PCA components #0 to #3 represented as 2D cKPFM maps as
discussed previously. The scree plot (Fig. 4(b)) shows that the
variance within the data is successfully captured by about 3
components, with PCA components #0 through #2 accounting
for almost 100% of total variance.

In a next step, DBSC is applied to the rst three PCA
components. DBSC algorithms group data based on the density
of data points. Unlike k-means, where the user dened number
of clusters dominates the clustering result, the most important
Fig. 5 Training ANN autoencoder to represent cKPFM data. (a) Experime
the ferroelectric-relaxor phase transition. (b) The graph of autoencode
mapping into 4 layer perceptron (2), rectifying activation (3), mapping in
corresponds to mean-squared loss layer. The dimensionality of tensors
cKPFM maps corresponding to cKPFM data from single pixels at the indi
was performed in 4D latent space, for representation purposes only vec

This journal is © The Royal Society of Chemistry 2020
parameters in DBSC are the maximum distance between two
data points to be considered in the same neighborhood and the
minimum number of datapoints within a neighborhood. DBSC
on the rst three PCA components identied 3 clusters (shown
in blue, red and green) in Fig. 4(c). Reverting back to the original
grid of points across the LN surface, we observe that the clus-
tering identies distinct hexagonal areas (red) on the surface,
while the small green cluster is primarily at the boundary of this
area. This observation matches the history of the sample, which
was oriented in +z direction and macroscopically pre-poled in
hexagonal areas with �z polarization orientation.10 The mean
ntal cKPFM data on PLZT measured at 7 different temperatures across
r network, starting with flattening of the input array (1), followed by
to 4 layer perceptron (4), sigmoid activation (5) and reshaping (6). “MS”
is shown above the graph edges. (c) Randomly chosen measured and
cated temperature, (d) DBSC on resulting encoded vectors. Clustering
tor 1 to 3 are plotted in the 3D graph.
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response for each cluster is shown in Fig. 4(e). Clearly, the
difference between the clusters corresponds to switching
(cluster #0) and non-switching (cluster #1 and #2) behaviors
within the applied voltage range. Note that while no polariza-
tion switching occurs for these clusters, the similarity to cKPFM
maps acquired on aHfO2 indicates charge injection and strong
electrostatic contributions to the measured signal. The not
assigned data points appear to be a mixture between switching
and non-switching characteristics and correspond to data
points at the decision boundaries in Fig. 4(c). Apart from HAC
and DBSC, other algorithms like k-means (e.g., Li et al.,32 Neu-
mayer et al.31) can be used to group response to nd trends, e.g.,
dependent on material, location, temperature, etc.

Successful differentiation of switching properties via
machine learning of cKPFM maps motivated us to apply non-
linear clustering methods, such as neural networks, that
could potentially reveal even more details of dielectric behavior.
Moreover, while previously discussed clustering algorithms
implicitly assume linear separability between members of
different clusters in Euclidian space, multilayer perceptron
ANNs are able to separate data where this requirement is not
fullled.43

First, we trained an autoencoder network to reveal how
effective simple ANN structures are at capturing and repro-
ducing cKPFM maps. Subsequently, we clustered the maps into
characteristic types of behavior, using the autoencoder's latent
space as a low-dimensional representation of the cKPFM data-
set. We utilized temperature-dependent cKPFM data across the
ferroelectric-relaxor phase transition of PLZT.31 The electrome-
chanical response of relaxor ferroelectrics can be particularly
challenging to analyze due to their peculiarities in hysteresis
loops, even in the ferroelectric state.44 The proximity of the
phase transition point, however, allows us to see how effective
machine learning is in capturing the relevant changes of the
hysteretic response.

The experimentally acquired cKPFM maps are depicted in
Fig. 5(a), with the temperature as a third dimension. Fig. 5(b)
shows the topology of the autoencoder network ANN. We
intentionally minimized the complexity of the network, which
essentially consists of two sequential multiperceptrons (layers 2
and 4), separated by non-linear activation layers. Yet remark-
ably, such a network can efficiently capture a high level of detail
in the cKPFM map, as shown in Fig. 5(c), where we compare
a random selection of measured cKPFM maps extracted at
different locations and temperatures to their reconstructions by
the trained autoencoder.

Subsequently, we truncated the autoencoder to layer 5, so as
to project the measured cKPFM maps onto the encoder's latent
4D space – a common practice for such techniques.

Equally noteworthy is that ANNs can then be used to infer
certain experimental conditions from the cKPFM map. To this
end, we trained a linear network shown in Fig. S4(a)† to predict
the temperature of the sample from the cKPFM map, using one
subset of the temperature-dependent data-set for training of the
cKPFM – temperature relationship, and another subset for
validation.
2070 | Nanoscale Adv., 2020, 2, 2063–2072
As seen in Fig. S4(b),† the network can not only predict the
data for the low (5 �C) and high (95 �C) temperatures with a high
degree of certainty, but it is also effective in partitioning the
whole data set into 5 �C increments. The least accurate
predictions (with an accuracy of �70%) correspond to temper-
atures of �80 �C. But even in this case, the prediction error
concentrates within �5 �C proximity of the given temperature.

Given the simplicity of the networks employed, we can
readily envision a rich spectrum of applications for this type of
machine learning, enabled by increasing complexity as well as
exibility of the network functions – for example with the user
of convolutional variational autoencoders, as well as a platform
for matching models of the electromechanical response to
observations.

Conclusions

In conclusion, we introduced a 2D representation of electro-
mechanical response measured by scanning probe microscopy
on ferroelectric and electret samples and demonstrated the
ability of machine learning algorithms to distinguish between
functional material characteristics. The two-dimensional maps
are much easier to interpret by qualitative inspection, than the
corresponding one-dimensional representations of dielectric
and hysteretic response, and they provide a fertile opportunity
for machine-learning techniques to capture and infer material
properties. In particular, we provide now statistically robust and
automated differentiation between electrostatic charging and
ferroelectric switching, which is particularly important for the
emerging elds of nanoscale ferroelectrics and energy efficient
electronics. Moreover, even simple neural networks trained on
this representation can detect phase transitions across distinct
dielectric properties and even infer experimental parameters.
While discussed here for cKPFM data, the new representation
and its analysis can be extended for other dielectric and elec-
tromechanical spectroscopy measurements, such as rst-order
reversal curves or relaxation data. Moreover, the representa-
tion is completely general, and can be easily applied to any
dynamic and hysteretic response, with likely effectiveness in
systematic analysis of magnetic and resistive hysteresis, as well
as higher dimensionality of the measurement, for example to
capture relaxation behavior in time as a function of temperature
and applied voltages. Overall, we believe that higher dimen-
sional data representation coupled with machine learning will
provide numerous advances in microscopy and spectroscopy,
particularly in the areas of noisy and complex response as well
as theory-experiment matching.

Methods

The 150 nm PbZr0.2Ti0.8O3 thin-lm was grown on 25 nm of
SrRuO3 bottom electrode and DyScO3 (110) single-crystal
substrate via pulsed laser deposition. With use of a Kr–F exci-
mer laser (Coherent LPX-300), the SrRuO3 bottom electrode was
rst deposited at a heater temperature of 640 �C in a dynamic
oxygen-partial pressure of 100 mTorr with a laser repetition rate
and uence of 14 Hz and 1.23 J cm�2, respectively. Next, the
This journal is © The Royal Society of Chemistry 2020
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chamber was adjusted to a heater temperature of 630 �C and
dynamic oxygen-partial pressure of 200 mTorr before depos-
iting 150 nm PbZr0.2Ti0.8O3 at a laser repetition rate and uence
of 2 Hz and 1.43 J cm�2, respectively. Lastly, the ferroelectric
heterostructure was cooled to 25 �C at 5 �C min�1 under a static
oxygen pressure of �700 Torr.

See references for details on the aHfO2,39 LN10 and PLZT31

samples.
cKPFM was measured using Nanosensor PPP-EFM tips

(aHfO2) or Budget sensors (all other samples) with a nominal
force constant around 3 N m�1 on commercial atomic force
microscopes (aHfO2: Bruker Icon, lithium niobate: Asylum
Research MFP-3D, PLZT and PZT: Asylum Research, Cypher).
Custom LabView codes and National Instruments data acqui-
sition hardware was used to acquire cKPFM data.

All analysis was performed in Python45 and Mathematica
(ANN).
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