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A search for new-physics resonances decaying into a lepton and a jet performed by the ATLAS

experiment is presented. Scalar leptoquarks pair-produced in 𝑝𝑝 collisions at
√
𝑠 = 13 TeV

at the Large Hadron Collider are considered using an integrated luminosity of 139 fb−1,

corresponding to the full Run 2 dataset. They are searched for in events with two electrons or

two muons and two or more jets, including jets identified as arising from the fragmentation of

𝑐- or 𝑏-quarks. The observed yield in each channel is consistent with the Standard Model

background expectation. Leptoquarks with masses below 1.8 TeV and 1.7 TeV are excluded in

the electron and muon channels, respectively, assuming a branching ratio into a charged lepton

and a quark of 100%, with minimal dependence on the quark flavour. Upper limits on the

aforementioned branching ratio are also given as a function of the leptoquark mass.
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1 Introduction

Leptoquarks (LQs) are hypothetical colour-triplet particles that carry both baryon and lepton quantum

numbers (𝐵 ≠ 0, 𝐿 ≠ 0). As such, LQs couple simultaneously to both quarks and leptons, enabling direct

transitions between the two. The spin of a LQ state is either 0 (scalar LQ) or 1 (vector LQ), and only the

former is considered in this paper. Because of their SU(3) and SU(2) charge (colour and weak isospin,

respectively), LQs can mediate flavour-changing neutral currents, and enable the violation of lepton flavour

universality, which has been suggested as an explanation of recent measurements of 𝐵-meson decays [1–7].

New-physics models involving LQs might also resolve several interesting physical phenomena observed in

nature. For instance, LQs can be used to explain the origins of the neutrino masses [8–11], as well as the

origins of CP violation, thereby explaining the observed matter/antimatter asymmetry in the universe [12,

13]. In addition, LQs could provide a satisfying connection between the apparent symmetry of lepton and

quark generations, as well as unification of the electromagnetic and weak forces at high energy [14, 15].

At the LHC, the pair production of LQs is possible via gluon–gluon fusion and quark–antiquark annihilation,

as shown in Figure 1, including strong and lepton 𝑡-channel exchange production [16]. Only the lowest

order is shown for the primary mechanisms by which LQs can be pair produced at the LHC, gluon–gluon

and quark–antiquark initiated. The production cross-section largely depends only on the mass of the LQ,

𝑚LQ. The cross-section is taken to be equivalent to that calculated [17–20] for the direct pair production

of top squarks (𝑡), the supersymmetric partners of the top quark, as both are massive, coloured, scalar

particles with the same production modes.1 Single production in association with a lepton is also possible,

but the cross-section is model-dependent and it is not considered in this paper.

LQs are assumed to couple to the quark–lepton pair via a single Yukawa interaction, with decays involving

either charged leptons or neutrinos. The couplings are determined by two parameters, the model parameter

𝛽 and the coupling parameter 𝜆. The coupling to the charged lepton is given by
√
𝛽𝜆 and the coupling to

the neutrino by
√

1 − 𝛽𝜆. Only the case of decays via electrons and muons is addressed in this paper. A

traditional approach to LQ decay (such as in the Buchmüller–Rückl–Wyler model [22]), is to assume that

LQs interact only with leptons and quarks of the same generation. This paper relaxes that restriction and

considers cross-generational LQ decays. While the results are interpreted assuming one decay mode at a

time (100% branching ratio, B = 1), LQs with cross-generational decays might provide a possible solution

to the anomalies in 𝐵-meson decays as observed by LHCb [23] if mixed decays into charged leptons (e.g.

LQ → 𝑏𝜇 and → 𝑠𝜇) are allowed. The couplings to leptons and quarks are small such that LQs have

narrow decay widths (< 10% of 𝑚LQ) and on-shell production dominates.

This paper presents a dedicated search for the pair production of LQs using the complete Run 2 dataset

of 139 fb−1 of proton–proton (𝑝𝑝) collision data with
√
𝑠 = 13 TeV. Events are selected by requiring an

oppositely charged electron or muon (ℓ = 𝑒, 𝜇) pair and at least two jets that may be identified as originating

from the fragmentation of 𝑐- or 𝑏-quarks (referred to as 𝑐-jets and 𝑏-jets, respectively) using dedicated

tagging algorithms. The LQ decay channels that are searched for are therefore 𝑒𝑞, 𝜇𝑞, 𝑒𝑐, 𝜇𝑐, 𝑒𝑏, and 𝜇𝑏,

where 𝑞 is a 𝑢-, 𝑑- or 𝑠-quark. The results are presented as a function of 𝑚LQ. This paper reports the first

dedicated ATLAS search for cross-generational LQ decays using 𝑐- and 𝑏-jet identification.

The most recent searches for scalar leptoquark pairs from ATLAS and CMS were performed using

36.1 fb−1 of integrated luminosity at a 13 TeV centre-of-mass energy. A search by ATLAS for first- and

1 Recent calculations [21] show that diagrams involving 𝑡-channel lepton exchange might lead to corrections to the total

cross-section at the percent level. Those are not taken into account for the interpretation of the results, but effects are expected

to be within the uncertainties of the calculated cross-sections [17–20].
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Figure 1: The primary mechanisms by which LQs can be pair produced at the LHC, gluon–gluon and quark–antiquark

initiated, are shown.

second-generation LQs [24] did not use 𝑏-tagging in the signal regions and so excluded LQs decaying

with 100% branching ratio (B) into 𝑒𝑄 or 𝜇𝑄, where 𝑄 = 𝑢, 𝑑, 𝑠, 𝑐 or 𝑏, below a mass of 1400 GeV.

CMS has also searched for first-generation [25] and second-generation [26] LQ pairs, excluding masses

below 1435 GeV and 1530 GeV respectively for B = 1. ATLAS has searched for third-generation up-

and down-like LQ pairs, decaying into 𝑡𝜈/𝑏𝜏 or 𝑏𝜈/𝑡𝜏 [27] with limits on LQ masses up to 1100 GeV.

CMS has excluded third-generation LQs decaying into 𝜏𝑡 [28] for 𝑚LQ < 900 GeV and 𝜏𝑏 [29] for

𝑚LQ < 1020 GeV, and cross-generational LQ decays into 𝜇𝑡 [30] for 𝑚LQ < 1420 GeV. Searches for new

physics in ℓ+𝑏-jets events have also been performed by ATLAS using 36.1 fb−1 of Run 2 data, targeting

𝐵 − 𝐿 𝑅-parity-violating supersymmetric models, and top squarks in particular [31]. As the production

cross-section and decay modes of top squarks are equivalent to those of LQs, the exclusion limits on 𝑚
𝑡

can be directly translated into 𝑚LQ constraints. That search excludes top squarks with masses between 600

and 1500 GeV depending on the branching ratio into charged leptons and 𝑏-quarks.

2 The ATLAS detector

The ATLAS detector [32] is a multipurpose particle physics detector with a forward–backward symmetric

cylindrical geometry and nearly 4𝜋 coverage in solid angle.2 The inner tracking detector consists of silicon

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector.

The positive 𝑥-axis is defined by the direction from the interaction point to the centre of the LHC ring, with the positive

𝑦-axis pointing upwards, while the beam direction defines the 𝑧-axis. Cylindrical coordinates (𝑟, 𝜙) are used in the transverse

plane, 𝜙 being the azimuthal angle around the 𝑧-axis. The component of momentum in the transverse plane is denoted
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pixel and microstrip detectors covering the pseudorapidity region |𝜂 | < 2.5, surrounded by a transition

radiation tracker which enhances electron identification in the region |𝜂 | < 2.0. Between Run 1 and Run

2, a new inner pixel layer, the insertable B-layer [33, 34], was added at a mean sensor radius of 3.3 cm.

The inner detector (ID) is surrounded by a thin superconducting solenoid providing an axial 2 T magnetic

field, and by a fine-granularity lead/liquid-argon (LAr) electromagnetic calorimeter covering |𝜂 | < 3.2. A

steel/scintillator-tile calorimeter provides hadronic coverage in the central pseudorapidity range (|𝜂 | < 1.7).

The endcap and forward regions (1.5 < |𝜂 | < 4.9) of the hadronic calorimeter are made of LAr active

layers with either copper or tungsten as the absorber material. An extensive muon spectrometer (MS) with

an air-core toroidal magnet system surrounds the calorimeters. Three layers of high-precision tracking

chambers provide coverage in the range |𝜂 | < 2.7, while dedicated fast chambers allow triggering in the

region |𝜂 | < 2.4. The ATLAS trigger system consists of a hardware-based level-1 trigger followed by a

software-based high-level trigger [35].

3 Data and Monte Carlo samples

The data analysed in this study correspond to 139 fb−1 of 𝑝𝑝 collision data collected by the ATLAS

detector between 2015 and 2018 with a centre-of-mass energy of 13 TeV and a 25 ns proton bunch crossing

interval. The uncertainty in the combined 2015–2018 integrated luminosity is 1.7% [36], obtained using the

LUCID-2 detector [37] for the primary luminosity measurements. All detector subsystems were required

to be operational during data taking and to fulfil data quality requirements. The presence of additional

interactions in the same bunch crossing, referred to as pile-up, is characterised by the average number of

such interactions, 〈𝜇〉, which was 33.7 for the combined dataset.

Candidate events were recorded by either single-muon or single-electron triggers [35] with various

transverse momentum 𝑝T (muons) or transverse energy 𝐸T (electrons) thresholds. The lowest 𝑝T (𝐸T)

threshold without trigger prescaling was 24 (26) GeV and included a requirement on the energy in a cone

around the lepton, referred to as ‘isolation’, that was not applied for triggers with higher thresholds. A

trigger matching requirement [35] was applied, where the lepton must lie in the vicinity of the corresponding

trigger-level object.

Dedicated Monte Carlo (MC) simulated samples are used to model SM processes and to estimate the

expected signal yields. All samples were produced using the ATLAS simulation infrastructure [38] and

Geant4 [39]. A subset of samples use a faster simulation based on a parameterisation of the calorimeter

response and Geant4 for the other detector systems [38]. The simulated events are reconstructed with

the same algorithms as used for data, and contain a realistic modelling of pile-up interactions. The

pile-up profiles in the simulation match those of each dataset between 2015 and 2018, and are obtained

by overlaying minimum-bias events, simulated using the soft QCD processes of Pythia 8 [40] using the

NNPDF2.3LO set of PDFs [41] and a set of tuned parameters called the A3 tune [42].

Signal event samples with LQs pair produced via the strong interaction3 were generated at next-to-leading

order (NLO) with MadGraph5_aMC@NLO [43] v2.6.0 and interfaced to Pythia 8.230 for the modelling

of parton showers (PS), hadronisation, and the underlying event with the A14 tune [44]. The matrix

element (ME) calculation was performed at tree level and includes the emission of up to two additional

by 𝑝T. The pseudorapidity 𝜂 is defined in terms of the polar angle 𝜃 by 𝜂 = − ln tan(𝜃/2). Rapidity is defined as 𝑦 =

0.5 ln[(𝐸 + 𝑝𝑧)/(𝐸 − 𝑝𝑧)] where 𝐸 denotes the energy, and 𝑝𝑧 is the component of the momentum along the beam direction.

The separation of two objects in 𝜂–𝜙 space is given by Δ𝑅 =
√
(Δ𝜂)2 + (Δ𝜙)2.

3 It should be noted that 𝑡-channel lepton exchange production is not included in these samples.
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Process Generator PDF set
PS and

UE tune
Cross-section

fragmentation/hadronisation order

Top pair (𝑡𝑡) Powheg-Box v2 [48] NNPDF 3.0 [49] Pythia 8 A14 NNLO+NNLL [50]

Single-top

{
𝑡-channel Powheg-Box v1 NNPDF 3.0 Pythia 8 A14 NNLO+NNLL [51]

𝑠- and 𝑊𝑡-channel Powheg-Box v2 NNPDF 3.0 Pythia 8 A14 NNLO+NNLL [52, 53]

𝑊+jets, 𝑍/Drell–Yan+jets Sherpa 2.2.1 [54–58] NNPDF 3.0 Sherpa Default NNLO [59]

Diboson Sherpa 2.2.1 – 2.2.2 NNPDF 3.0 Sherpa Default NLO [54]

Table 1: List of generators used for the different background processes. Information is given about the underlying-event

(UE) tunes, the PDF sets and the perturbative QCD highest-order accuracy (NLO, NNLO, and NNLL) used for the

normalisation of the different samples.

partons. The ME–PS matching was done using the CKKW-L [45] prescription, with a matching scale

set to one quarter of the LQ mass. The NNPDF2.3 LO [41] parton distribution function (PDF) set was

used. Samples with LQ mass set between 400 GeV and 2000 GeV were generated at mass intervals of 50

GeV within the range 800-1600 GeV, 100 GeV otherwise. Signal cross-sections are considered equivalent

to those of pair-produced top squarks. They are calculated to approximate next-to-next-to-leading order

(NNLO) in the strong coupling constant, adding the resummation of soft gluon emission at next-to-next-

to-leading-logarithm (approximate NNLO+NNLL) accuracy [17–20]. The nominal cross-section and its

uncertainty are derived using the PDF4LHC15_mc PDF set, following the recommendations of Ref. [46].

For LQ masses between 400 GeV and 2.0 TeV, the cross-sections range from 2.1 pb to 0.02 fb.

Background samples were simulated using different MC event generators depending on the process. These

include top-quark pair (𝑡𝑡) and single (𝑊𝑡, 𝑠- and 𝑡-channel) production, associated production of 𝑊 or

𝑍 bosons or Drell-Yan with jets (𝑊+jets, 𝑍/Drell-Yan+jets) and diboson production. All background

processes are normalised to the best available theoretical calculation of their respective cross-sections. The

event generators, the accuracy of theoretical cross-sections, the underlying-event parameter tunes, and the

PDF sets used in simulating the SM background processes most relevant for this analysis are summarised

in Table 1. For all samples, except those generated using Sherpa, the EvtGen v1.2.0 [47] program was

used to simulate the properties of the 𝑏- and 𝑐-hadron decays.

4 Event reconstruction and object definitions

An event is selected if it passes at least one of the single-lepton trigger requirements described in the

previous section. The event quality is checked to remove events with noise bursts or coherent noise in

the calorimeters. At least one 𝑝𝑝 interaction vertex is required to be reconstructed in an event. The

primary vertex is chosen to be the vertex with the highest summed 𝑝2
T

of tracks with transverse momentum

𝑝T > 0.5 GeV which are associated with that vertex.

Electron candidates are reconstructed by matching inner-detector tracks to clusters of energy deposited

in the EM calorimeter. Electrons must have 𝑝𝑒
T
> 20 GeV and |𝜂𝑒 | < 2.47. The associated track must

have |𝑑0 |/𝜎𝑑0
< 3 and |𝑧0 | sin 𝜃 < 0.5 mm, where 𝑑0 (𝑧0) is the transverse (longitudinal) impact parameter

relative to the primary vertex and 𝜎𝑑0
is the associated error in 𝑑0. Candidates are identified with a

likelihood method and must satisfy the ‘medium’ identification criteria according to Ref. [60]. The

likelihood relies on the shape of the EM shower measured in the calorimeter, the quality of the track

reconstruction, and the quality of the match between the track and the cluster. To suppress candidates

originating from photon conversions, hadron decays, or jets misidentified as electrons, candidates are

required to satisfy the gradient isolation criteria based on tracking and calorimeter measurements [60].
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Muon candidates are reconstructed in the range |𝜂𝜇 | < 2.5 by combining tracks in the ID with tracks

in the MS. For 2.5 < |𝜂𝜇 | < 2.7, muons may be reconstructed solely from the MS track and a loose

requirement on the compatibility of originating from the interaction point is applied. An additional category

of muons, called calorimeter-tagged muons, are used in the region |𝜂𝜇 | < 0.1, where the MS is only

partially instrumented. For these muons the ID track must be compatible with energy deposits in the

calorimeter consistent with a minimum-ionising particle.

All muon candidates must have 𝑝
𝜇
T
> 20 GeV, |𝑑0 |/𝜎𝑑0

< 3, and |𝑧0 | sin 𝜃 < 0.5 mm. Muons from

hadron decays are suppressed by imposing a track-based isolation requirement [61]. In order to improve

the momentum resolution, further quality requirements are placed on the muons. The ‘medium’ quality

requirements described in Ref. [61] are used for candidates with 𝑝
𝜇
T
< 800 GeV. The main requirements

are a minimum of three hits in the muon detector in a minimum of two layers (except for |𝜂𝜇 | < 0.1, where

there is a minimum of one hit) and for the difference between the momentum measurements in the ID

and MS to have a 𝑞/𝑝 significance of less than 7.0. The significance is defined as the absolute value of

the difference between the ratio of the charge and momentum of the muons measured in the ID and MS

divided by the sum in quadrature of the corresponding uncertainties. As muons with 𝑝
𝜇
T
> 800 GeV have

poorer momentum resolution, the more stringent ‘high-𝑝T’ quality requirements are imposed: muons with

|𝜂𝜇 | > 2.5 without an inner-detector track are rejected; candidates must have hits in each of the three layers

of the muon detector; and regions where the alignment is suboptimal are removed. The ‘high 𝑝T’ quality

requirements remove 20% of muons but improve the 𝑝
𝜇
T

resolution by approximately 30% [61] above

1.5 TeV and suppress backgrounds.

Jets in the range |𝜂 𝑗 | < 4.5 and 𝑝
𝑗
T
> 20 GeV are reconstructed from energy deposits in the calorimeter [62],

using the anti-𝑘𝑡 algorithm [63, 64] with a radius parameter of 0.4. To suppress jets arising from pile-up,

a jet-vertex-tagging technique using a multivariate likelihood [65] is applied to jets with 𝑝
𝑗
T
≤ 60 GeV,

requiring that at least 60% of the total 𝑝T of tracks in the jet be associated with the event’s primary vertex.

To resolve the reconstruction ambiguities among electrons, muons, and jets, an overlap removal procedure

is applied. First, any electron with the same ID track as a muon is rejected, unless it is a calorimeter-tagged

muon, in which case the muon is removed. If the electron shares the same ID track with another electron,

the one with lower 𝑝T is discarded. Next, candidate jets with fewer than three associated tracks are discarded

if they lie within a cone of Δ𝑅 = 0.2 around a muon candidate, irrespective of the track requirement for

the electron candidates. Subsequently, electrons within a cone of size Δ𝑅 = min(0.4, 0.04 + 10 GeV/𝑝T)
around a jet are removed. Last, muons within a cone, defined in the same way as for electrons, around any

remaining jet are removed.

Jets in the range |𝜂 𝑗 | < 2.5 are categorised as 𝑏-tagged or 𝑐-tagged jets, exploiting a multivariate algorithm

that uses calorimeter and tracking information [66]. Jets are first tested using the 𝑏-tagging algorithm,

which has an efficiency of about 70% for true 𝑏-jets with a rejection factor of about 8 for charm jets and

about 300 for light-flavour jets [67]. In the 𝑐ℓ channels, jets that are not 𝑏-tagged are tested with the

𝑐-tagging algorithm, which has an efficiency of about 27% for true 𝑐-jets and approximate rejection factors

of 12 for 𝑏-jets and 59 for light-flavour jets. The 𝑐-tagging algorithm is not used in the other channels.

When the selection requires two 𝑏-tagged jets, the substantial rejection rate of the tagging algorithm results

in a significant statistical uncertainty for simulated Drell–Yan (DY) events containing only light-flavour jets

or 𝑐-jets. Hence, instead of applying the 𝑏-tagging requirement, all events with 𝑐-jets or light-flavour jets

are weighted by the probability that these jets pass it. This procedure, documented in Ref. [68], significantly

increases the number of simulated events present after the full event selection, reducing the statistical

uncertainty of the Drell–Yan background by up to a few orders of magnitude.
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The event’s missing transverse momentum (its modulus referred to 𝐸miss
T

) is computed as the negative

vectorial sum of the transverse momenta of leptons and jets. The 𝐸miss
T

calculation also includes a

track-based soft term [69] accounting for the contribution from particles from the primary vertex that are

not already included in the 𝐸miss
T

calculation.

5 Event selection

The event selection prioritises events consistent with scalar leptoquark production in high signal-to-

background kinematic regions and has been optimised to reject signatures consistent with reducible

backgrounds or poorly modelled event reconstruction.

Events are required to have exactly two electrons or two muons, oppositely charged and with transverse

momenta greater than 27 GeV, ensuring the full efficiency of the trigger. At least two jets with 𝑝
𝑗
T
> 45 GeV

and |𝜂 𝑗 | < 2.5 are required. Selections on the dilepton pair invariant mass, 𝑚ℓℓ > 130 GeV, and transverse

momentum, 𝑝ℓℓ
T
> 75 GeV, are made to suppress background from the DY production and on-shell 𝑍 boson

production. If there are more than two jets in the event, firstly those jets with 𝑏- or 𝑐-tags are chosen as the

candidate jets arising from the decays of the leptoquarks. For events with one tagged jet, the highest-𝑝T

untagged jet is chosen as the second candidate. For events with zero tagged jets, the two highest-𝑝T jets are

chosen. Events with more than two tagged jets are likely to be background and are rejected for the 𝑐ℓ and

𝑏ℓ channels. Background from 𝑡𝑡 production is suppressed by requiring 𝐸miss
T

/√𝐻T < 3.5 GeV1/2, where

𝐻T is the scalar sum of the transverse momenta of all lepton candidates and selected jets in the event. This

selection is preferable to a simple 𝐸miss
T

selection as it is looser at higher 𝑝T where the resolutions for the

leptons and jets are worse.

Leptoquark candidates are identified from the two possible lepton–jet combinations by selecting the pairs

closest in lepton–jet invariant mass, 𝑚ℓ 𝑗 . SM background contributions are suppressed by requiring that

𝑚asym =
𝑚max

ℓ 𝑗 − 𝑚min
ℓ 𝑗

𝑚max
ℓ 𝑗 + 𝑚min

ℓ 𝑗

< 0.4,

where𝑚max
ℓ 𝑗 and𝑚min

ℓ 𝑗 are the reconstructed masses of the two LQ candidates, ordered such that𝑚max
ℓ 𝑗 > 𝑚min

ℓ 𝑗 .

The selected region is further divided into a signal region (SR), requiring 𝑚asym < 0.2, and a sideband

region (SB) where 0.2 < 𝑚asym < 0.4. The SB is used in the maximum-likelihood fit, as described in

Section 8, to help constrain the normalisation of the main backgrounds in a region with a low signal

expectation. The results are presented as a function of the average of the two reconstructed leptoquark

masses, 𝑚Av
ℓ 𝑗 = (𝑚max

ℓ 𝑗 + 𝑚min
ℓ 𝑗 )/2. The reconstructed mass resolution is found to not exceed 7% of the LQ

mass in all channels.

A summary of the event selections for signal and SB regions is given in Table 2 before any specification of

the flavour tags. The main selections for the Top control regions (CRs), used to aid in the estimation of the

𝑡𝑡 background and described in detail in Section 6, are also reported.

The SR and SB are further categorised to isolate kinematic regions that separate events consistent with

light, charm and bottom quark production. These regions are defined by the number of 𝑏- and 𝑐-tagging

jets in the events. An inclusive selection (referred to as pretag) is used for the 𝑞ℓ channels. Although the

LQ → 𝑞ℓ interpretations do not benefit from jet tagging when assuming that B = 1 as considered in this

paper, a selection of this kind might also provide sensitivity to cross-generational LQ decays if mixed
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Preselection

2 oppositely charged leptons (𝑒, 𝜇)

2 or more jets

𝑝𝑒
T
> 27 GeV, |𝜂𝑒 | < 2.47; 𝑝

𝜇
T
> 27 GeV, |𝜂𝜇 | < 2.7

𝑝
𝑗
T
> 45 GeV, |𝜂 𝑗 | < 2.5
𝑝ℓℓ

T
> 75 GeV

𝐸miss
T

/√𝐻T < 3.5 GeV1/2

𝑚ℓℓ > 130 GeV

SB SR Top CR

𝑒𝑒 or 𝜇𝜇 𝑒𝜇

0.2 < 𝑚asym < 0.4 𝑚asym < 0.2

Table 2: Summary of the preselection and region-specific selections applied before flavour tagging.

decays into charged leptons are possible. The 𝑏-tagging selections are used in the 𝑏ℓ channels and target

LQ → 𝑏ℓ,B = 1 models, while both the 𝑏-tagging and 𝑐-tagging selections are used in the 𝑐ℓ channels,

targeting LQ → 𝑐ℓ,B = 1 models. In the 𝑏ℓ channels the events are split into those with zero, one, or

two 𝑏-tags (referred to as 0-tag, 1-tag, and 2-tag, respectively). In the 𝑐ℓ channels the events are split into

those with zero tags (untagged), at least one 𝑐-tag (𝑐-tag), and at least one 𝑏-tag (𝑏-tag). Events with one

𝑐-tagged jet and one 𝑏-tagged jet are placed in the 𝑐-tag category.

The signal and SB regions are not mutually exclusive between the search channels. The acceptance times

detector efficiency for LQ events after all selections is highest in the electron channel 𝑞𝑒 for LQ masses

around 1.3 TeV (62%) and between 45% and 55% for the mass range 400–2000 GeV in all channels. For

muon-based selections, this is reduced to a maximum of 53% for LQ masses (around 900 GeV) in 𝑞𝜇
channels and to about 30% for high LQ masses overall, due to the low efficiency of the high-𝑝T muon

selection and the poorer efficiency of the 𝐸miss
T

/√𝐻T selection for muons than for electrons.

6 Background determination

The backgrounds in the analysis are estimated from simulated samples described in Section 3, with the

aid of control and sideband regions for checks and estimates of systematic uncertainties. The dominant

background in the pretag (𝑞ℓ), untagged (𝑐ℓ) and 0-tag (𝑏ℓ) SRs arises from DY production in association

with two or more jets, followed by 𝑡𝑡 background. In the 1-tag, 2-tag, 𝑐-tag, and 𝑏-tag categories, the 𝑡𝑡
background dominates whilst DY background is subdominant. The DY background is further split into three

categories, referred to as DY+light-jets, DY+𝑐-jets, and DY+𝑏-jets, based on the flavour of the heaviest

quark as determined from simulation in either of the jets selected to reconstruct the LQ candidates.

To compensate for the limited number of events at high values of the average mass of the LQ candidates,

a fit is made to the smoothly falling distributions for 𝑡𝑡 samples, and extrapolated to high 𝑚Av
ℓ 𝑗 with the

following function

𝑓 𝑡𝑡 (𝑚Av
ℓ 𝑗 ) = 𝑎(𝑚Av

ℓ 𝑗 )𝑏,
where 𝑎 and 𝑏 are the fitted parameters. In all cases, checks are performed to guarantee that the function

reproduces the event yields at lower 𝑚Av
ℓ 𝑗 values and that its cumulative distribution (starting from the

highest 𝑚Av
ℓ 𝑗 values) is consistent with the small integrated event yields available in the MC samples. Other
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Figure 2: Distributions of 𝑚max
ℓ 𝑗 in the combined 𝑏𝑒 and 𝑏𝜇 0-tag SB for the 𝑏ℓ channels (left) and the 𝑏-tag Top CR

for the 𝑐ℓ channels (right). The total modelling uncertainty combined with the MC statistical error is shown as the

hatched band as explained in Section 7. The category ‘Other’ represents the sum of all SM background contributions

except those from top-quark processes (𝑡𝑡 and single-top) and, for the 0-tag SB distribution, Drell–Yan processes.

SM processes, dibosons (𝑊𝑊,𝑊𝑍, 𝑍𝑍) and single-top production (mostly 𝑊𝑡), contribute less than 10%

in all SRs and are estimated directly from MC samples. Rare processes such as 𝑡𝑡𝑉 , with 𝑉 = 𝑊, 𝑍 or

Higgs bosons, and tribosons are negligible. Contributions from events where one or both electrons or

muons are misidentified jets or non-promptly produced (referred to as ‘fake’ background) are checked

using a same-sign lepton control region mirroring the SR selections. They are found to be dominated by

single-electron fake contributions and well described by the 𝑊 (→ ℓ𝜈) + jets simulated samples, which are

used for this estimate. A systematic error is assigned which covers any disagreement between the data and

MC simulation in the same-sign region as described in Section 7.

The shape of the DY background is taken from simulation, while the systematic uncertainty on the shape,

as described in Section 7, is determined by comparing data with the predictions in two control regions

dominated by the DY process. The first of these is an extended SB region, which has 𝑚asym > 0.4 and is

used to validate the off-shell DY prediction; the second is an on-shell 𝑍 control region defined by inverting

the selection on 𝑚ℓℓ (< 130 GeV) and removing the 𝑚asym requirement.

An additional set of control regions is used to constrain the normalisation of the 𝑡𝑡 production background

(Top CRs) in the pretag and tagged categories. The regions are identical to the default SR selections,

corresponding to pretag for the 𝑞ℓ channels, 𝑐-tag and 𝑏-tag for the 𝑐ℓ channels, and 1-tag and 2-tag for

the 𝑏ℓ channels, except that an electron–muon pair is taken in place of the same-flavour lepton pair. The

0-tag/untagged categories do not utilise this region as 𝑡𝑡 production is not dominant.

Figure 2 shows distributions of 𝑚max
ℓ 𝑗 in the 0-tag SB region used to validate the DY predictions, and

the 𝑏-tag Top CR for the 𝑐ℓ channels used for 𝑡𝑡 background contributions. Distributions are depicted

before the profile-likelihood fit described below. Differences between data and MC predictions are used to

estimate modelling uncertainties for these SM background processes, as explained in Section 7. The 𝑚max
ℓ 𝑗

variable is used instead of 𝑚Av
ℓ 𝑗 to retain more statistics in the tail of the distributions.
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7 Systematic uncertainties

Several sources of experimental and theoretical systematic uncertainty in the signal and background

estimates are considered.

For the LQ processes, experimental uncertainties in the signal yields are dominated by the uncertainty

arising from lepton identification and jet energy scale and resolution (𝑞ℓ channels) and from the 𝑏- and

𝑐-tagging efficiencies and mis-tagging rates (𝑐ℓ and 𝑏ℓ channels). The uncertainties in the jet energy scale

and resolution are based on their respective measurements in data [70, 71] and account for up to 2% of

the signal yields. Uncertainties in electron identification efficiency, trigger efficiency, isolation efficiency,

energy scale, and resolution amount to less than 6% [60, 61], while the muon uncertainties are less than

10% [60, 61]. The 𝑏- and 𝑐-tagging uncertainties are estimated by varying the 𝜂-, 𝑝T- and flavour-dependent

scale factors applied to each jet in the simulation within a range that reflects the systematic uncertainty

in the measured tagging efficiency and mis-tag rates in data [66]. Uncertainties in 𝑏- and 𝑐-tagging are

found to be less than 16% for the 𝑐ℓ channels and 19% for the 𝑏ℓ channels. The uncertainty due to the

pile-up modelling [72] is typically less than 1%. Overall, the experimental uncertainties in the signals are

between 1% and 20% of the yields, including the 1.7% uncertainty in the combined 2015–2018 integrated

luminosity.

Theoretical uncertainties in the yields predicted using the approximate NNLO+NNLL cross-section are

calculated for each LQ mass [17–20]. They are dominated by the uncertainties in the renormalisation and

factorisation scales followed by the uncertainty in the PDFs, and range between 7% and 22% for LQ masses

between 400 GeV and 2000 GeV. Additional uncertainties in the acceptance and efficiency in simulated

signal samples are also taken into account. They are dominated by uncertainties due to the modelling of

initial- and final-state radiation and renormalisation and factorisation scale variations in simulated signal

samples and contribute up to 5% at LQ masses above 1 TeV.

Uncertainties in the modelling of the simulated SM background processes and in their theoretical

cross-sections are also taken into account.

The shape uncertainty in the modelling of the DY background is defined by taking the largest difference

between data and MC predictions in the control regions dominated by the DY process. The uncertainty

is split into two parts, 𝜎𝑍 = ±0.2 log(𝑚max
ℓ 𝑗 /800 GeV) and 𝜎𝑍 = ±0.4 log(𝑚max

ℓ 𝑗 /200 GeV), to allow a

shape difference between low and high 𝑚ℓ 𝑗 . When added in quadrature these uncertainties approximately

cover the observed disagreement. The 𝑚max
ℓ 𝑗 variable is used instead of 𝑚Av

ℓ 𝑗 as this leads to slightly larger,

hence more conservative uncertainties. MC predictions were found to describe the data within these errors

in the SB region. Since the DY shape modelling uncertainty is determined directly from the difference

between the data and the simulation, most of the experimental uncertainties are not applied as this avoids

double counting. Simulated samples also exhibit differences with respect to data, for example due to

jet energy resolution, which might contribute to any disagreement. The 𝑏- and 𝑐-tagging uncertainties

are, however, applied as these can change the normalisation between regions, and this is not taken into

account in the modelling studies. The DY shape modelling uncertainty is treated as uncorrelated among

DY+light-jets, DY+𝑐-jets, and DY+𝑏-jets processes. In addition to the shape uncertainties, the DY+𝑐-jets

and DY+𝑏-jets processes are each assigned a 10% normalisation uncertainty, where this value represents

the largest difference between data and MC simulation in the 𝑍 control region for any number of 𝑏-tags.

The 𝑡𝑡 modelling is determined in a similar way to the DY by comparing data and MC predictions in

the Top control regions. Reasonable agreement between data and simulation is found and an error of

𝜎
𝑡𝑡
= ±0.5 log(𝑚max

ℓ 𝑗 /200 GeV) is assigned to cover any possible differences. As in the DY estimates, the
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experimental uncertainties, with the exception of 𝑏- and 𝑐-tagging ones, are not applied to the 𝑡𝑡 simulation.

The normalisation of the 𝑡𝑡 background is left as a free parameter in all fits.

The extrapolation uncertainty for the 𝑡𝑡 background is evaluated using a falling exponential function as an

alternative to the functional form described in Section 6. Differences from the nominal form are as large as

100% at very high LQ candidate mass for all channels, but the impact on the results is minimal due to the

low 𝑡𝑡 rate above 1.3 TeV.

Finally, normalisation uncertainties are associated with the predictions of diboson and single-top-quark

processes, and non-prompt and misidentified leptons. A 30% uncertainty is assigned to the diboson

predictions, dominated by theoretical modelling uncertainties and estimated as in Ref. [31]. The dominant

uncertainty for single-top-quark predictions also arise from theoretical and modelling uncertainties of

the 𝑊𝑡 process. They are found to be around 35% and are computed using differences between the

predictions from the nominal sample and those from additional samples differing in hard-scattering

generator, modelling of the 𝑡𝑡 and 𝑊𝑡 interference term, and other parameter settings. A 25% uncertainty

is assigned to the background from non-prompt and misidentified leptons, computed using the difference

between data and MC 𝑊+jets predictions in the same-sign leptons control sample described in Section 6.

8 Results

The data are compared with the expectation by performing simultaneous maximum-likelihood fits to the

distribution of 𝑚Av
ℓ 𝑗 in the signal, sideband and Top control regions. The Top CRs contain a negligible signal

expectation and are used to constrain the top-quark background. The SB regions are used to constrain

the DY background. They have a low but non-negligible signal expectation and therefore are treated in

the fit in the same way as the SRs. A separate fit is performed for each signal hypothesis. Confidence

intervals are based on a profile-likelihood-ratio test statistic [73], assuming asymptotic distributions for the

test statistic.4 The systematic uncertainties affecting the signal and background normalisations and shapes

across categories are parameterised by making the likelihood function depend on dedicated nuisance

parameters, constrained by additional Gaussian or log-normal probability terms.

For the 𝑞ℓ signals, the pretag SR, SB, and Top CR are used. For the 𝑐ℓ channels, the SR and SB in untagged,

𝑐-tag and 𝑏-tag categories are used together with the Top CR for 𝑐-tag and 𝑏-tag. For the 𝑏ℓ channels, the

SR and SB in 0-, 1-, and 2-tag categories are used together with the Top CR in 1- and 2-tag. In all fits the

DY and 𝑡𝑡 normalisations are treated as a single free parameter while different uncertainties in the shapes

of distributions are assigned to the events as described in Section 7.

All other backgrounds are set to their MC expectations and are allowed to float within their respective

uncertainties.

The event yields in the SR for all channels are listed in Tables 3 to 5. The SM background expectations

resulting from the fits are reported showing statistical plus systematic uncertainties. The largest background

contribution in 𝑞ℓ channels arises from DY+ light-jets, whilst the contribution from 𝑡𝑡 is largest for the

signal regions relevant for the 𝑐ℓ- and 𝑏ℓ-jet channels. Single-top-quark and diboson processes as well as

misidentified/non-prompt lepton contributions are subdominant in all regions. No significant differences

4 Cross-checks with sampling distributions generated using pseudo-experiments were performed to test the accuracy of the

asymptotic approximation for the high-mass part of the lepton–jet spectrum. The approximation is found to lead to limits that

are slightly stronger than those obtained with pseudo-experiments, i.e. about 15% at 1.8 TeV, independent of the channel. The

impact of this approximation on the mass limits is below 50 GeV.
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are observed between expected and observed yields in all selections and channels considered. Since the

SRs are not mutually exclusive, the same data are used across the various channels.

Figures 3 to 7 show comparisons between the observed data and the post-fit SM predictions for 𝑚Av
ℓ 𝑗 for all

signal regions in the 𝑞ℓ, 𝑐ℓ, and 𝑏ℓ channels. In each case, the expected distribution for one scenario with

LQ mass of 1 TeV is shown for illustrative purposes, considering LQ → 𝑞𝑒/𝑞𝜇 for the pretag channels

(with 𝑞 = 𝑢-, 𝑑- or 𝑠-quark), LQ → 𝑐𝑒/𝑐𝜇 for the 𝑐ℓ channels, and LQ → 𝑏𝑒/𝑏𝜇 for the 𝑏ℓ channels.

Only the data and predictions within the mass range shown in the Figures are used in the fit, although it

should be noted that no data events are recorded above the range.

As no evidence of an excess at any mass in any of the channels was found, upper limits on the leptoquark

production cross-section are computed at the 95% confidence level using a modified frequentist CLs

method [73, 74]. The limits are shown in Figure 8 as a function of 𝑚LQ for a 100% branching ratio into

charged leptons. They were calculated for LQ masses of the generated samples, and a linear interpolation

has been made between mass points. The theoretical prediction for the cross-section of scalar leptoquark

pair production is shown by the solid line along with the uncertainties. Exclusion limits are driven by the

small number of data events populating the high-mass part of the lepton–jet spectrum. The limits at large

𝑚LQ are more stringent for decays with electrons than for decays with muons, due to the better electron

resolution at high 𝑝T. The decays involving 𝑐- and 𝑏-quarks have lower cross-section limits at low mass,

due to the lower rate of SM background contributions in the tagged categories.

The results of the fit may also be expressed as limits on the branching ratio into charged leptons as shown

in Figure 9. In this case, it is assumed that there is zero acceptance for LQ decays involving neutrinos

or top quarks. Furthermore, it is assumed that the LQs can decay into only one specific combination of

lepton flavour and quark flavour. The B limit is computed as
√
𝜎obs/𝜎theory, where 𝜎obs is the observed LQ

pair production cross-section exclusion limit with B = 1 into charged leptons and 𝜎theory is the theoretical

cross-section. Constraints on the LQ masses are reduced by no more than 20% for B = 0.5, and LQs

with mass around 800 GeV can be excluded for branching ratios into charged leptons as low as 0.1 (up to

900 GeV for 𝑏ℓ channels). This result improves upon the sensitivity of previous scalar LQ searches by

about 300–400 GeV in LQ mass depending on the lepton flavour, and it establishes for the first time limits

on cross-generational LQ decays using dedicated 𝑐- and 𝑏-tagging algorithms.
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LQ → 𝑞𝑒 LQ → 𝑞𝜇
𝑡𝑡 1790 ± 220 1910 ± 240

Single top 390 ± 110 430 ± 120

DY+light-jets 2820 ± 180 3040 ± 180

DY+𝑐-jets 521 ± 93 528 ± 90

DY+𝑏-jets 233 ± 44 252 ± 46

𝑊+jets 126 ± 32 8.5 ± 2.2

Diboson 31.8 ± 9.6 12.4 ± 3.7

Fitted SM background events 5910 ± 67 6185 ± 77

Observed events 5881 6169

Signal (𝑚LQ = 1 TeV) 591 ± 45 503 ± 27

Signal (𝑚LQ = 1.5 TeV) 22.1 ± 1.7 15.4 ± 1.0

Table 3: Observed and expected numbers of events in pretag SRs for LQ → 𝑞ℓ, where SM predictions are the result

of fits performed using 139 fb−1 of data. The uncertainties quoted for the fitted SM background include both the

statistical and systematic components. Yields for two LQ scenarios are also shown for comparison.

LQ → 𝑐𝑒 LQ → 𝑐𝜇
untagged 𝑏-tag 𝑐-tag untagged 𝑏-tag 𝑐-tag

𝑡𝑡 291 ± 18 964 ± 51 227 ± 14 293 ± 16 1049 ± 50 237 ± 14

Single top 35 ± 11 129 ± 39 28.7 ± 9.0 37 ± 10 166 ± 46 38 ± 11

DY+light-jets 2872 ± 74 32.3 ± 8.6 101 ± 11 3120 ± 71 29.0 ± 9.4 123 ± 13

DY+𝑐-jets 367 ± 49 80 ± 12 135 ± 17 340 ± 46 67 ± 10 155 ± 20

DY+𝑏-jets 39.4 ± 5.7 166 ± 24 31.5 ± 4.8 40.4 ± 5.7 165 ± 23 35.1 ± 5.2

𝑊+jets 101 ± 26 10.2 ± 2.7 7.5 ± 2.0 6.3 ± 1.6 1.39 ± 0.36 0.81 ± 0.21

Diboson 23.5 ± 7.2 2.58 ± 0.79 3.6 ± 1.1 9.0 ± 2.7 1.21 ± 0.37 1.45 ± 0.44

Fitted SM events 3728 ± 53 1384 ± 26 534 ± 17 3846 ± 55 1478 ± 26 591 ± 18

Observed events 3714 1366 535 3824 1484 591

Signal (𝑚LQ = 1 TeV) 312 ± 26 71 ± 12 129 ± 13 265 ± 17 58.0 ± 9.1 111.5 ± 9.5

Signal (𝑚LQ = 1.5 TeV) 13.7 ± 1.2 2.33 ± 0.38 3.10 ± 0.30 9.72 ± 0.69 1.49 ± 0.28 1.99 ± 0.20

Table 4: Observed and expected numbers of events in untagged, 𝑐- and 𝑏-tag SRs for LQ → 𝑐ℓ, where SM predictions

are the result of fits performed using 139 fb−1 of data. The uncertainties quoted for the fitted SM background include

both the statistical and systematic components. Yields for two LQ scenarios are also shown for comparison.

LQ → 𝑏𝑒 LQ → 𝑏𝜇
0-tag 1-tag 2-tag 0-tag 1-tag 2-tag

𝑡𝑡 469 ± 22 919 ± 33 255 ± 11 487 ± 22 1001 ± 35 295 ± 12

Single top 51 ± 11 109 ± 24 48 ± 10 48 ± 10 122 ± 25 49 ± 10

DY+light-jets 3035 ± 95 29.2 ± 8.0 0.105 ± 0.057 3318 ± 93 36 ± 11 0.099 ± 0.059

DY+𝑐-jets 479 ± 77 92 ± 15 1.68 ± 0.34 464 ± 75 75 ± 13 1.61 ± 0.33

DY+𝑏-jets 54.2 ± 7.7 165 ± 23 25.9 ± 3.6 52.5 ± 7.6 151 ± 22 21.1 ± 3.0

𝑊+jets 113 ± 29 9.4 ± 2.4 1.02 ± 0.27 7.5 ± 1.9 0.97 ± 0.25 0.110 ± 0.028

Diboson 27.8 ± 8.5 2.63 ± 0.81 0.33 ± 0.10 10.8 ± 3.2 1.21 ± 0.37 0.141 ± 0.043

Fitted SM events 4229 ± 57 1326 ± 25 332.4 ± 9.0 4389 ± 59 1387 ± 25 367.1 ± 9.3

Observed events 4214 1314 316 4367 1408 340

Signal (𝑚LQ = 1 TeV) 102 ± 13 237 ± 19 149 ± 13 87 ± 11 200 ± 12 124.1 ± 8.7

Signal (𝑚LQ = 1.5 TeV) 5.69 ± 0.90 8.72 ± 0.76 3.57 ± 0.33 3.89 ± 0.61 6.11 ± 0.50 2.38 ± 0.20

Table 5: Observed and expected numbers of events in 0-, 1- and 2-tag SRs for LQ → 𝑏ℓ, where SM predictions are

the result of fits performed using 139 fb−1 of data. The uncertainties quoted for the fitted SM background include

both the statistical and systematic components. Yields for two LQ scenarios are also shown for comparison.
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Figure 3: Post-fit distributions of 𝑚Av
ℓ 𝑗 in the pretag signal regions for the 𝑞𝑒 (left) and 𝑞𝜇 (right) channels. The

expected signals, shown for 𝑚LQ = 1 TeV and B(LQ → 𝑞𝑒/𝑞𝜇) = 1, are shown for illustrative purposes. The

category ‘Top quark’ refers to 𝑡𝑡 and single-top-quark processes. The category ‘Other’ refers to diboson and 𝑊+jet

production. The hatched band represents the total uncertainty in the background predictions.
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Figure 4: Post-fit distributions of 𝑚Av
ℓ 𝑗 in the 𝑐𝑒 signal regions: untagged (left), 𝑐-tag (middle), and 𝑏-tag (right). The

expected signals, shown for 𝑚LQ = 1 TeV and B(LQ → 𝑐𝑒) = 1, are shown for illustrative purposes. The category

‘Top quark’ refers to 𝑡𝑡 and single-top-quark processes. The category ‘Other’ refers to diboson and 𝑊+jet production.

The hatched band represents the total uncertainty in the background predictions.
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Figure 5: Post-fit distributions of 𝑚Av
ℓ 𝑗 in the 𝑐𝜇 signal regions: untagged (left), 𝑐-tag (middle), and 𝑏-tag (right). The

expected signals, shown for 𝑚LQ = 1 TeV and B(LQ → 𝑐𝜇) = 1, are shown for illustrative purposes. The category

‘Top quark’ refers to 𝑡𝑡 and single-top-quark processes. The category ‘Other’ refers to diboson and 𝑊+jet production.

The hatched band represents the total uncertainty in the background predictions.
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Figure 6: Post-fit distributions of 𝑚Av
ℓ 𝑗 in the 𝑏𝑒 signal regions: 0-tag (left), 1-tag (middle), and 2-tag (right). The

expected signals, shown for 𝑚LQ = 1 TeV and B(LQ → 𝑏𝑒) = 1, are shown for illustrative purposes. The category

‘Top quark’ refers to 𝑡𝑡 and single-top-quark processes. The category ‘Other’ refers to diboson and 𝑊+jet production.

The hatched band represents the total uncertainty in the background predictions.
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Figure 7: Post-fit distributions of 𝑚Av
ℓ 𝑗 in the 𝑏𝜇 signal regions: 0-tag (left), 1-tag (middle), and 2-tag (right). The

expected signals, shown for 𝑚LQ = 1 TeV and B(LQ → 𝑏𝜇) = 1, are shown for illustrative purposes. The category

‘Top quark’ refers to 𝑡𝑡 and single-top-quark processes. The category ‘Other’ refers to diboson and 𝑊+jet production.

The hatched band represents the total uncertainty in the background predictions.
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Figure 8: The observed (solid line) and expected (dashed line) limits on the leptoquark pair production cross-section

at 95% CL for B = 1 into electrons or muons, shown as a function of 𝑚LQ for the different leptoquark channels.

The green and yellow bands show the ±1𝜎 and ±2𝜎 ranges of the expected limit. Also included on the plots is the

expected theoretical cross-section. The thickness of the theory curve represents the theoretical uncertainty from

PDFs, renormalisation and factorisation scales, and the strong coupling constant 𝛼
S
.
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Figure 9: The observed (solid line) and expected (dashed line) limits on the leptoquark branching ratio B into a quark

and an electron or a muon at 95% CL, shown as a function of 𝑚LQ for the different leptoquark channels. The green

and yellow bands show the ±1𝜎 and ±2𝜎 ranges of the expected limit. The error band on the observed curve (dotted

lines) represents the uncertainty in the theoretical cross-section from PDFs, renormalisation and factorisation scales,

and the strong coupling constant 𝛼
S
.
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9 Conclusion

A search for a new-physics resonances decaying into a lepton and a jet performed by the ATLAS experiment

is presented. Scalar leptoquarks, pair produced in 𝑝𝑝 collisions at
√
𝑠 = 13 TeV at the LHC, are considered

using an integrated luminosity of 139 fb−1, corresponding to the full Run 2 dataset. Leptoquarks are

searched for in events with two electrons or muons and two or more jets. Tagging algorithms are used to

identify jets arising from the fragmentation of 𝑏-quarks (𝑏-jets) and, for the first time, of 𝑐-quarks (𝑐-jets).

The observed yield in each channel is consistent with SM background expectations. Leptoquarks with

masses below 1.8 TeV and 1.7 TeV are excluded in the electron and muon channels, respectively, assuming

a branching ratio into a charged lepton and a quark of 100%, with minimal dependency on the quark flavour.

Upper limits on the aforementioned branching ratio are also presented. LQs with masses up to around

800 GeV can be excluded for branching ratios into charged leptons as low as 0.1, assuming that there is

zero acceptance for LQ decays involving neutrinos or top quarks, and that only one charged lepton plus

quark decay mode at the time is possible. This result improves upon the sensitivity of previous scalar LQ

searches by about 300–400 GeV in LQ mass depending on the lepton flavour, and it establishes for the first

time limits on cross-generational LQ decays using dedicated 𝑐- and 𝑏-jet identification algorithms.
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