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1 Introduction

Leptoquarks (LQs) are hypothetical colour-triplet particles that carry both baryon and lepton quantum
numbers (B # 0, L # 0). As such, LQs couple simultaneously to both quarks and leptons, enabling direct
transitions between the two. The spin of a LQ state is either O (scalar LQ) or 1 (vector LQ), and only the
former is considered in this paper. Because of their SU(3) and SU(2) charge (colour and weak isospin,
respectively), LQs can mediate flavour-changing neutral currents, and enable the violation of lepton flavour
universality, which has been suggested as an explanation of recent measurements of B-meson decays [1-7].
New-physics models involving LQs might also resolve several interesting physical phenomena observed in
nature. For instance, LQs can be used to explain the origins of the neutrino masses [8—11], as well as the
origins of CP violation, thereby explaining the observed matter/antimatter asymmetry in the universe [12,
13]. In addition, LQs could provide a satisfying connection between the apparent symmetry of lepton and
quark generations, as well as unification of the electromagnetic and weak forces at high energy [14, 15].

At the LHC, the pair production of LQs is possible via gluon—gluon fusion and quark—antiquark annihilation,
as shown in Figure 1, including strong and lepton 7-channel exchange production [16]. Only the lowest
order is shown for the primary mechanisms by which LQs can be pair produced at the LHC, gluon—gluon
and quark—antiquark initiated. The production cross-section largely depends only on the mass of the LQ,
mrq. The cross-section is taken to be equivalent to that calculated [17-20] for the direct pair production
of top squarks (7), the supersymmetric partners of the top quark, as both are massive, coloured, scalar
particles with the same production modes.! Single production in association with a lepton is also possible,
but the cross-section is model-dependent and it is not considered in this paper.

LQs are assumed to couple to the quark—lepton pair via a single Yukawa interaction, with decays involving
either charged leptons or neutrinos. The couplings are determined by two parameters, the model parameter
S and the coupling parameter A. The coupling to the charged lepton is given by V1 and the coupling to
the neutrino by 4/1 — BA. Only the case of decays via electrons and muons is addressed in this paper. A
traditional approach to LQ decay (such as in the Buchmiiller-Riickl-Wyler model [22]), is to assume that
LQs interact only with leptons and quarks of the same generation. This paper relaxes that restriction and
considers cross-generational LQ decays. While the results are interpreted assuming one decay mode at a
time (100% branching ratio, 8 = 1), LQs with cross-generational decays might provide a possible solution
to the anomalies in B-meson decays as observed by LHCDb [23] if mixed decays into charged leptons (e.g.
LQ — bu and — su) are allowed. The couplings to leptons and quarks are small such that LQs have
narrow decay widths (< 10% of myq) and on-shell production dominates.

This paper presents a dedicated search for the pair production of LQs using the complete Run 2 dataset
of 139 fb~! of proton—proton (pp) collision data with /s = 13 TeV. Events are selected by requiring an
oppositely charged electron or muon (£ = e, ) pair and at least two jets that may be identified as originating
from the fragmentation of c- or b-quarks (referred to as c-jets and b-jets, respectively) using dedicated
tagging algorithms. The LQ decay channels that are searched for are therefore eq, ug, ec, uc, eb, and ub,
where ¢ is a u-, d- or s-quark. The results are presented as a function of myq. This paper reports the first
dedicated ATLAS search for cross-generational LQ decays using c- and b-jet identification.

The most recent searches for scalar leptoquark pairs from ATLAS and CMS were performed using
36.1 fb~! of integrated luminosity at a 13 TeV centre-of-mass energy. A search by ATLAS for first- and

! Recent calculations [21] show that diagrams involving #-channel lepton exchange might lead to corrections to the total
cross-section at the percent level. Those are not taken into account for the interpretation of the results, but effects are expected
to be within the uncertainties of the calculated cross-sections [17-20].
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Figure 1: The primary mechanisms by which LQs can be pair produced at the LHC, gluon—gluon and quark—antiquark
initiated, are shown.

second-generation LQs [24] did not use b-tagging in the signal regions and so excluded LQs decaying
with 100% branching ratio (8) into eQ or uQ, where Q = u, d, s, ¢ or b, below a mass of 1400 GeV.
CMS has also searched for first-generation [25] and second-generation [26] LQ pairs, excluding masses
below 1435 GeV and 1530 GeV respectively for 8 = 1. ATLAS has searched for third-generation up-
and down-like LQ pairs, decaying into tv/bt or bv/tt [27] with limits on LQ masses up to 1100 GeV.
CMS has excluded third-generation LQs decaying into 7t [28] for mpq < 900 GeV and 7b [29] for
mrq < 1020 GeV, and cross-generational LQ decays into ut [30] for myq < 1420 GeV. Searches for new
physics in £+b-jets events have also been performed by ATLAS using 36.1 fb~! of Run 2 data, targeting
B — L R-parity-violating supersymmetric models, and top squarks in particular [31]. As the production
cross-section and decay modes of top squarks are equivalent to those of LQs, the exclusion limits on m;
can be directly translated into my g constraints. That search excludes top squarks with masses between 600
and 1500 GeV depending on the branching ratio into charged leptons and b-quarks.

2 The ATLAS detector

The ATLAS detector [32] is a multipurpose particle physics detector with a forward—backward symmetric
cylindrical geometry and nearly 47 coverage in solid angle.” The inner tracking detector consists of silicon

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector.
The positive x-axis is defined by the direction from the interaction point to the centre of the LHC ring, with the positive
y-axis pointing upwards, while the beam direction defines the z-axis. Cylindrical coordinates (r, ¢) are used in the transverse
plane, ¢ being the azimuthal angle around the z-axis. The component of momentum in the transverse plane is denoted



pixel and microstrip detectors covering the pseudorapidity region |5| < 2.5, surrounded by a transition
radiation tracker which enhances electron identification in the region || < 2.0. Between Run 1 and Run
2, a new inner pixel layer, the insertable B-layer [33, 34], was added at a mean sensor radius of 3.3 cm.
The inner detector (ID) is surrounded by a thin superconducting solenoid providing an axial 2 T magnetic
field, and by a fine-granularity lead/liquid-argon (LAr) electromagnetic calorimeter covering |n| < 3.2. A
steel/scintillator-tile calorimeter provides hadronic coverage in the central pseudorapidity range (|| < 1.7).
The endcap and forward regions (1.5 < |n| < 4.9) of the hadronic calorimeter are made of LAr active
layers with either copper or tungsten as the absorber material. An extensive muon spectrometer (MS) with
an air-core toroidal magnet system surrounds the calorimeters. Three layers of high-precision tracking
chambers provide coverage in the range |n| < 2.7, while dedicated fast chambers allow triggering in the
region || < 2.4. The ATLAS trigger system consists of a hardware-based level-1 trigger followed by a
software-based high-level trigger [35].

3 Data and Monte Carlo samples

The data analysed in this study correspond to 139 fb~! of pp collision data collected by the ATLAS
detector between 2015 and 2018 with a centre-of-mass energy of 13 TeV and a 25 ns proton bunch crossing
interval. The uncertainty in the combined 2015-2018 integrated luminosity is 1.7% [36], obtained using the
LUCID-2 detector [37] for the primary luminosity measurements. All detector subsystems were required
to be operational during data taking and to fulfil data quality requirements. The presence of additional
interactions in the same bunch crossing, referred to as pile-up, is characterised by the average number of
such interactions, (i), which was 33.7 for the combined dataset.

Candidate events were recorded by either single-muon or single-electron triggers [35] with various
transverse momentum pt (muons) or transverse energy Et (electrons) thresholds. The lowest pt (ET)
threshold without trigger prescaling was 24 (26) GeV and included a requirement on the energy in a cone
around the lepton, referred to as ‘isolation’, that was not applied for triggers with higher thresholds. A
trigger matching requirement [35] was applied, where the lepton must lie in the vicinity of the corresponding
trigger-level object.

Dedicated Monte Carlo (MC) simulated samples are used to model SM processes and to estimate the
expected signal yields. All samples were produced using the ATLAS simulation infrastructure [38] and
GeaNT4 [39]. A subset of samples use a faster simulation based on a parameterisation of the calorimeter
response and GEanT4 for the other detector systems [38]. The simulated events are reconstructed with
the same algorithms as used for data, and contain a realistic modelling of pile-up interactions. The
pile-up profiles in the simulation match those of each dataset between 2015 and 2018, and are obtained
by overlaying minimum-bias events, simulated using the soft QCD processes of PyTHia 8 [40] using the
NNPDF2.3LO set of PDFs [41] and a set of tuned parameters called the A3 tune [42].

Signal event samples with LQs pair produced via the strong interaction® were generated at next-to-leading
order (NLO) with MADGrAPHS_aMC@NLO [43] v2.6.0 and interfaced to PytHia 8.230 for the modelling
of parton showers (PS), hadronisation, and the underlying event with the A14 tune [44]. The matrix
element (ME) calculation was performed at tree level and includes the emission of up to two additional

by pt. The pseudorapidity n is defined in terms of the polar angle 6 by n = —Intan(#/2). Rapidity is defined as y =
0.5In[(E + pz)/(E — pz)] where E denotes the energy, and p is the component of the momentum along the beam direction.
The separation of two objects in 7—¢ space is given by AR = /(A5)2 + (A¢)2.

3 1t should be noted that 7-channel lepton exchange production is not included in these samples.



PS and Cross-section

Process Generator PDF set . Lo UE tune
fragmentation/hadronisation order
Top pair (17) PowneG-Box v2 [48] NNPDF 3.0 [49] PyTtHia 8 Al4 NNLO+NNLL [50]
Single-top{ t-channel PownEG-Box vl NNPDF 3.0 PyTHia 8 Al4 NNLO+NNLL [51]
s- and Wt-channel PowneG-Box v2 NNPDF 3.0 PyTHIA 8 Al4 NNLO+NNLL [52, 53]
W+jets, Z/Drell-Yan+jets SHERPA 2.2.1 [54-58] NNPDF 3.0 SHERPA Default NNLO [59]
Diboson SHERPA 2.2.1 —2.2.2  NNPDF 3.0 SHERPA Default  NLO [54]

Table 1: List of generators used for the different background processes. Information is given about the underlying-event
(UE) tunes, the PDF sets and the perturbative QCD highest-order accuracy (NLO, NNLO, and NNLL) used for the
normalisation of the different samples.

partons. The ME-PS matching was done using the CKKW-L [45] prescription, with a matching scale
set to one quarter of the LQ mass. The NNPDF2.3 LO [41] parton distribution function (PDF) set was
used. Samples with LQ mass set between 400 GeV and 2000 GeV were generated at mass intervals of 50
GeV within the range 800-1600 GeV, 100 GeV otherwise. Signal cross-sections are considered equivalent
to those of pair-produced top squarks. They are calculated to approximate next-to-next-to-leading order
(NNLO) in the strong coupling constant, adding the resummation of soft gluon emission at next-to-next-
to-leading-logarithm (approximate NNLO+NNLL) accuracy [17-20]. The nominal cross-section and its
uncertainty are derived using the PDFALHC15_mc PDF set, following the recommendations of Ref. [46].
For LQ masses between 400 GeV and 2.0 TeV, the cross-sections range from 2.1 pb to 0.02 fb.

Background samples were simulated using different MC event generators depending on the process. These
include top-quark pair (#7) and single (Wt, s- and #-channel) production, associated production of W or
Z bosons or Drell-Yan with jets (W+jets, Z/Drell-Yan+jets) and diboson production. All background
processes are normalised to the best available theoretical calculation of their respective cross-sections. The
event generators, the accuracy of theoretical cross-sections, the underlying-event parameter tunes, and the
PDF sets used in simulating the SM background processes most relevant for this analysis are summarised
in Table 1. For all samples, except those generated using SHERPA, the EvTGEN v1.2.0 [47] program was
used to simulate the properties of the b- and c-hadron decays.

4 Event reconstruction and object definitions

An event is selected if it passes at least one of the single-lepton trigger requirements described in the
previous section. The event quality is checked to remove events with noise bursts or coherent noise in
the calorimeters. At least one pp interaction vertex is required to be reconstructed in an event. The
primary vertex is chosen to be the vertex with the highest summed p% of tracks with transverse momentum
prt > 0.5 GeV which are associated with that vertex.

Electron candidates are reconstructed by matching inner-detector tracks to clusters of energy deposited
in the EM calorimeter. Electrons must have p§ > 20 GeV and |n.| < 2.47. The associated track must
have |dy|/0q, < 3 and |zg| sin @ < 0.5 mm, where dj (zo) is the transverse (longitudinal) impact parameter
relative to the primary vertex and oy, is the associated error in dy. Candidates are identified with a
likelihood method and must satisfy the ‘medium’ identification criteria according to Ref. [60]. The
likelihood relies on the shape of the EM shower measured in the calorimeter, the quality of the track
reconstruction, and the quality of the match between the track and the cluster. To suppress candidates
originating from photon conversions, hadron decays, or jets misidentified as electrons, candidates are
required to satisfy the gradient isolation criteria based on tracking and calorimeter measurements [60].




Muon candidates are reconstructed in the range [, | < 2.5 by combining tracks in the ID with tracks
in the MS. For 2.5 < |n,| < 2.7, muons may be reconstructed solely from the MS track and a loose
requirement on the compatibility of originating from the interaction point is applied. An additional category
of muons, called calorimeter-tagged muons, are used in the region [,| < 0.1, where the MS is only
partially instrumented. For these muons the ID track must be compatible with energy deposits in the
calorimeter consistent with a minimum-ionising particle.

All muon candidates must have p? > 20 GeV, |do|/og, < 3, and |zg|sin@ < 0.5 mm. Muons from
hadron decays are suppressed by imposing a track-based isolation requirement [61]. In order to improve
the momentum resolution, further quality requirements are placed on the muons. The ‘medium’ quality
requirements described in Ref. [61] are used for candidates with p# < 800 GeV. The main requirements
are a minimum of three hits in the muon detector in a minimum of two layers (except for |r,| < 0.1, where
there is a minimum of one hit) and for the difference between the momentum measurements in the ID
and MS to have a ¢/ p significance of less than 7.0. The significance is defined as the absolute value of
the difference between the ratio of the charge and momentum of the muons measured in the ID and MS
divided by the sum in quadrature of the corresponding uncertainties. As muons with p? > 800 GeV have
poorer momentum resolution, the more stringent ‘high-pt’ quality requirements are imposed: muons with
74| > 2.5 without an inner-detector track are rejected; candidates must have hits in each of the three layers
of the muon detector; and regions where the alignment is suboptimal are removed. The ‘high pt’ quality
requirements remove 20% of muons but improve the p"T’ resolution by approximately 30% [61] above
1.5 TeV and suppress backgrounds.

Jets in the range |n;| < 4.5 and p% > 20 GeV are reconstructed from energy deposits in the calorimeter [62],
using the anti-k, algorithm [63, 64] with a radius parameter of 0.4. To suppress jets arising from pile-up,
a jet-vertex-tagging technique using a multivariate likelihood [65] is applied to jets with p% < 60 GeV,
requiring that at least 60% of the total pr of tracks in the jet be associated with the event’s primary vertex.

To resolve the reconstruction ambiguities among electrons, muons, and jets, an overlap removal procedure
is applied. First, any electron with the same ID track as a muon is rejected, unless it is a calorimeter-tagged
muon, in which case the muon is removed. If the electron shares the same ID track with another electron,
the one with lower pr is discarded. Next, candidate jets with fewer than three associated tracks are discarded
if they lie within a cone of AR = 0.2 around a muon candidate, irrespective of the track requirement for
the electron candidates. Subsequently, electrons within a cone of size AR = min(0.4,0.04 + 10 GeV/pr)
around a jet are removed. Last, muons within a cone, defined in the same way as for electrons, around any
remaining jet are removed.

Jets in the range |n7;| < 2.5 are categorised as b-tagged or c-tagged jets, exploiting a multivariate algorithm
that uses calorimeter and tracking information [66]. Jets are first tested using the b-tagging algorithm,
which has an efficiency of about 70% for true b-jets with a rejection factor of about 8 for charm jets and
about 300 for light-flavour jets [67]. In the ¢ channels, jets that are not b-tagged are tested with the
c-tagging algorithm, which has an efficiency of about 27% for true c-jets and approximate rejection factors
of 12 for b-jets and 59 for light-flavour jets. The c-tagging algorithm is not used in the other channels.

When the selection requires two b-tagged jets, the substantial rejection rate of the tagging algorithm results
in a significant statistical uncertainty for simulated Drell-Yan (DY) events containing only light-flavour jets
or c-jets. Hence, instead of applying the b-tagging requirement, all events with c-jets or light-flavour jets
are weighted by the probability that these jets pass it. This procedure, documented in Ref. [68], significantly
increases the number of simulated events present after the full event selection, reducing the statistical
uncertainty of the Drell-Yan background by up to a few orders of magnitude.



The event’s missing transverse momentum (its modulus referred to E%“i“) is computed as the negative
vectorial sum of the transverse momenta of leptons and jets. The ET" calculation also includes a
track-based soft term [69] accounting for the contribution from particles from the primary vertex that are
not already included in the EX calculation.

5 Event selection

The event selection prioritises events consistent with scalar leptoquark production in high signal-to-
background kinematic regions and has been optimised to reject signatures consistent with reducible
backgrounds or poorly modelled event reconstruction.

Events are required to have exactly two electrons or two muons, oppositely charged and with transverse
momenta greater than 27 GeV, ensuring the full efficiency of the trigger. At least two jets with p% > 45 GeV
and |n;| < 2.5 are required. Selections on the dilepton pair invariant mass, m¢; > 130 GeV, and transverse
momentum, pg{) > 75 GeV, are made to suppress background from the DY production and on-shell Z boson
production. If there are more than two jets in the event, firstly those jets with b- or c-tags are chosen as the
candidate jets arising from the decays of the leptoquarks. For events with one tagged jet, the highest-pt
untagged jet is chosen as the second candidate. For events with zero tagged jets, the two highest-pr jets are
chosen. Events with more than two tagged jets are likely to be background and are rejected for the ¢£ and
b{ channels. Background from #7 production is suppressed by requiring E%“iss/ VHt < 3.5 GeV'/2, where
Hr is the scalar sum of the transverse momenta of all lepton candidates and selected jets in the event. This
selection is preferable to a simple E%‘iss selection as it is looser at higher pt where the resolutions for the
leptons and jets are worse.

Leptoquark candidates are identified from the two possible lepton—jet combinations by selecting the pairs
closest in lepton—jet invariant mass, m,;. SM background contributions are suppressed by requiring that

max min
asym e "My
m = max min < 0'4’
My~ + My
where m;“jf"‘ and m?‘%n are the reconstructed masses of the two LQ candidates, ordered such that mglj'f”‘ > m‘g‘;“.

The selected region is further divided into a signal region (SR), requiring m*Y™ < 0.2, and a sideband
region (SB) where 0.2 < m®™¥™ < 0.4. The SB is used in the maximum-likelihood fit, as described in
Section 8, to help constrain the normalisation of the main backgrounds in a region with a low signal
expectation. The results are presented as a function of the average of the two reconstructed leptoquark
masses, m?}’ = (m?‘]'f"‘ + m?’}‘:“) /2. The reconstructed mass resolution is found to not exceed 7% of the LQ
mass in all channels.

A summary of the event selections for signal and SB regions is given in Table 2 before any specification of
the flavour tags. The main selections for the Top control regions (CRs), used to aid in the estimation of the
tt background and described in detail in Section 6, are also reported.

The SR and SB are further categorised to isolate kinematic regions that separate events consistent with
light, charm and bottom quark production. These regions are defined by the number of b- and c-tagging
jets in the events. An inclusive selection (referred to as pretag) is used for the ¢¢ channels. Although the
LQ — ¢ interpretations do not benefit from jet tagging when assuming that 8 = 1 as considered in this
paper, a selection of this kind might also provide sensitivity to cross-generational LQ decays if mixed



Preselection
2 oppositely charged leptons (e, u)
2 or more jets
PS> 27 GeV, [ne| < 2.47; p? > 27 GeV, |n,| < 2.7
Pl > 45GeV, ;] < 2.5
pil > 75 Gev
ENSS[\[Hr < 3.5 GeV'/?
Mmee > 130 GeV

SB [ SR Top CR
ee or uu eu
0.2 <m™™M <04 | m™m < (.2

Table 2: Summary of the preselection and region-specific selections applied before flavour tagging.

decays into charged leptons are possible. The b-tagging selections are used in the ¢ channels and target
LQ — b¢, B = 1 models, while both the b-tagging and c-tagging selections are used in the ¢{ channels,
targeting LQ — ¢, 8 = 1 models. In the b{ channels the events are split into those with zero, one, or
two b-tags (referred to as O-tag, 1-tag, and 2-tag, respectively). In the ¢¢ channels the events are split into
those with zero tags (untagged), at least one c-tag (c-tag), and at least one b-tag (b-tag). Events with one
c-tagged jet and one b-tagged jet are placed in the c-tag category.

The signal and SB regions are not mutually exclusive between the search channels. The acceptance times
detector efficiency for LQ events after all selections is highest in the electron channel ge for LQ masses
around 1.3 TeV (62%) and between 45% and 55% for the mass range 400—2000 GeV in all channels. For
muon-based selections, this is reduced to a maximum of 53% for LQ masses (around 900 GeV) in gu
channels and to about 30% for high LQ masses overall, due to the low efficiency of the high-pt muon
selection and the poorer efficiency of the ETmiSS/ VHr selection for muons than for electrons.

6 Background determination

The backgrounds in the analysis are estimated from simulated samples described in Section 3, with the
aid of control and sideband regions for checks and estimates of systematic uncertainties. The dominant
background in the pretag (¢¢), untagged (c{) and O-tag (b{) SRs arises from DY production in association
with two or more jets, followed by 7 background. In the 1-tag, 2-tag, c-tag, and b-tag categories, the ¢
background dominates whilst DY background is subdominant. The DY background is further split into three
categories, referred to as DY +light-jets, DY +c-jets, and DY +b-jets, based on the flavour of the heaviest
quark as determined from simulation in either of the jets selected to reconstruct the LQ candidates.

To compensate for the limited number of events at high values of the average mass of the LQ candidates,
a fit is made to the smoothly falling distributions for ¢ samples, and extrapolated to high m?JV. with the
following function
oo Avy _ Av\b
FTm) = a(m?,

where a and b are the fitted parameters. In all cases, checks are performed to guarantee that the function
reproduces the event yields at lower mf,‘}v. values and that its cumulative distribution (starting from the
highest m?} values) is consistent with the small integrated event yields available in the MC samples. Other
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Figure 2: Distributions of m}'** in the combined be and by 0-tag SB for the ¢ channels (left) and the b-tag Top CR
for the c¢ channels (right). The total modelling uncertainty combined with the MC statistical error is shown as the
hatched band as explained in Section 7. The category ‘Other’ represents the sum of all SM background contributions
except those from top-quark processes (¢7 and single-top) and, for the 0-tag SB distribution, Drell-Yan processes.

SM processes, dibosons (WW, WZ, ZZ) and single-top production (mostly Wt), contribute less than 10%
in all SRs and are estimated directly from MC samples. Rare processes such as 7V, with V = W, Z or
Higgs bosons, and tribosons are negligible. Contributions from events where one or both electrons or
muons are misidentified jets or non-promptly produced (referred to as ‘fake’ background) are checked
using a same-sign lepton control region mirroring the SR selections. They are found to be dominated by
single-electron fake contributions and well described by the W(— {v) + jets simulated samples, which are
used for this estimate. A systematic error is assigned which covers any disagreement between the data and
MC simulation in the same-sign region as described in Section 7.

The shape of the DY background is taken from simulation, while the systematic uncertainty on the shape,
as described in Section 7, is determined by comparing data with the predictions in two control regions
dominated by the DY process. The first of these is an extended SB region, which has m*Y™ > 0.4 and is
used to validate the off-shell DY prediction; the second is an on-shell Z control region defined by inverting
the selection on my, (< 130 GeV) and removing the m*Y™ requirement.

An additional set of control regions is used to constrain the normalisation of the ¢7 production background
(Top CRs) in the pretag and tagged categories. The regions are identical to the default SR selections,
corresponding to pretag for the ¢¢ channels, c-tag and b-tag for the c¢£ channels, and 1-tag and 2-tag for
the b¢ channels, except that an electron—muon pair is taken in place of the same-flavour lepton pair. The
0-tag/untagged categories do not utilise this region as ¢7 production is not dominant.

Figure 2 shows distributions of m““]dx in the O-tag SB region used to validate the DY predictions, and
the b-tag Top CR for the c£ channels used for ¢7 background contributions. Distributions are depicted
before the profile-likelihood fit described below. Differences between data and MC predictions are used to
estimate modelling uncertainties for these SM background processes, as explained in Section 7. The m?‘]a"
variable is used instead of mf,‘jv, to retain more statistics in the tail of the distributions.



7 Systematic uncertainties

Several sources of experimental and theoretical systematic uncertainty in the signal and background
estimates are considered.

For the LQ processes, experimental uncertainties in the signal yields are dominated by the uncertainty
arising from lepton identification and jet energy scale and resolution (¢¢ channels) and from the b- and
c-tagging efficiencies and mis-tagging rates (¢ and b{ channels). The uncertainties in the jet energy scale
and resolution are based on their respective measurements in data [70, 71] and account for up to 2% of
the signal yields. Uncertainties in electron identification efficiency, trigger efficiency, isolation efficiency,
energy scale, and resolution amount to less than 6% [60, 61], while the muon uncertainties are less than
10% [60, 61]. The b- and c-tagging uncertainties are estimated by varying the -, pr- and flavour-dependent
scale factors applied to each jet in the simulation within a range that reflects the systematic uncertainty
in the measured tagging efficiency and mis-tag rates in data [66]. Uncertainties in b- and c-tagging are
found to be less than 16% for the ¢ channels and 19% for the ¢ channels. The uncertainty due to the
pile-up modelling [72] is typically less than 1%. Overall, the experimental uncertainties in the signals are
between 1% and 20% of the yields, including the 1.7% uncertainty in the combined 2015-2018 integrated
luminosity.

Theoretical uncertainties in the yields predicted using the approximate NNLO+NNLL cross-section are
calculated for each LQ mass [17-20]. They are dominated by the uncertainties in the renormalisation and
factorisation scales followed by the uncertainty in the PDFs, and range between 7% and 22% for LQ masses
between 400 GeV and 2000 GeV. Additional uncertainties in the acceptance and efficiency in simulated
signal samples are also taken into account. They are dominated by uncertainties due to the modelling of
initial- and final-state radiation and renormalisation and factorisation scale variations in simulated signal
samples and contribute up to 5% at LQ masses above 1 TeV.

Uncertainties in the modelling of the simulated SM background processes and in their theoretical
cross-sections are also taken into account.

The shape uncertainty in the modelling of the DY background is defined by taking the largest difference
between data and MC predictions in the control regions dominated by the DY process. The uncertainty
is split into two parts, % = iO.Zlog(mr;‘Jf”‘ /800 GeV) and 0% = 4_-0.410g(mrf“;‘x /200 GeV), to allow a
shape difference between low and high m,;. When added in quadrature these uncertainties approximately
cover the observed disagreement. The m?‘;‘x variable is used instead of m?‘.’ as this leads to slightly larger,
hence more conservative uncertainties. MC predictions were found to describe the data within these errors
in the SB region. Since the DY shape modelling uncertainty is determined directly from the difference
between the data and the simulation, most of the experimental uncertainties are not applied as this avoids
double counting. Simulated samples also exhibit differences with respect to data, for example due to
jet energy resolution, which might contribute to any disagreement. The b- and c-tagging uncertainties
are, however, applied as these can change the normalisation between regions, and this is not taken into
account in the modelling studies. The DY shape modelling uncertainty is treated as uncorrelated among
DY +light-jets, DY +c-jets, and DY +b-jets processes. In addition to the shape uncertainties, the DY +c-jets
and DY +b-jets processes are each assigned a 10% normalisation uncertainty, where this value represents
the largest difference between data and MC simulation in the Z control region for any number of H-tags.

The #f modelling is determined in a similar way to the DY by comparing data and MC predictions in
the Top control regions. Reasonable agreement between data and simulation is found and an error of
o,;==0.5 log(mg‘;" /200 GeV) is assigned to cover any possible differences. As in the DY estimates, the
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experimental uncertainties, with the exception of b- and c-tagging ones, are not applied to the ¢7 simulation.
The normalisation of the ¢7 background is left as a free parameter in all fits.

The extrapolation uncertainty for the ## background is evaluated using a falling exponential function as an
alternative to the functional form described in Section 6. Differences from the nominal form are as large as
100% at very high LQ candidate mass for all channels, but the impact on the results is minimal due to the
low tf rate above 1.3 TeV.

Finally, normalisation uncertainties are associated with the predictions of diboson and single-top-quark
processes, and non-prompt and misidentified leptons. A 30% uncertainty is assigned to the diboson
predictions, dominated by theoretical modelling uncertainties and estimated as in Ref. [31]. The dominant
uncertainty for single-top-quark predictions also arise from theoretical and modelling uncertainties of
the Wt process. They are found to be around 35% and are computed using differences between the
predictions from the nominal sample and those from additional samples differing in hard-scattering
generator, modelling of the 77 and Wt interference term, and other parameter settings. A 25% uncertainty
is assigned to the background from non-prompt and misidentified leptons, computed using the difference
between data and MC W+jets predictions in the same-sign leptons control sample described in Section 6.

8 Results

The data are compared with the expectation by performing simultaneous maximum-likelihood fits to the
distribution of m?}v. in the signal, sideband and Top control regions. The Top CRs contain a negligible signal
expectation and are used to constrain the top-quark background. The SB regions are used to constrain
the DY background. They have a low but non-negligible signal expectation and therefore are treated in
the fit in the same way as the SRs. A separate fit is performed for each signal hypothesis. Confidence
intervals are based on a profile-likelihood-ratio test statistic [73], assuming asymptotic distributions for the
test statistic.* The systematic uncertainties affecting the signal and background normalisations and shapes
across categories are parameterised by making the likelihood function depend on dedicated nuisance
parameters, constrained by additional Gaussian or log-normal probability terms.

For the g¢ signals, the pretag SR, SB, and Top CR are used. For the ¢¢ channels, the SR and SB in untagged,
c-tag and b-tag categories are used together with the Top CR for c-tag and b-tag. For the b{ channels, the
SR and SB in 0-, 1-, and 2-tag categories are used together with the Top CR in 1- and 2-tag. In all fits the
DY and #7 normalisations are treated as a single free parameter while different uncertainties in the shapes
of distributions are assigned to the events as described in Section 7.

All other backgrounds are set to their MC expectations and are allowed to float within their respective
uncertainties.

The event yields in the SR for all channels are listed in Tables 3 to 5. The SM background expectations
resulting from the fits are reported showing statistical plus systematic uncertainties. The largest background
contribution in ¢¢ channels arises from DY+ light-jets, whilst the contribution from ¢7 is largest for the
signal regions relevant for the c{- and b{-jet channels. Single-top-quark and diboson processes as well as
misidentified/non-prompt lepton contributions are subdominant in all regions. No significant differences

4 Cross-checks with sampling distributions generated using pseudo-experiments were performed to test the accuracy of the
asymptotic approximation for the high-mass part of the lepton—jet spectrum. The approximation is found to lead to limits that
are slightly stronger than those obtained with pseudo-experiments, i.e. about 15% at 1.8 TeV, independent of the channel. The
impact of this approximation on the mass limits is below 50 GeV.
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are observed between expected and observed yields in all selections and channels considered. Since the
SRs are not mutually exclusive, the same data are used across the various channels.

Figures 3 to 7 show comparisons between the observed data and the post-fit SM predictions for m?}v. for all
signal regions in the ¢¢, c{, and b channels. In each case, the expected distribution for one scenario with
LQ mass of 1 TeV is shown for illustrative purposes, considering LQ — ge/qu for the pretag channels
(with ¢ = u-, d- or s-quark), LQ — ce/cpu for the ¢ channels, and LQ — be/bu for the b¢ channels.
Only the data and predictions within the mass range shown in the Figures are used in the fit, although it
should be noted that no data events are recorded above the range.

As no evidence of an excess at any mass in any of the channels was found, upper limits on the leptoquark
production cross-section are computed at the 95% confidence level using a modified frequentist CLg
method [73, 74]. The limits are shown in Figure 8 as a function of my g for a 100% branching ratio into
charged leptons. They were calculated for LQ masses of the generated samples, and a linear interpolation
has been made between mass points. The theoretical prediction for the cross-section of scalar leptoquark
pair production is shown by the solid line along with the uncertainties. Exclusion limits are driven by the
small number of data events populating the high-mass part of the lepton—jet spectrum. The limits at large
myq are more stringent for decays with electrons than for decays with muons, due to the better electron
resolution at high pt. The decays involving c- and b-quarks have lower cross-section limits at low mass,
due to the lower rate of SM background contributions in the tagged categories.

The results of the fit may also be expressed as limits on the branching ratio into charged leptons as shown
in Figure 9. In this case, it is assumed that there is zero acceptance for LQ decays involving neutrinos
or top quarks. Furthermore, it is assumed that the LQs can decay into only one specific combination of
lepton flavour and quark flavour. The B limit is computed as /Tobs/ Tiheory, Where ops is the observed LQ
pair production cross-section exclusion limit with 8 = 1 into charged leptons and oiheory is the theoretical
cross-section. Constraints on the LQ masses are reduced by no more than 20% for 8 = 0.5, and LQs
with mass around 800 GeV can be excluded for branching ratios into charged Ieptons as low as 0.1 (up to
900 GeV for b{ channels). This result improves upon the sensitivity of previous scalar LQ searches by
about 300—400 GeV in LQ mass depending on the lepton flavour, and it establishes for the first time limits
on cross-generational LQ decays using dedicated c¢- and b-tagging algorithms.
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LQ —»ge LQ—gpu
tt 1790 £ 220 1910 + 240
Single top 390 £ 110 430 + 120
DY +light-jets 2820 + 180 3040 + 180
DY+c-jets 521 +£93 528 +90
DY+b-jets 233 + 44 252 + 46
W+jets 126 + 32 85+£22
Diboson 31.8+9.6 124 +3.7
Fitted SM background events 5910 + 67 6185 + 77
Observed events 5881 6169
Signal (mpq = 1 TeV) 591 + 45 503 +27
Signal (mpq = 1.5 TeV) 22.1+1.7 154+1.0

Table 3: Observed and expected numbers of events in pretag SRs for LQ — ¢¢, where SM predictions are the result
of fits performed using 139 fb~! of data. The uncertainties quoted for the fitted SM background include both the

statistical and systematic components. Yields for two LQ scenarios are also shown for comparison.

LQ — ce LQ — cu
untagged b-tag c-tag untagged b-tag c-tag

1t 291 + 18 964 + 51 227 + 14 293 + 16 1049 + 50 237 + 14
Single top 35+ 11 129 + 39 28.7+9.0 37+ 10 166 + 46 38+ 11
DY +light-jets 2872 + 74 323 +8.6 101 £ 11 3120 + 71 29.0+9.4 123 + 13
DY+c-jets 367 +49 80 + 12 135+ 17 340 + 46 67 + 10 155 + 20
DY+b-jets 394 +5.7 166 + 24 31.5+4.8 404 +5.7 165 +23 35.1+52
WHjets 101 + 26 102 +2.7 7.5+2.0 63+1.6 1.39+£036  0.81 +0.21
Diboson 235+72 2.58 £0.79 3.6+ 1.1 9.0+2.7 1.21 £0.37 1.45 +0.44
Fitted SM events 3728 £ 53 1384 + 26 534 + 17 3846 + 55 1478 + 26 591 18
Observed events 3714 1366 535 3824 1484 591
Signal (my g = 1 TeV) 312+ 26 71 +12 129 + 13 265 + 17 58.0 £ 9.1 111.5+9.5
Signal (mp g =15TeV) 13.7+1.2 2.33 +0.38 310+ 030  9.72 +0.69 1.49 +0.28 1.99 +0.20

Table 4: Observed and expected numbers of events in untagged, c- and b-tag SRs for LQ — ¢, where SM predictions
are the result of fits performed using 139 fb~! of data. The uncertainties quoted for the fitted SM background include
both the statistical and systematic components. Yields for two LQ scenarios are also shown for comparison.

LQ — be LQ — bu

0-tag 1-tag 2-tag 0-tag 1-tag 2-tag
1t 469 + 22 919 + 33 255+ 11 487 +22 1001 + 35 295 + 12
Single top 51«11 109 + 24 48 + 10 48 + 10 122 +25 49 + 10
DY +light-jets 3035 £ 95 29.2 + 8.0 0.105 £ 0.057 3318 +93 36+ 11 0.099 + 0.059
DY+c-jets 479 + 77 92+ 15 1.68 + 0.34 464 +75 75+ 13 1.61 +£0.33
DY+b-jets 542 +7.7 165 + 23 259 +3.6 525+7.6 151 £ 22 21.1+£3.0
W+jets 113 +£29 94+24 1.02 +0.27 75+1.9 0.97 +0.25 0.110 £ 0.028
Diboson 27.8 +8.5 2.63 +0.81 0.33 £0.10 10.8 +3.2 1.21 £0.37 0.141 + 0.043
Fitted SM events 4229 + 57 1326 + 25 3324 +9.0 4389 + 59 1387 + 25 367.1£9.3
Observed events 4214 1314 316 4367 1408 340
Signal (mpq = 1 TeV) 102 £ 13 237+ 19 149 + 13 87+ 11 200 + 12 124.1 £ 8.7
Signal (mp g =1.5TeV)  5.69+090  8.72+0.76 3.57+0.33 3.89 £ 0.61 6.11 +0.50 2.38 +£0.20

Table 5: Observed and expected numbers of events in 0-, 1- and 2-tag SRs for LQ — b{, where SM predictions are
the result of fits performed using 139 fb~! of data. The uncertainties quoted for the fitted SM background include
both the statistical and systematic components. Yields for two LQ scenarios are also shown for comparison.
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9 Conclusion

A search for a new-physics resonances decaying into a lepton and a jet performed by the ATLAS experiment
is presented. Scalar leptoquarks, pair produced in pp collisions at /s = 13 TeV at the LHC, are considered
using an integrated luminosity of 139 fb~!, corresponding to the full Run 2 dataset. Leptoquarks are
searched for in events with two electrons or muons and two or more jets. Tagging algorithms are used to
identify jets arising from the fragmentation of b-quarks (b-jets) and, for the first time, of c-quarks (c-jets).
The observed yield in each channel is consistent with SM background expectations. Leptoquarks with
masses below 1.8 TeV and 1.7 TeV are excluded in the electron and muon channels, respectively, assuming
a branching ratio into a charged lepton and a quark of 100%, with minimal dependency on the quark flavour.
Upper limits on the aforementioned branching ratio are also presented. LQs with masses up to around
800 GeV can be excluded for branching ratios into charged leptons as low as 0.1, assuming that there is
zero acceptance for LQ decays involving neutrinos or top quarks, and that only one charged lepton plus
quark decay mode at the time is possible. This result improves upon the sensitivity of previous scalar LQ
searches by about 300-400 GeV in LQ mass depending on the lepton flavour, and it establishes for the first
time limits on cross-generational LQ decays using dedicated c- and b-jet identification algorithms.
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