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Inclusive and differential fiducial cross sections of the Higgs boson are measured in the

𝐻 → 𝑍𝑍∗ → 4ℓ (ℓ = 𝑒, 𝜇) decay channel. The results are based on proton-proton collision

data produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and

recorded by the ATLAS detector from 2015 to 2018, equivalent to an integrated luminosity

of 139 fb−1. The inclusive fiducial cross section for the 𝐻 → 𝑍𝑍∗ → 4ℓ process is

measured to be 𝜎fid = 3.28 ± 0.32 fb, in agreement with the Standard Model prediction

of 𝜎fid,SM = 3.41 ± 0.18 fb. Differential fiducial cross sections are measured for a variety

of observables which are sensitive to the production and decay of the Higgs boson. All

measurements are in agreement with the Standard Model predictions. The results are used to

constrain anomalous Higgs boson interactions with Standard Model particles.
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1 Introduction

The observation of the Higgs boson by the ATLAS and CMS Collaborations [1, 2] using data from proton–

proton (𝑝𝑝) collisions at the Large Hadron Collider (LHC) recorded in 2011 and 2012 at centre-of-mass

energies of
√
𝑠 = 7 TeV and 8 TeV, respectively, was a major step forward in the understanding of the

electroweak (EW) symmetry breaking mechanism [3–5]. Studies of the spin and parity of the Higgs boson,

its coupling structure to other particles, and measurements of fiducial and differential cross sections have
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been performed [6–28]. These show no significant deviations from the Standard Model (SM) predictions

for the Higgs boson with a mass of 125.09 ± 0.24 GeV [29].

This paper presents updated inclusive and differential cross-section measurements of the Higgs boson in

the 𝐻 → 𝑍𝑍∗ → 4ℓ decay channel (where ℓ = 𝑒 or 𝜇). The full ATLAS Run 2 dataset, consisting of 𝑝𝑝
collision data at

√
𝑠 = 13 TeV taken between 2015 and 2018, is used for this analysis. The total integrated

luminosity after imposing data quality requirements is 139 fb−1, with a data-taking efficiency of 91.5%.

All measurements are performed with the assumption that the mass of the Higgs boson is 125 GeV, and

are compared with SM predictions. The signal is extracted from a binned likelihood fit to the four-lepton

invariant mass, 𝑚4ℓ , distribution. All major background processes are estimated from data. In particular,

the normalisation of the dominant non-resonant 𝑍𝑍∗ background is now constrained from dedicated data

sidebands rather than from simulation. Signal events are corrected for detector measurement inefficiency

and resolution by unfolding using the detector response matrix in the likelihood fit, in place of a bin-by-bin

correction. Compared with the previous published results [11], this paper also benefits from the full LHC

Run 2 integrated luminosity, improved event and electron reconstruction [30, 31], and improved lepton

isolation to mitigate the impact of additional 𝑝𝑝 interactions in the same or neighbouring bunch crossing

(pile-up). The fiducial phase-space definition has also been updated with respect to the previous publication

to harmonise the selection of the leptons.

The paper is organised as follows. A brief introduction of the ATLAS detector is given in Section 2, while in

Section 3, the data and simulated signal and background samples are described. The selection of the Higgs

boson candidate events is detailed in Section 4. Section 5 outlines the fiducial phase-space definition and

the observables that are unfolded, while the background modelling is described in Section 6. The unfolding

strategy is described in Section 7. The experimental and theoretical systematic uncertainties, detailed in

Section 8, are taken into account for the statistical interpretation of the data. The final results are presented

in Section 9 and their interpretation to constrain possible beyond the SM (BSM) contact interactions or

non-SM values of the 𝑏- and 𝑐-quark Yukawa couplings are shown in Section 10. Concluding remarks are

given in Section 11. More information about general aspects of the analysis is contained in the concurrent

Ref. [32], where, in particular, details of the event selection and background estimation can be found.

2 The ATLAS detector

The ATLAS detector [33] is a multipurpose particle detector with a forward–backward symmetric cylindrical

geometry1 and a near 4𝜋 coverage in solid angle. It consists of an inner tracking detector (ID) surrounded

by a thin superconducting solenoid, which provides a 2 T axial magnetic field, electromagnetic (EM) and

hadron calorimeters, and a muon spectrometer. The inner tracking detector covers the pseudorapidity

range |𝜂 | < 2.5. It consists of a silicon pixel detector, including the newly installed insertable B-layer [34,

35], a silicon microstrip detector, and a straw-tube tracking detector featuring transition radiation to aid in

the identification of electrons. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic

energy measurements with high granularity. A steel/scintillator-tile hadron calorimeter covers the central

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector

and the 𝑧-axis along the beam pipe. The 𝑥-axis points from the IP to the centre of the LHC ring, and the 𝑦-axis points

upwards. Cylindrical coordinates (𝑟, 𝜙) are used in the transverse plane, 𝜙 being the azimuthal angle around the 𝑧-axis. The

pseudorapidity is defined in terms of the polar angle 𝜃 as 𝜂 = − ln tan(𝜃/2) and the rapidity is defined as 𝑦 = 1
2 ln

𝐸+p𝑧
𝐸−p𝑧

.

Angular distance is measured in units of Δ𝑅 ≡
√
(Δ𝜂)2 + (Δ𝜙)2.
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pseudorapidity range (|𝜂 | < 1.7). The endcap and forward regions are instrumented up to |𝜂 | = 4.9 with

LAr calorimeters for both the EM and hadronic energy measurements. The calorimeters are surrounded

by the muon spectrometer, which has three large air-core toroidal superconducting magnets with eight

coils each. The field integral of the toroid magnets ranges between 2.0 and 6.0 T m across most of the

detector. The muon spectrometer includes a system of precision tracking chambers and fast detectors for

triggering with a coverage of |𝜂 | < 2.7. Events are selected using a first-level trigger implemented in

custom electronics, which reduces the event rate to a maximum of 100 kHz using a subset of detector

information. Software algorithms with access to the full detector information are then used in the high-level

trigger to yield a recorded event rate of about 1 kHz [36].

3 Theoretical predictions and event simulation

The production of the SM Higgs boson via gluon–gluon fusion (ggF), via vector-boson fusion (VBF), with

an associated vector boson (VH, where 𝑉 is a 𝑊 or 𝑍 boson), and with a top quark pair (ttH) was modelled

with the Powheg-Box v2 Monte Carlo (MC) event generator [37–44]. Table 1 summarises the predicted

SM production cross sections and branching ratios for the 𝐻 → 𝑍𝑍∗ → 4ℓ decay for 𝑚𝐻 = 125 GeV

together with their theoretical accuracy.

Table 1: Predicted SM Higgs boson production cross sections (𝜎) for ggF, VBF and five associated production

modes in 𝑝𝑝 collisions for 𝑚𝐻 = 125 GeV at
√

s = 13 TeV [45–75]. For 𝑏𝑏𝐻 the accuracy of calculations in the

4- and 5-flavour schemes (FS) is reported. The quoted uncertainties correspond to the total theoretical systematic

uncertainties calculated by adding in quadrature the uncertainties due to missing higher-order corrections and

PDF+𝛼s. The decay branching ratios (B) with the associated uncertainty for 𝐻 → 𝑍𝑍∗ and 𝐻 → 𝑍𝑍∗ → 4ℓ, with

ℓ = 𝑒, 𝜇, are also given.

Production process Accuracy 𝜎 [pb]

ggF (𝑔𝑔 → 𝐻) N3LO in QCD, NLO in EW 48.6 ± 2.4

VBF (𝑞𝑞′ → 𝐻𝑞𝑞′) (approximate) NNLO in QCD, NLO in EW 3.78 ± 0.08

WH
(
𝑞𝑞′ → 𝑊𝐻

)
NNLO in QCD, NLO in EW 1.373 ± 0.028

ZH (𝑞𝑞/𝑔𝑔 → 𝑍𝐻) NNLO in QCD, NLO in EW 0.88 ± 0.04

ttH (𝑞𝑞/𝑔𝑔 → 𝑡𝑡𝐻) NLO in QCD, NLO in EW 0.51 ± 0.05

bbH
(
𝑞𝑞/𝑔𝑔 → 𝑏𝑏̄𝐻

)
NNLO (NLO) in QCD for 5FS (4FS) 0.49 ± 0.12

𝑡𝐻 (𝑞𝑞/𝑔𝑔 → 𝑡𝐻) NLO in QCD 0.09 ± 0.01

Decay process NLO in QCD, NLO in EW B [· 10−4]

𝐻 → 𝑍𝑍∗ 262 ± 6

𝐻 → 𝑍𝑍∗ → 4ℓ 1.240 ± 0.027

For ggF, the PDF4LHC next-to-next-to-leading-order (NNLO) set of parton distribution functions (PDF)

was used, while for all other production modes, the PDF4LHC next-to-leading-order (NLO) set was used

[72]. The simulation of ggF Higgs boson production used the Powheg method for merging the NLO Higgs

+ jet cross section with the parton shower and the MiNLO method [76] to simultaneously achieve NLO

accuracy for the inclusive Higgs boson production. In a second step, a reweighting procedure (NNLOPS)

[77], exploiting the Higgs boson rapidity distribution, was applied using the HNNLO program [78, 79] to

achieve NNLO accuracy in the strong coupling constant 𝛼s.
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The matrix elements of the VBF, 𝑞𝑞 → VH and ttH production mechanisms were calculated to NLO

accuracy in QCD. For VH production, the MiNLO method was used to merge 0- and 1-jet events [44, 76].

The 𝑔𝑔 → 𝑍𝐻 contribution was modelled at leading order (LO) in QCD.

The production of a Higgs boson in association with a bottom quark pair (bbH) was simulated at NLO with

MadGraph5_aMC@NLO v2.3.3 [80], using the CT10 NLO PDF [81]. The production in association

with a single top quark (𝑡𝐻+𝑋 where 𝑋 is either 𝑗 𝑏 or 𝑊 , defined in the following as 𝑡𝐻) was simulated at

NLO with MadGraph5_aMC@NLO v2.6.0 using the NNPDF30 PDF set [75].

For all production mechanisms the Pythia 8 [82] generator was used for the 𝐻 → 𝑍𝑍∗ → 4ℓ decay as

well as for the parton shower modelling. The AZNLO set of tuned parameters [83] was used, except for

𝑡𝑡𝐻, where, like for the 𝑡𝑡 samples, the A14 tune [84] was employed. The event generator was interfaced

to EvtGen v1.2.0 [85] for simulation of the bottom and charm hadron decays. All signal samples were

simulated for a Higgs boson mass 𝑚𝐻 = 125 GeV.

For additional cross-checks, the ggF sample was also generated with MadGraph5_aMC@NLO. This

simulation has NLO QCD accuracy for zero, one and two additional partons merged with the FxFx merging

scheme [86, 87], and top and bottom quark mass effects are taken into account [88–90]. Higgs boson are

decayed using Madspin [91, 92]. Some final results are also compared with ggF predictions calculated

with RadISH, which provides resummation at N3LL+NNLO accuracy [93–97], and uses MATRIX for

the fixed-order calculation [98, 99]. Similarly, ggF predictions are also obtained from NNLOJET for

distributions of Higgs plus one- or two-jet events [100–102]. Neither of these two predictions are included

for the case in which there are zero jets. Additionally, final results for several of the variables that probe the

kinematics of the Higgs boson decay products include comparisons with Hto4l and Prophecy4f. These

two programs include the full NLO electroweak corrections to the Higgs boson decay into four charged

leptons [69–71, 103–108].

The samples are normalised to cross sections obtained from the best available predictions as provided in

Refs. [45–47, 67, 68, 73–75, 109]. The SM branching ratio prediction, taken from Prophecy4f [69, 104],

includes the full NLO EW corrections, and interference effects which result in a branching ratio that is

10% higher for same-flavour final states (4𝜇 and 4𝑒) than for different-flavour states (2𝑒2𝜇 and 2𝜇2𝑒).

For the BSM interpretation, described in Section 10.1, deviations from the SM are studied using a ggF

sample generated with MadGraph5_aMC@NLO using the HPOprodMFV UFO model [110] with

FeynRules [111] at LO and the NNPDF23 PDF set. The sample was interfaced to Pythia 8 using the

A14 parameter set [84]. For studies of the Yukawa couplings described in Section 10.2, the gluon-initiated

component of the prediction was calculated using RadISH, while MadGraph5_aMC@NLO was used for

the quark-initiated component with FxFx merging for 0- and 1-jet final states.

The 𝑍𝑍∗ continuum background from quark–antiquark annihilation was modelled using Sherpa 2.2.2

[112–114], which provides a matrix element calculation accurate to NLO in 𝛼s for 0- and 1-jet final states,

and LO accuracy for 2- and 3-jet final states. The merging with the Sherpa parton shower [115] was

performed using the ME+PS@NLO prescription [116]. The NLO EW corrections were applied as a

function of the invariant mass of the 𝑍𝑍∗ system 𝑚𝑍𝑍 ∗ [117, 118]. This process was also simulated using

two additional MC generators. The first is Powheg-Box v2 interfaced to Pythia 8 for parton showering

and hadronisation, with EvtGen for the simulation of bottom and charm hadron decays. The second

is MadGraph5_aMC@NLO with FxFx merging at NLO for 0- and 1-jet final states and interfaced to

Pythia 8 for parton showering.
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The gluon-induced 𝑍𝑍∗ production was modelled by Sherpa 2.2.2 [112–114] at LO in QCD for 0- and

1-jet final states. The higher-order QCD effects for the 𝑔𝑔 → 𝑍𝑍∗ continuum production have been

calculated for massless quark loops [119–121] in the heavy top-quark approximation [122], including the

𝑔𝑔 → 𝐻∗ → 𝑍𝑍 processes [123, 124]. The 𝑔𝑔 → 𝑍𝑍 simulation cross section is scaled by a 𝐾-factor of

1.7±1.0, defined as the ratio of the higher-order to leading-order cross section predictions. Production of

𝑍𝑍∗ via vector-boson scattering was simulated at LO in QCD with the Sherpa 2.2.2 generator.

The WZ background was modelled using Powheg-Box v2 interfaced to Pythia 8 and EvtGen v1.2.0 for the

simulation of bottom and charm hadron decays. The triboson backgrounds ZZZ, WZZ, and WWZ with four

or more prompt leptons (denoted by 𝑉𝑉𝑉 hereafter) were modelled using Sherpa 2.2.2. The simulation of

𝑡𝑡 + 𝑍 events with both top quarks decaying semileptonically and the 𝑍 boson decaying leptonically was

performed with MadGraph5_aMC@NLO interfaced to Pythia 8. The total cross section is normalised to

the prediction of Ref. [63], which includes the two dominant terms at both the LO and the NLO in a mixed

perturbative expansion in the QCD and EW couplings. For modelling comparisons, Sherpa 2.2.1 was

used to simulate 𝑡𝑡 + 𝑍 events at LO. The smaller 𝑡𝑊𝑍 , 𝑡𝑡𝑊+𝑊−, 𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡 and 𝑡𝑍 background processes

were simulated with MadGraph5_aMC@NLO interfaced to Pythia 8.

The modelling of events containing 𝑍 bosons with associated jets (𝑍 + jets) was performed using the

Sherpa 2.2.1 generator. Matrix elements were calculated for up to two partons at NLO and four partons at

LO using Comix [113] and OpenLoops [114], and merged with the Sherpa parton shower [115] using

the ME+PS@NLO prescription [116]. The NNPDF3.0 NNLO PDF set was used in conjunction with a

dedicated set of tuned parton shower parameters.

The 𝑡𝑡 background was modelled using Powheg-Box v2 interfaced to Pythia 8 for parton showering,

hadronisation, and the underlying event, and to EvtGen v1.2.0 for heavy-flavour hadron decays. For this

sample, the A14 tune was used [125]. Simulated 𝑍 + jets and 𝑡𝑡 background samples are normalised to the

data-driven estimates described in Section 6.

Generated events were processed through the ATLAS detector simulation [126] within the Geant4

framework [127] and reconstructed in the same way as collision data. Additional 𝑝𝑝 interactions in the

same and nearby bunch crossings are included in the simulation. The pile-up was modelled by overlaying

the original hard-scattering event with simulated inelastic 𝑝𝑝 events generated with Pythia 8 [82] using

the NNPDF2.3LO set of PDFs [128] and the A3 tune [129].

4 Event reconstruction and selection

The details of the selection and reconstruction of Higgs boson candidate events are provided in Ref. [32],

while a brief description is provided here. Single-lepton, dilepton, and trilepton triggers are employed

and ensure a signal selection efficiency above 98%. Data events are subjected to quality requirements

and are required to have at least one vertex with two associated ID tracks with transverse momentum

𝑝T > 500 MeV. The primary interaction vertex is selected as the one with the largest
∑

𝑝2
T

of all associated

tracks.

The lepton identification requirements follow the inclusive event selection described in Ref. [32]. All

muons are required to satisfy 𝑝T > 5 GeV and |𝜂 | < 2.7, except those that are reconstructed with ID tracks

matched to energy deposits in the calorimeter (calorimeter-tagged), which must satisfy 𝑝T > 15 GeV

and |𝜂 | < 0.1. No more than one calorimeter-tagged or stand-alone muon is allowed per event, where

stand-alone muons have not been matched to an ID track. Electrons are required to satisfy 𝐸T > 7 GeV and
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|𝜂 | < 2.47. Jets are reconstructed using the anti-𝑘𝑡 algorithm with a radius parameter 𝑅 = 0.4 and applied

to Particle Flow objects [130]. Jets are required to have 𝑝T > 30 GeV and |𝜂 | < 4.5. Jets within |𝜂 | < 2.5
are identified as containing a 𝑏-hadron using the MV2c10 𝑏-tagging algorithm at the 70% efficiency

working point [131, 132]. If a jet overlaps geometrically with a reconstructed muon (electron) within a

cone of radial size Δ𝑅 = 0.1(0.2), the jet is removed.

Same-flavour opposite-charge (SFOC) lepton pairs are selected to form Higgs boson candidates. The

SFOC lepton pair with mass 𝑚12 closest to the 𝑍 boson mass is called the leading pair, while the other

becomes the subleading pair, with mass 𝑚34. If multiple combinations of SFOC pairs exist, the Higgs

boson candidate with 𝑚12 closest to the 𝑍 boson mass is chosen. The three leading leptons of each Higgs

boson candidate are required to satisfy 𝑝T > 20, 15, 10 GeV. Higgs boson candidate events are subjected

to further selection requirements on the dilepton masses, lepton separation, 𝐽/𝜓 veto, impact parameter

significance (𝑑0/𝜎(𝑑0)), and vertex quality, as outlined in Table 2. In addition, isolation requirements are

imposed on the leptons to suppress the 𝑡𝑡 and 𝑍 + jets reducible backgrounds. If an extra prompt lepton

with 𝑝T > 12 GeV passing all identification and isolation requirements detailed previously is present in

the event, the final Higgs boson candidate is chosen using a method based on the matrix element (ME).

The matrix element is calculated at LO using MadGraph5_aMC@NLO and the quadruplet with the

highest ME value is chosen. This increases the probability of selecting the correct Higgs boson candidate

in cases where the extra lepton comes from the decay of a vector boson or top quark in VH-leptonic or

ttH/𝑡𝐻 production. The four-lepton mass resolution is improved by accounting for reconstructed final-state

radiation (FSR) photons in the 𝑍 boson decay. After selection criteria are applied, events are divided into

bins for each variable of interest for the differential cross-section measurements. Finally, all measurements

presented in this paper are performed within a four-lepton mass window of 105 < 𝑚4ℓ < 160 GeV. The

signal selection efficiency is about 31%, 21%, 17%, and 16% for the 4𝜇, 2𝑒2𝜇, 2𝜇2𝑒, and 4𝑒 final states,

respectively. Here, the first lepton pair refers to the lepton pair with an invariant mass closest to the 𝑍
boson mass.
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Table 2: A summary of event selection requirements for leptons and Higgs boson candidates outlined in Section 4.

SFOC lepton pairs are same-flavour opposite-charge lepton pairs. For the mass requirement of the subleading lepton

pair, 𝑚threshold is 12 GeV for 𝑚4ℓ < 140 GeV, and rises linearly until reaching 50 GeV for 𝑚4ℓ = 190 GeV.

Leptons and jets
Muons 𝑝T > 5 GeV, |𝜂 | < 2.7
Electrons 𝐸T > 7 GeV, |𝜂 | < 2.47

Jets 𝑝T > 30 GeV, |𝜂 | < 4.5

Lepton selection and pairing
Lepton kinematics 𝑝T > 20, 15, 10 GeV

Leading pair (𝑚12) SFOC lepton pair with smallest |𝑚𝑍 − 𝑚ℓℓ |
Subleading pair (𝑚34) Remaining SFOC lepton pair with smallest |𝑚𝑍 − 𝑚ℓℓ |

Event selection (at most one Higgs boson candidate per channel)
Mass requirements 50 GeV< 𝑚12 < 106 GeV and 𝑚threshold < 𝑚34 < 115 GeV

Lepton separation: Δ𝑅(ℓ𝑖 , ℓ 𝑗) > 0.1
Lepton/Jet separation Δ𝑅(𝜇𝑖 (𝑒𝑖), jet) > 0.1(0.2)
𝐽/𝜓 veto 𝑚(ℓ𝑖 , ℓ 𝑗) > 5 GeV for all SFOC lepton pairs

Impact parameter |𝑑0 |/𝜎(𝑑0) < 5 (3) for electrons (muons)

Mass window 105 GeV < 𝑚4ℓ < 160 GeV

Vertex selection: 𝜒2/𝑁dof < 6 (9) for 4𝜇 (other channels)

If extra lepton with 𝑝T > 12 GeV Quadruplet with largest matrix element (ME) value

5 Fiducial phase space and unfolded observables

The fiducial cross sections are defined using simulation at particle level and the selection requirements

outlined in Table 3. In order to minimise model-dependent acceptance extrapolations, these are chosen to

closely match the selection requirements of the detector-level analysis after the event reconstruction.

The fiducial selection is applied to final-state electrons and muons that do not originate from hadrons or

𝜏-lepton decays, after ‘dressing’ them, i.e., the four-momenta of photons within a cone of size Δ𝑅 = 0.1
around the lepton are added to the lepton’s four-momentum. The photons which originate from hadron

decays are excluded. Particle-level jets are reconstructed from final-state neutral and charged particles

using the anti-𝑘𝑡 algorithm with radius parameter 𝑅 = 0.4. Electrons, muons, neutrinos (if they are not

from hadron decays) and photons from Higgs decays as well as those used to dress leptons are excluded

from the jet clustering. A jet is labelled as a 𝑏-jet if there is a 𝑏-hadron with 𝑝T > 5 GeV within a cone of

size Δ𝑅 = 0.3 around the jet axis. Jets are removed if they are within a cone of size Δ𝑅 = 0.1 around a

selected lepton.

Quadruplet selection using the selected dressed leptons follows the same procedure as for reconstructed

events. In the case of VH or ttH production, additional leptons not originating from a Higgs boson

decay can induce a ‘lepton mispairing’ when assigning them to the leading and subleading 𝑍 bosons. To

improve the lepton pairing efficiency, the matrix-element-based pairing method as described in Section 4

is employed. The variables used in the differential cross-section measurement are calculated using the

dressed leptons of the quadruplets.

The acceptance of the fiducial selection, defined as the ratio of the number of events passing the particle-level

selection to the number of events generated in a given bin or final state (with respect to the full phase space
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of 𝐻 → 𝑍𝑍∗ → 2ℓ2ℓ′, where ℓ, ℓ′ = 𝑒 or 𝜇), is about 49% for each final state for a SM Higgs boson with

𝑚𝐻 = 125 GeV. The ratio of the number of events passing the selection after detector simulation and event

reconstruction to those passing the particle-level selection is about 45%. About 1.6% of the events which

pass the detector-level selection fail the particle-level selection. This is mostly due to resolution effects for

muons. For electrons channels, the difference in the reconstructed and fiducial phase space definition, has

an additional comparable contribution.

Table 3: List of event selection requirements which define the fiducial phase space for the cross-section measurement.

SFOC lepton pairs are same-flavour opposite-charge lepton pairs.

Leptons and jets
Leptons 𝑝T > 5 GeV, |𝜂 | < 2.7
Jets 𝑝T > 30 GeV, |𝑦 | < 4.4

Lepton selection and pairing
Lepton kinematics 𝑝T > 20, 15, 10 GeV

Leading pair (𝑚12) SFOC lepton pair with smallest |𝑚𝑍 − 𝑚ℓℓ |
Subleading pair (𝑚34) remaining SFOC lepton pair with smallest |𝑚𝑍 − 𝑚ℓℓ |

Event selection (at most one quadruplet per event)
Mass requirements 50 GeV< 𝑚12 < 106 GeV and 12 GeV< 𝑚34 < 115 GeV

Lepton separation Δ𝑅(ℓ𝑖 , ℓ 𝑗) > 0.1
Lepton/Jet separation Δ𝑅(ℓ𝑖 , jet) > 0.1
𝐽/𝜓 veto 𝑚(ℓ𝑖 , ℓ 𝑗) > 5 GeV for all SFOC lepton pairs

Mass window 105 GeV< 𝑚4ℓ < 160 GeV

If extra lepton with 𝑝T > 12 GeV Quadruplet with largest matrix element value

Within the fiducial phase space defined above, differential cross sections are measured for variables which

are sensitive to both the production and decay of the Higgs boson. For example, the transverse momentum

distribution of the Higgs boson provides a test of perturbative QCD calculations, is sensitive to the structure

of the Higgs boson interactions and is sensitive to charm and bottom Yukawa couplings. The rapidity of

the Higgs boson is sensitive to the choice of parton distribution functions for the colliding protons, and is

also influenced by QCD radiative corrections. The invariant masses of the leading and subleading lepton

pair are sensitive to higher-order electroweak corrections to the Higgs boson decay, and are sensitive to

BSM contributions. These two variables and the angular variables of the Higgs boson decay are also of

interest due to their sensitivity to the spin and parity of the Higgs boson, as well as to same-flavour pair

final-state interference and EW corrections. Variables related to jets probe QCD radiation effects and the

Higgs boson production. The jet multiplicity is sensitive to different production mechanisms and provides

sensitivity to the theoretical modelling of high-𝑝T quark and gluon emission. The transverse momentum of

the jets directly probes the quark and gluon radiation. The invariant mass of the two leading jets is also

sensitive to the production mechanisms of the Higgs boson, while the signed angle in the transverse plane

of the two leading jets is a test of the spin and parity of the Higgs boson. Jet-related variables, in particular

double differential variables, also probe the effects of QCD resummation. Additional variables which

combine the properties related to the kinematics of the Higgs boson and the jets are also considered. A

summary of all the variables and their descriptions is given in Table 4.
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Table 4: Definitions of observables for which differential cross sections are measured. The angular variables are

defined as in Ref. [133]. In addition to the single observables listed, the following double differential observables are

built using variables defined below: 𝑚12 vs. 𝑚34, 𝑝4ℓ
T

vs. 𝑁jets, 𝑝
4ℓ
T

vs. 𝑝
lead. jet

T
, 𝑝4ℓ

T
vs. 𝑝

4ℓj

T
, 𝑝4ℓ

T
vs. |𝑦4ℓ |, 𝑝4ℓj

T
vs.

𝑚4ℓ 𝑗 , 𝑝
lead. jet

T
vs. 𝑝

sublead. jet

T
, and 𝑝

lead. jet

T
vs. |𝑦lead. jet | (where |𝑦lead. jet || is the rapidity of the leading jet). Jet-related

variables are inclusive, while for the jet multiplicity the results are provided in both the inclusive and exclusive jet

bins. Δ𝜙 𝑗 𝑗 is defined as 𝜙lead. jet − 𝜙sublead. jet if 𝜂lead. jet > 𝜂sublead. jet or as 𝜙sublead. jet − 𝜙lead. jet if 𝜂sublead. jet > 𝜂lead. jet.

If Δ𝜙 𝑗 𝑗 < 0, 2𝜋 is added to the value.

Higgs boson kinematic-related variables
𝑝4ℓ

T
, |𝑦4ℓ | Transverse momentum and rapidity of the four-lepton system

𝑚12, 𝑚34 Invariant mass of the leading and subleading lepton pair

| cos 𝜃∗ | Magnitude of the cosine of the decay angle of the leading lepton pair in

the four-lepton rest frame relative to the beam axis

cos 𝜃1, cos 𝜃2 Production angles of the anti-leptons from the two 𝑍 bosons, where the

angle is relative to the 𝑍 vector.

𝜙, 𝜙1 Two azimuthal angles between the three planes constructed from the

𝑍 bosons and leptons in the Higgs boson rest frame.

Jet-related variables
𝑁jets, 𝑁𝑏-jets Jet and 𝑏-jet multiplicity

𝑝
lead. jet

T
, 𝑝

sublead. jet

T
Transverse momentum of the leading and subleading jet, for events with

at least one and two jets, respectively. Here, the leading jet refers to the

jet with the highest 𝑝T in the event, while subleading refers to the jet with

the second-highest 𝑝T.

𝑚 𝑗 𝑗 , |Δ𝜂 𝑗 𝑗 |, Δ𝜙 𝑗 𝑗 Invariant mass, difference in pseudorapidity, and signed difference in 𝜙
of the leading and subleading jets for events with at least two jets

Higgs boson and jet-related variables
𝑝

4ℓj

T
, 𝑚4ℓ 𝑗 Transverse momentum and invariant mass of the four-lepton system and

leading jet, for events with at least one jet

𝑝
4ℓjj

T
, 𝑚4ℓ 𝑗 𝑗 Transverse momentum and invariant mass of the four-lepton system and

leading and subleading jets, for events with at least two jets

6 Background estimation

Non-resonant SM (𝑍 (∗)/𝛾∗)(𝑍 (∗)/𝛾∗) production via 𝑞𝑞 annihilation and gluon–gluon fusion, referred

to as 𝑍𝑍∗, can result in four prompt leptons in the final state and constitutes the largest background

for this analysis. While for previous analyses [11, 12] both the shape and the normalisation of this

background were exclusively estimated with simulation, in this paper the normalisation is constrained with

a data-driven technique. The systematic uncertainty is reduced because both the theoretical and luminosity

uncertainties no longer contribute to the normalisation uncertainty. The normalisation of the non-resonant

𝑍𝑍∗ component, which dominates outside the Higgs boson peak region, is obtained from data by extending

the mass interval considered from 115–130 GeV to 105–160 GeV. The increased mass interval allows an

estimation of this process with minimal impact on the expected sensitivity for the signal process. This

contribution is determined as part of the 4ℓ mass fit (discussed in Section 7) in the full four-lepton mass

region, with the shape of the background taken from simulation.

The 𝑍𝑍∗ normalisation is estimated separately in each bin of each differential observable, where a different

10



𝑍𝑍∗ scaling factor is used for each observable bin. In phase-space regions where the 𝑍𝑍∗ component in

the 𝑚4ℓ sidebands is too low to provide a reliable estimate of its contribution, the estimate is evaluated

simultaneously for several differential bins.2

Other background processes, such as 𝑍 + jets, 𝑡𝑡, and 𝑊𝑍 , contain at least one jet, photon or lepton from

a hadron decay that is misidentified as a prompt lepton. These reducible backgrounds are significantly

smaller than the non-resonant 𝑍𝑍∗ background and are estimated using data where possible, following

slightly different approaches for the ℓℓ + 𝜇𝜇 and ℓℓ + 𝑒𝑒 final states [11, 12, 32].

In the ℓℓ + 𝜇𝜇 final states, the normalisations for the 𝑍 + jets and 𝑡𝑡 backgrounds are determined by

performing fits to the invariant mass of the leading lepton pair in dedicated independent control regions

which target each background process for each bin of the differential observables. Depending on the

background process being targeted, the control regions are formed by relaxing the 𝜒2 requirement on

the four-lepton vertex fit, and by inverting or relaxing isolation and/or impact-parameter requirements

on the subleading muon pair. Additional control regions (𝑒𝜇𝜇𝜇 and ℓℓ + 𝜇±𝜇±) are used to improve the

background estimate by reducing the statistical uncertainty of the fitted normalisation. Transfer factors to

extrapolate from the control regions to the signal region are obtained separately for 𝑡𝑡 and 𝑍 + jets using

simulation. This method is performed in each differential bin. The 𝑚4ℓ shape for both processes in each

bin is obtained from simulation.

The ℓℓ + 𝑒𝑒 control-region selection requires the electrons in the subleading lepton pair to have the same

charge, and relaxes the identification, impact parameter and isolation requirements on the electron candidate

with the lowest transverse energy. This electron candidate, denoted by 𝑋 , can be a light-flavour jet, an

electron from photon conversion or an electron from heavy-flavour hadron decay. The heavy-flavour

background is completely determined from simulation, whereas the light-flavour and photon conversion

background is obtained with the sPlot method [134]. This is based on a fit to the number of hits in the

innermost ID layer in the data control region. Transfer factors to extrapolate from the ℓℓ + 𝑒𝑒 control region

to the signal region for the light-flavour jets and converted photons, obtained from simulated samples, are

corrected using a 𝑍 + 𝑋 data control region. The corrected transfer factors are then used to extrapolate

the extracted yields to the signal region. Both the extraction of the global yield in the control region

and the extrapolation to the signal mass region are performed in bins of the transverse momentum of

the electron candidate and the jet multiplicity. In order to extract the shape of the backgrounds from

light-flavour jets and photon conversions for each observable, a similar method is used, except that the

extraction and extrapolation is performed only as a function of the transverse momentum of the electron

candidate, ignoring the binning in jet multiplicity.

Additional contributions from rare processes, such as 𝑡𝑋𝑋 (𝑡𝑡𝑍 , 𝑡𝑡𝑊 , 𝑡𝑊𝑍 and other rare top-associated

processes) and 𝑉𝑉𝑉 are estimated from simulation.

7 Signal extraction and unfolding

To extract the number of signal events in each bin of a differential distribution (or for each decay final

state for the inclusive fiducial cross section), invariant mass templates for the Higgs boson signal and the

background processes are fitted to the 𝑚4ℓ distribution in data. Compared to the previous analysis [11], the

2 The same normalisation factor is used for neighbouring bins until the increase in uncertainty on the expected cross section in

each measured bin is less than 5% of the total uncertainty.
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non-resonant 𝑍𝑍∗ background is fitted simultaneously with the signal and constrained by extending the

𝑚4ℓ fit range from 115–130 GeV to 105–160 GeV.

For the total and fiducial cross sections in different final states, the same normalisation factor is used for

the 𝑍𝑍∗ contribution. For the differential cross-section measurements, multiple 𝑍𝑍∗ normalisation factors

are introduced in the model, as described in Section 6. The reducible background, composed of 𝑍 + jets, 𝑡𝑡,
and 𝑊𝑍 processes, is estimated from dedicated control regions as described in Section 6 and its overall

normalisation and shape can vary within the associated systematic uncertainties. Finally, for the differential

distributions, no splitting into decay final states is performed, and the SM 𝑍𝑍∗ → 4ℓ decay fractions are

assumed.

The number of expected events 𝑁𝑖 in each observable reconstruction bin 𝑖, expressed as a function of 𝑚4ℓ ,

is given by

𝑁𝑖 (𝑚4ℓ) =
∑
𝑗

𝑟𝑖 𝑗 · (1 + 𝑓 nonfid
𝑖 ) · 𝜎fid

𝑗 · P𝑖 (𝑚4ℓ) · L + 𝑁
bkg
𝑖 (𝑚4ℓ)

with

𝜎fid
𝑗 = 𝜎𝑗 · 𝐴 𝑗 · B (1)

where 𝐴 𝑗 is the acceptance in the fiducial phase space and 𝜎𝑗 the total cross section in fiducial bin 𝑗 , L is

the integrated luminosity, B is the branching ratio and 𝑁
bkg
𝑖 (𝑚4ℓ) is the background contribution. The

index 𝑗 runs over all observable bins in the fiducial phase space. The term P𝑖 (𝑚4ℓ) is the 𝑚4ℓ signal shape

containing the fraction of events as a function of 𝑚4ℓ expected in each reconstruction bin, taken from MC

simulation. The term 𝑟𝑖 𝑗 represents the detector response matrix, created with simulated signal samples

and averaged across the different production modes using the expected SM cross-sections [109]. These

factors correspond to the probability that an event generated within the fiducial volume in the observable

bin 𝑗 is reconstructed in bin 𝑖.

The normalisation, 𝑓 nonfid
𝑖 , represents the fraction of events which are outside of the fiducial region but

are reconstructed within the signal region. This ranges from 1.1% to 1.7% depending on the bin of the

unfolded observable or final state.

The detector response matrix accounts for bin-to-bin migrations in the unfolding of the signal. It was chosen

over the bin-by-bin correction factor technique used in the previous analyses [11, 12] due to its lower model

dependence. Biases introduced via the unfolding method are minimised when using the response matrix;

however, matrix unfolding can amplify small fluctuations in data when the response matrix is characterised

by a large condition number.3 The binning choice made for all observables ensures a statistical significance

of more than 2𝜎 for the signal process. The binning is also chosen to minimise migrations between bins. In

general, the bin width is more than twice the experimental resolution. As a result, the response matrices for

all the variables considered are well-conditioned, with a condition number less than 2.5. The fluctuations of

the unfolded distribution can be further reduced using regularisation techniques. Unfolding tests done with

toy data sets indicate that while regularisation provides a modest reduction of the statistical uncertainty,

this reduction is counterbalanced by the bias introduced by this technique. Therefore, no regularisation

of the unfolding was applied. Two of the jet-related variables are also provided in Appendix A using a

regularised unfolding method, and are compatible with the matrix-unfolded results presented here.

3 The condition number is defined as the ratio of the maximum and minimum singular values of the matrix. Values close to 1

signify a well-conditioned matrix with low sensitivity to statistical fluctuations on the input.
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Figure 1: Response matrices, derived using simulation, for (a) the transverse momentum of the four-lepton system

𝑝4ℓ
T

, (b) the number of jets 𝑁jets, (c) the transverse momentum of the leading jet 𝑝
lead. jet

T
, and (d) the mass of the

leading versus subleading lepton pair 𝑚12 vs. 𝑚34. Only reconstructed events that were matched to generator-level

(‘truth’) events are included. Bins below 0.005 are omitted for clarity.
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Figure 1 shows the response matrix for the 𝑝4ℓ
T

𝑁jets 𝑝
lead. jet

T
, and 𝑚12 vs. 𝑚34 observables. For 𝑝4ℓ

T
, the

purity of the bins ranges from 87% at low 𝑝4ℓ
T

, where the bins are narrow, to 97% at high 𝑝4ℓ
T

, where

wider bins are defined. The purity is defined as the percentage of reconstructed events which match the

particle-level events in that bin. For the 𝑁jets observable, the migrations are more relevant due to the

relatively worse jet energy resolution and the presence of pile-up jets in the reconstructed events. This

brings the purity for the for 𝑁jets ≥ 3 bin down to 68%. The 𝑝
lead. jet

T
migrations are similarly larger, with

the lowest purity value of 67% occurring in the lowest 𝑝
lead. jet

T
bin. The 𝑚12 vs. 𝑚34 observable, like 𝑝4ℓ

T
,

has a higher purity. All bins have a purity of around 90% except the first bin, which has a purity of 78%.

8 Systematic uncertainties

The systematic uncertainties include experimental uncertainties, such as those in object reconstruction,

identification, isolation, resolution, and trigger efficiencies, as well as theoretical uncertainties related to

the modelling of the signal and background processes. More detail is provided in Ref. [32], while a brief

overview of the dominant sources of uncertainty is provided here. The impacts of the experimental and

theoretical uncertainties on the measurements are summarised in Table 5.

8.1 Experimental uncertainties

The uncertainty in the predicted yields due to pile-up modelling ranges between 1% and 2%. The

uncertainty in the integrated luminosity is 1.7% and affects the signal yields and simulated background

estimates when not constrained by the sidebands.

The electron (muon) reconstruction and identification efficiency uncertainties are approximately 1.0–2.0%

(< 1.0%). The uncertainty in the expected yields due to the muon and electron isolation efficiencies is also

considered, and is approximately 1%. Lepton energy momentum scale and resolution uncertainties have

negligible impacts on the presented results.

The impact of uncertainties in the jet energy scale and resolution (of between 1% and 3%) is only relevant

for the jet-related differential cross-section measurements, where their impact is typically between 3% and

5%, and is negligible in the other measurements. The uncertainty in the performance of the 𝑏-tagging

algorithm is at the level of a few percent over most of the jet 𝑝T range [132].

The impact of the precision of the Higgs boson mass measurement, 𝑚𝐻 = 125.09 ± 0.24 GeV [15], on the

signal acceptance due to the signal region mass-window requirement is negligible.

For the data-driven measurement of the reducible background, three sources of uncertainty are considered:

statistical uncertainty, overall systematic uncertainty for each of ℓℓ + 𝜇𝜇 and ℓℓ + 𝑒𝑒, and a shape systematic

uncertainty which varies with the differential variable. Impacts from these sources of uncertainty range

from less than 1% to a maximum of around 3%. The inclusive reducible background estimate has a

relatively small (3%) statistical uncertainty, which has minimal impact on the cross section.
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Table 5: Fractional uncertainties for the inclusive fiducial and total cross sections, and ranges of systematic

uncertainties for the differential measurements. The columns ‘𝑒/𝜇’ and ‘Jets’ represent the experimental uncertainties

in lepton and jet reconstruction and identification, respectively. The 𝑍 + jets, 𝑡𝑡, 𝑡𝑋𝑋 (Other Bkg.) column includes

uncertainties related to the estimation of these background sources. The 𝑍𝑍∗ theory (𝑍𝑍∗ th.) uncertainties include

the PDF and scale variations. Signal theory (Sig th.) uncertainties include PDF choice, QCD scale, and shower

modelling of the signal. Finally, the column labelled ‘Comp.’ contains uncertainties related to production mode

composition and unfolding bias which affect the response matrices. The uncertainties have been rounded to the

nearest 0.5%, except for the luminosity uncertainty, which has been measured to be 1.7%.

Observable Stat. Syst. Dominant systematic components [%]

unc. [%] unc. [%] Lumi. 𝑒/𝜇 Jets Other Bkg. 𝑍𝑍∗ Th. Sig. Th. Comp.

𝜎comb 9 3 1.7 2 < 0.5 < 0.5 1 1.5 < 0.5

𝜎4𝜇 15 4 1.7 3 < 0.5 < 0.5 1.5 1 < 0.5

𝜎4e 26 8 1.7 7 < 0.5 < 0.5 1.5 1.5 < 0.5

𝜎2𝜇2e 20 7 1.7 5 < 0.5 < 0.5 2 1.5 < 0.5

𝜎2e2𝜇 15 3 1.7 2 < 0.5 < 0.5 1 1.5 < 0.5

d𝜎 / d𝑝4ℓ
T

20–46 2–8 1.7 1–3 1–2 < 0.5 1–6 1–2 < 1

d𝜎 / d𝑚12 12–42 3–6 1.7 2–3 < 1 < 0.5 1–2 1–2 < 1

d𝜎 / d𝑚34 20–82 3–12 1.7 2–3 < 1 1–2 1–8 1–3 < 1

d𝜎 / d|𝑦4ℓ | 22–81 3–6 1.7 2–3 < 1 < 0.5 1–5 1–3 < 1

d𝜎 / d|cos 𝜃∗ | 23–113 3–6 1.7 2–3 < 1 1–2 1–7 1–3 < 0.5

d𝜎 / dcos 𝜃1 23–44 3–6 1.7 2–3 < 1 < 0.5 1–3 1–2 < 1

d𝜎 / dcos 𝜃2 22–39 3–6 1.7 2–3 < 1 < 0.5 1–3 1–3 < 1

d𝜎 / d𝜙 20–29 2–5 1.7 2–3 < 1 < 0.5 1–3 1–2 < 0.5

d𝜎 / d𝜙1 22–33 3–6 1.7 2–3 < 1 < 0.5 1–2 1–3 < 0.5

d𝜎 / d𝑁jets 15–37 6–14 1.7 1–3 4–10 < 0.5 1–4 3–7 1–4

d𝜎 / d𝑁𝑏−jets 15–67 6–15 1.7 1–3 4–5 1–3 1–2 3–9 1–4

d𝜎 / d𝑝
lead. jet
T

15–34 3–13 1.7 1–3 4–10 < 0.5 1–2 1–5 < 0.5

d𝜎 / d𝑝
sublead. jet
T

11–67 5–22 1.7 1–3 2–12 < 1 1–3 2–15 1–5

d𝜎 / d𝑚jj 11–50 5–18 1.7 1–3 1–11 < 0.5 1–3 2–15 1–2

d𝜎 / d𝜂 𝑗 𝑗 11–57 5–17 1.7 1–3 2–10 < 0.5 1–2 2–14 1–4

d𝜎 / d𝜙 𝑗 𝑗 11–50 4–18 1.7 1–3 2–9 < 0.5 1–3 2–14 1–6

d𝜎 / d𝑚4ℓj 15–66 4–19 1.7 1–3 3–9 < 0.5 1–6 3–14 1–8

d𝜎 / d𝑚4ℓjj 11–182 5–67 1.7 1–3 4–24 < 0.5 1–5 2–35 1–9

d𝜎 / d𝑝
4ℓj
T

15–76 6–13 1.7 1–3 2–8 < 1 1–5 3–9 1–3

d𝜎 / d𝑝
4ℓjj
T

11–76 5–27 1.7 2–3 2–9 1–2 1–4 3–17 1–12

d2𝜎 / d𝑚12d𝑚34 16–65 3–11 1.7 2–3 < 1 1–2 1–9 1–3 1–2

d2𝜎 / d𝑝4ℓ
T

d|𝑦4ℓ | 23–63 2–13 1.7 1–3 1–2 < 1 1–6 1–5 1–2

d2𝜎 / d𝑝4ℓ
T

d𝑁jets 23–93 4–193 1.7 2–14 2–25 1–3 1–7 1–12 1–92

d2𝜎 / d𝑝
4ℓj
T

d𝑚4ℓj 15–41 4–12 1.7 1–3 2–8 < 0.5 1–5 2–9 < 1

d2𝜎 / d𝑝4ℓ
T

d𝑝
4ℓj
T

15–53 3–10 1.7 1–3 2–8 < 1 1–2 2–6 1–2

d2𝜎 / d𝑝4ℓ
T

d𝑝
lead. jet
T

15–84 3–21 1.7 1–3 2–18 1–10 1–3 2–9 1–3

d2𝜎 / d𝑝
lead. jet
T

d|𝑦lead. jet | 15–38 3–11 1.7 1–3 2–9 < 0.5 1–2 1–4 1–2

d2𝜎 / d𝑝
lead. jet
T

d𝑝
sublead. jet
T

15–63 5–22 1.7 1–3 4–15 < 0.5 1–4 3–11 1–7
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8.2 Theoretical uncertainties

Sources of theoretical uncertainty include missing higher-order corrections, parton shower and underlying

event modelling, and PDF+𝛼s uncertainties, and these all affect modelling of the signal and background

processes. For measurements of the cross section, the impact of these theory systematic uncertainties on

the signal comes from their effects on the response matrix.

The prediction of the ggF process in different 𝑁jets categories and migration effects on the 𝑁jets ggF cross

sections are large sources of theoretical uncertainty, which are accounted for using the approach detailed in

Ref. [109]. The QCD scale uncertainty from the factorisation and renormalisation scales, resummation

scales, and migrations between 𝑁-jet phase-space bins are considered [53, 135–138]. The impact of QCD

scale variations on the Higgs boson 𝑝T distribution as well as the uncertainty of the 𝑝T distribution in

the 0-jet bins are also taken into account. Higher-order impacts on the 𝑝T distribution predictions due

to treating the top quark mass as infinite in the heavy-quark loop are accounted for by comparing these

predictions with finite-mass calculations. For the VBF production mode, the uncertainty due to missing

higher orders in QCD are considered, including migration effects in number of jets, transverse momentum

of the Higgs boson, transverse momentum of the Higgs boson and leading dĳet system, and the invariant

mass of the two leading jets as outlined in the scheme presented in Ref. [139].

For production modes other than ggF and VBF, the effects of QCD scale uncertainties are estimated by

considering all configurations of renormalisation and factorisation scales varied by a factor of two. In

each experimental bin, the largest difference between all the variations and the nominal configuration is

assigned as uncertainty.

The effects of parton shower and multiple-parton interaction modelling uncertainties on the acceptance are

estimated using tune eigenvector variations as well as comparisons between acceptances calculated with

Pythia 8 and Herwig 7 parton showering algorithms.

PDF uncertainty impacts are estimated using the eigenvector variations of the PDF4LHC_NLO_30 Hessian

PDF set, following the PDF4LHC recommendations [72].

For the cross sections extrapolated to the full phase space, an additional uncertainty (2.2%) related to the

𝐻 → 𝑍𝑍∗ branching ratio [69, 70] is included in the measurement.

Since the 𝑍𝑍∗ process normalisation is constrained by performing a simultaneous fit of sideband regions

enriched in this contribution together with the signal region, most of the theoretical uncertainty in the

normalisation for this background vanishes.4 The uncertainties due to missing higher-order effects in QCD

are estimated by varying the factorisation and renormalisation QCD scales by a factor of two; the impact of

the PDF uncertainty is estimated using the MC replicas of the NNPDF3.0 PDF set. Uncertainties due to

the parton shower modelling for the 𝑍𝑍∗ process are considered as well. The impact of these uncertainties

is below 2% for all the fiducial differential cross sections. In addition, the 𝑚4ℓ shape obtained from

Sherpa is compared with that obtained from Powheg and MadGraph5_aMC@NLO and the difference is

taken as an additional source of systematic uncertainty. In each 𝑚4ℓ bin, the largest difference between

Sherpa and Powheg or MadGraph5_aMC@NLO is used, and the systematic uncertainty is determined

by interpolating between these shapes. Typically, Sherpa and Powheg have the largest difference in the

predicted 𝑚4ℓ shape, with the impact linearly varying from approximately ±10% at low 𝑚4ℓ to ∓2% at

high 𝑚4ℓ .

4 Except in cases where the cross-section bins are merged into a single 𝑍𝑍∗ bin, where the relative normalisation uncertainties

are included.
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The uncertainty in the gluon-induced 𝑍𝑍∗ process is taken into account as well by changing the relative

composition between the quark-initiated and gluon-initiated 𝑍𝑍∗ components according to the theoretical

uncertainty in the predicted cross sections.

Finally, unfolding-related uncertainties arise from uncertainties in the production mode composition that

affect the response matrices, as well as from uncertainties in the bias introduced by the unfolding method.

For the former, an uncertainty is assessed by varying the production cross sections within their measured

uncertainties taken from Ref. [12], and has an impact of less than 1%. In the latter case, the uncertainty

in the bias is obtained independently per bin by comparing the unfolded cross section from simulation

with that expected when varying the underlying true cross sections of the simulated data sample within the

expected statistical error. The impact of this uncertainty is typically negligible in distributions such as 𝑝4ℓ
T

,

where the response matrix is largely diagonal, but can be of the order of 10% in distributions with larger

bin migrations, such as 𝑁jets.
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9 Results

Results are presented for the full set of inclusive and differential variables outlined in Section 5. Section 9.1

presents the data yields from the full Run 2 data set. Section 9.2 provides details of the statistical procedure

used for the extraction of the measurements. Cross-section results, and comparisons with SM predictions,

are provided in Sections 9.3 and 9.4.

9.1 Measured data yields

The observed number of events in each of the four decay final states, and the expected signal and background

yields before fitting to data (pre-fit), are presented in Table 6. These events have passed the event selection

and fall in a narrow window around the Higgs boson mass peak (115 < 𝑚4ℓ <130 GeV).

Table 6: Expected (pre-fit) and observed numbers of events in the four decay final states after the event selection,

in the mass range 115 GeV< 𝑚4ℓ < 130 GeV. The sum of the expected number of SM Higgs boson events and

the estimated background yields is compared with the data. Combined statistical and systematic uncertainties are

included for the predictions (see Section 8).

Final Signal 𝑍𝑍∗ Other Total Observed

state background backgrounds expected

4𝜇 78 ± 5 38.0 ± 2.1 2.85 ± 0.18 119 ± 5 115

2𝑒2𝜇 53.0 ± 3.1 26.1 ± 1.4 2.98 ± 0.19 82.0 ± 3.4 96

2𝜇2𝑒 40.1 ± 2.9 17.3 ± 1.3 3.6 ± 0.5 61.0 ± 3.2 57

4𝑒 35.3 ± 2.6 15.0 ± 1.5 2.91 ± 0.33 53.2 ± 3.1 42

Total 206 ± 13 96 ± 6 12.2 ± 1.0 315 ± 14 310

Figures 2 and 3 show the expected and observed four-lepton invariant mass distributions, inclusively and per

final state respectively. The 𝑚4ℓ distribution shows two clear peaks corresponding to 𝑍 → 4ℓ production

and the Higgs boson signal with a mass near 125 GeV.
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Figure 2: The observed and expected (pre-fit) inclusive four-lepton invariant mass distributions for the selected

Higgs boson candidates, shown for an integrated luminosity of 139 fb−1 and at
√

s = 13 TeV. The uncertainty in the

prediction is shown by the hatched band, which includes the theoretical uncertainties of the SM cross section for the

signal and the 𝑍𝑍∗ background.
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Figure 3: The observed and expected (pre-fit) four-lepton invariant mass distribution for the selected Higgs boson

candidates, for the different decay final states (a) 4𝜇, (b) 2𝑒2𝜇, (c) 2𝜇2𝑒, (d) 4𝑒. The uncertainty in the prediction is

shown by the hatched band, which includes the theoretical uncertainties of the SM cross section for the signal and the

𝑍𝑍∗ background.

20



The observed and expected distributions of one-dimensional observables are shown in Figures 4–9. In

addition, the observed and expected distributions for the two-dimensional observables are shown in

Figures 10–17. All these figures show events selected within an 𝑚4ℓ mass range of 115–130 GeV. Further

details of the compatibility with the SM are reported in Section 9.4.

0-10 10-20
20-30

30-45
45-60

60-80
80-120

120-200
200-350

350-1000

 [GeV]4l
T

p

0

1

2

3

4

5

6

7

8

9

10

E
ve

nt
s/

B
in

 W
id

th
 [1

/G
eV

]

Data

Higgs (125 GeV)

ZZ*

tXX, VVV 

tZ+jets, t

Uncertainty

ATLAS
 4l→ ZZ* →H 

-1 = 13 TeV, 139 fbs
 < 130 GeV4lm115 < 

(a)

50-64 64-73 73-85 85-106

 [GeV]12m

0

2

4

6

8

10

12

14

16

18

E
ve

nt
s/

B
in

 W
id

th
 [1

/G
eV

]

Data

Higgs (125 GeV)

ZZ*

tXX, VVV 

tZ+jets, t

Uncertainty

ATLAS
 4l→ ZZ* →H 

-1 = 13 TeV, 139 fbs
 < 130 GeV4lm115 < 

(b)

12-20 20-24 24-28 28-32 32-40 40-55 55-65

 [GeV]34m

0

2

4

6

8

10

12

14

16

18

20

22

E
ve

nt
s/

B
in

 W
id

th
 [1

/G
eV

]

Data

Higgs (125 GeV)

ZZ*

tXX, VVV 

tZ+jets, t

Uncertainty

ATLAS
 4l→ ZZ* →H 

-1 = 13 TeV, 139 fbs
 < 130 GeV4lm115 < 

(c)

Figure 4: The observed and expected (pre-fit) distributions of (a) 𝑝4ℓ
T

, (b) 𝑚12, and (c) 𝑚34 in the mass region

115 < 𝑚4ℓ < 130 GeV, for an integrated luminosity of 139 fb−1 collected at
√

s = 13 TeV. A SM Higgs boson signal

with a mass 𝑚𝐻 = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band, which

includes the theoretical uncertainties of the SM cross section for the signal and the 𝑍𝑍∗ background.
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Figure 5: The observed and expected (pre-fit) distributions of (a) |𝑦4ℓ | and (b) |cos 𝜃∗ | in the mass region

115 < 𝑚4ℓ < 130 GeV, for an integrated luminosity of 139 fb−1 collected at
√

s = 13 TeV. A SM Higgs boson signal

with a mass 𝑚𝐻 = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band, which

includes the theoretical uncertainties of the SM cross section for the signal and the 𝑍𝑍∗ background.
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Figure 6: The observed and expected (pre-fit) distributions of (a) cos 𝜃1, (b) cos 𝜃2, (c) 𝜙, and (d) 𝜙1 in the mass

region 115 < 𝑚4ℓ < 130 GeV, for an integrated luminosity of 139 fb−1 collected at
√

s = 13 TeV. A SM Higgs boson

signal with a mass 𝑚𝐻 = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band, which

includes the theoretical uncertainties of the SM cross section for the signal and the 𝑍𝑍∗ background.
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Figure 7: The observed and expected (pre-fit) distributions of (a) 𝑁jets, (b) 𝑁𝑏−jets, (c) 𝑝
lead. jet

T
, and (d) 𝑝

sublead. jet

T
in

the mass region 115 < 𝑚4ℓ < 130 GeV, for an integrated luminosity of 139 fb−1 collected at
√

s = 13 TeV. A SM

Higgs boson signal with a mass 𝑚𝐻 = 125 GeV is assumed. In distribution (c), the first bin contains events with zero

jets, while in distribution (d), the first bin contains events with fewer than two jets. In both (c) and (d), all bins except

the first are divided by the bin width. The uncertainty in the prediction is shown by the hatched band, which includes

the theoretical uncertainties of the SM cross section for the signal and the 𝑍𝑍∗ background.
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Figure 8: The observed and expected (pre-fit) distributions of (a) 𝑚jj, (b) Δ𝜂jj, and (c) Δ𝜙jj in the mass region

115 < 𝑚4ℓ < 130 GeV, for an integrated luminosity of 139 fb−1 collected at
√

s = 13 TeV. A SM Higgs boson signal

with a mass 𝑚𝐻 = 125 GeV is assumed. In all distributions, the first bin contains events with fewer than two jets.

The uncertainty in the prediction is shown by the hatched band, which includes the theoretical uncertainties of the

SM cross section for the signal and the 𝑍𝑍∗ background.
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Figure 9: The observed and expected (pre-fit) distributions of (a) 𝑚4ℓj, (b) 𝑚4ℓjj, (c) 𝑝
4ℓj

T
, and (d) 𝑝

4ℓjj

T
in the mass

region 115 < 𝑚4ℓ < 130 GeV, for an integrated luminosity of 139 fb−1 collected at
√

s = 13 TeV. A SM Higgs boson

signal with a mass 𝑚𝐻 = 125 GeV is assumed. The first bin in (a) and (c) contains events with no jets, while the first

bin in (b) and (d) contains events with fewer than two jets. The uncertainty in the prediction is shown by the hatched

band, which includes the theoretical uncertainties of the SM cross section for the signal and the 𝑍𝑍∗ background.
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Figure 10: The observed and expected (pre-fit) distributions of 𝑝4ℓ
T

in 𝑁jets bins in the mass region 115 < 𝑚4ℓ <

130 GeV, for an integrated luminosity of 139 fb−1 collected at
√

s = 13 TeV. A SM Higgs boson signal with a mass

𝑚𝐻 = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band, which includes the

theoretical uncertainties of the SM cross section for the signal and the 𝑍𝑍∗ background.
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Figure 11: The observed and expected (pre-fit) distributions of 𝑝4ℓ
T

in |𝑦4ℓ | bins in the mass region 115 < 𝑚4ℓ <

130 GeV, for an integrated luminosity of 139 fb−1 collected at
√

s = 13 TeV. A SM Higgs boson signal with a mass

𝑚𝐻 = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band, which includes the

theoretical uncertainties of the SM cross section for the signal and the 𝑍𝑍∗ background.
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Figure 12: The observed and expected (pre-fit) distribution in bins of the leading vs. subleading 𝑍 boson mass,

𝑚12 vs. 𝑚34. The same distribution in the 2D plane is provided in the inset plot, where the black dots depict

data and the blue and pink shaded areas represent simulated signal and background, respectively. The red lines

depict the bin boundaries, chosen as described in Section 7. These distributions correspond to the mass region

115 < 𝑚4ℓ < 130 GeV for an integrated luminosity of 139 fb−1 collected at
√

s = 13 TeV. A SM Higgs boson signal

with a mass 𝑚𝐻 = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band, which

includes the theoretical uncertainties of the SM cross section for the signal and the 𝑍𝑍∗ background.
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Figure 13: The observed and expected (pre-fit) distribution in bins of the transverse momentum of the four-lepton

plus leading-jet system vs. the invariant mass of the four-lepton plus leading-jet system, 𝑝
4ℓj

T
vs. 𝑚4ℓj. The same

distribution in the 2D plane is provided in the inset plot, where the black dots depict data and the blue and pink

shaded areas represent simulated signal and background, respectively. The red lines depict the bin boundaries, chosen

as described in Section 7. These distributions correspond to the mass region 115 < 𝑚4ℓ < 130 GeV for an integrated

luminosity of 139 fb−1 collected at
√

s = 13 TeV. A SM Higgs boson signal with a mass 𝑚𝐻 = 125 GeV is assumed.

The uncertainty in the prediction is shown by the hatched band, which includes the theoretical uncertainties of the

SM cross section for the signal and the 𝑍𝑍∗ background.
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Figure 14: The observed and expected (pre-fit) distribution in bins of the transverse momentum of the four-lepton

system vs. the transverse momentum of the four-lepton plus leading-jet system, 𝑝4ℓ
T

vs. 𝑝
4ℓj

T
. The same distribution in

the 2D plane is shown in the inset plot, where the black dots depict data and the blue and pink shaded areas represent

simulated signal and background, respectively. The red lines depict the bin boundaries, chosen as described in

Section 7. These distributions correspond to the mass region 115 < 𝑚4ℓ < 130 GeV for an integrated luminosity

of 139 fb−1 collected at
√

s = 13 TeV. A SM Higgs boson signal with a mass 𝑚𝐻 = 125 GeV is assumed. The

uncertainty in the prediction is shown by the hatched band, which includes the theoretical uncertainties of the SM

cross section for the signal and the 𝑍𝑍∗ background.
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Figure 15: The observed and expected (pre-fit) distribution in bins of the transverse momentum of the four-lepton

system vs. the transverse momentum of the leading jet, 𝑝4ℓ
T

vs. 𝑝
lead. jet

T
. The same distribution in the 2D plane is

provided in the inset plot, where the black dots depict data and the blue and pink shaded areas represent simulated

signal and background, respectively. The red lines depict the bin boundaries, chosen as described in Section 7. These

distributions correspond to the mass region 115 < 𝑚4ℓ < 130 GeV for an integrated luminosity of 139 fb−1 collected

at
√

s = 13 TeV. A SM Higgs boson signal with a mass 𝑚𝐻 = 125 GeV is assumed. The uncertainty in the prediction

is shown by the hatched band, which includes the theoretical uncertainties of the SM cross section for the signal and

the 𝑍𝑍∗ background.
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Figure 16: The observed and expected (pre-fit) distribution in bins of the transverse momentum of the leading vs.

subleading jet, 𝑝
lead. jet

T
vs. 𝑝

sublead. jet

T
. The same distribution in the 2D plane is provided in the inset plot, where the

black dots depict data and the blue and pink shaded areas represent simulated signal and background, respectively.

The red lines depict the bin boundaries, chosen as described in Section 7. These distributions correspond to the

mass region 115 < 𝑚4ℓ < 130 GeV for an integrated luminosity of 139 fb−1 collected at
√

s = 13 TeV. A SM Higgs

boson signal with a mass 𝑚𝐻 = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band,

which includes the theoretical uncertainties of the SM cross section for the signal and the 𝑍𝑍∗ background. 𝑝
lead. jet

T

and 𝑝
sublead. jet

T
are required to have 𝑝T greater than 30 GeV.
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Figure 17: The observed and expected (pre-fit) distribution in bins of the transverse momentum vs. the rapidity of

the leading jet, 𝑝
lead. jet

T
vs. |𝑦lead. jet |. The same distribution in the 2D plane is provided in the inset plot, where the

black dots depict data and the blue and pink shaded areas represent simulated signal and background, respectively.

The red lines depict the bin boundaries, chosen as described in Section 7. These distributions correspond to the

mass region 115 < 𝑚4ℓ < 130 GeV for an integrated luminosity of 139 fb−1 collected at
√

s = 13 TeV. A SM Higgs

boson signal with a mass 𝑚𝐻 = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band,

which includes the theoretical uncertainties of the SM cross section for the signal and the 𝑍𝑍∗ background.
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9.2 Statistical analysis

The inclusive fiducial and differential cross sections are measured using a binned profile-likelihood-ratio

fit [140], taking into account all bins of a given distribution. The likelihood function includes the shape and

normalisation uncertainties of the signal and background predictions as nuisance parameters, as outlined

in Section 8. The cross sections are extracted by minimising two times the negative logarithm of the

profile likelihood ratio, −2 lnΛ. In the asymptotic approximation, i.e. the large sample limit, −2 lnΛ
behaves as a 𝜒2 distribution with one degree of freedom. The compatibility of a measured cross section

and its theoretical prediction is tested by computing a 𝑝-value based on the difference between the value

of −2 lnΛ at the best-fit value and the value obtained by fixing the cross section in each bin to that

predicted by theory. These 𝑝-values do not include the uncertainties in the theoretical predictions. For all

measured observables the asymptotic approximation is validated with pseudo-experiments, and where the

number of observed events is less than three, the uncertainties are corrected to the values obtained with the

pseudo-experiments.

For the fiducial and differential cross-section measurements, the fitted 𝑚4ℓ distribution in each final state or

differential bin is used to extract the measured cross section following Eq. (1). The fiducial cross sections

of the four final states can either be summed to obtain an inclusive fiducial cross section, or they can be

combined assuming the SM 𝑍𝑍∗ → 4ℓ relative branching ratios. The latter combination is more model

dependent, but benefits from a smaller statistical uncertainty.

9.3 Inclusive fiducial cross-section measurements

The fiducial production cross sections of the 𝐻 → 𝑍𝑍∗ → 4ℓ process are presented in Table 7 and

Figure 18. The left panel in Figure 18(a) shows the fiducial cross sections for the four individual decay final

states: 4𝜇, 4𝑒 decays (hereafter referred to as same flavour), and 2𝜇2𝑒, 2𝑒2𝜇 decays (hereafter referred to

as different flavour). The middle panel shows the cross sections for same- and different-flavour decays,

which can provide a probe of same-flavour interference effects, as well as the inclusive fiducial cross

sections obtained by either summing all 4ℓ decay final states or combining them assuming relative SM

branching ratios.

The data are compared with the SM prediction after accounting for the fiducial acceptance as determined

from the SM Higgs boson simulated samples (see Section 3).

The combined inclusive fiducial cross section is extrapolated to the full phase space, as shown in the right

panel of Figure 18, using the fiducial acceptance as well as the branching ratios, with the uncertainties

described in Section 8. The total cross section is also compared with the cross sections predicted by

NNLOPS, MadGraph5_aMC@NLO-FxFx (MG5-FxFx) and Hres 2.3 [52, 141] for ggF, while for all

other production modes the predictions described in Section 3 are used. For ggF, all generators predict cross

sections that are lower than the N3LO calculation. The 𝑝-values, calculated as described in Section 9.2, are

shown in Table 7. The probability of compatibility of the measured fiducial cross section (𝜎comb) and the

Standard Model expectation is at the level of 67%.
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Figure 18: (a) The fiducial cross sections (left two panels) and total cross section (right panel) of Higgs boson

production measured in the 4ℓ final state. The fiducial cross sections are shown separately for each decay final

state, and for same- and different-flavour decays. The inclusive fiducial cross section is measured as the sum of all

final states, as well as by combining the per-final-state measurements assuming SM 𝑍𝑍∗ → 4ℓ relative branching

ratios. The total SM prediction is accurate to N3LO in QCD for the ggF process. The cross sections for all other

Higgs boson production modes 𝑋𝐻 are added. For the fiducial cross-section predictions, the SM cross sections are

multiplied by the acceptances determined using the NNLOPS sample for ggF and the samples discussed in Section 3

for the other production modes. For the total cross section, the predictions by the generators NNLOPS , Hres, and

MadGraph5_aMC@NLO-FxFx are also shown. The error bars on the data points show the total uncertainties,

while the systematic uncertainties are indicated by the boxes. The shaded bands around the theoretical predictions

indicate the PDF and scale uncertainties, calculated as described in Section 8.2. (b) The correlation between the

fiducial cross sections for the four individual decay final states and the 𝑍𝑍∗ normalisation factor.
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Table 7: The fiducial and total cross sections of Higgs boson production measured in the 4ℓ final state. The fiducial

cross sections are given separately for each decay final state, and for same- and different-flavour decays. The inclusive

fiducial cross section is measured as the sum of all final states (𝜎sum), as well as by combining the per-final-state

measurements assuming SM 𝑍𝑍∗ → 4ℓ relative branching ratios (𝜎comb). For the total cross section (𝜎tot), the Higgs

boson branching ratio at 𝑚𝐻 = 125 GeV is assumed. The total SM prediction is accurate to N3LO in QCD and

NLO EW for the ggF process. For the fiducial cross-section predictions, the SM cross sections are multiplied by the

acceptances determined using the NNLOPS sample for ggF. For all the other production modes, the cross sections

from the samples discussed in Section 3 are added. The 𝑝-values indicating the probability of compatibility of

the measurement and the SM prediction are shown as well. They do not include the systematic uncertainty in the

theoretical predictions.

Cross section [fb] Data ( ± (stat.) ± (syst.) ) Standard Model prediction 𝑝-value [%]

𝜎4𝜇 0.81 ±0.12 ±0.03 0.90 ± 0.05 46

𝜎4𝑒 0.62 ±0.17 ±0.05 0.90 ± 0.05 14

𝜎2𝜇2𝑒 0.74 ±0.15 ±0.05 0.80 ± 0.04 67

𝜎2𝑒2𝜇 1.01 ±0.15 ±0.03 0.80 ± 0.04 15

𝜎4𝜇+4𝑒 1.43 ±0.21 ±0.05 1.81 ± 0.10 10

𝜎2𝜇2𝑒+2𝑒2𝜇 1.75 ±0.21 ±0.06 1.61 ± 0.09 51

𝜎sum 3.18 ±0.31 ±0.11 3.41 ± 0.18 49

𝜎comb 3.28 ±0.30 ±0.11 3.41 ± 0.18 67

𝜎tot [pb] 53.5 ±4.9 ±2.1 55.7 ± 2.8 66

9.4 Differential cross-section measurements

The measured differential production cross sections for the transverse momentum 𝑝4ℓ
T

of the Higgs boson

are shown in Figure 19, while the measured differential cross sections with respect to the masses of the

leading and subleading 𝑍 bosons resulting from the Higgs boson decay, 𝑚12 and 𝑚34, are provided in

Figure 20. Figures 21, 22, and 23 show the measured differential production cross sections with respect to

angular variables, |𝑦4ℓ |, |cos 𝜃∗ |, cos 𝜃1, cos 𝜃2, 𝜙, and 𝜙1, that probe the kinematics of the Higgs boson

decay products.

Differential production cross-section measurements with respect to variables that probe the jet activity in

reconstructed Higgs boson events follow in Figures 24–28. These include the exclusive and inclusive jet

multiplicities, 𝑁jets, the 𝑏-jet multiplicity, 𝑁𝑏−jets, variables measuring the transverse momentum of the

jets, 𝑝
lead. jet

T
and 𝑝

sublead. jet

T
, as well as variables that probe the kinematics of pairs of jets in events with at

least two jets, 𝑚jj, Δ𝜂jj, and Δ𝜙jj.

In addition, differential cross-section measurements are provided for observables aimed at studying the

relationship between the reconstructed Higgs boson and accompanying jets. These are presented in

Figures 29–30.

Finally, the double differential measurements in bins of 𝑚12 vs. 𝑚34, 𝑝4ℓ
T

vs. |𝑦4ℓ |, 𝑝4ℓ
T

vs. 𝑁jets, 𝑝
4ℓ
T

vs. 𝑝
4ℓj

T
,

𝑝
4ℓj

T
vs. 𝑚4ℓj, 𝑝

lead. jet

T
vs. 𝑝

sublead. jet

T
, and 𝑝

lead. jet

T
vs. |𝑦lead. jet | are provided in Figures 31–38.

The data are compared with SM expectations constructed from the ggF predictions provided by NNLOPS

and MadGraph5_aMC@NLO-FxFx. Certain distributions related to the production of the Higgs boson
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also include a comparison with the predictions from NNLOJET and RadISH and some of the measurements

related to the Higgs boson decay are compared also with predictions from Hto4l and Prophecy4f. The ggF

predictions from MadGraph5_aMC@NLO-FxFx and NNLOPS are normalised to the N3LO prediction

while the normalisations for NNLOJET and RadISH are to their respective predicted cross sections. All

the other Higgs boson production modes are normalised to the most accurate SM predictions, as discussed

in Section 3. The shaded bands on the expected cross sections indicate the PDF and scale uncertainties 5.

The figures include the 𝑝-values quantifying the probability of compatibility of the measurements and the

SM predictions and show in addition fitted values of the 𝑍𝑍∗ normalisation factors. Finally, the correlation

matrices between the measured cross sections and the 𝑍𝑍∗ background normalisation factors are shown in

all figures along with the cross-section measurements.

5 Given the accuracy of some predictions, this procedure may underestimate the associated uncertainties. In particular, NNLOPS

predictions for ≥ 3 jets, which are affected in part by additional uncertainties which are not accounted by the procedure

described in Section 8.2.
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Figure 19: (a) Differential fiducial cross section for the transverse momentum 𝑝4ℓ
T

of the Higgs boson, along with (b)

the corresponding correlation matrix between the measured cross sections and the 𝑍𝑍∗ background normalisation

factors. The measured cross sections are compared with ggF predictions by MadGraph5_aMC@NLO-FxFx,

NNLOJET, RadISH, and NNLOPS, where MadGraph5_aMC@NLO-FxFx and NNLOPS are normalised to the

N3LO total cross section with the listed 𝐾-factors while the normalisations for NNLOJET and RadISH are to their

respective predicted cross sections. MC-based predictions for all other Higgs boson production modes 𝑋𝐻 are

normalised to the SM predictions. The error bars on the data points show the total uncertainties, while the systematic

uncertainties are indicated by the boxes. The shaded bands on the expected cross sections indicate the PDF and

scale systematic uncertainties, calculated as described in Section 8.2. This includes the uncertainties related to the

𝑋𝐻 production modes. The 𝑝-values indicating the probability of compatibility of the measurement and the SM

prediction are shown as well. They do not include the systematic uncertainty in the theoretical predictions. The

central panel of (a) shows the ratio of different predictions to the data, and the grey area represents the total uncertainty

of the measurement. The bottom panel of (a) shows the ratios of the fitted values of the 𝑍𝑍∗ normalisation factors

to the predictions from MC simulation discussed in Section 3. As indicated by the horizontal error bars, the 𝑍𝑍∗

normalisation is estimated in each of the first three 𝑝4ℓ
T

bins separately, while the next two bins share a common

estimation factor, as do the last five bins.
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Figure 20: Differential fiducial cross sections for (a) the invariant mass 𝑚12 of the leading 𝑍 boson and (c) the

invariant mass 𝑚34 of the subleading 𝑍 boson, along with the corresponding correlation matrices between the

measured cross sections and the 𝑍𝑍∗ background normalisation factors ((b) and (d)).
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Figure 21: Differential fiducial cross sections for (a) the rapidity, |𝑦4ℓ |, of the Higgs boson and (c) the production

angle, |cos 𝜃∗ |, of the leading 𝑍 boson. The corresponding correlation matrices between the measured cross sections

and the 𝑍𝑍∗ background normalisation factors are also shown ((b) and (d)).
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Figure 22: Differential fiducial cross sections for (a) production angle, cos 𝜃1, of the anti-lepton from the leading

𝑍 boson and (c) the production angle, cos 𝜃2, of the anti-lepton from the subleading 𝑍 boson. The corresponding

correlation matrices between the measured cross sections and the 𝑍𝑍∗ background normalisation factors are also

shown ((b) and (d)).
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Figure 23: Differential fiducial cross sections for (a) the azimuthal angle, 𝜙, between the decay planes of the two

reconstructed 𝑍 bosons and (c) the azimuthal angle, 𝜙1, between the decay plane of the leading 𝑍 boson and the

plane formed by its four-momentum and the 𝑧-axis. The corresponding correlation matrices between the measured

cross sections and the 𝑍𝑍∗ background normalisation factors are also shown ((b) and (d)).
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Figure 24: Differential fiducial cross sections for (a) the jet multiplicity, 𝑁jets, in the selected events, and (c), the

inclusive jet multiplicity. In the 𝑁jets distribution in (a), the first three bins are exclusive in number of jets, while

the fourth is inclusive. The corresponding correlation matrix between the measured cross sections and the 𝑍𝑍∗

background normalisation factors is also shown in (b). In the 𝑁jets distribution in (c), all bins are inclusive, with the

first bin including all events, the second including all events with at least one jet, and so on.
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Figure 25: (a) Differential fiducial cross section as function of the 𝑏-jet multiplicity, 𝑁𝑏−jets. Three bins are

considered. The first bin is filled with events which do not have any jets, the second is filled with events with at least

one jet but no 𝑏-tagged jets, while the third includes all events with at least one 𝑏-tagged jet. The corresponding

correlation matrices between the measured cross sections and the 𝑍𝑍∗ background normalisation factors are also

shown in (b)).
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Figure 26: Differential fiducial cross sections for (a) the transverse momentum of the leading jet, 𝑝
lead. jet

T
, in events

with at least one jet, and (c) the transverse momentum of the subleading jet, 𝑝
sublead. jet

T
, in events with at least two

jets. Leading and subleading jets refer to the jets with the highest and second-highest transverse momenta. The first

bin contains events which do not pass the jet requirements. The corresponding correlation matrices between the

measured cross sections and the 𝑍𝑍∗ background normalisation factors are also shown ((b) and (d)).
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Figure 27: Differential fiducial cross sections for (a) the invariant mass of the two highest-𝑝T jets, 𝑚jj, in events with

at least two jets. The corresponding correlation matrix between the measured cross sections and the 𝑍𝑍∗ background

normalisation factors is also provided ((b)).
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Figure 28: Differential fiducial cross sections for (a) the distance between these two jets in pseudorapidity, Δ𝜂jj,

and (c) the distance between the two jets in 𝜙, Δ𝜙jj. The first bin contains events with fewer than two jets that pass

the jet selection requirements. Finally, the corresponding correlation matrices between the measured cross sections

and the 𝑍𝑍∗ background normalisation factors are provided ((b) and (d)).
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Figure 29: Differential fiducial cross sections for (a) the transverse momentum of the four-lepton plus jet system, in

events with at least one jet, and (c) the transverse momentum of the four-lepton plus dĳet system, in events with at

least two jets. The corresponding correlation matrices between the measured cross sections and the 𝑍𝑍∗ background

normalisation factors are also shown ((b) and (d)).
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Figure 30: Differential fiducial cross sections for (a) the invariant mass of the four-lepton plus jet system, in events

with at least one jet, and (c) the invariant mass of the four-lepton plus dĳet system, in events with at least two jets.

The corresponding correlation matrices between the measured cross sections and the 𝑍𝑍∗ background normalisation

factors are also shown ((b) and (d)).
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Figure 31: (a) Differential fiducial cross section for the leading vs. subleading 𝑍 boson mass, 𝑚12 vs. 𝑚34, and (b)

the corresponding correlation matrix between the measured cross sections and the 𝑍𝑍∗ background normalisation

factors. The bin boundaries are defined in Figure 12.
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Figure 32: Differential fiducial cross sections for the leading vs. subleading 𝑍 boson mass, 𝑚12 vs. 𝑚34, in (a) ℓℓ𝜇𝜇
and (b) ℓℓ𝑒𝑒 final states, along with (c) their corresponding correlation matrix between the measured cross sections

and the 𝑍𝑍∗ background normalisation factors. The bin boundaries are defined in Figure 12.
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Figure 33: (a) Double differential fiducial cross sections of the 𝑝4ℓ
T

distribution in |𝑦4ℓ | bins. The corresponding

correlation matrix between the measured cross sections and the 𝑍𝑍∗ background normalisation factors is shown in

(b). The 𝑝-values shown are calculated for all bins across both 𝑝4ℓ
T

and |𝑦4ℓ | simultaneously.
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Figure 34: (a) Double differential fiducial cross sections of the 𝑝4ℓ
T

distribution in 𝑁jets bins. The corresponding

correlation matrix between the measured cross sections and the 𝑍𝑍∗ background normalisation factors is shown

in (b). The 𝑝-values shown are calculated for all bins across both 𝑝4ℓ
T

and 𝑁jets simultaneously.
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Figure 35: (a) Differential fiducial cross section for the transverse momentum of the four-lepton system vs. the

transverse momentum of the four-lepton plus jet system, 𝑝4ℓ
T

vs. 𝑝
4ℓj

T
and (b) the corresponding correlation matrix

between the measured cross sections and the 𝑍𝑍∗ background normalisation factors. The bin boundaries are defined

in Figure 14.
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Figure 36: (a) Double differential fiducial cross section for the transverse momentum of the four-lepton plus jet

system vs. the invariant mass of the four-lepton plus jet system, 𝑝
4ℓj

T
vs. 𝑚4ℓj and (b) the corresponding correlation

matrix between the measured cross sections and the 𝑍𝑍∗ background normalisation factors. The bin boundaries are

defined in Figure 13.
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Figure 37: (a) Double differential fiducial cross section for the transverse momentum of the four-lepton system vs. the

transverse momentum of the leading jet, 𝑝4ℓ
T

vs. 𝑝
lead. jet

T
, and (b) the corresponding correlation matrix between the

measured cross sections and the 𝑍𝑍∗ background normalisation factors. The bin boundaries are defined in Figure 15.
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Figure 38: (a) Double differential fiducial cross section for the transverse momentum of the leading jet vs. the rapidity

of the leading jet, 𝑝
lead. jet

T
vs. |𝑦lead. jet |, and (b) the corresponding correlation matrix between the measured cross

sections and the 𝑍𝑍∗ background normalisation factors. The bin boundaries are defined in Figure 17.
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Figure 39: (a) Double differential fiducial cross section for the transverse momentum of leading vs. subleading jet,

𝑝
lead. jet

T
vs. 𝑝

sublead. jet

T
, and (b) the corresponding correlation matrix between the measured cross sections and the

𝑍𝑍∗ background normalisation factor. The bin boundaries are defined in Figure 16.
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Overall, there is good agreement between measured cross sections and predictions. Small differences

between measurement and prediction occur in several of the angular observables, as well as in bins of 𝑚4ℓjj,

and several of the double differential measurements. For example, the 𝑝-value for the double differential

distribution 𝑝
lead. jet

T
vs. |𝑦lead. jet | in Figure 38 is particularly low due to the downward fluctuation in bin 2.

However, when considering the size of the uncertainties these differences are not significant. Since no

events are observed in the highest bin for 𝑝4ℓ
T

in Figure 19, an upper limit of 27 ab at 95% confidence level

(CL) is set on the cross section using CLs [142]. Similarly, a limit of 𝜎 < 38 ab at 95% CL is also set in

the last bin of 𝑝
4ℓjj

T
in Figure 29.
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10 Interpretation of differential distributions

The measured differential fiducial cross sections can be used to probe possible effects of physics beyond

the SM. Two possible interpretations of the results are presented. In Section 10.1, the 𝑚12 vs. 𝑚34

double differential cross section is used to probe several BSM scenarios within the framework of pseudo-

observables [143], while in Section 10.2, the 𝑝4ℓ
T

differential cross section is used to constrain the Yukawa

couplings of the Higgs boson with the 𝑏- and 𝑐-quarks [144].

10.1 Constraints on BSM effects within the pseudo-observables framework

In this interpretation, the couplings related to the BSM contact interactions of the Higgs boson decaying

into four leptons are considered. As defined in Ref. [110], the pseudo-observables framework introduces

modified contact terms between the Higgs boson, the 𝑍 boson, and the left- or right-handed leptons 𝜖𝑍,ℓ𝐿

and 𝜖𝑍,ℓ𝑅 . In order to reduce the number of independent parameters considered in the pseudo-observables

framework for the 𝐻 → 4ℓ decay amplitudes, specific symmetries are imposed [110]. In all the scenarios

considered, the parameters associated with other pseudo-observables affecting the angular distributions,

such as 𝜖 (𝐶𝑃)
𝑍𝑍 , 𝜖 (𝐶𝑃)

𝑍𝛾 and 𝜖 (𝐶𝑃)
𝛾𝛾 , are set to zero. Thus, the contact terms considered have the same Lorentz

structure as the SM term and only affect the dilepton invariant mass distributions.

Four scenarios are investigated [110]. In the first scenario, referred to as the flavour-universal contact terms,
the parameters of interest are the 𝜖𝑍,ℓ𝐿 and the 𝜖𝑍,ℓ𝑅 couplings, where the interactions described by these

contact terms have the same strength for electrons and muons. The second scenario considered is linear
EFT-inspired, where lepton-flavour universality is again imposed and the Higgs boson is assumed to be

part of a 𝑆𝑈 (2)𝐿 doublet. This is reflected in the condition 𝜖𝑅 = 0.48𝜖𝐿 [110]. The parameters of interest

are 𝜖𝐿 and the coupling strength of the Higgs boson to the 𝑍 boson, 𝜅𝑍𝑍 . In the following two scenarios,

lepton-flavour universality can be violated. For the third scenario, referred to as flavour non-universal
vector contact terms, the helicity structure of the couplings is fixed to be vector (𝜖𝑍,𝑒𝐿= 𝜖𝑍,𝑒𝑅 , 𝜖𝑍,𝜇𝐿=

𝜖𝑍,𝜇𝑅 ) and the independent parameters are the couplings to electrons 𝜖𝑍,𝑒𝑅 and muons 𝜖𝑍,𝜇𝑅 . Finally,

a fourth scenario with flavour non-universal axial-vector contact terms is considered. In this case the

helicity structure of the couplings is fixed to be axial-vector, with the parameters of interest being the

couplings to electrons 𝜖𝑍,𝑒𝑅 and muons 𝜖𝑍,𝜇𝑅 and the condition 𝜖𝑍,ℓ𝐿 = − 𝜖𝑍,ℓ𝑅 is imposed. Using the

𝑚12 vs. 𝑚34 double differential cross sections for these interpretations provides sensitivity to distinguish

between potential contributions from the contact terms and those from changes to the coupling strength of

the Higgs boson to the 𝑍 boson.

The variation of the fiducial cross section as a function of the BSM couplings is computed relative to the

SM by MadGraph5_aMC@NLO in each of the bins of the measured 𝑚12 vs. 𝑚34 differential cross section.

This is done for a grid of points in the BSM parameter space in each scenario. These relative variations are

then fit to a two-dimensional quadratic function. The parameterisation, which also includes any changes in

the acceptance, is then encoded into the likelihood and corresponding limits are set for each scenario.

Figure 40 shows the limits on BSM interactions of the Higgs boson for the four considered cases. The

corresponding 95% confidence intervals for each of the parameters are listed in Table 8.
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Figure 40: Observed limits at 68% and 95% CL on the modified Higgs boson decays within the framework of the

pseudo-observables: (a) flavour universal contact terms; (b) linear EFT-inspired; (c) flavour non-universal vector

contact terms; (d) flavour non-universal axial-vector contact terms. The 𝑝-values shown represent the probability of

compatibility between the data and the 𝑚12 vs. 𝑚34 prediction corresponding to the best-fit values of the parameters

of interest for each of the four scenarios considered. The SM predictions (∗) and the observed best-fit values (+) are

indicated on the plots.
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Table 8: Confidence intervals for the scenarios considered in the pseudo-observables framework. Based on the

observed 2D exclusion contours, 1D exclusion intervals are provided for the EFT-inspired, flavour non-universal

vector, and flavour non-universal axial-vector scenarios. The observed limits are calculated while profiling the other

parameters of interest. For the EFT-inspired interpretation, the limits are derived assuming 𝜅𝑍𝑍 ≥ 0. This constraint

has no impact on the limit as the analysis is not sensitive to the sign of this parameter.

Interpretation Parameter best-fit value 95% confidence interval

EFT-inspired
𝜖𝐿 = 0.03 [−0.25, 0.17]

𝜅𝑍𝑍 = 0.93 [0.51, 1.16]

Flavour non-universal vector
𝜖𝑍𝑒 = -0.005 [−0.097, 0.082]
𝜖𝑍𝜇 = 0.054 [−0.131, 0.114]

Flavour non-universal axial-vector
𝜖𝑍𝑒 = -0.022 [−0.056, 0.012]
𝜖𝑍𝜇 = 0.008 [−0.016, 0.033]

10.2 Constraints on Yukawa couplings

Although the couplings of the Higgs boson to the top and bottom quarks have been established recently,

obtaining evidence for the coupling of the Higgs boson to the charm quark is more challenging. Direct

methods are limited either by low branching fraction (𝐻 → 𝐽/𝜓𝛾 → 𝜇+𝜇−𝛾) or by large backgrounds

(𝐻 → 𝑐𝑐). Nevertheless, it has been shown recently that it is possible to indirectly constrain the Yukawa

coupling to quarks by analysing the 𝑝𝐻
T

spectrum [19, 144]. In particular, the effects of BSM contributions

to the coupling modifiers for the Higgs boson to charm quarks, 𝜅𝑐, and for the Higgs boson to bottom

quarks, 𝜅𝑏, are investigated.

The fiducial cross section is parameterised as a function of the 𝜅𝑐 and 𝜅𝑏 values in each measured bin of 𝑝4ℓ
T

.

Both the gluon-initiated and quark-initiated components of the prediction show a larger variation, different

in size and shape, of the cross section especially at 𝑝4ℓ
T

< 10 GeV. The theoretical uncertainties of these

predictions are calculated separately for the gluon-initiated and quark-initiated components by varying

the normalisation and factorisation scales by factors of two. The configuration with largest uncertainty

across all the 𝑝4ℓ
T

bins across 𝜅𝑐 ∈ [−10, 10] and 𝜅𝑏 ∈ [−2, 2] ranges is used to define the systematic

uncertainty for the predictions. These uncertainties are uncorrelated for each component. The impact of

this uncertainty is about 20% on the expected limits.

Three different scenarios are considered, with an increasing level of model dependency. In the first case,

the modified fiducial cross sections in each bin due to the value of the 𝑏- and 𝑐-quark Yukawa couplings

are fit to the data together with a global normalisation factor. The corresponding observed limits on 𝜅𝑐
and 𝜅𝑏 are shown in Figure 41(a). The sensitivity in this case comes mainly from the modification of the

shape induced by 𝜅𝑐 and 𝜅𝑏, while possible overall normalisation effects are factorised out. In a second

scenario, no additional normalisation factor is introduced in the likelihood and the obtained limits for the

Yukawa couplings are shown in Figure 41(b). Finally, in a third scenario, a modification to the total width,

and correspondingly to the branching ratio as function of the modified Yukawa couplings, is also encoded

in the likelihood and the corresponding limits are shown in Figure 41(c). The 95% confidence intervals

for the first and second scenarios are also listed in Table 9. These are comparable to results from direct

searches in 𝑉𝐻, 𝐻 → 𝑐𝑐 [145, 146]. Constraining 𝜅𝑏 to the results from Ref. [147] leads to a less than 5%

improvement in the observed limits for 𝜅𝑐 for the scenarios considered.

60



bκ

4− 2− 0 2 4 6

c
κ

15−

10−

5−

0

5

10

15

20

25 ATLAS
 4l→ ZZ* →H 

-1 = 13 TeV, 139 fbs
Best Fit p-value: 0.10

Best Fit
68% CL.

95% CL.
SM

(a)

bκ

3− 2− 1− 0 1 2 3 4

c
κ

10−

5−

0

5

10

15

20
ATLAS

 4l→ ZZ* →H 
-1 = 13 TeV, 139 fbs

Best Fit p-value: 0.09

Best Fit
68% CL.

95% CL.
SM

(b)

bκ

2− 1.5− 1− 0.5− 0 0.5 1 1.5

c
κ

8−

6−

4−

2−

0

2

4

6

8

10

12 ATLAS
 4l→ ZZ* →H 

-1 = 13 TeV, 139 fbs
Best Fit p-value: 0.10

Best Fit
68% CL.

95% CL.
SM

(c)

Figure 41: Observed limits at 95% CL on Yukawa couplings 𝜅𝑐 and 𝜅𝑏 for the three scenarios considered: (a) only

the 𝑝4ℓ
T

shape is used to constrain 𝜅𝑐 and 𝜅𝑏; (b) the predicted 𝑝4ℓ
T

differential cross section is used; (c) both the

prediction of the 𝑝4ℓ
T

differential cross section and the modification to the branching ratio due to the 𝜅𝑐 and 𝜅𝑏 values

are used. The 𝑝-values shown represent the probability of compatibility between the data and the 𝑝4ℓ
T

prediction

corresponding to the best-fit values of 𝜅𝑐 and 𝜅𝑏. The SM predictions (∗) and the observed best-fit values (+) are

indicated on the plots.
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Table 9: Confidence intervals for the Yukawa couplings. Based on the observed 2D exclusion contours, 1D exclusion

intervals are only provided for interpretations where modification to the 𝑝4ℓ
T

shape and predictions are considered.

The observed limits are calculated while profiling the other parameter of interest.

Interpretation Parameter best-fit value 95% confidence interval

Modifications to only 𝑝4ℓ
T

shape
𝜅𝑐 = −1.1 [−11.7, 10.5]
𝜅𝑏 = 0.28 [−3.21, 4.50]

Modifications to 𝑝4ℓ
T

predictions
𝜅𝑐 = 0.66 [−7.46, 9.27]
𝜅𝑏 = 0.55 [−1.82, 3.34]

11 Summary

Fiducial inclusive and differential cross-section measurements of the Higgs boson in the 𝐻 → 𝑍𝑍∗ → 4ℓ
decay channel are presented. They are based on 139 fb−1 of

√
𝑠 = 13 TeV proton–proton collisions

recorded by the ATLAS detector at the LHC in 2015−2018. The inclusive fiducial cross section in the

𝐻 → 𝑍𝑍∗ → 4ℓ decay channel is measured to be 𝜎fid = 3.28± 0.30 (stat.) ± 0.11 (syst.) fb, in agreement

with the Standard Model prediction 𝜎fid,SM = 3.41 ± 0.18 fb. The measurement is about 40% more precise

than the previous ATLAS result. The inclusive fiducial cross section is also extrapolated to the full phase

space. Differential cross sections defined in a fiducial region close to the reconstructed event selection are

measured for several variables sensitive to the Higgs boson production and decay such as the transverse

momentum of the Higgs boson, the number of jets produced in association with the Higgs boson, the

leading and subleading invariant masses of the lepton pairs. The measured cross sections are compared

with different Standard Model predictions and in general good agreement is found. The results are also

used to set new and more stringent constraints on BSM scenarios where contact term interactions in the

𝐻 → 4ℓ amplitudes are introduced. In addition, the 𝑝4ℓ
T

spectrum is used to constrain the 𝑏- and 𝑐-quark

Yukawa couplings of the Higgs boson. In the scenario with minimal assumptions, values of 𝜅𝑐 outside the

range 𝜅𝑐 ∈ [−12, +11] are excluded at 95% CL.
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Appendix

A Results with regularised unfolding

For all the variables investigated in this paper, the unfolding matrix used is well conditioned and no

regularisation is required, as discussed in Section 7. Nevertheless, a Tikhonov regularisation has been

tested for the 𝑁jets and 𝑝
lead. jet

T
observables where perceptible off-diagonal terms in the response matrix are

observed. In the Tikhonov regularisation [148], a prior assumption about the final result of the measurement

is added to the PDF, where the impact of this assumption is controlled by a tunable parameter, 𝜏. In practice,

this method is implemented by adding a penalty term to the negative log-likelihood that is minimised in the

fit as

𝜏 ·
𝑛−1∑
𝑖=2

((
𝜎𝑖+1

𝜎𝑖+1,truth
− 𝜎𝑖

𝜎𝑖,truth

)
−
(

𝜎𝑖

𝜎𝑖,truth
− 𝜎𝑖−1

𝜎𝑖−1,truth

))2

,

where 𝜎𝑖 is the cross section in bin 𝑖. Therefore, a second-derivative expression for the curvature is used,

with the parameters normalised by their expected values from the MC simulation as done in the SVD

unfolding method [149]. As is done for the main results, only the signal is unfolded.

The unfolded 𝑁jets and 𝑝
lead. jet

T
distributions using the regularised unfolding with a 𝜏 parameter set to

𝜏 = 0.6 and 0.7, respectively, are shown in Figure 42. The uncertainty which accounts for a possible bias in

this regularisation ranges from less than 1% to about 10%, depending on the differential bin. As expected,

the comparison of Figures 42(a) with 24(a) and Figures 42(c) with 26(a) shows that the regularisation

tends to reduce the off-diagonal anti-correlation terms of the correlation matrix among the measured cross

sections, reducing its uncertainty. Nevertheless, the 𝑝-values for the different predictions are close to the

ones obtained with the matrix unfolding without any regularisation.
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Figure 42: (a), (c) Differential fiducial cross sections as a function of the jet multiplicity, 𝑁jets, and leading jet 𝑝T in

events with at least one jet, using a regularised matrix unfolding with the 𝜏 parameters set to 0.6 and 0.7 respectively.

The corresponding correlation matrix between the measured cross sections and the 𝑍𝑍∗ background normalisation

factors are also shown in (b) and (d).
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B Invariant mass of the leading lepton pair in same-flavour and
opposite-flavour final states

Figure 43 presents results for the invariant mass of the leading lepton pair in same-flavour and different-

flavour final states.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 [f
b/

G
eV

]
12

m
/d

σd

Data
Syst. uncertainties

 = 1.47, +XHKMG5 FxFx 
 = 1.1, +XHKHto4l 

 = 1.1, +XHKProphecy4F 
 = 1.1, +XHKNNLOPS 

XH = VBF+VH+ttH+bbH+tH
 syst. uncertainty⊕Total stat. 

Fitted ZZ* Normalisation

ATLAS

-1 = 13 TeV, 139 fbs

l2l 2→ ZZ* →H 

-value MG5 FxFx = 8%p
-value Hto4l = 25%p
-value Prophecy4F = 26%p
-value NNLOPS = 7%p

0.5
1

1.5
2

T
he

or
y/

D
at

a

50 64 73 85 106

 [GeV]
12

m

0.5
1

1.5

M
C

N
/N

(a)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 [f
b/

G
eV

]
12

m
/d

σd

Data
Syst. uncertainties

 = 1.47, +XHKMG5 FxFx 
 = 1.1, +XHKHto4l 

 = 1.1, +XHKProphecy4F 
 = 1.1, +XHKNNLOPS 

XH = VBF+VH+ttH+bbH+tH
 syst. uncertainty⊕Total stat. 

Fitted ZZ* Normalisation

ATLAS

-1 = 13 TeV, 139 fbs

l’2l 2→ ZZ* →H 

-value MG5 FxFx = 8%p
-value Hto4l = 25%p
-value Prophecy4F = 26%p
-value NNLOPS = 7%p

0.5
1

1.5
2

T
he

or
y/

D
at

a

50 64 73 85 106

 [GeV]
12

m

0.5
1

1.5

M
C

N
/N

(b)

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

12m

2l
2l

0
σ

2l
2l

1
σ

2l
2l

2
σ

2l
2l

3
σ

4l 0
σ

4l 1
σ

4l 2
σ

4l 3
σ Z

Z
*

0
N

Z
Z

*
1

N

Z
Z

*
2

N

12
m

ZZ*
2N

ZZ*
1N

ZZ*
0N

4l
3σ

4l
2σ

4l
1σ

4l
0σ

2l2l
3σ

2l2l
2σ

2l2l
1σ

2l2l
0σ

0.02 0.01 0.02 -0.02 0.01 -0.00 0.01 -0.33 0.04 0.07 1.00

0.00 0.03 -0.24 0.03 -0.00 0.04 -0.36 0.01 0.01 1.00

-0.14 -0.12 0.01 0.00 -0.23 -0.23 0.02 -0.00 1.00

-0.01 -0.00 -0.02 0.02 0.00 0.02 -0.14 1.00

-0.00 -0.01 0.09 -0.01 0.01 -0.16 1.00

0.03 0.03 -0.01 0.00 -0.12 1.00

0.03 0.03 -0.00 0.00 1.00

0.03 0.04 -0.15 1.00

0.03 -0.16 1.00

-0.15 1.00

1.00

ATLAS
 4l→ ZZ* →H 

-1 = 13 TeV, 139 fbs

(c)

Figure 43: Differential fiducial cross sections for the invariant mass 𝑚12 of the leading 𝑍 boson in (a) the 4𝜇 and 4𝑒
decay channels and (b) the 2𝑒2𝜇 and 2𝜇2𝑒 decay channels. The corresponding correlation matrix is shown in (c).
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