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1 Introduction

The observation of the Higgs boson by the ATLAS and CMS Collaborations [, 2] using data from proton—
proton (pp) collisions at the Large Hadron Collider (LHC) recorded in 2011 and 2012 at centre-of-mass
energies of 4/s = 7 TeV and 8 TeV, respectively, was a major step forward in the understanding of the
electroweak (EW) symmetry breaking mechanism [3-5]. Studies of the spin and parity of the Higgs boson,
its coupling structure to other particles, and measurements of fiducial and differential cross sections have



been performed [6-28]. These show no significant deviations from the Standard Model (SM) predictions
for the Higgs boson with a mass of 125.09 + 0.24 GeV [29].

This paper presents updated inclusive and differential cross-section measurements of the Higgs boson in
the H — ZZ* — 4{ decay channel (where ¢ = e or u). The full ATLAS Run 2 dataset, consisting of pp
collision data at /s = 13 TeV taken between 2015 and 2018, is used for this analysis. The total integrated
luminosity after imposing data quality requirements is 139 fb~!, with a data-taking efficiency of 91.5%.

All measurements are performed with the assumption that the mass of the Higgs boson is 125 GeV, and
are compared with SM predictions. The signal is extracted from a binned likelihood fit to the four-lepton
invariant mass, mye, distribution. All major background processes are estimated from data. In particular,
the normalisation of the dominant non-resonant ZZ* background is now constrained from dedicated data
sidebands rather than from simulation. Signal events are corrected for detector measurement inefficiency
and resolution by unfolding using the detector response matrix in the likelihood fit, in place of a bin-by-bin
correction. Compared with the previous published results [11], this paper also benefits from the full LHC
Run 2 integrated luminosity, improved event and electron reconstruction [30, 31], and improved lepton
isolation to mitigate the impact of additional pp interactions in the same or neighbouring bunch crossing
(pile-up). The fiducial phase-space definition has also been updated with respect to the previous publication
to harmonise the selection of the leptons.

The paper is organised as follows. A brief introduction of the ATLAS detector is given in Section 2, while in
Section 3, the data and simulated signal and background samples are described. The selection of the Higgs
boson candidate events is detailed in Section 4. Section 5 outlines the fiducial phase-space definition and
the observables that are unfolded, while the background modelling is described in Section 6. The unfolding
strategy is described in Section 7. The experimental and theoretical systematic uncertainties, detailed in
Section 8, are taken into account for the statistical interpretation of the data. The final results are presented
in Section 9 and their interpretation to constrain possible beyond the SM (BSM) contact interactions or
non-SM values of the b- and c-quark Yukawa couplings are shown in Section 10. Concluding remarks are
given in Section 11. More information about general aspects of the analysis is contained in the concurrent
Ref. [32], where, in particular, details of the event selection and background estimation can be found.

2 The ATLAS detector

The ATLAS detector [33] is a multipurpose particle detector with a forward—backward symmetric cylindrical
geometry' and a near 47 coverage in solid angle. It consists of an inner tracking detector (ID) surrounded
by a thin superconducting solenoid, which provides a 2 T axial magnetic field, electromagnetic (EM) and
hadron calorimeters, and a muon spectrometer. The inner tracking detector covers the pseudorapidity
range |n7| < 2.5. It consists of a silicon pixel detector, including the newly installed insertable B-layer [34,
35], a silicon microstrip detector, and a straw-tube tracking detector featuring transition radiation to aid in
the identification of electrons. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic
energy measurements with high granularity. A steel/scintillator-tile hadron calorimeter covers the central

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upwards. Cylindrical coordinates (r, ¢) are used in the transverse plane, ¢ being the azimuthal angle around the z-axis. The

E+p;

pseudorapidity is defined in terms of the polar angle 6 as 5 = —Intan(6/2) and the rapidity is defined as y = % In Eopo-

Angular distance is measured in units of AR = v/(A7)2 + (Ag)2.



pseudorapidity range (|57] < 1.7). The endcap and forward regions are instrumented up to || = 4.9 with
LAr calorimeters for both the EM and hadronic energy measurements. The calorimeters are surrounded
by the muon spectrometer, which has three large air-core toroidal superconducting magnets with eight
coils each. The field integral of the toroid magnets ranges between 2.0 and 6.0 T m across most of the
detector. The muon spectrometer includes a system of precision tracking chambers and fast detectors for
triggering with a coverage of || < 2.7. Events are selected using a first-level trigger implemented in
custom electronics, which reduces the event rate to a maximum of 100 kHz using a subset of detector
information. Software algorithms with access to the full detector information are then used in the high-level
trigger to yield a recorded event rate of about 1 kHz [36].

3 Theoretical predictions and event simulation

The production of the SM Higgs boson via gluon—gluon fusion (ggF), via vector-boson fusion (VBF), with
an associated vector boson (VH, where V is a W or Z boson), and with a top quark pair (f#tH) was modelled
with the PowneG-Box v2 Monte Carlo (MC) event generator [37—44]. Table | summarises the predicted
SM production cross sections and branching ratios for the H — ZZ* — 4{ decay for myg = 125 GeV
together with their theoretical accuracy.

Table 1: Predicted SM Higgs boson production cross sections (o) for ggF, VBF and five associated production
modes in pp collisions for my = 125 GeV at /s = 13 TeV [45-75]. For bbH the accuracy of calculations in the
4- and 5-flavour schemes (FS) is reported. The quoted uncertainties correspond to the total theoretical systematic
uncertainties calculated by adding in quadrature the uncertainties due to missing higher-order corrections and
PDF+ay. The decay branching ratios ($) with the associated uncertainty for H — ZZ* and H — ZZ* — 4¢(, with
{ = e, u, are also given.

Production process Accuracy o [pb]

ggF  (gg — H) N3LO in QCD, NLO in EW 48.6 +2.4
VBF (gq’ — Hqq') (approximate) NNLO in QCD, NLO in EW 3.78 £ 0.08
WH  (qq’ — WH) NNLO in QCD, NLO in EW 1.373 +0.028
ZH  (qgd/gg — ZH) NNLO in QCD, NLO in EW 0.88 £ 0.04
ttH  (qq/gg — tfH) NLO in QCD, NLO in EW 0.51 +£0.05
bbH  (qd/gg — bbH) NNLO (NLO) in QCD for 5FS (4FS) 0.49 +£0.12
tH (qq/gg — tH) NLO in QCD 0.09 £ 0.01
Decay process NLO in QCD, NLO in EW B[ 1074
H— 277" 262+ 6
H— 77— 4¢ 1.240 + 0.027

For ggF, the PDF4LHC next-to-next-to-leading-order (NNLO) set of parton distribution functions (PDF)
was used, while for all other production modes, the PDFALHC next-to-leading-order (NLO) set was used
[72]. The simulation of ggF Higgs boson production used the PowneG method for merging the NLO Higgs
+ jet cross section with the parton shower and the MINLO method [76] to simultaneously achieve NLO
accuracy for the inclusive Higgs boson production. In a second step, a reweighting procedure (NNLOPS)
[77], exploiting the Higgs boson rapidity distribution, was applied using the HNNLO program [78, 79] to
achieve NNLO accuracy in the strong coupling constant «s.



The matrix elements of the VBF, g4 — VH and #tH production mechanisms were calculated to NLO
accuracy in QCD. For VH production, the MINLO method was used to merge 0- and 1-jet events [44, 76].
The gg — ZH contribution was modelled at leading order (LO) in QCD.

The production of a Higgs boson in association with a bottom quark pair (bbH) was simulated at NLO with
MaADGrAPHS_AMC@NLO v2.3.3 [80], using the CT10 NLO PDF [81]. The production in association
with a single top quark (tH+X where X is either jb or W, defined in the following as tH) was simulated at
NLO with MADGraPHS_AMC@NLO v2.6.0 using the NNPDF30 PDF set [75].

For all production mechanisms the PytHia 8 [82] generator was used for the H — ZZ* — 4 decay as
well as for the parton shower modelling. The AZNLO set of tuned parameters [83] was used, except for
ttH, where, like for the ¢7 samples, the A14 tune [84] was employed. The event generator was interfaced
to EvrGen v1.2.0 [85] for simulation of the bottom and charm hadron decays. All signal samples were
simulated for a Higgs boson mass mpy = 125 GeV.

For additional cross-checks, the ggF sample was also generated with MADGraPHS_aMC@NLO. This
simulation has NLO QCD accuracy for zero, one and two additional partons merged with the FxFx merging
scheme [86, 87], and top and bottom quark mass effects are taken into account [88—90]. Higgs boson are
decayed using MapspPIN [91, 92]. Some final results are also compared with ggF predictions calculated
with RapISH, which provides resummation at N3LL+NNLO accuracy [93-97], and uses MATRIX for
the fixed-order calculation [98, 99]. Similarly, ggF predictions are also obtained from NNLOJET for
distributions of Higgs plus one- or two-jet events [100-102]. Neither of these two predictions are included
for the case in which there are zero jets. Additionally, final results for several of the variables that probe the
kinematics of the Higgs boson decay products include comparisons with Hro4r. and ProrHECY4E. These
two programs include the full NLO electroweak corrections to the Higgs boson decay into four charged
leptons [69-71, 103—108].

The samples are normalised to cross sections obtained from the best available predictions as provided in
Refs. [45-47, 67, 68, 73-75, 109]. The SM branching ratio prediction, taken from ProPHECY4F [69, 104],
includes the full NLO EW corrections, and interference effects which result in a branching ratio that is
10% higher for same-flavour final states (4u and 4e) than for different-flavour states (2e2u and 2u2e).

For the BSM interpretation, described in Section 10.1, deviations from the SM are studied using a ggF
sample generated with MADGrAPHS_AMC@NLO using the HPOpropMFV UFO model [110] with
Fey~NRuLEs [111] at LO and the NNPDF23 PDF set. The sample was interfaced to PyTHiA 8 using the
A14 parameter set [84]. For studies of the Yukawa couplings described in Section 10.2, the gluon-initiated
component of the prediction was calculated using RapISH, while MADGraPHS_AMC@NLO was used for
the quark-initiated component with FxFx merging for 0- and 1-jet final states.

The ZZ* continuum background from quark—antiquark annihilation was modelled using SHErRPA 2.2.2
[112-114], which provides a matrix element calculation accurate to NLO in ay for 0- and 1-jet final states,
and LO accuracy for 2- and 3-jet final states. The merging with the SHERPA parton shower [115] was
performed using the ME+PS@NLO prescription [116]. The NLO EW corrections were applied as a
function of the invariant mass of the ZZ* system mzz+ [117, 118]. This process was also simulated using
two additional MC generators. The first is PowHEG-Box v2 interfaced to PyTHia 8 for parton showering
and hadronisation, with EvTGen for the simulation of bottom and charm hadron decays. The second
is MADGRrAPHS_AMC@NLO with FxFx merging at NLO for 0- and 1-jet final states and interfaced to
PytHia 8 for parton showering.



The gluon-induced ZZ* production was modelled by SHErpPA 2.2.2 [112-114] at LO in QCD for 0- and
1-jet final states. The higher-order QCD effects for the gg — ZZ* continuum production have been
calculated for massless quark loops [119—121] in the heavy top-quark approximation [122], including the
g8 — H* — ZZ processes [123, 124]. The gg — ZZ simulation cross section is scaled by a K-factor of
1.7+1.0, defined as the ratio of the higher-order to leading-order cross section predictions. Production of
ZZ* via vector-boson scattering was simulated at LO in QCD with the SHERPA 2.2.2 generator.

The WZ background was modelled using Pownec-Box v2 interfaced to Pytaia 8 and EvrGen v1.2.0 for the
simulation of bottom and charm hadron decays. The triboson backgrounds ZZZ, WZZ, and WWZ with four
or more prompt leptons (denoted by VVV hereafter) were modelled using SHErPA 2.2.2. The simulation of
tt + Z events with both top quarks decaying semileptonically and the Z boson decaying leptonically was
performed with MApDGraPHS_AMC@NLO interfaced to PytHia 8. The total cross section is normalised to
the prediction of Ref. [63], which includes the two dominant terms at both the LO and the NLO in a mixed
perturbative expansion in the QCD and EW couplings. For modelling comparisons, SHERPA 2.2.1 was
used to simulate ¢7 + Z events at LO. The smaller tWZ, ttW*W~, tit, titf and tZ background processes
were simulated with MADGrAPHS _AMC@NLO interfaced to PyTHiA 8.

The modelling of events containing Z bosons with associated jets (Z + jets) was performed using the
SHERPA 2.2.1 generator. Matrix elements were calculated for up to two partons at NLO and four partons at
LO using Comix [113] and OpenLoops [114], and merged with the SHERPA parton shower [115] using
the ME+PS @NLO prescription [116]. The NNPDF3.0 NNLO PDF set was used in conjunction with a
dedicated set of tuned parton shower parameters.

The t7 background was modelled using Powneg-Box v2 interfaced to PyTHia 8 for parton showering,
hadronisation, and the underlying event, and to EvTGEen v1.2.0 for heavy-flavour hadron decays. For this
sample, the A14 tune was used [125]. Simulated Z + jets and ¢ background samples are normalised to the
data-driven estimates described in Section 6.

Generated events were processed through the ATLAS detector simulation [126] within the GEanT4
framework [127] and reconstructed in the same way as collision data. Additional pp interactions in the
same and nearby bunch crossings are included in the simulation. The pile-up was modelled by overlaying
the original hard-scattering event with simulated inelastic pp events generated with PyTHia 8 [82] using
the NNPDF2.3LO set of PDFs [128] and the A3 tune [129].

4 Event reconstruction and selection

The details of the selection and reconstruction of Higgs boson candidate events are provided in Ref. [32],
while a brief description is provided here. Single-lepton, dilepton, and trilepton triggers are employed
and ensure a signal selection efficiency above 98%. Data events are subjected to quality requirements
and are required to have at least one vertex with two associated ID tracks with transverse momentum
pt > 500 MeV. The primary interaction vertex is selected as the one with the largest }; p% of all associated
tracks.

The lepton identification requirements follow the inclusive event selection described in Ref. [32]. All
muons are required to satisfy pt > 5 GeV and |n| < 2.7, except those that are reconstructed with ID tracks
matched to energy deposits in the calorimeter (calorimeter-tagged), which must satisfy pp > 15 GeV
and || < 0.1. No more than one calorimeter-tagged or stand-alone muon is allowed per event, where
stand-alone muons have not been matched to an ID track. Electrons are required to satisfy ET > 7 GeV and



In| < 2.47. Jets are reconstructed using the anti-k, algorithm with a radius parameter R = 0.4 and applied
to Particle Flow objects [130]. Jets are required to have pt > 30 GeV and |n| < 4.5. Jets within || < 2.5
are identified as containing a b-hadron using the MV2c10 b-tagging algorithm at the 70% efficiency
working point [131, 132]. If a jet overlaps geometrically with a reconstructed muon (electron) within a
cone of radial size AR = 0.1(0.2), the jet is removed.

Same-flavour opposite-charge (SFOC) lepton pairs are selected to form Higgs boson candidates. The
SFOC lepton pair with mass m 1, closest to the Z boson mass is called the leading pair, while the other
becomes the subleading pair, with mass m34. If multiple combinations of SFOC pairs exist, the Higgs
boson candidate with m1; closest to the Z boson mass is chosen. The three leading leptons of each Higgs
boson candidate are required to satisfy pr > 20, 15, 10 GeV. Higgs boson candidate events are subjected
to further selection requirements on the dilepton masses, lepton separation, J /¢ veto, impact parameter
significance (dy/o (dp)), and vertex quality, as outlined in Table 2. In addition, isolation requirements are
imposed on the leptons to suppress the 77 and Z + jets reducible backgrounds. If an extra prompt lepton
with pr > 12 GeV passing all identification and isolation requirements detailed previously is present in
the event, the final Higgs boson candidate is chosen using a method based on the matrix element (ME).
The matrix element is calculated at LO using MADGRrAPHS_AMC@NLO and the quadruplet with the
highest ME value is chosen. This increases the probability of selecting the correct Higgs boson candidate
in cases where the extra lepton comes from the decay of a vector boson or top quark in VH-leptonic or
1tH/tH production. The four-lepton mass resolution is improved by accounting for reconstructed final-state
radiation (FSR) photons in the Z boson decay. After selection criteria are applied, events are divided into
bins for each variable of interest for the differential cross-section measurements. Finally, all measurements
presented in this paper are performed within a four-lepton mass window of 105 < my4, < 160 GeV. The
signal selection efficiency is about 31%, 21%, 17%, and 16% for the 4u, 2e2u, 2u2e, and 4e final states,
respectively. Here, the first lepton pair refers to the lepton pair with an invariant mass closest to the Z
boson mass.



Table 2: A summary of event selection requirements for leptons and Higgs boson candidates outlined in Section 4.
SFOC lepton pairs are same-flavour opposite-charge lepton pairs. For the mass requirement of the subleading lepton
pair, Mhreshold 1S 12 GeV for my4, < 140 GeV, and rises linearly until reaching 50 GeV for m4, = 190 GeV.

Leptons and jets

Muons pr > 5GeV, |n| <2.7
Electrons Er > 7GeV, |n| <247
Jets pr > 30GeV, || <4.5

Lepton selection and pairing
Lepton kinematics pr > 20,15,10 GeV
Leading pair (m2) SFOC lepton pair with smallest |mz — mg¢|
Subleading pair (1m134) Remaining SFOC lepton pair with smallest [myz — meg|

Event selection (at most one Higgs boson candidate per channel)

Mass requirements 50 GeV< myp < 106 GeV and mupyreshold < m34 < 115 GeV
Lepton separation: AR(¢;,¢5) > 0.1
Lepton/Jet separation AR(u;(e;),jet) > 0.1(0.2)
J /¥ veto m({;, €;) > 5 GeV for all SFOC lepton pairs
Impact parameter |do| /o (dy) < 5 (3) for electrons (muons)
Mass window 105 GeV < myp < 160 GeV
Vertex selection: )(2 /Naor < 6 (9) for 4u (other channels)

If extra lepton with pr > 12 GeV  Quadruplet with largest matrix element (ME) value

5 Fiducial phase space and unfolded observables

The fiducial cross sections are defined using simulation at particle level and the selection requirements
outlined in Table 3. In order to minimise model-dependent acceptance extrapolations, these are chosen to
closely match the selection requirements of the detector-level analysis after the event reconstruction.

The fiducial selection is applied to final-state electrons and muons that do not originate from hadrons or
7-lepton decays, after ‘dressing’ them, i.e., the four-momenta of photons within a cone of size AR = 0.1
around the lepton are added to the lepton’s four-momentum. The photons which originate from hadron
decays are excluded. Particle-level jets are reconstructed from final-state neutral and charged particles
using the anti-k, algorithm with radius parameter R = 0.4. Electrons, muons, neutrinos (if they are not
from hadron decays) and photons from Higgs decays as well as those used to dress leptons are excluded
from the jet clustering. A jet is labelled as a b-jet if there is a b-hadron with pt > 5 GeV within a cone of
size AR = 0.3 around the jet axis. Jets are removed if they are within a cone of size AR = 0.1 around a
selected lepton.

Quadruplet selection using the selected dressed leptons follows the same procedure as for reconstructed
events. In the case of VH or 1#tH production, additional leptons not originating from a Higgs boson
decay can induce a ‘lepton mispairing’” when assigning them to the leading and subleading Z bosons. To
improve the lepton pairing efficiency, the matrix-element-based pairing method as described in Section 4
is employed. The variables used in the differential cross-section measurement are calculated using the
dressed leptons of the quadruplets.

The acceptance of the fiducial selection, defined as the ratio of the number of events passing the particle-level
selection to the number of events generated in a given bin or final state (with respect to the full phase space



of H— ZZ* — 202¢’, where {,{’ = e or p), is about 49% for each final state for a SM Higgs boson with
mpg = 125 GeV. The ratio of the number of events passing the selection after detector simulation and event
reconstruction to those passing the particle-level selection is about 45%. About 1.6% of the events which
pass the detector-level selection fail the particle-level selection. This is mostly due to resolution effects for
muons. For electrons channels, the difference in the reconstructed and fiducial phase space definition, has
an additional comparable contribution.

Table 3: List of event selection requirements which define the fiducial phase space for the cross-section measurement.
SFOC lepton pairs are same-flavour opposite-charge lepton pairs.

Leptons and jets
Leptons pt > 5GeV, |n| <2.7
Jets pr >30GeV, |y| < 44
Lepton selection and pairing
Lepton kinematics pr > 20,15,10 GeV
Leading pair (m ) SFOC lepton pair with smallest [mz — mee|
Subleading pair (m34) remaining SFOC lepton pair with smallest |mz — mgg|
Event selection (at most one quadruplet per event)
Mass requirements 50 GeV< myp < 106 GeV and 12 GeV< m3yq < 115 GeV
Lepton separation AR(¢;, ;) > 0.1
Lepton/Jet separation AR({;,jet) > 0.1
J /¥ veto m({;,€;) > 5 GeV for all SFOC lepton pairs
Mass window 105 GeV< myp < 160 GeV

If extra lepton with pr > 12 GeV ~ Quadruplet with largest matrix element value

Within the fiducial phase space defined above, differential cross sections are measured for variables which
are sensitive to both the production and decay of the Higgs boson. For example, the transverse momentum
distribution of the Higgs boson provides a test of perturbative QCD calculations, is sensitive to the structure
of the Higgs boson interactions and is sensitive to charm and bottom Yukawa couplings. The rapidity of
the Higgs boson is sensitive to the choice of parton distribution functions for the colliding protons, and is
also influenced by QCD radiative corrections. The invariant masses of the leading and subleading lepton
pair are sensitive to higher-order electroweak corrections to the Higgs boson decay, and are sensitive to
BSM contributions. These two variables and the angular variables of the Higgs boson decay are also of
interest due to their sensitivity to the spin and parity of the Higgs boson, as well as to same-flavour pair
final-state interference and EW corrections. Variables related to jets probe QCD radiation effects and the
Higgs boson production. The jet multiplicity is sensitive to different production mechanisms and provides
sensitivity to the theoretical modelling of high-pt quark and gluon emission. The transverse momentum of
the jets directly probes the quark and gluon radiation. The invariant mass of the two leading jets is also
sensitive to the production mechanisms of the Higgs boson, while the signed angle in the transverse plane
of the two leading jets is a test of the spin and parity of the Higgs boson. Jet-related variables, in particular
double differential variables, also probe the effects of QCD resummation. Additional variables which
combine the properties related to the kinematics of the Higgs boson and the jets are also considered. A
summary of all the variables and their descriptions is given in Table 4.



Table 4: Definitions of observables for which differential cross sections are measured. The angular variables are
defined as in Ref. [133]. In addition to the single observables listed, the following double differential observables are

T : . . 4¢ 40 oo lead. jet  4p Al 40 . 4lj o

built us;n% Yarlablesbcllegiqed belov;z. dm‘lz vS. m34, pp VS. Njetss Py VS. Py s DT VS. pps P VS |Vacl, ppoovs.
. Jet . Jet . jet 4 ;i ’ : . . qe . .

magj, p;a I ys. pateae I and pTea Iy, [ylead-iet| (where |y'2d- J¢t|| is the rapidity of the leading jet). Jet-related

variables are inclusive, while for the jet multiplicity the results are provided in both the inclusive and exclusive jet
bins. A¢ij is defined as ¢lead. jet _ d)sublead.jet if nlead.jet > nsublead.jet or as d)sublead.jet _ ¢Iead. jet if nsublead. jet > 7Ylead. jet.
If Agp;; < 0, 27 is added to the value.

Higgs boson kinematic-related variables

p%‘}, |vael Transverse momentum and rapidity of the four-lepton system
mio, M3q Invariant mass of the leading and subleading lepton pair
| cos 6% Magnitude of the cosine of the decay angle of the leading lepton pair in
the four-lepton rest frame relative to the beam axis
cos 6y, cos b, Production angles of the anti-leptons from the two Z bosons, where the
angle is relative to the Z vector.
¢, d1 Two azimuthal angles between the three planes constructed from the

Z bosons and leptons in the Higgs boson rest frame.
Jet-related variables

Niets> Np-jets Jet and b-jet multiplicity
lead. jet _sublead. jet
T P

Transverse momentum of the leading and subleading jet, for events with

at least one and two jets, respectively. Here, the leading jet refers to the

jet with the highest pr in the event, while subleading refers to the jet with

the second-highest pr.

mj;, |Anjil, A¢;; | Invariant mass, difference in pseudorapidity, and signed difference in ¢

of the leading and subleading jets for events with at least two jets
Higgs boson and jet-related variables

pfj, mag; Transverse momentum and invariant mass of the four-lepton system and
leading jet, for events with at least one jet

pf”, Mmagj; Transverse momentum and invariant mass of the four-lepton system and
leading and subleading jets, for events with at least two jets

6 Background estimation

Non-resonant SM (Z®*) /y*)(Z*) /y*) production via ¢4 annihilation and gluon—gluon fusion, referred
to as ZZ*, can result in four prompt leptons in the final state and constitutes the largest background
for this analysis. While for previous analyses [11, 12] both the shape and the normalisation of this
background were exclusively estimated with simulation, in this paper the normalisation is constrained with
a data-driven technique. The systematic uncertainty is reduced because both the theoretical and luminosity
uncertainties no longer contribute to the normalisation uncertainty. The normalisation of the non-resonant
ZZ7* component, which dominates outside the Higgs boson peak region, is obtained from data by extending
the mass interval considered from 115-130 GeV to 105-160 GeV. The increased mass interval allows an
estimation of this process with minimal impact on the expected sensitivity for the signal process. This
contribution is determined as part of the 4¢ mass fit (discussed in Section 7) in the full four-lepton mass
region, with the shape of the background taken from simulation.

The ZZ* normalisation is estimated separately in each bin of each differential observable, where a different
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Z7" scaling factor is used for each observable bin. In phase-space regions where the ZZ* component in
the m4, sidebands is too low to provide a reliable estimate of its contribution, the estimate is evaluated
simultaneously for several differential bins.”

Other background processes, such as Z + jets, t7, and WZ, contain at least one jet, photon or lepton from
a hadron decay that is misidentified as a prompt lepton. These reducible backgrounds are significantly
smaller than the non-resonant ZZ* background and are estimated using data where possible, following
slightly different approaches for the £€ + pu and €€ + ee final states [11, 12, 32].

In the ¢¢ + pu final states, the normalisations for the Z + jets and ¢7 backgrounds are determined by
performing fits to the invariant mass of the leading lepton pair in dedicated independent control regions
which target each background process for each bin of the differential observables. Depending on the
background process being targeted, the control regions are formed by relaxing the y? requirement on
the four-lepton vertex fit, and by inverting or relaxing isolation and/or impact-parameter requirements
on the subleading muon pair. Additional control regions (euuu and €€ + u*p*) are used to improve the
background estimate by reducing the statistical uncertainty of the fitted normalisation. Transfer factors to
extrapolate from the control regions to the signal region are obtained separately for 7 and Z + jets using
simulation. This method is performed in each differential bin. The m4, shape for both processes in each
bin is obtained from simulation.

The ¢¢ + ee control-region selection requires the electrons in the subleading lepton pair to have the same
charge, and relaxes the identification, impact parameter and isolation requirements on the electron candidate
with the lowest transverse energy. This electron candidate, denoted by X, can be a light-flavour jet, an
electron from photon conversion or an electron from heavy-flavour hadron decay. The heavy-flavour
background is completely determined from simulation, whereas the light-flavour and photon conversion
background is obtained with the sPlot method [134]. This is based on a fit to the number of hits in the
innermost ID layer in the data control region. Transfer factors to extrapolate from the ££ + ee control region
to the signal region for the light-flavour jets and converted photons, obtained from simulated samples, are
corrected using a Z + X data control region. The corrected transfer factors are then used to extrapolate
the extracted yields to the signal region. Both the extraction of the global yield in the control region
and the extrapolation to the signal mass region are performed in bins of the transverse momentum of
the electron candidate and the jet multiplicity. In order to extract the shape of the backgrounds from
light-flavour jets and photon conversions for each observable, a similar method is used, except that the
extraction and extrapolation is performed only as a function of the transverse momentum of the electron
candidate, ignoring the binning in jet multiplicity.

Additional contributions from rare processes, such as tXX (tfZ, ttW, tWZ and other rare top-associated
processes) and VVV are estimated from simulation.

7 Signal extraction and unfolding

To extract the number of signal events in each bin of a differential distribution (or for each decay final
state for the inclusive fiducial cross section), invariant mass templates for the Higgs boson signal and the
background processes are fitted to the ma4, distribution in data. Compared to the previous analysis [11], the

2 The same normalisation factor is used for neighbouring bins until the increase in uncertainty on the expected cross section in
each measured bin is less than 5% of the total uncertainty.
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non-resonant ZZ* background is fitted simultaneously with the signal and constrained by extending the
myy fit range from 115-130 GeV to 105-160 GeV.

For the total and fiducial cross sections in different final states, the same normalisation factor is used for
the ZZ* contribution. For the differential cross-section measurements, multiple ZZ* normalisation factors
are introduced in the model, as described in Section 6. The reducible background, composed of Z + jets, t7,
and WZ processes, is estimated from dedicated control regions as described in Section 6 and its overall
normalisation and shape can vary within the associated systematic uncertainties. Finally, for the differential
distributions, no splitting into decay final states is performed, and the SM ZZ* — 4{ decay fractions are
assumed.

The number of expected events IN; in each observable reconstruction bin i, expressed as a function of my,,
is given by

Ni(ma) = )" rij - (1+ £ - o8 Dy (mag) - L+ N (may)

J
with

O'jﬁdZO'j-Aj'B (1)

where A; is the acceptance in the fiducial phase space and o; the total cross section in fiducial bin j, £ is
the integrated luminosity, 8 is the branching ratio and N?kg(mu) is the background contribution. The
index j runs over all observable bins in the fiducial phase space. The term P; (mar) is the m4, signal shape
containing the fraction of events as a function of m4, expected in each reconstruction bin, taken from MC
simulation. The term r;; represents the detector response matrix, created with simulated signal samples
and averaged across the different production modes using the expected SM cross-sections [109]. These
factors correspond to the probability that an event generated within the fiducial volume in the observable
bin j is reconstructed in bin i.

The normalisation, fl.n"“ﬁd, represents the fraction of events which are outside of the fiducial region but
are reconstructed within the signal region. This ranges from 1.1% to 1.7% depending on the bin of the
unfolded observable or final state.

The detector response matrix accounts for bin-to-bin migrations in the unfolding of the signal. It was chosen
over the bin-by-bin correction factor technique used in the previous analyses [11, 12] due to its lower model
dependence. Biases introduced via the unfolding method are minimised when using the response matrix;
however, matrix unfolding can amplify small fluctuations in data when the response matrix is characterised
by a large condition number.> The binning choice made for all observables ensures a statistical significance
of more than 20 for the signal process. The binning is also chosen to minimise migrations between bins. In
general, the bin width is more than twice the experimental resolution. As a result, the response matrices for
all the variables considered are well-conditioned, with a condition number less than 2.5. The fluctuations of
the unfolded distribution can be further reduced using regularisation techniques. Unfolding tests done with
toy data sets indicate that while regularisation provides a modest reduction of the statistical uncertainty,
this reduction is counterbalanced by the bias introduced by this technique. Therefore, no regularisation
of the unfolding was applied. Two of the jet-related variables are also provided in Appendix A using a
regularised unfolding method, and are compatible with the matrix-unfolded results presented here.

3 The condition number is defined as the ratio of the maximum and minimum singular values of the matrix. Values close to 1
signify a well-conditioned matrix with low sensitivity to statistical fluctuations on the input.
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Figure 1: Response matrices, derived using simulation, for (a) the transverse momentum of the four-lepton system
p4T‘), (b) the number of jets Njes, (¢) the transverse momentum of the leading jet p]Tead' 1% "and (d) the mass of the
leading versus subleading lepton pair m15 vs. m34. Only reconstructed events that were matched to generator-level

(‘truth’) events are included. Bins below 0.005 are omitted for clarity.
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Figure 1 shows the response matrix for the p4T[ Niets plfad' ¥ and my, vs. m34 observables. For pf, the

purity of the bins ranges from 87% at low p‘%‘), where the bins are narrow, to 97% at high p4T[, where
wider bins are defined. The purity is defined as the percentage of reconstructed events which match the
particle-level events in that bin. For the Njes observable, the migrations are more relevant due to the
relatively worse jet energy resolution and the presence of pile-up jets in the reconstructed events. This

brings the purity for the for Njes > 3 bin down to 68%. The plTe ad- jet migrations are similarly larger, with

the lowest purity value of 67% occurring in the lowest plfad' ¥ bin, The mya VS. m34 observable, like p%l,

has a higher purity. All bins have a purity of around 90% except the first bin, which has a purity of 78%.

8 Systematic uncertainties

The systematic uncertainties include experimental uncertainties, such as those in object reconstruction,
identification, isolation, resolution, and trigger efficiencies, as well as theoretical uncertainties related to
the modelling of the signal and background processes. More detail is provided in Ref. [32], while a brief
overview of the dominant sources of uncertainty is provided here. The impacts of the experimental and
theoretical uncertainties on the measurements are summarised in Table 5.

8.1 Experimental uncertainties

The uncertainty in the predicted yields due to pile-up modelling ranges between 1% and 2%. The
uncertainty in the integrated luminosity is 1.7% and affects the signal yields and simulated background
estimates when not constrained by the sidebands.

The electron (muon) reconstruction and identification efficiency uncertainties are approximately 1.0-2.0%
(< 1.0%). The uncertainty in the expected yields due to the muon and electron isolation efficiencies is also
considered, and is approximately 1%. Lepton energy momentum scale and resolution uncertainties have
negligible impacts on the presented results.

The impact of uncertainties in the jet energy scale and resolution (of between 1% and 3%) is only relevant
for the jet-related differential cross-section measurements, where their impact is typically between 3% and
5%, and is negligible in the other measurements. The uncertainty in the performance of the b-tagging
algorithm is at the level of a few percent over most of the jet pr range [132].

The impact of the precision of the Higgs boson mass measurement, mgy = 125.09 + 0.24 GeV [15], on the
signal acceptance due to the signal region mass-window requirement is negligible.

For the data-driven measurement of the reducible background, three sources of uncertainty are considered:
statistical uncertainty, overall systematic uncertainty for each of ££ + yu and £€ + ee, and a shape systematic
uncertainty which varies with the differential variable. Impacts from these sources of uncertainty range
from less than 1% to a maximum of around 3%. The inclusive reducible background estimate has a
relatively small (3%) statistical uncertainty, which has minimal impact on the cross section.
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Table 5: Fractional uncertainties for the inclusive fiducial and total cross sections, and ranges of systematic
uncertainties for the differential measurements. The columns ‘e/u” and ‘Jets’ represent the experimental uncertainties
in lepton and jet reconstruction and identification, respectively. The Z + jets, ¢, tX X (Other Bkg.) column includes
uncertainties related to the estimation of these background sources. The ZZ* theory (ZZ* th.) uncertainties include
the PDF and scale variations. Signal theory (Sig th.) uncertainties include PDF choice, QCD scale, and shower
modelling of the signal. Finally, the column labelled ‘Comp.’ contains uncertainties related to production mode
composition and unfolding bias which affect the response matrices. The uncertainties have been rounded to the
nearest 0.5%, except for the luminosity uncertainty, which has been measured to be 1.7%.

Observable Stat. Syst. Dominant systematic components [%]

unc. [%] unc. [%] Lumi. e/u Jets Other Bkg. ZZ* Th. Sig. Th. Comp.
Teomb 9 3 1.7 2 <05 <05 1 15 <05
Tap 15 4 1.7 3 <05 <05 15 1 <05
Tie 26 8 1.7 7 <05 <05 15 1.5 <05
e 20 7 17 5 <05 <05 2 L5 <05
e 15 3 1.7 2 <05 <05 15 <05
do /dp3t 2046 2-8 1.7 -3 12 <05 1-6 1-2 <1
do / dmy, 12-42 3.6 17 23 <1 <05 1-2 1-2 <1
do / dmsy 20-82 312 17 23 <1 1-2 1-8 1-3 <1
do / dlyael 22-81 36 17 23 <1 <05 1-5 1-3 <1
do / dcos 67| 23-113 36 17 23 <1 1-2 1-7 13 <05
do / dcos 6, 2344 3.6 17 23 <1 <05 1-3 1-2 <1
do / dcos 6> 22-39 3.6 17 23 <1 <05 1-3 1-3 <1
do / de 20-29 25 17 23 <1 <05 1-3 12 <05
do / ey 2233 36 17 23 <1 <05 1-2 13 <05
dor / dNjegs 15-37 6-14 17 13 410 <05 1-4 3.7 1-4
dor / dNp_jess 15-67 6-15 17 13 45 1-3 1-2 3.9 1-4
dor / dpl-iet 1534 3-13 17 13 410 <05 1-2 -5 <05
dor / dpfyiead-iet 1167 522 17 13 2-12 <1 1-3 2415 15
dor / dm;; 11-50 5-18 17 13 1411 <05 1-3 2-15 1-2
do /dnj; 11-57 5-17 17 13 210 <05 1-2 2-14 1-4
do /dg;; 11-50 4-18 17 13 29 <05 1-3 2-14 1-6
dor / dmyg 15-66 4-19 17 13 39 <05 1-6 314 1-8
dor / dmag 11-182  5-67 17 13 424 <05 1-5 2-35 1-9
do 1 dp3 1576 613 17 13 2-8 <1 1-5 3-9 1-3
dor / dpy ¥ 1176 527 17 23 29 1-2 14 317 1-12
d2o 1 dmypdmss 16-65 3-11 17 23 <1 1-2 1-9 1-3 1-2
d*o 1 dpFdlysl 23-63 2-13 1.7 -3 12 <1 1-6 1-5 1-2
d?o 1 dpF dNjes 23-93 4-193 17 2-14 2-25 1-3 1-7 1-12 1-92
o/ dpslidmyg; 15-41 4-12 17 13 28 <05 1-5 29 <1
&0 1 dp¥dpy) 1553 3-10 17 13 28 <1 1-2 2-6 1-2
&/ dpdlapisd- I 1584 321 17 13 2218 1-10 1-3 2-9 1-3
Ao/ dpid-Itgpytead. ey 15-38 3-11 17 13 29 <05 1-2 14 1-2
Ao [ dpleit Flgpited-iet s 63 522 17 13 415 <05 1-4 311 1-7
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8.2 Theoretical uncertainties

Sources of theoretical uncertainty include missing higher-order corrections, parton shower and underlying
event modelling, and PDF+a, uncertainties, and these all affect modelling of the signal and background
processes. For measurements of the cross section, the impact of these theory systematic uncertainties on
the signal comes from their effects on the response matrix.

The prediction of the ggF process in different Njes categories and migration effects on the Njes ggF cross
sections are large sources of theoretical uncertainty, which are accounted for using the approach detailed in
Ref. [109]. The QCD scale uncertainty from the factorisation and renormalisation scales, resummation
scales, and migrations between N-jet phase-space bins are considered [53, 135-138]. The impact of QCD
scale variations on the Higgs boson pr distribution as well as the uncertainty of the pr distribution in
the O-jet bins are also taken into account. Higher-order impacts on the p distribution predictions due
to treating the top quark mass as infinite in the heavy-quark loop are accounted for by comparing these
predictions with finite-mass calculations. For the VBF production mode, the uncertainty due to missing
higher orders in QCD are considered, including migration effects in number of jets, transverse momentum
of the Higgs boson, transverse momentum of the Higgs boson and leading dijet system, and the invariant
mass of the two leading jets as outlined in the scheme presented in Ref. [139].

For production modes other than ggF and VBF, the effects of QCD scale uncertainties are estimated by
considering all configurations of renormalisation and factorisation scales varied by a factor of two. In
each experimental bin, the largest difference between all the variations and the nominal configuration is
assigned as uncertainty.

The effects of parton shower and multiple-parton interaction modelling uncertainties on the acceptance are
estimated using tune eigenvector variations as well as comparisons between acceptances calculated with
Pytaia 8 and HErwiG 7 parton showering algorithms.

PDF uncertainty impacts are estimated using the eigenvector variations of the PDFALHC_NLO_30 Hessian
PDF set, following the PDFALHC recommendations [72].

For the cross sections extrapolated to the full phase space, an additional uncertainty (2.2%) related to the
H — ZZ* branching ratio [69, 70] is included in the measurement.

Since the ZZ* process normalisation is constrained by performing a simultaneous fit of sideband regions
enriched in this contribution together with the signal region, most of the theoretical uncertainty in the
normalisation for this background vanishes.* The uncertainties due to missing higher-order effects in QCD
are estimated by varying the factorisation and renormalisation QCD scales by a factor of two; the impact of
the PDF uncertainty is estimated using the MC replicas of the NNPDF3.0 PDF set. Uncertainties due to
the parton shower modelling for the ZZ* process are considered as well. The impact of these uncertainties
is below 2% for all the fiducial differential cross sections. In addition, the m4, shape obtained from
SHERPA is compared with that obtained from PowneG and MADGrAPHS_AMC@NLO and the difference is
taken as an additional source of systematic uncertainty. In each my4, bin, the largest difference between
SHErPA and PowHEG or MADGrAPHS_AMC@NLO is used, and the systematic uncertainty is determined
by interpolating between these shapes. Typically, SHERPA and PowHEG have the largest difference in the
predicted my4, shape, with the impact linearly varying from approximately +10% at low my4, to 2% at
high maype.

4 Except in cases where the cross-section bins are merged into a single ZZ* bin, where the relative normalisation uncertainties
are included.
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The uncertainty in the gluon-induced ZZ* process is taken into account as well by changing the relative
composition between the quark-initiated and gluon-initiated ZZ* components according to the theoretical
uncertainty in the predicted cross sections.

Finally, unfolding-related uncertainties arise from uncertainties in the production mode composition that
affect the response matrices, as well as from uncertainties in the bias introduced by the unfolding method.
For the former, an uncertainty is assessed by varying the production cross sections within their measured
uncertainties taken from Ref. [12], and has an impact of less than 1%. In the latter case, the uncertainty
in the bias is obtained independently per bin by comparing the unfolded cross section from simulation
with that expected when varying the underlying true cross sections of the simulated data sample within the
expected statistical error. The impact of this uncertainty is typically negligible in distributions such as p4T[,
where the response matrix is largely diagonal, but can be of the order of 10% in distributions with larger
bin migrations, such as Njes.
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9 Results

Results are presented for the full set of inclusive and differential variables outlined in Section 5. Section 9.1
presents the data yields from the full Run 2 data set. Section 9.2 provides details of the statistical procedure
used for the extraction of the measurements. Cross-section results, and comparisons with SM predictions,
are provided in Sections 9.3 and 9.4.

9.1 Measured data yields

The observed number of events in each of the four decay final states, and the expected signal and background
yields before fitting to data (pre-fit), are presented in Table 6. These events have passed the event selection
and fall in a narrow window around the Higgs boson mass peak (115 < m4, <130 GeV).

Table 6: Expected (pre-fit) and observed numbers of events in the four decay final states after the event selection,
in the mass range 115 GeV< m4, < 130 GeV. The sum of the expected number of SM Higgs boson events and
the estimated background yields is compared with the data. Combined statistical and systematic uncertainties are
included for the predictions (see Section 8).

Final Signal zz* Other Total Observed
state background backgrounds expected
4u 78 +£5 380+2.1 285+0.18 119+5 115

2e2pu 53.0+3.1 26114 298+0.19 820+34 96
2u2e 40.1+£29 173+13 3.6+0.5 61.0+£3.2 57

4e  353+2.6 150+£15 291+033 532+3.1 42
Total 206+ 13 9 + 6 122+1.0 315+ 14 310

Figures 2 and 3 show the expected and observed four-lepton invariant mass distributions, inclusively and per
final state respectively. The m4, distribution shows two clear peaks corresponding to Z — 4¢ production
and the Higgs boson signal with a mass near 125 GeV.
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Figure 2: The observed and expected (pre-fit) inclusive four-lepton invariant mass distributions for the selected
Higgs boson candidates, shown for an integrated luminosity of 139 fb~! and at v/s = 13 TeV. The uncertainty in the
prediction is shown by the hatched band, which includes the theoretical uncertainties of the SM cross section for the
signal and the ZZ* background.
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Figure 3: The observed and expected (pre-fit) four-lepton invariant mass distribution for the selected Higgs boson
candidates, for the different decay final states (a) 44, (b) 2e2u, (c) 2u2e, (d) 4e. The uncertainty in the prediction is
shown by the hatched band, which includes the theoretical uncertainties of the SM cross section for the signal and the
ZZ7" background.
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The observed and expected distributions of one-dimensional observables are shown in Figures 4-9. In
addition, the observed and expected distributions for the two-dimensional observables are shown in
Figures 10-17. All these figures show events selected within an m4, mass range of 115-130 GeV. Further
details of the compatibility with the SM are reported in Section 9.4.
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Figure 4: The observed and expected (pre-fit) distributions of (a) p4Tf, (b) myz, and (c) m34 in the mass region
115 < my, < 130 GeV, for an integrated luminosity of 139 fb! collected at /s = 13 TeV. A SM Higgs boson signal
with a mass mpy = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band, which
includes the theoretical uncertainties of the SM cross section for the signal and the ZZ™* background.
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Figure 6: The observed and expected (pre-fit) distributions of (a) cos 81, (b) cos 0, (¢) ¢, and (d) ¢; in the mass
region 115 < my, < 130 GeV, for an integrated luminosity of 139 fb~! collected at v/s = 13 TeV. A SM Higgs boson
signal with a mass mpy = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band, which
includes the theoretical uncertainties of the SM cross section for the signal and the ZZ* background.

23



© 300 \ \ \ © 300 \ \
S ATLAS ¢ Data ] S ATLAS ¢ Data ]
> H— zZ* - 4l I Higgs (125 GeV) ] > H— zZ* - 4l [ Higgs (125 GeV)
W o50 [ s = 13 Tev, 139 b oA W o50 [ s = 13 Tev, 139 b R -
115 < m, < 130 GeV Y 115 < m, < 130 GeV Y 1
Bl Z+jets, tt Bl Z+jets, tt ]
200 7 Uncertainty 200 W Uncertainty i
150 150 .
100 100 .
50 50 .
0 0
Njets =0 Nb-jels =0 Nb-jets 21
Njets
(a) ()
= 1 0° T T = 1 0° T T
%] ¢ Data 4] ¢ Data
& . FATLAS & ¢ LATLAS
= 10" ey 5778 4] [ Higgs (125 GeV) =  EH-ZZ -4l [ Higgs (125 GeV)
£ =13 TeV, 139 fo”' - £ 10 =13 TeV, 139 fo”' *
S 10° ﬁ5<m4,21soeev . 22 3 ﬁ5<m4,i1soeev . 22
= XX, VWV = 10° XX, VWV
-c‘.f 102 B Zjets, 5 102 B Zjets,
2 7 Uncertainty 2 7 Uncertainty
o 10 o 10
> >
w w
1 1
107
107
1072
—2
10 1070
107 10
el 2 el 2
& sl # ] & s ! 1
g 1h > % W g 1 %,,//,/W./,,/,//M//////W///////////y/////////////////%
a 05 r 4 a 0.5 r 4
° Ny =0 30-60 60-120 120-350 ° Nggs <2 30-60 60-120 120-350
p[:ad.jet [GeV] p:-ublead. jet [GeV]
(©) (d

Figure 7: The observed and expected (pre-fit) distributions of (a) Njets, (b) Np—jess, (¢) p}l?ad' ¥ and (d) p,srublead' ¥ in
the mass region 115 < my, < 130 GeV, for an integrated luminosity of 139 fb~! collected at /s = 13 TeV. A SM
Higgs boson signal with a mass mpy = 125 GeV is assumed. In distribution (c), the first bin contains events with zero
jets, while in distribution (d), the first bin contains events with fewer than two jets. In both (c) and (d), all bins except
the first are divided by the bin width. The uncertainty in the prediction is shown by the hatched band, which includes

the theoretical uncertainties of the SM cross section for the signal and the ZZ* background.
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Figure 8: The observed and expected (pre-fit) distributions of (a) mjj, (b) An;j, and (c) A¢j; in the mass region
115 < my, < 130 GeV, for an integrated luminosity of 139 fb~! collected at v/s = 13 TeV. A SM Higgs boson signal
with a mass mpy = 125 GeV is assumed. In all distributions, the first bin contains events with fewer than two jets.
The uncertainty in the prediction is shown by the hatched band, which includes the theoretical uncertainties of the
SM cross section for the signal and the ZZ* background.
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Figure 9: The observed and expected (pre-fit) distributions of (a) magj, (b) magjj, (c) pf’, and (d) p4T€” in the mass
region 115 < my4, < 130 GeV, for an integrated luminosity of 139 fb~! collected at v/s = 13 TeV. A SM Higgs boson
signal with a mass my = 125 GeV is assumed. The first bin in (a) and (c) contains events with no jets, while the first
bin in (b) and (d) contains events with fewer than two jets. The uncertainty in the prediction is shown by the hatched
band, which includes the theoretical uncertainties of the SM cross section for the signal and the ZZ* background.
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130 GeV, for an integrated luminosity of 139 fb~! collected at /s = 13 TeV. A SM Higgs boson signal with a mass

mpg =125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band, which includes the
theoretical uncertainties of the SM cross section for the signal and the ZZ* background.
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130 GeV, for an integrated luminosity of 139 fb~! collected at /s = 13 TeV. A SM Higgs boson signal with a mass
mpg =125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band, which includes the
theoretical uncertainties of the SM cross section for the signal and the ZZ* background.
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Figure 12: The observed and expected (pre-fit) distribution in bins of the leading vs. subleading Z boson mass,
mip vs. m34. The same distribution in the 2D plane is provided in the inset plot, where the black dots depict
data and the blue and pink shaded areas represent simulated signal and background, respectively. The red lines
depict the bin boundaries, chosen as described in Section 7. These distributions correspond to the mass region
115 < mye < 130 GeV for an integrated luminosity of 139 fb~! collected at v/s = 13 TeV. A SM Higgs boson signal
with a mass mpg = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band, which
includes the theoretical uncertainties of the SM cross section for the signal and the ZZ* background.
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Figure 13: The observed and expected (pre-fit) distribution in bins of the transverse momentum of the four-lepton
plus leading-jet system vs. the invariant mass of the four-lepton plus leading-jet system, p4T€J vs. myej. The same
distribution in the 2D plane is provided in the inset plot, where the black dots depict data and the blue and pink
shaded areas represent simulated signal and background, respectively. The red lines depict the bin boundaries, chosen
as described in Section 7. These distributions correspond to the mass region 115 < mg4, < 130 GeV for an integrated
luminosity of 139 fb~! collected at /s = 13 TeV. A SM Higgs boson signal with a mass my = 125 GeV is assumed.
The uncertainty in the prediction is shown by the hatched band, which includes the theoretical uncertainties of the
SM cross section for the signal and the ZZ* background.
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Figure 14: The observed and expected (pre-fit) distribution in bins of the transverse momentum of the four-lepton
system vs. the transverse momentum of the four-lepton plus leading-jet system, pf}e Vs. p4T€J. The same distribution in

the 2D plane is shown in the inset plot, where the black dots depict data and the blue and pink shaded areas represent
simulated signal and background, respectively. The red lines depict the bin boundaries, chosen as described in
Section 7. These distributions correspond to the mass region 115 < m4, < 130 GeV for an integrated luminosity
of 139 fb~! collected at /s = 13 TeV. A SM Higgs boson signal with a mass my = 125 GeV is assumed. The
uncertainty in the prediction is shown by the hatched band, which includes the theoretical uncertainties of the SM
cross section for the signal and the ZZ* background.
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Figure 15: The observed and expected (pre-fit) distribution in bins of the transverse momentum of the four-lepton
system vs. the transverse momentum of the leading jet, pf‘lf Vs. pl;ad' 1 The same distribution in the 2D plane is
provided in the inset plot, where the black dots depict data and the blue and pink shaded areas represent simulated
signal and background, respectively. The red lines depict the bin boundaries, chosen as described in Section 7. These
distributions correspond to the mass region 115 < my4, < 130 GeV for an integrated luminosity of 139 fb~! collected
at /s = 13 TeV. A SM Higgs boson signal with a mass mpy = 125 GeV is assumed. The uncertainty in the prediction
is shown by the hatched band, which includes the theoretical uncertainties of the SM cross section for the signal and

the ZZ* background.
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black dots depict data and the blue and pink shaded areas represent simulated signal and background, respectively.
The red lines depict the bin boundaries, chosen as described in Section 7. These distributions correspond to the
mass region 115 < my, < 130 GeV for an integrated luminosity of 139 fb~! collected at v/s = 13 TeV. A SM Higgs

boson signal with a mass mpy = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band,
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Figure 17: The observed and expected (pre-fit) distribution in bins of the transverse momentum vs. the rapidity of
the leading jet, plTead‘ 1 ys. |y'ead- et The same distribution in the 2D plane is provided in the inset plot, where the
black dots depict data and the blue and pink shaded areas represent simulated signal and background, respectively.
The red lines depict the bin boundaries, chosen as described in Section 7. These distributions correspond to the
mass region 115 < my, < 130 GeV for an integrated luminosity of 139 fb™! collected at v/s = 13 TeV. A SM Higgs
boson signal with a mass mg = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band,

which includes the theoretical uncertainties of the SM cross section for the signal and the ZZ* background.
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9.2 Statistical analysis

The inclusive fiducial and differential cross sections are measured using a binned profile-likelihood-ratio
fit [140], taking into account all bins of a given distribution. The likelihood function includes the shape and
normalisation uncertainties of the signal and background predictions as nuisance parameters, as outlined
in Section 8. The cross sections are extracted by minimising two times the negative logarithm of the
profile likelihood ratio, —21In A. In the asymptotic approximation, i.e. the large sample limit, —2In A
behaves as a y? distribution with one degree of freedom. The compatibility of a measured cross section
and its theoretical prediction is tested by computing a p-value based on the difference between the value
of —2In A at the best-fit value and the value obtained by fixing the cross section in each bin to that
predicted by theory. These p-values do not include the uncertainties in the theoretical predictions. For all
measured observables the asymptotic approximation is validated with pseudo-experiments, and where the
number of observed events is less than three, the uncertainties are corrected to the values obtained with the
pseudo-experiments.

For the fiducial and differential cross-section measurements, the fitted mg4, distribution in each final state or
differential bin is used to extract the measured cross section following Eq. (1). The fiducial cross sections
of the four final states can either be summed to obtain an inclusive fiducial cross section, or they can be
combined assuming the SM ZZ* — 4/ relative branching ratios. The latter combination is more model
dependent, but benefits from a smaller statistical uncertainty.

9.3 Inclusive fiducial cross-section measurements

The fiducial production cross sections of the H — ZZ* — 4¢ process are presented in Table 7 and
Figure 18. The left panel in Figure 18(a) shows the fiducial cross sections for the four individual decay final
states: 4u, 4e decays (hereafter referred to as same flavour), and 2u2e, 2e2u decays (hereafter referred to
as different flavour). The middle panel shows the cross sections for same- and different-flavour decays,
which can provide a probe of same-flavour interference effects, as well as the inclusive fiducial cross
sections obtained by either summing all 4¢ decay final states or combining them assuming relative SM
branching ratios.

The data are compared with the SM prediction after accounting for the fiducial acceptance as determined
from the SM Higgs boson simulated samples (see Section 3).

The combined inclusive fiducial cross section is extrapolated to the full phase space, as shown in the right
panel of Figure 18, using the fiducial acceptance as well as the branching ratios, with the uncertainties
described in Section 8. The total cross section is also compared with the cross sections predicted by
NNLOPS, MapGrapru5_aMC@NLO-FxFx (MG5-FxFx) and Hres 2.3 [52, 141] for ggF, while for all
other production modes the predictions described in Section 3 are used. For ggF, all generators predict cross
sections that are lower than the N3LO calculation. The p-values, calculated as described in Section 9.2, are
shown in Table 7. The probability of compatibility of the measured fiducial cross section (0¢ompb) and the
Standard Model expectation is at the level of 67%.
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Figure 18: (a) The fiducial cross sections (left two panels) and total cross section (right panel) of Higgs boson
production measured in the 4¢ final state. The fiducial cross sections are shown separately for each decay final
state, and for same- and different-flavour decays. The inclusive fiducial cross section is measured as the sum of all
final states, as well as by combining the per-final-state measurements assuming SM ZZ* — 4¢ relative branching
ratios. The total SM prediction is accurate to N*LO in QCD for the ggF process. The cross sections for all other
Higgs boson production modes X H are added. For the fiducial cross-section predictions, the SM cross sections are
multiplied by the acceptances determined using the NNLOPS sample for ggF and the samples discussed in Section 3
for the other production modes. For the total cross section, the predictions by the generators NNLOPS , Hres, and
MabpGraPHS_AMC@NLO-FxFx are also shown. The error bars on the data points show the total uncertainties,
while the systematic uncertainties are indicated by the boxes. The shaded bands around the theoretical predictions
indicate the PDF and scale uncertainties, calculated as described in Section 8.2. (b) The correlation between the
fiducial cross sections for the four individual decay final states and the ZZ* normalisation factor.
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Table 7: The fiducial and total cross sections of Higgs boson production measured in the 4¢ final state. The fiducial
cross sections are given separately for each decay final state, and for same- and different-flavour decays. The inclusive
fiducial cross section is measured as the sum of all final states (osum), as well as by combining the per-final-state
measurements assuming SM ZZ* — 4{ relative branching ratios (o¢omp). For the total cross section (o), the Higgs
boson branching ratio at mg = 125 GeV is assumed. The total SM prediction is accurate to N°LO in QCD and
NLO EW for the ggF process. For the fiducial cross-section predictions, the SM cross sections are multiplied by the
acceptances determined using the NNLOPS sample for ggF. For all the other production modes, the cross sections
from the samples discussed in Section 3 are added. The p-values indicating the probability of compatibility of
the measurement and the SM prediction are shown as well. They do not include the systematic uncertainty in the
theoretical predictions.

Cross section [fb] Data ( + (stat.) + (syst.) ) Standard Model prediction p-value [%]

T4y 0.81  +0.12 +0.03 0.90 +0.05 46
C4e 0.62  +0.17 =+0.05 0.90 +0.05 14
O2u2e 0.74  +0.15 +0.05 0.80 +0.04 67
O2e2u 1.01  +0.15 +0.03 0.80 +0.04 15
C4ptde 143  +0.21 +0.05 1.81 +£0.10 10
O2p2et2e2u 1.75  +0.21 =+0.06 1.61 +=0.09 51
Osum 3.18 +0.31 =+0.11 341 +£0.18 49
O comb 328 030 +0.11 341 +0.18 67
Oiot [pb] 53.5 +49  +£2.1 55.7 28 66

9.4 Differential cross-section measurements

The measured differential production cross sections for the transverse momentum p%" of the Higgs boson
are shown in Figure 19, while the measured differential cross sections with respect to the masses of the
leading and subleading Z bosons resulting from the Higgs boson decay, m, and m3q4, are provided in
Figure 20. Figures 21, 22, and 23 show the measured differential production cross sections with respect to
angular variables, |y4¢|, |cos 67|, cos 81, cos 6>, ¢, and ¢1, that probe the kinematics of the Higgs boson
decay products.

Differential production cross-section measurements with respect to variables that probe the jet activity in
reconstructed Higgs boson events follow in Figures 24-28. These include the exclusive and inclusive jet

multiplicities, Njes, the b-jet multiplicity, Nj_jers, variables measuring the transverse momentum of the

jets, plTe -3 and pSTUblead‘ 1 "as well as variables that probe the kinematics of pairs of jets in events with at

least two jets, mjj, Anjj, and Agj;.

In addition, differential cross-section measurements are provided for observables aimed at studying the
relationship between the reconstructed Higgs boson and accompanying jets. These are presented in
Figures 29-30.

. . . L 4¢j
Finally, the double differential measurements in bins of m 1, vs. m3q, p%‘) vs. |vael, p‘}f VS. Niets, p%‘) VS. P 1
4¢j lead. jet blead. jet lead. jet ; . R
pTJ VS. Myej, p;a I ys. pfru 4% 0% and pTezl I ys. |y'ead- 3 are provided in Figures 31-38.

The data are compared with SM expectations constructed from the ggF predictions provided by NNLOPS
and MADGraPHS_AMC@NLO-FxFx. Certain distributions related to the production of the Higgs boson

37



also include a comparison with the predictions from NNLOJET and RapISH and some of the measurements
related to the Higgs boson decay are compared also with predictions from Hro4r and PropHECY4F. The ggF
predictions from MapGraPHS5_AMC @NLO-FxFx and NNLOPS are normalised to the N*LO prediction
while the normalisations for NNLOJET and RapISH are to their respective predicted cross sections. All
the other Higgs boson production modes are normalised to the most accurate SM predictions, as discussed
in Section 3. The shaded bands on the expected cross sections indicate the PDF and scale uncertainties °.
The figures include the p-values quantifying the probability of compatibility of the measurements and the
SM predictions and show in addition fitted values of the ZZ* normalisation factors. Finally, the correlation
matrices between the measured cross sections and the ZZ* background normalisation factors are shown in
all figures along with the cross-section measurements.

5 Given the accuracy of some predictions, this procedure may underestimate the associated uncertainties. In particular, NNLOPS
predictions for > 3 jets, which are affected in part by additional uncertainties which are not accounted by the procedure
described in Section 8.2.
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Figure 19: (a) Differential fiducial cross section for the transverse momentum p‘}e of the Higgs boson, along with (b)
the corresponding correlation matrix between the measured cross sections and the ZZ* background normalisation
factors. The measured cross sections are compared with ggF predictions by MapGrarPuS_AMC @NLO-FxFx,
NNLOIJET, RapISH, and NNLOPS, where MADGrAPHS _aAMC@NLO-FxFx and NNLOPS are normalised to the
N3LO total cross section with the listed K-factors while the normalisations for NNLOJET and RADPISH are to their
respective predicted cross sections. MC-based predictions for all other Higgs boson production modes XH are
normalised to the SM predictions. The error bars on the data points show the total uncertainties, while the systematic
uncertainties are indicated by the boxes. The shaded bands on the expected cross sections indicate the PDF and
scale systematic uncertainties, calculated as described in Section 8.2. This includes the uncertainties related to the
X H production modes. The p-values indicating the probability of compatibility of the measurement and the SM
prediction are shown as well. They do not include the systematic uncertainty in the theoretical predictions. The
central panel of (a) shows the ratio of different predictions to the data, and the grey area represents the total uncertainty
of the measurement. The bottom panel of (a) shows the ratios of the fitted values of the ZZ* normalisation factors
to the predictions from MC simulation discussed in Section 3. As indicated by the horizontal error bars, the ZZ*
normalisation is estimated in each of the first three p4T€ bins separately, while the next two bins share a common
estimation factor, as do the last five bins.
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Figure 20: Differential fiducial cross sections for (a) the invariant mass m, of the leading Z boson and (c) the
invariant mass m34 of the subleading Z boson, along with the corresponding correlation matrices between the
measured cross sections and the ZZ* background normalisation factors ((b) and (d)).
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Figure 21: Differential fiducial cross sections for (a) the rapidity, |y4¢|, of the Higgs boson and (c) the production
angle, |cos 67|, of the leading Z boson. The corresponding correlation matrices between the measured cross sections
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and the ZZ* background normalisation factors are also shown ((b) and (d)).
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Figure 22: Differential fiducial cross sections for (a) production angle, cos 61, of the anti-lepton from the leading
Z boson and (c) the production angle, cos 6,, of the anti-lepton from the subleading Z boson. The corresponding
correlation matrices between the measured cross sections and the ZZ* background normalisation factors are also
shown ((b) and (d)).
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Figure 23: Differential fiducial cross sections for (a) the azimuthal angle, ¢, between the decay planes of the two
reconstructed Z bosons and (c) the azimuthal angle, ¢, between the decay plane of the leading Z boson and the
plane formed by its four-momentum and the z-axis. The corresponding correlation matrices between the measured
cross sections and the ZZ* background normalisation factors are also shown ((b) and (d)).
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Figure 24: Differential fiducial cross sections for (a) the jet multiplicity, Njes, in the selected events, and (c), the
inclusive jet multiplicity. In the Nje distribution in (a), the first three bins are exclusive in number of jets, while
the fourth is inclusive. The corresponding correlation matrix between the measured cross sections and the ZZ*
background normalisation factors is also shown in (b). In the Njes distribution in (c), all bins are inclusive, with the
first bin including all events, the second including all events with at least one jet, and so on.
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Figure 25: (a) Differential fiducial cross section as function of the b-jet multiplicity, Nj,_jes. Three bins are
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correlation matrices between the measured cross sections and the ZZ™* background normalisation factors are also
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Figure 26: Differential fiducial cross sections for (a) the transverse momentum of the leading jet, p , in events

with at least one jet, and (c) the transverse momentum of the subleading jet, pgllblead ¥ in events with at least two

jets. Leading and subleading jets refer to the jets with the highest and second-highest transverse momenta. The first
bin contains events which do not pass the jet requirements. The corresponding correlation matrices between the
measured cross sections and the ZZ™* background normalisation factors are also shown ((b) and (d)).
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Figure 27: Differential fiducial cross sections for (a) the invariant mass of the two highest-pr jets, m;jj, in events with
at least two jets. The corresponding correlation matrix between the measured cross sections and the ZZ* background
normalisation factors is also provided ((b)).
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Figure 28: Differential fiducial cross sections for (a) the distance between these two jets in pseudorapidity, Anjj,
and (c) the distance between the two jets in ¢, A¢;;. The first bin contains events with fewer than two jets that pass
the jet selection requirements. Finally, the corresponding correlation matrices between the measured cross sections
and the ZZ* background normalisation factors are provided ((b) and (d)).
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Figure 29: Differential fiducial cross sections for (a) the transverse momentum of the four-lepton plus jet system, in
events with at least one jet, and (c) the transverse momentum of the four-lepton plus dijet system, in events with at
least two jets. The corresponding correlation matrices between the measured cross sections and the ZZ* background
normalisation factors are also shown ((b) and (d)).

49



= T T T T T E
(3] ¢ Data -
9 402 ATLA? [ Syst. uncertainties -
) H—ZZ* - 4 I MG5 FxFx K =147, +XH 3
= Vs =13 TeV, 139 1b” 0 mutg%ESTKK =111, +>§(FL B = 5 T T T T . 1
S 9 . =11, + —
H 0 o555 XH = VBF+VH+ttH+bbH+tH = s 0 ATLAS
B Total stat. @ syst. uncertainty] H ZZ* 4| - 08
© 1 —&— Fitted ZZ* Normalisation — __| O, | -0 s _1>3 Tov 1_3>9 !
E| S= ev,
p-value MG5 FxFx = 65% — — 06
10! p-value NNLOJET =71% | G, | -0.07
p-value NNLOPS = 69% 3 L —H0.4
B G5 -0.09 ’
102 = 8
E = -0.2
1073 [N . ; O 007 0
0005 i El — 1
7 : 3
////// 3 Oy | 00
10 0 L 102
© Gg | -0.07
T 2 N — -
Q 15— - - _ - 0.4
A ‘I ) I . = Ng© |04
L : B BaEY ey - --0.6
= F Nfz' 0.02
¢ 150 ] . -0.8
z 1 | + N5= | oo
Z ok : i F 6 & & 6 ¢ & No N & -1
. o N~ Nw
Nigis = 0 120 180 220 300 400 600 2000 = = =
my,; [GeV] my,;
(a) ()
= 10° T — T
[0 + ata
[©) 5 ATLAS [ Syst. uncertainties
8 10 H-2ZZ" >4 e MG5 FxFx K = 1.47, +XH
5 Vs =13TeV, 139 b 0 “utgéEsTKK 5 111 +>§5‘4 = T T T T . 1
2 . =11, + N o)
5 10 59260 XH = VBF+VHttH+bbH-H s 0 ATLAS 10.8
_g T_ola\ stat. ® syst. _uncertalmy H s ZZ* N 4| — .
—=&— Fitted ZZ* Normalisation
! O [l Vs=13TeV, 139 fo"
p-value MG5 FxFx = 14% | —10.6
10" p-value NNLOJET = 29% 5
p-value NNLOPS = 14% 2| 012 |
o A 0.4
Gg| 007
3 -10.2
10° = '
10 Gy | 006 -0
105 O | -0.07 - —O . 2
£ 3= = —
© . _
S 232 tt t i - NG| oz 04
> . J
R . : " --0.6
£ 05 E | - . - - Nfz' 0.02 )
o 1.5+ B 27| -0.8
z§ ] % l N > -0.00
z ' -1
05k = & 6 © © 6 ¢ No K- No
N <1180 320 450 600 1000 2500 > = >
My, [GeV] m41//
(© (d)

Figure 30: Differential fiducial cross sections for (a) the invariant mass of the four-lepton plus jet system, in events
with at least one jet, and (c) the invariant mass of the four-lepton plus dijet system, in events with at least two jets.
The corresponding correlation matrices between the measured cross sections and the ZZ* background normalisation
factors are also shown ((b) and (d)).
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Figure 31: (a) Differential fiducial cross section for the leading vs. subleading Z boson mass, m3 vs. m34, and (b)
the corresponding correlation matrix between the measured cross sections and the ZZ* background normalisation
factors. The bin boundaries are defined in Figure 12.
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Figure 32: Differential fiducial cross sections for the leading vs. subleading Z boson mass, m, vs. maq, in (a) {€upu
and (b) ¢fee final states, along with (c) their corresponding correlation matrix between the measured cross sections
and the ZZ* background normalisation factors. The bin boundaries are defined in Figure 12.
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Figure 33: (a) Double differential fiducial cross sections of the pf‘rf distribution in |y4¢| bins. The corresponding
correlation matrix between the measured cross sections and the ZZ* background normalisation factors is shown in
(b). The p-values shown are calculated for all bins across both pf‘r[ and |y4¢| simultaneously.
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Figure 34: (a) Double differential fiducial cross sections of the pf‘r‘) distribution in Nje bins. The corresponding
correlation matrix between the measured cross sections and the ZZ* background normalisation factors is shown

in (b). The p-values shown are calculated for all bins across both p‘{[ and Nijes simultaneously.
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Figure 35: (a) Differential fiducial cross section for the transverse momentum of the four-lepton system vs. the

transverse momentum of the four-lepton plus jet system, p‘{f
between the measured cross sections and the ZZ* background normalisation factors. The bin boundaries are defined

in Figure 14.
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Figure 36: (a) Double differential fiducial cross section for the transverse momentum of the four-lepton plus jet
system vs. the invariant mass of the four-lepton plus jet system, p4T€J vs. mycj and (b) the corresponding correlation
matrix between the measured cross sections and the ZZ* background normalisation factors. The bin boundaries are

defined in Figure 13.
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Figure 37: (a) Double differential fiducial cross section for the transverse momentum of the four-lepton system vs. the

g lead. jet

transverse momentum of the leading jet, p1° vs. pp
measured cross sections and the ZZ* background normalisation factors. The bin boundaries are defined in Figure 15.
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Figure 38: (a) Double differential fiducial cross section for the transverse momentum of the leading jet vs. the rapidity

lead. jet

of the leading jet, py.

vs. [y'€ad-Jet| “and (b) the corresponding correlation matrix between the measured cross

sections and the ZZ* background normalisation factors. The bin boundaries are defined in Figure 17.
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Figure 39: (a) Double differential fiducial cross section for the transverse momentum of leading vs. subleading jet,
plfad' Flys. p Plead-Jet "and (b) the corresponding correlation matrix between the measured cross sections and the
ZZ* background normalisation factor. The bin boundaries are defined in Figure 16.
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Overall, there is good agreement between measured cross sections and predictions. Small differences
between measurement and prediction occur in several of the angular observables, as well as in bins of m4¢j;,
and several of the double differential measurements. For example, the p-value for the double differential
distribution plTe ad-Jet yg, |ylead- jet| in Figure 38 is particularly low due to the downward fluctuation in bin 2.
However, when considering the size of the uncertainties these differences are not significant. Since no
events are observed in the highest bin for p4T‘7 in Figure 19, an upper limit of 27 ab at 95% confidence level
(CL) is set on the cross section using CLs [142]. Similarly, a limit of oo < 38 ab at 95% CL is also set in

the last bin of pfjj in Figure 29.
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10 Interpretation of differential distributions

The measured differential fiducial cross sections can be used to probe possible effects of physics beyond
the SM. Two possible interpretations of the results are presented. In Section 10.1, the my vs. m3a
double differential cross section is used to probe several BSM scenarios within the framework of pseudo-
observables [143], while in Section 10.2, the p4T€ differential cross section is used to constrain the Yukawa
couplings of the Higgs boson with the b- and c-quarks [144].

10.1 Constraints on BSM effects within the pseudo-observables framework

In this interpretation, the couplings related to the BSM contact interactions of the Higgs boson decaying
into four leptons are considered. As defined in Ref. [110], the pseudo-observables framework introduces
modified contact terms between the Higgs boson, the Z boson, and the left- or right-handed leptons € ¢,
and €z ¢,. In order to reduce the number of independent parameters considered in the pseudo-observables
framework for the H — 4¢ decay amplitudes, specific symmetries are imposed [110]. In all the scenarios
considered, the parameters associated with other pseudo-observables affecting the angular distributions,
such as eéczp), eéc;,P) and eﬁp), are set to zero. Thus, the contact terms considered have the same Lorentz

structure as the SM term and only affect the dilepton invariant mass distributions.

Four scenarios are investigated [110]. In the first scenario, referred to as the flavour-universal contact terms,
the parameters of interest are the ez ¢, and the ez ¢, couplings, where the interactions described by these
contact terms have the same strength for electrons and muons. The second scenario considered is linear
EFT-inspired, where lepton-flavour universality is again imposed and the Higgs boson is assumed to be
part of a SU(2)1, doublet. This is reflected in the condition eg = 0.48¢7, [110]. The parameters of interest
are €7, and the coupling strength of the Higgs boson to the Z boson, kzz. In the following two scenarios,
lepton-flavour universality can be violated. For the third scenario, referred to as flavour non-universal
vector contact terms, the helicity structure of the couplings is fixed to be vector (€z.¢, = €7 ¢r» €7 ;.=
€7 ug) and the independent parameters are the couplings to electrons €7 ., and muons €z ,,. Finally,
a fourth scenario with flavour non-universal axial-vector contact terms is considered. In this case the
helicity structure of the couplings is fixed to be axial-vector, with the parameters of interest being the
couplings to electrons €z ., and muons €z ., and the condition €7 s, = — €z ¢, is imposed. Using the
m1y vs. m34 double differential cross sections for these interpretations provides sensitivity to distinguish
between potential contributions from the contact terms and those from changes to the coupling strength of
the Higgs boson to the Z boson.

The variation of the fiducial cross section as a function of the BSM couplings is computed relative to the
SM by MapGrapruS_aMC@NLO in each of the bins of the measured m, vs. m34 differential cross section.
This is done for a grid of points in the BSM parameter space in each scenario. These relative variations are
then fit to a two-dimensional quadratic function. The parameterisation, which also includes any changes in
the acceptance, is then encoded into the likelihood and corresponding limits are set for each scenario.

Figure 40 shows the limits on BSM interactions of the Higgs boson for the four considered cases. The
corresponding 95% confidence intervals for each of the parameters are listed in Table 8.
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Figure 40: Observed limits at 68% and 95% CL on the modified Higgs boson decays within the framework of the
pseudo-observables: (a) flavour universal contact terms; (b) linear EFT-inspired; (c) flavour non-universal vector
contact terms; (d) flavour non-universal axial-vector contact terms. The p-values shown represent the probability of
compatibility between the data and the m, vs. m34 prediction corresponding to the best-fit values of the parameters
of interest for each of the four scenarios considered. The SM predictions (*) and the observed best-fit values (+) are
indicated on the plots.
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Table 8: Confidence intervals for the scenarios considered in the pseudo-observables framework. Based on the
observed 2D exclusion contours, 1D exclusion intervals are provided for the EFT-inspired, flavour non-universal
vector, and flavour non-universal axial-vector scenarios. The observed limits are calculated while profiling the other
parameters of interest. For the EFT-inspired interpretation, the limits are derived assuming kzz > 0. This constraint
has no impact on the limit as the analysis is not sensitive to the sign of this parameter.

Interpretation Parameter best-fit value  95% confidence interval
= 0.03 -0.25,0.17
EFT-inspired ‘L [ ]
kzz = 093 [0.51,1.16]
. €ze =-0.005 [-0.097,0.082]
Flavour non-universal vector
ezu = 0.054 [-0.131,0.114]
) . €z. =-0.022 [-0.056,0.012]
Flavour non-universal axial-vector
ezu = 0.008 [-0.016,0.033]

10.2 Constraints on Yukawa couplings

Although the couplings of the Higgs boson to the top and bottom quarks have been established recently,
obtaining evidence for the coupling of the Higgs boson to the charm quark is more challenging. Direct
methods are limited either by low branching fraction (H — J/yy — u*u~y) or by large backgrounds
(H — c¢). Nevertheless, it has been shown recently that it is possible to indirectly constrain the Yukawa
coupling to quarks by analysing the p? spectrum [19, 144]. In particular, the effects of BSM contributions
to the coupling modifiers for the Higgs boson to charm quarks, ., and for the Higgs boson to bottom
quarks, kp, are investigated.

The fiducial cross section is parameterised as a function of the . and «;, values in each measured bin of p4T€ .
Both the gluon-initiated and quark-initiated components of the prediction show a larger variation, different
in size and shape, of the cross section especially at p%[ < 10 GeV. The theoretical uncertainties of these
predictions are calculated separately for the gluon-initiated and quark-initiated components by varying
the normalisation and factorisation scales by factors of two. The configuration with largest uncertainty
across all the p4T[ bins across k. € [—10, 10] and «; € [-2, 2] ranges is used to define the systematic
uncertainty for the predictions. These uncertainties are uncorrelated for each component. The impact of
this uncertainty is about 20% on the expected limits.

Three different scenarios are considered, with an increasing level of model dependency. In the first case,
the modified fiducial cross sections in each bin due to the value of the b- and c-quark Yukawa couplings
are fit to the data together with a global normalisation factor. The corresponding observed limits on .
and «;, are shown in Figure 41(a). The sensitivity in this case comes mainly from the modification of the
shape induced by «. and k3, while possible overall normalisation effects are factorised out. In a second
scenario, no additional normalisation factor is introduced in the likelihood and the obtained limits for the
Yukawa couplings are shown in Figure 41(b). Finally, in a third scenario, a modification to the total width,
and correspondingly to the branching ratio as function of the modified Yukawa couplings, is also encoded
in the likelihood and the corresponding limits are shown in Figure 41(c). The 95% confidence intervals
for the first and second scenarios are also listed in Table 9. These are comparable to results from direct
searches in VH, H — cc [145, 146]. Constraining k}, to the results from Ref. [147] leads to a less than 5%
improvement in the observed limits for «. for the scenarios considered.
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Figure 41: Observed limits at 95% CL on Yukawa couplings «. and «, for the three scenarios considered: (a) only
the p5’ shape is used to constrain . and &p; (b) the predicted p4’ differential cross section is used; (c) both the
prediction of the pf‘r‘} differential cross section and the modification to the branching ratio due to the «. and «;, values
are used. The p-values shown represent the probability of compatibility between the data and the pf‘rf prediction
corresponding to the best-fit values of «. and «,. The SM predictions () and the observed best-fit values (+) are
indicated on the plots.
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Table 9: Confidence intervals for the Yukawa couplings. Based on the observed 2D exclusion contours, 1D exclusion
intervals are only provided for interpretations where modification to the p‘}[ shape and predictions are considered.
The observed limits are calculated while profiling the other parameter of interest.

Interpretation Parameter best-fit value  95% confidence interval
=-1.1 -11.7, 10.5
Modifications to only p4T€ shape ke [ ]
kp = 0.28 [-3.21, 4.50]
c =0.66 —-7.46, 9.27
Modifications to pf predictions . [ |
kp =0.55 [-1.82, 3.34]

11 Summary

Fiducial inclusive and differential cross-section measurements of the Higgs boson in the H — ZZ* — 4¢
decay channel are presented. They are based on 139 fb~! of /s = 13 TeV proton—proton collisions
recorded by the ATLAS detector at the LHC in 2015-2018. The inclusive fiducial cross section in the
H — ZZ7Z" — 4¢ decay channel is measured to be oq = 3.28 £ 0.30 (stat.) +0.11 (syst.) fb, in agreement
with the Standard Model prediction og sm = 3.41 £ 0.18 fb. The measurement is about 40% more precise
than the previous ATLAS result. The inclusive fiducial cross section is also extrapolated to the full phase
space. Differential cross sections defined in a fiducial region close to the reconstructed event selection are
measured for several variables sensitive to the Higgs boson production and decay such as the transverse
momentum of the Higgs boson, the number of jets produced in association with the Higgs boson, the
leading and subleading invariant masses of the lepton pairs. The measured cross sections are compared
with different Standard Model predictions and in general good agreement is found. The results are also
used to set new and more stringent constraints on BSM scenarios where contact term interactions in the
H — 4¢ amplitudes are introduced. In addition, the p4Tf spectrum is used to constrain the b- and c-quark
Yukawa couplings of the Higgs boson. In the scenario with minimal assumptions, values of «. outside the
range k. € [—12,+11] are excluded at 95% CL.

62



Appendix

A Results with regularised unfolding

For all the variables investigated in this paper, the unfolding matrix used is well conditioned and no
regularisation is required, as discussed in Section 7. Nevertheless, a Tikhonov regularisation has been
tested for the Njes and plTead' 1 observables where perceptible off-diagonal terms in the response matrix are
observed. In the Tikhonov regularisation [148], a prior assumption about the final result of the measurement
is added to the PDF, where the impact of this assumption is controlled by a tunable parameter, 7. In practice,
this method is implemented by adding a penalty term to the negative log-likelihood that is minimised in the

fit as

n—1 2
- Z( Oiv1 0 )_( g Ti-l ))
9
= Tj+1,truth 075 truth 075 truth Tj—1,truth

4

where o7 is the cross section in bin i. Therefore, a second-derivative expression for the curvature is used,
with the parameters normalised by their expected values from the MC simulation as done in the SVD
unfolding method [149]. As is done for the main results, only the signal is unfolded.

The unfolded Njes and plfad' 1 distributions using the regularised unfolding with a 7 parameter set to
7 = 0.6 and 0.7, respectively, are shown in Figure 42. The uncertainty which accounts for a possible bias in
this regularisation ranges from less than 1% to about 10%, depending on the differential bin. As expected,
the comparison of Figures 42(a) with 24(a) and Figures 42(c) with 26(a) shows that the regularisation
tends to reduce the off-diagonal anti-correlation terms of the correlation matrix among the measured cross
sections, reducing its uncertainty. Nevertheless, the p-values for the different predictions are close to the
ones obtained with the matrix unfolding without any regularisation.
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Figure 42: (a), (c) Differential fiducial cross sections as a function of the jet multiplicity, Njes, and leading jet pr in
events with at least one jet, using a regularised matrix unfolding with the 7 parameters set to 0.6 and 0.7 respectively.
The corresponding correlation matrix between the measured cross sections and the ZZ* background normalisation
factors are also shown in (b) and (d).

64



B Invariant mass of the leading lepton pair in same-flavour and
opposite-flavour final states

Figure 43 presents results for the invariant mass of the leading lepton pair in same-flavour and different-
flavour final states.
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Figure 43: Differential fiducial cross sections for the invariant mass 1, of the leading Z boson in (a) the 4u and 4e
decay channels and (b) the 2e2u and 2u2e decay channels. The corresponding correlation matrix is shown in (c).
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