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1 Introduction

Precise measurements of top-quark production and decay properties provide crucial infor-

mation for testing the predictions of the Standard Model (SM) and its possible extensions.

In particular, the study of the associated production of a top-quark pair (tt̄) with a high-

energy photon probes the tγ electroweak coupling. Furthermore, measurements of the

inclusive and differential cross-sections of this process are of particular interest because

these topologies are sensitive, for instance, to new physics through anomalous dipole mo-

ments of the top quark [1–3] and in the context of effective field theories [4].

First evidence for the production of tt̄ in association with a photon (tt̄γ) was reported

by the CDF Collaboration [5], while the observation of the tt̄γ process was established by

the ATLAS Collaboration in proton-proton (pp) collisions at
√
s = 7 TeV [6]. Both the

ATLAS and CMS Collaborations measured the tt̄γ cross-section at
√
s = 8 TeV [7, 8].

– 1 –
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First measurements of the inclusive and differential cross-sections at
√
s = 13 TeV were

performed by the ATLAS Collaboration [9].

This paper presents a measurement of the fiducial inclusive and differential combined

tt̄γ + tWγ production cross-sections in the final state with one electron and one muon,

referred to as the eµ channel. Events where the electrons and muons arise from the leptonic

decays of τ -leptons are considered as background. The measurement is performed using the

full data set recorded at the LHC between 2015 and 2018 at a centre-of-mass energy of
√
s =

13 TeV and corresponding to an integrated luminosity of 139 fb−1. The fiducial inclusive

cross-section is measured using a profile likelihood fit to the distribution of ST, defined as

the scalar sum of all transverse momenta in the event, including leptons, photons, jets and

missing transverse momentum. The differential cross-sections, absolute and normalised to

unity, are measured in the same fiducial region as the inclusive cross-section, as functions

of photon kinematic variables, angular variables related to the photon and the leptons, and

angular separations between the two leptons in the event.

Compared to the previous tt̄γ ATLAS analysis with 13 TeV data [9], only the eµ

channel is considered since it provides a clean final state with a small background contri-

bution and, thus, no multivariate analysis techniques are needed to separate signal and

background processes. Additionally, the cross-sections are measured at parton level rather

than at particle level to allow comparison with the theory calculation in refs. [10, 11]. The

calculation constitutes the first full computation for tt̄ production with a hard final-state

photon in hadronic collisions at next-to-leading order (NLO) in quantum chromodynamics

(QCD), pp → bWbWγ, including all resonant and non-resonant diagrams, interferences,

and off-shell effects of the top quarks and the W bosons. Therefore, in this paper the com-

bined cross-section of resonant tt̄γ and non-resonant tWγ production is measured, referred

to as signal in the following. Example Feynman diagrams at leading order in QCD for tt̄γ

and tWγ production are shown in figure 1.

The paper is organised as follows. The ATLAS detector is briefly introduced in sec-

tion 2. Details of the event-simulation generators and their theoretical predictions are

given in section 3. The event selection and the analysis strategy are presented in sections 4

and 5. The systematic uncertainties are described in section 6. The results for the fidu-

cial inclusive and differential cross-sections are presented in sections 7 and 8, respectively.

Finally, a summary is given in section 9.

2 ATLAS detector

ATLAS [12–14] is a multipurpose detector with a forward-backward symmetric cylindrical

geometry with respect to the LHC beam axis.1 The innermost layers consist of tracking

detectors in the pseudorapidity range |η| < 2.5. This inner detector (ID) is surrounded

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in

the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre

of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ) are used in the transverse

plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar

angle θ as η = − ln tan(θ/2). Angular distance is measured in units of ∆R ≡
√

(∆η)2 + (∆φ)2.

– 2 –
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Figure 1. Example Feynman diagrams at leading order for tt̄γ (left) and tWγ production (right)

in the eµ channel. The top-quark mass resonances are marked with double-lined arrows, while W

bosons are marked in red.

by a thin superconducting solenoid that provides a 2 T axial magnetic field. It is enclosed

by the electromagnetic and hadronic calorimeters, which cover |η| < 4.9. The outermost

layers of ATLAS consist of an external muon spectrometer within |η| < 2.7, incorporating

three large toroidal magnetic assemblies with eight coils each. The field integral of the

toroids ranges between 2.0 and 6.0 Tm for most of the acceptance. The muon spectrometer

includes precision tracking chambers and fast detectors for triggering. A two-level trigger

system [15] reduces the recorded event rate to an average of 1 kHz.

3 Signal and background modelling

The estimation of signal and background contributions relies on the modelling of these

processes with simulated events produced with Monte Carlo (MC) event generators. The

response of the ATLAS detector was simulated [16] with Geant4 [17]. For some of the

estimates of modelling uncertainties, the fast-simulation package AtlFast-II was used

instead of the full detector simulation. Additional pp interactions (pile-up) were generated

with Pythia 8 [18, 19] using a set of tuned parameters called the A3 tune [20] and the

NNPDF2.3LO parton distribution function (PDF) set [21]. Corrections to the pile-up

profile, selection efficiencies, energy scales and resolutions derived from dedicated data

samples are applied to the MC simulation to improve agreement with data.

This analysis uses both inclusive samples, in which processes were generated at matrix-

element (ME) level without explicitly including a photon in the final state, and dedicated

samples for certain processes, where photons were included in the ME-level generation

step. Dedicated samples with a photon in the ME were generated for the tt̄γ and tWγ

final states, as well as for V γ processes with additional jets. Here, V denotes either a W

or a Z boson. Although no photons were generated at ME level in the inclusive samples,

initial- and final-state radiation of photons is accounted for by the showering algorithm.

Combining inclusive and dedicated samples for the modelling of processes might result

in double-counting photon radiation in certain phase-space regions. As a consequence, a

procedure to remove overlaps between the inclusive and dedicated samples was performed.

Photon radiation simulated at ME level in dedicated samples achieves higher accuracy

than the photon radiation in the showering algorithm. On the other hand, kinematic

– 3 –
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requirements are applied to the kinematic properties of the photons at ME level in the

dedicated samples. In the overlap-removal procedure, all events from the dedicated samples

are kept while events from the inclusive samples are discarded if they contain a parton-level

photon that fulfils the dedicated samples’ kinematic requirements of pT(γ) > 15 GeV and

∆R(γ, `) > 0.2, where pT(γ) is the photon’s transverse momentum and ∆R(γ, `) is the

angular distance between the photon and any charged lepton.

The dedicated sample for the tt̄γ signal process was simulated using the Mad-

Graph5 aMC@NLO generator (v2.3.3) [22] and the NNPDF2.3LO PDF set at leading

order (LO) in QCD. The events were generated as a doubly resonant 2 → 7 process, e.g.

as pp → b`νb`νγ, thus, diagrams where the photon is radiated from the initial state (in

the case of quark-antiquark annihilation), intermediate top quarks, the b-quarks, and the

intermediate W bosons, as well as the decay products of the W bosons, are included. To

prevent divergences, the photon was required to have pT > 15 GeV and |η| < 5.0 and the

leptons to satisfy |η| < 5.0. The ∆R between the photon and any of the charged particles

among the seven final-state particles were required to be greater than 0.2. The top-quark

mass in this and all other samples was set to 172.5 GeV. The renormalisation and the

factorisation scales were set to 0.5×
∑

i

√
m2
i + p2

T,i, where the sum runs over all the parti-

cles generated from the ME calculation. The event generation was interfaced to Pythia 8

(v8.212) using the A14 tune [23] to model parton showers, hadronisation, fragmentation

and the underlying event. Heavy-flavour hadron decays were modelled with EvtGen [24];

this program was used for all samples, except for those generated using the Sherpa MC

program [25, 26]. In the latter case, heavy-flavour decays were modelled directly with

Sherpa.

Two dedicated samples for the tWγ process were generated with the Mad-

Graph5 aMC@NLO generator as well. The first one was produced at LO in the five-flavour

scheme for the 2 → 3 process (e.g. pp → tWγ) assuming a stable top quark. The second

set of events was generated at LO as a 2→ 6 process (e.g. pp→ b`ν`νγ) in the five-flavour

scheme, where the photon is radiated from any other charged final-state particle. In the

five-flavour scheme, the b-quarks are treated as massless and the LO representation of the

process includes a b-quark in the initial state. The two sets of events are complementary

and, once combined, provide a full simulation of the tWγ process. Both samples make use

of the NNPDF2.3LO PDF set and were interfaced to Pythia 8 (v8.212) for parton show-

ering using the A14 tune. The photon was also required to have pT > 15 GeV and |η| < 5.0

and to be separated by ∆R > 0.2 from any parton. Although possible interference effects

between tt̄γ and tWγ are still missing in the simulated LO samples, the tWγ process is

treated as part of the signal in this analysis.

Events with Wγ and Zγ final states (with additional jets) were simulated as dedicated

samples. The Wγ processes were simulated with Sherpa 2.2.2 at NLO accuracy in QCD

using the NNPDF3.0NNLO PDF set, whereas Zγ events were generated with Sherpa 2.2.4

at LO in QCD with the same PDF set. The samples are normalised to the cross-sections

given by the corresponding MC simulation. The Sherpa generator performs all steps of

the event generation, from the hard process to the observable particles. All samples were

– 4 –
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matched and merged by the Sherpa-internal parton showering based on Catani-Seymour

dipoles [27, 28] using the MEPS@NLO prescription [29–31]. Virtual corrections for the NLO

accuracy in QCD in the matrix element were provided by the OpenLoops library [32, 33].

Inclusive tt̄ production processes were simulated at matrix-element level at NLO accu-

racy in QCD using Powheg-Box v2 [34–36]. The calculation used the NNPDF3.0NLO

PDF set [37]. The parton shower was generated with Pythia 8 (v8.230), for which the A14

tune [38] was used. The tt̄ events are normalised to a cross-section value calculated with

the Top++2.0 program at next-to-next-to-leading order (NNLO) in perturbative QCD,

including soft-gluon resummation to next-to-next-to-leading-logarithm order (see ref. [39]

and references therein).

Events with inclusive W - and Z-boson production in association with additional jets

were simulated with Sherpa 2.2.1 [25, 26] at NLO in QCD. The NNPDF3.0NLO PDF

set was used in conjunction with a dedicated tune provided by the Sherpa authors. The

samples are normalised to the NNLO cross-section in QCD [40].

Events with two directly produced vector bosons, i.e. WW , WZ and ZZ , were gener-

ated with Sherpa versions 2.2.2 (purely leptonic decays) and 2.2.1 (all others) at LO in

QCD. The NNPDF3.0NNLO PDF set was used in conjunction with a dedicated tune pro-

vided by the Sherpa authors. The samples are normalised to NLO accuracy cross-sections

in QCD [41].

Events with a tt̄ pair and an associated W or Z boson (tt̄V ) were simulated at NLO

at the ME level with MadGraph5 aMC@NLO using the NNPDF3.0NLO PDF set. The

ME generator was interfaced to Pythia 8 (v8.210), for which the A14 tune was used in

conjunction with the NNPDF2.3LO PDF set. The samples are normalised to NLO in QCD

and electroweak theory [42].

The background processes are sorted into three categories based on the origin of the

reconstructed photon required in the event selection. The three are estimated from MC

simulation by categorising events from all considered samples that are not classified as signal

events. The MC simulations for all categories include processes without prompt photons

such as tt̄, W+jets, Z+jets, diboson and tt̄V production, as well as background processes

with an additional prompt photon. The first category is labelled h-fake and contains any

type of hadronic fakes that mimic a photon signature in the detector. This category includes

not only photon signatures faked by hadronic energy depositions in the electromagnetic

calorimeter, but also hadron decays involving photons, for example π0 → γγ decays. It also

includes processes with a prompt photon, where the prompt photon is not reconstructed in

the detector or does not pass the selection requirements, but a h-fake photon does. Studies

performed with data-driven techniques following the approach described in ref. [9] show

that possible data-driven corrections have a negligible effect on the distribution shapes

of relevant observables. Possible differences in the total expected number of events are

covered by a normalisation uncertainty as described in section 6. The second category

is labelled e-fake and contains processes with an electron mimicking a photon signature

in the calorimeter. Similarly to the h-fake category, this category includes contributions

from processes without a prompt photon but with an e-fake photon, as well as processes

with a prompt photon in the simulation but an e-fake photon in the reconstruction. This

– 5 –
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category represents a minor background contribution. The third category is called prompt γ

background and contains any type of background process with a prompt photon. The

background contribution from tt̄ production with a photon produced in an additional pp

interaction in the same bunch crossing was found to be negligible. This was estimated by

comparing the significance of the distance in z between the photon’s origin and the primary

vertex in data and simulation.

The tt̄γ and tWγ events where one or both W bosons decay into τ -leptons, which

then subsequently decay into e or µ, are categorised as Other tt̄γ/tWγ, and not as eµ

signal, following the definition of signal events in the theory calculation in refs. [10, 11].

Single-lepton events, where a second lepton is faked by hadronic energy depositions, are

also included in the category Other tt̄γ/tWγ. The contribution of tt̄γ single-lepton events

was found to be negligible in the eµ final state in the previous measurement [9] and it is

therefore estimated from the MC simulation.

4 Event selection

The data set used in this analysis corresponds to the 139 fb−1 of integrated luminosity

collected with the ATLAS detector during the Run 2 period. Each event in data and

simulation is required to have at least one reconstructed primary vertex with at least two

associated reconstructed tracks. Furthermore, only events where at least one of the single-

electron [43] or single-muon [44] triggers was fired are selected.

The main physics objects considered in this analysis are electrons, muons, photons, jets,

b-jets and missing transverse momentum. Electrons are reconstructed from energy deposits

in the electromagnetic calorimeter associated with reconstructed tracks in the ID system.

They are identified with a combined likelihood technique [45] using a ‘tight’ working point,

and are required to be isolated based on calorimeter and tracking quantities. The pT- and

η-dependent isolation criteria yield an efficiency of 90% for electrons with pT = 25 GeV

and 99% for those with pT = 60 GeV. The origin of the electron track has to be compatible

with the primary vertex. Electrons are calibrated with the method described in ref. [45].

They are selected if they fulfil pT > 25 GeV and |ηclus| < 2.47, excluding the calorimeter

barrel/endcap transition region 1.37 < |ηclus| < 1.52.2

Muons are reconstructed with an algorithm that combines the track segments in the

various layers of the muon spectrometer and the tracks in the ID system. The reconstruc-

tion, identification and calibration methods are described in ref. [46]. Muons are required

to be isolated according to track- and calorimeter-based criteria similar to those applied to

electrons. Only muons with calibrated pT > 25 GeV and |η| < 2.5 and passing ‘medium’

quality requirements are considered. The muon track is also required to originate from the

primary collision vertex.

Photons are reconstructed from energy deposits in the central region of the electromag-

netic calorimeters. If the cluster considered is not matched to any reconstructed track in

the ID system, the photon candidate is classified as unconverted. If the cluster is matched

with one or two reconstructed tracks that are consistent with originating from a photon

2ηclus denotes the pseudorapidity of the calorimeter cell cluster associated with the electron.
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conversion and if, in addition, a conversion vertex can be found, the photon candidate is

classified as converted. Both kinds of photons are considered in this analysis. Photons are

reconstructed and identified as described in ref. [47] and their energies are calibrated with

the method described in ref. [48]. They are subject to a tight isolation requirement defined

as Eiso
T

∣∣
∆R<0.4

< 0.022 · ET(γ) + 2.45 GeV in conjunction with piso
T

∣∣
∆R<0.2

< 0.05 · ET(γ),

where Eiso
T refers to the calorimeter isolation within ∆R < 0.4 around the direction of the

photon candidate and piso
T is the track isolation within ∆R < 0.2 [47]. Only photons with

calibrated ET > 20 GeV and |ηclus| < 2.37, excluding the calorimeter transition region

1.37 < |ηclus| < 1.52, are considered.

Jets are reconstructed using the anti-kt algorithm [49] in the FastJet implementa-

tion [50] with a distance parameter R = 0.4. They are reconstructed from topological

clusters of cells in the calorimeter [51]. The jet energy scale and jet energy resolution are

calibrated using information from both simulation and data [52]. The jets are required to

have pT > 25 GeV and |η| < 2.5. Jets with a large contribution from pile-up vertices are

identified with the Jet Vertex Tagger [53] and rejected.

The b-tagging algorithm (MV2c10) applied to the selected jets to identify those from

b-quark hadronisation [54] labelled as b-jets is based on a boosted decision tree combining in-

formation from other algorithms using track impact parameters and secondary vertices, and

a multi-vertex reconstruction algorithm. A working point with a selection efficiency of 85%

on simulated tt̄ events is used, corresponding to rejection factors of 3.1 and 35 for jets initi-

ated by charm quarks and light-flavour partons, respectively. The flavour-tagging efficiency

for b-jets, as well as for c-jets and light-flavour jets, is calibrated as described in ref. [55].

The reconstructed missing transverse momentum Emiss
T [56, 57] is computed as the neg-

ative vector sum over all reconstructed, fully calibrated physics objects, including photons,

and the remaining unclustered energy, also called the soft term. The soft term is estimated

from low-pT tracks associated with the primary vertex but not with any reconstructed

object.

An overlap-removal procedure is applied to avoid the reconstruction of the same energy

clusters or tracks as different objects. First, electron candidates sharing their track with

a muon candidate are removed and jets within a ∆R = 0.2 cone around any remaining

electron are excluded. Secondly, electrons within a ∆R = 0.4 cone around any remaining

jet are removed. If the distance between a jet and any muon candidate is ∆R < 0.4, the

muon candidate is discarded if the jet has more than two associated tracks, otherwise the

jet is removed. Finally, photons within a ∆R = 0.4 cone around any remaining electron

or muon are removed and then jets within a ∆R = 0.4 cone around any remaining photon

are excluded.

The selected events must have exactly one electron and exactly one muon, each with

pT > 25 GeV. At least one of these leptons has to be matched to a fired single-lepton

trigger. Since the pT threshold of the single-lepton triggers was increased over the different

data-taking periods due to increased collisions rates, the offline pT thresholds for these

electrons and muons that are matched to a fired single-lepton trigger are chosen to be

25 GeV in 2015, 27 GeV in 2016, and 28 GeV in 2017 and 2018 in order to lie above

the trigger thresholds. Electrons and muons must have opposite-sign charges and the eµ
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Events

tt̄γ eµ 2391± 130

tWγ eµ 156± 15

Other tt̄γ/tWγ 279± 15

h-fake 78± 40

e-fake 23± 12

Prompt γ bkg. 87± 40

Total 3014± 160

Data 3014

Table 1. Event yields before the profile likelihood fit of the signal and background processes to

data after the full selection. All categories are estimated from MC simulation and include correction

factors for detector effects as described in section 6. The combination of all tt̄γ and tWγ categories

is scaled to match the event yields in data. The quoted uncertainties correspond to the total

statistical and systematic uncertainties (cf. section 6) added in quadrature.

invariant mass is required to be higher than 15 GeV. The event is required to have at least

two jets and at least one of the jets must be b-tagged. In addition, all events must contain

exactly one reconstructed photon fulfilling the condition that ∆R between the selected

photon and any of the leptons is greater than 0.4.

The observed event yields after selection are listed in table 1 for the different signal

and background categories described in section 3. The LO cross-section of the MC samples

underestimates the expected number of signal events; therefore, for illustration purposes

the combination of all tt̄γ and tWγ categories is normalised to match the event yields

in data. Correction factors for detector effects (described in section 6) are applied, when

needed, to improve the description of the data by the simulation.

The modelling of signal and background processes is inspected through the comparison

of distributions. A selection of these distributions showing a comparison between the

MC simulation before the profile likelihood fit and data is presented in figure 2. The

combination of all tt̄γ and tWγ categories is normalised to match the event yields in data

as done in table 1 to allow a comparison of the shapes of the kinematic variables. All

systematic uncertainties that are introduced in section 6 are included in these distributions

and their sum in quadrature, which assumes they are fully uncorrelated, is illustrated by

the shaded error bands.

5 Analysis strategy

The inclusive and differential cross-sections are measured in the fiducial region described in

section 5.1 and the same sources of background contributions and systematic uncertainties

are considered. In the fiducial inclusive cross-section the ST distribution is fitted and the

post-fit background yields and systematic uncertainties are used to extract the signal cross-

section, while no fit is performed for the determination of the differential cross-sections.
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Figure 2. Distributions of the transverse momentum of the electron, the muon and all jets (top

row), and the number of jets, Emiss
T and ST (bottom row) after event selection and before the profile

likelihood fit. The combination of all tt̄γ and tWγ categories is scaled to match the event yields in

data. The shaded bands correspond to the statistical and systematic uncertainties (cf. section 6)

added in quadrature. Overflow events are included in the last bin of each distribution. In the case

of the ST distribution, the underflow events are included in the first bin. The lower part of each

plot shows the ratio of the data to the prediction.

5.1 Fiducial region definition

The cross-sections are reported at parton level in a fiducial region, defined by the kinematic

properties of the signal process, in which all selected final-state objects are produced within

the detector acceptance. This is done in a way that mimics the event selection as defined

in the theoretical calculation. Objects at parton level are taken from the MC simulation

history. Photons and leptons are selected as stable particles after final-state radiation. The

leptons (` = e, µ) must originate from W -boson decays and they are dressed with nearby

photons within a cone of size of ∆R = 0.1 around them and must have pT > 25 GeV and

|η| < 2.5. Only events with exactly one electron and one muon are considered. Events with

leptons originating from an intermediate τ -lepton in the top-quark decay chain are not con-

sidered. The b-jets at parton level in the calculation from refs. [10, 11] are jets clustered with

the anti-kt algorithm with a distance parameter of R = 0.4. Since showering and hadroni-
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sation effects are not considered in this calculation, the jets correspond to the b-quarks from

the top-quark decay (with an additional parton in the cases where the NLO real emission

leads to a parton close by a b-quark). To mimic this definition in the LO MC simulation,

parton-level b-jets are defined as follows. The anti-kt algorithm with a distance parameter

R = 0.4 is applied to all partons that are radiated from the two b-quarks (including the

b-quarks themselves) and from the two initial partons. The jets that include a b-quark from

the decay of a top quark are selected as b-jets. The event is kept if there are two b-jets sat-

isfying pT > 25 GeV and |η| < 2.5. Exactly one photon with ET > 20 GeV and |η| < 2.37 is

required. Photons are required to be isolated from nearby jets by imposing a modified cone

approach as described in ref. [58], as it is also done in the theory calculation in refs. [10, 11],

to ensure soft and collinear safety. The event is dropped if any of the following requirements

is not fulfilled: ∆R(γ, `) > 0.4, ∆R(e, µ) > 0.4, ∆R(b, b) > 0.4 or ∆R(`, b) > 0.4.

5.2 Fiducial inclusive cross-section

The fiducial inclusive cross-section is extracted using a binned profile likelihood fit to the

full ST distribution. The distribution of ST provides good separation between signal and

background and was found to be less sensitive to systematic uncertainties than other distri-

butions considered, such as the jet multiplicity or the pT of individual jets. The expected

signal and background distributions are modelled in the fit using template distributions

taken from the simulated samples. The parameter of interest, the fiducial cross-section

σfid, is related to the number of signal events in bin i of the ST distribution as:

N s
i = L× σfid × C × fST

i .

The term L is the integrated luminosity, fST
i is the fraction of generated signal events

falling into bin i of the ST distribution after fiducial requirements are applied, and C is the

correction factor for the signal efficiency ε and for migration into the fiducial region fout,

defined as follows:

fout =
Nnon-fid

reco

Nreco
, ε =

Nfid
reco

Nfid
MC

⇒ C =
ε

1− fout
=
Nreco

Nfid
MC

,

where Nreco is the number of simulated signal events passing the event selection described in

section 4, Nfid
MC is the corresponding number of signal events generated in the fiducial region

defined in section 5.1, and Nfid
reco and Nnon-fid

reco are the numbers of signal events that pass

the event selection and are generated within and outside the fiducial region, respectively.

The efficiency and outside migration are obtained from simulated tt̄γ and tWγ events. The

correction factor is estimated from the signal simulation to be C = 0.462±0.002 (statistical

uncertainty only).

The likelihood function L, based on Poisson statistics, is given by:

L =
∏
i

P

(
Nobs
i |N s

i (~θ) +
∑
b

N b
i (~θ)

)
×
∏
t

G(0|θt, 1),

where Nobs
i , N s

i , and N b
i are the observed number of events in data, the predicted number

of signal events, and the estimated number of background events in bin i of the ST distribu-

tion, respectively. The rates of those tt̄γ and tWγ events not counted as part of the signal
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and categorised as Other tt̄γ/tWγ are scaled with the same parameter as the signal events

in the fit, i.e. no independent production cross-section is assumed for these parts of the

simulated tt̄γ/tWγ process. The vector ~θ, of components θt, represents the nuisance pa-

rameters that describe the sources of systematic uncertainties. Each nuisance parameter θt
is constrained by a Gaussian distribution, G(0|θt, 1). The width of the Gaussian function

corresponds to a change of ±1 standard deviation of the corresponding quantity in the like-

lihood. For systematic uncertainties related to the finite number of simulated MC events,

the Gaussian terms in the likelihood are replaced by Poisson terms. The cross-section is

measured by profiling the nuisance parameters and minimising −2 lnL [59].

5.3 Absolute and normalised differential cross-sections

The measurements of the absolute and normalised differential cross-sections are performed

as functions of the pT and |η| of the photon, and of angular variables between the photon

and the leptons: ∆R between the photon and the closest lepton ∆R(γ, `)min, as well as

∆φ(`, `) and |∆η(`, `)| between the two leptons. The kinematic properties of the photon

are sensitive to the tγ coupling. In particular, ∆R(γ, `)min is related to the angle between

the top quark and the radiated photon, which could give insight into the structure of this

coupling. The distributions of ∆φ(`, `) and |∆η(`, `)| are sensitive to the tt̄ spin correlation.

The corresponding distributions in data and SM simulations are compared in figure 3. The

simulation describes reasonably well the data within the uncertainties although it favours

smaller ∆R(γ, `)min and larger ∆φ(`, `) values than the observed ones.

The data are corrected for detector resolution and acceptance effects to parton level in

the fiducial phase space using an iterative matrix unfolding that uses Bayes’ theorem [60]

implemented in the RooUnfold package [61]. The differential cross-section is defined as:

dσ

dXk
=

1

L×∆Xk × εk
×
∑
j

M−1
jk × (Nobs

j −N b
j )× feµ,j × (1− fout,j) .

The indices j and k represent the bin indices of the observable X at detector and parton

levels, respectively. The variable Nobs
j is the number of observed events, and N b

j is the

number of estimated non-tt̄γ/tWγ background events (pre-fit) in bin j at detector level.

The contribution from the Other tt̄γ/tWγ category is taken into account by correcting

the remaining number of observed events by the signal fraction, feµ,j , defined as the ratio

of the number of selected tt̄γ and tWγ eµ events to the total number of selected tt̄γ and

tWγ events, as determined from simulation. This avoids the dependence on the signal

cross-section used for the normalisation. The efficiency εk is the fraction of signal events

generated at parton level in bin k of the fiducial region that are reconstructed and selected

at detector level. The total integrated luminosity is denoted by L, and ∆Xk represents the

bin width. The migration matrix Mkj describes the detector response and expresses the

probability for an event in bin k at parton level to be reconstructed in bin j at detector level,

calculated from events passing both the fiducial-region selection and the event selection.

The outside-migration fraction fout,j is the fraction of signal events generated outside the

fiducial region but reconstructed and selected in bin j at detector level. The normalised
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Figure 3. Distributions of the photon pT and |η| in the top row, and ∆R(γ, `)min, ∆φ(`, `)

and |∆η(`, `)| in the bottom row after event selection and before the profile likelihood fit. The

combination of all tt̄γ and tWγ categories is scaled to match the event yields in data. The shaded

bands correspond to the statistical and systematic uncertainties (cf. section 6) added in quadrature.

When overflow events are present, they are included in the last bin of the distribution. The lower

part of each plot shows the ratio of the data to the prediction.

differential cross-section is derived by dividing the absolute result by the total cross-section,

obtained by integrating over all bins of the observable.

The signal MC samples are used to determine εk, fout,j , and Mkj . The unfolding

method relies on the Bayesian probability formula, starting from a given prior of the

parton-level distribution and iteratively updating it with the posterior distribution. The

binning choices of the unfolded observables take into account the detector resolution and the

expected statistical uncertainty. The bin width has to be larger than twice the resolution,

and the statistical uncertainty is required to be around or below 10% across all bins, with

the latter being the limiting factor in most of the cases. The resolution of the lepton and

photon momenta is very high and, therefore, the fraction of events migrating from one bin to

another is small. In all bins, the purity, defined as the fraction of reconstructed events that

originate from the same bin at parton level, is larger than 80%, and it is above 90% for all

observables except for the pT of the photon. The number of iterations chosen is two, which

provides good convergence of the unfolding distribution and a statistically stable result.
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Figure 4. Left: migration matrix relating the photon pT at the reconstruction and parton levels in

the fiducial phase space, normalised by column and shown as percentages. Right: signal reconstruc-

tion and selection efficiency (ε), (1 − fout) fraction and resulting C correction factor as a function

of the photon pT.

For illustration purposes, the migration matrix is presented in the left panel of figure 4,

while the right panel shows the efficiency, outside-migration fraction and the resulting C

correction factor obtained for the distribution of the photon pT. The performance of the

unfolding procedure is tested for possible biases from the choice of input model. It was

verified that when reweighting the shape of the signal simulation by up to 50% bin-by-bin

with respect to the nominal shape, the unfolding procedure based on the nominal response

matrix reproduces the altered shapes.

6 Systematic uncertainties

Various systematic uncertainties arising from detector effects are considered, along with

theoretical uncertainties. Signal and background predictions are both subject to these

uncertainties.

6.1 Experimental uncertainties

Experimental systematic uncertainties affect the normalisation and shape of the distribu-

tions of the simulated signal and background samples. These include reconstruction and

identification efficiency uncertainties, as well as uncertainties in the energy and momen-

tum scale and resolution for the reconstructed physics objects in the analysis, including

leptons, photons, jets and Emiss
T . In addition, uncertainties in the flavour-tagging of jets,

the jet vertex tagger (JVT) discriminant, the integrated luminosity value and the pile-up

simulation are considered.

The photon identification and isolation efficiencies as well as the efficiencies of the lep-

ton reconstruction, identification, isolation, and trigger in the MC samples are all corrected
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using scale factors to match the corresponding values in data. Similarly, corrections to the

lepton and photon momentum scale and resolution are applied in simulation [46, 48]. All

these corrections, which are pT and η dependent, are varied within their uncertainties.

The jet energy scale (JES) uncertainty is derived using a combination of simulations,

test-beam data and in situ measurements [52]. Additional contributions from jet-flavour

composition, η-intercalibration, punch-through, single-particle response, calorimeter re-

sponse to different jet flavours, and pile-up are taken into account, resulting in 30 uncorre-

lated JES uncertainty subcomponents, of which 29 are non-zero in a given event depending

on the type of simulation used. The most relevant JES uncertainties are related to the

pile-up correction (JES pile-up correction) and modelling aspects of the in situ calibration

(JES in situ calibration). The jet energy resolution (JER) in simulation is smeared by the

measured JER uncertainty [62] split into eight uncorrelated sources. The uncertainty as-

sociated with the JVT discriminant is obtained by varying the efficiency correction factors

(labelled jet vertex tagging in the results, cf. figure 5).

The uncertainties related to the b-jet tagging calibration are determined separately

for b-jets, c-jets and light-flavour jets [63–65]. For each jet category, the uncertainties are

decomposed into several uncorrelated components. The corrections are varied by their

measured uncertainties.

The uncertainties associated with energy scales and resolutions of photons, leptons and

jets are propagated to the Emiss
T . Additional uncertainties originate from the modelling of

its soft term [66].

The uncertainty in the combined 2015–2018 integrated luminosity is 1.7% [67], obtained

using the LUCID-2 detector [68] for the primary luminosity measurements.

The uncertainty associated with the modelling of pile-up in the simulation is assessed

by varying the pile-up reweighting in the simulation within its uncertainties.

6.2 Signal and background modelling uncertainties

The tt̄γ signal modelling uncertainties include the uncertainties owing to the choice of QCD

scales, parton shower, amount of initial-state radiation (ISR), and PDF set. The effect of

the QCD scale uncertainty is evaluated by varying the renormalisation and factorisation

scales separately up and down by a factor of two from their nominal chosen values. The

uncertainty from the parton shower and hadronisation (tt̄γ PS model) is estimated by

comparing the tt̄γ nominal samples, produced with MadGraph5 aMC@NLO + Pythia 8,

with an alternative sample interfaced to Herwig 7 [69, 70]. The ISR uncertainty (tt̄γ ISR)

is studied by comparing the nominal MadGraph5 aMC@NLO + Pythia 8 sample with

the results of varying the A14 tune parameter for radiation [23]. The PDF uncertainty (tt̄γ

PDF ) is evaluated using the standard deviation in each bin of the respective distribution

formed by the set of 100 replicas of the NNPDF set [21].

For the tWγ process the uncertainties due to the choice of renormalisation and factori-

sation scales are also estimated by varying them up and down separately by a factor of two

relative to the nominal sample value. A systematic uncertainty from the parton shower and

hadronisation model is considered by comparing Pythia 8 and Herwig 7 both interfaced
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to MadGraph5 aMC@NLO. The tWγ modelling uncertainties are treated as uncorrelated

with the tt̄γ signal modelling uncertainties.

The tWγ process was generated in the five-flavour scheme at leading order in QCD

and one of the two b-quarks is not included in the matrix-element generation step. This

b-quark, expected to be produced in the initial state through the PDF, is only found in

a fraction of the events at parton level in the MC simulation. The fractions of generated

tWγ events without a second b-quark were found to be around 30% and 50% for the

MC samples interfaced with Herwig and Pythia, respectively. Therefore, an additional

uncertainty associated with this possibly lost b-quark is assigned (tWγ parton definition) as

follows. Relative to the nominal tWγ simulation, the parton-level event yields are doubled,

assuming all b-jets are found, while the number of reconstructed events is kept constant.

This leads to a variation of the correction factor C of 2.8%.

Several uncertainties in the modelling of tt̄ processes, which give a dominant contri-

bution to the h-fake and prompt γ background categories, are considered as shape-only

uncertainties. The uncertainties associated with the parton shower and hadronisation are

estimated by comparing the nominal simulation with alternative showering by Herwig 7.

Uncertainties in the modelling of final-state radiation are estimated by evaluating the ef-

fects of varying four different parameters in the Powheg + Pythia 8 generator set-up

described in the following. Uncertainties due to the renormalisation and factorisation scales

are estimated by varying them up and down independently by a factor of two relative to the

default scale choice. These scale variations are implemented with corresponding weights

which are available as part of the nominal MC sample. Uncertainties due to the value of αS

used in the ISR parton shower modelling are estimated by comparing the nominal Powheg

+ Pythia 8 simulation with alternative samples that correspond to higher and lower radi-

ation parameter settings in the A14 tune, controlled by the var3c parameter in Pythia 8.

This parameter is varied within its uncertainties corresponding to variations of αS(mZ)

between 0.115 and 0.140. An additional ISR uncertainty is obtained by comparing the

nominal sample with an additional one where the hdamp parameter, which controls the pT

of the first additional emission, is varied by a factor of two as supported by measurements

reported in ref. [71].

In addition to those background modelling uncertainties, global normalisation uncer-

tainties of 50% are assigned to the following three categories: h-fake photons, e-fake photons

and prompt γ background [9] (h-fakes, e-fakes, and prompt γ normalisation).

6.3 Treatment of the systematic uncertainties in the measurements

As stated in section 5, the impact of systematic uncertainties on the fiducial inclusive

cross-section measurement is taken into account via nuisance parameters in the likelihood

function. The nuisance parameters ~θ are profiled in the maximum-likelihood fit. Variations

of the nuisance parameters can affect the rate of events as well as the shape of the ST

distribution. In the case of signal modelling uncertainties, the rate uncertainty is composed

of variations of the efficiency ε and the fraction fout. All MC samples used to evaluate signal

modelling uncertainties are scaled to the same number of events in the fiducial phase space,

Nfid
MC. The only uncertainty that is not included as a nuisance parameter in the profile
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likelihood fit is the uncertainty from the tWγ parton definition. This uncertainty does

not affect the number of reconstructed events in the corresponding template in the profile

likelihood fit. It comprises only an uncertainty in the number of generated events in the

fiducial phase space. Thus, the tWγ parton definition uncertainty is added in quadrature

to the post-fit uncertainty of the profile likelihood fit.

To reduce the sensitivity to statistical fluctuations due to the limited number of events

in the MC samples used in systematic variations, smoothing techniques are applied to the

MC templates used to evaluate the signal and background modelling systematic uncertain-

ties in the template fit. Additionally, the systematic uncertainties are symmetrised, taking

the average of the up- and down-variation as the uncertainty. In the cases where both

variations have the same sign or only one variation is available (e.g. the uncertainty from

the parton shower and hadronisation signal modelling) the largest variation or the avail-

able one, respectively, is taken as both the up- and down-variations for the corresponding

source. The ISR uncertainty suffers from statistical fluctuations in the available tt̄γ MC

samples, so a more conservative approach is chosen for the symmetrisation. In this case,

the largest of the two variations is taken and mirrored around the nominal prediction.

In the case of the differential cross-section measurements, each systematic uncertainty

is determined individually in each bin of the measurement by varying the corresponding

efficiency, resolution, and model parameter within its uncertainty. The same symmetrisa-

tion approach described for the fiducial inclusive cross-section is used for this measurement.

For each variation, the measured differential cross-section is recalculated and the devia-

tion from the nominal result per bin is taken as the systematic uncertainty. The overall

uncertainty in the measurement is then derived by adding all contributions in quadrature,

assuming the sources of systematic uncertainty to be fully uncorrelated.

Sources of systematic uncertainty relating only to the background prediction are eval-

uated by shifting the nominal distribution of the corresponding background process by

its associated uncertainty. For the experimental uncertainties, the input is varied by the

corresponding shift, which typically affects both the shape and normalisation of signal and

background process distributions. The resulting distribution is unfolded and compared

with the nominal unfolded distribution and the difference is assigned as an uncertainty.

The systematic uncertainties due to signal modelling are evaluated by varying the signal

corrections, i.e. the migration matrix Mkj , the efficiency εk and the fraction fout,j , by

the corresponding model parameter uncertainty and calculating the difference between the

resulting unfolded distributions and the nominal ones.

7 Fiducial inclusive cross-section measurement

The number of signal events is extracted using a profile likelihood fit to the ST distribution

and is translated into the signal cross-section in the fiducial phase space given by the

kinematic boundaries of the signal as described in section 5.

The best-fit values of the nuisance parameters ranked highest in impact are shown

in figure 5 along with their impact on the result. Rate and shape uncertainties from

the tt̄γ PS model and tt̄γ ISR variations are treated as separate nuisance parameters.
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Category Uncertainty

tt̄γ/tWγ modelling 3.8%

Background modelling 2.1%

Photons 1.9%

Luminosity 1.8%

Jets 1.6%

Pile-up 1.3%

Leptons 1.1%

Flavour-tagging 1.1%

MC statistics 0.4%

Soft term Emiss
T 0.2%

tWγ parton definition 2.8%

Total syst. 6.3%

Table 2. Illustrative summary of the systematic uncertainties on the fiducial inclusive cross-section

measurement grouped into different categories and their relative impact on the measurement (sym-

metrised). The categories ‘tt̄γ/tWγ modelling’ and ‘Background modelling’ include all correspond-

ing systematic uncertainties described in section 6.2. The ‘tWγ parton definition’ uncertainty is

listed separately since it does not enter the profile likelihood fit directly as described in section 6.3.

The category ‘Photons’ corresponds to the uncertainties related to photon identification and isola-

tion as well as photon energy scale and resolution. ‘Jets’ includes the total uncertainty from the

JES, JER and JVT discriminant, while the b-tagging-related uncertainties are given in a separate

category (‘Flavour-tagging’). The category ‘Leptons’ represents the uncertainties related to lepton

identification, isolation and energy/momentum calibration.

This approach prevents pulls on the rate uncertainty due to differences in the shape of

the ST distribution between the data and simulation, in particular in the tail where the

data overshoot the prediction and the fit compensates for this discrepancy by pulling the

nuisance parameter of the tt̄γ PS model shape uncertainty. The impact of the individual

nuisance parameters is evaluated as the difference between the reference best-fit value of

the cross-section and the one obtained when fixing the corresponding nuisance parameter

under scrutiny to its best-fit value and its ± one standard deviation (±1σ). Table 2 shows

the systematic uncertainties and their relative impact on the measurement of the fiducial

inclusive cross-section. The effect of each category of uncertainties is calculated from the

variance (σ2) difference between the total uncertainty in the measured fiducial cross-section

and the uncertainty from the fit with the corresponding nuisance parameters fixed to their

fitted values. The uncertainties in the signal modelling, especially the rate uncertainties

from the tt̄γ PS model and the ISR variation, have the largest impact on the result.

The distribution of the fitted ST variable is shown in figure 6. The dashed band

represents the post-fit uncertainties. The expected yields after the fit describe the data well.
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ATLAS

-1 = 13 TeV, 139 fbs

Figure 5. Ranking of the systematic uncertainties included in the profile likelihood fit used in the

fiducial inclusive cross-section measurement. The blue and turquoise bands indicate the post-fit

impact on the fit result, whereas the outlined blue and turquoise rectangles show the pre-fit impact.

The difference between the two reflects the constraint of the nuisance parameter due to correlations

in the fit. Most nuisance parameters are not or only marginally constrained. The impact is overlaid

with the post-fit values of the nuisance parameters (pulls) shown by the black dots. The black lines

represent the post-fit uncertainties normalised to the pre-fit uncertainties. For uncertainties param-

eterised with more than one nuisance parameter, the index (1) refers to the leading component.

Extrapolated to the fiducial phase space using the correction factor C, the fit result

corresponds to a fiducial inclusive cross-section for the combined tt̄γ/tWγ process in the eµ

channel of σfid = 39.6 ± 0.8 (stat) +2.6
−2.2 (syst) fb = 39.6 +2.7

−2.3 fb. The measured cross-section

is in good agreement with the dedicated theoretical calculation provided by the authors of

refs. [10, 11], which predicts a value of σfid = 38.50 +0.56
−2.18 (scale) +1.04

−1.18 (PDF) fb for the chosen

fiducial phase space using the CT14 PDF set [72]. The uncertainty in the theory prediction

includes uncertainties owing to the scales and PDF. The PDF uncertainty is rescaled to

the 68% CL. In the theoretical calculation, the renormalisation and factorisation scales are

chosen as 1/4 of the total transverse momentum of the system, defined as the scalar sum

of the pT of the leptons, b-jets, photon and the total missing pT from the neutrinos. The
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Figure 6. Post-fit distribution of the ST variable. The uncertainty band represents the post-

fit uncertainties. Underflow and overflow events are included in the first and last bins of the

distribution, respectively. The lower part of the plot shows the ratio of the data to the prediction.

mass of the top quark is set to 173.2 GeV. The electroweak coupling in the calculation is

derived from the Fermi constant Gµ and it is set to αGµ ≈ 1/132, while it is 1/137 for the

leading emission. Further details can be found in ref. [10].

8 Differential cross-section measurements

The absolute differential cross-sections are shown in figure 7 while the normalised measured

differential cross-sections are presented in figure 8. The cross-sections are compared with

the NLO calculation in the same fiducial phase space and with the combination of the tt̄γ

and tWγ LO MadGraph5 aMC@NLO simulations interfaced with Pythia 8 and Herwig

7, referred to as MG5 aMC+Pythia8 and MG5 aMC+Herwig7 in the following plots and

tables. The calculated χ2/ndf values for the absolute and normalised cross-sections and

their corresponding p-values are summarised in tables 3 and 4, quantifying the probability

of compatibility between data and each of the predictions. The χ2 values are calculated as:

χ2 =
∑
j,k

(σj,data − σj,pred.) · C−1
jk · (σk,data − σk,pred.) ,

where σdata and σpred. are the unfolded and predicted differential cross-sections, Cjk is

the covariance matrix of σdata, calculated as the sum of the covariance matrix for the

statistical uncertainty and the covariance matrices for the systematic uncertainties, and

j and k are the binning indices of the distribution. The covariance matrix for each of the

systematic uncertainties is estimated as σj × σk, where σj and σk are the symmetrised
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pT(γ) |η(γ)| ∆R(γ,`)min ∆φ(`,`) |∆η(`,`)|
Predictions χ2/ndf p-value χ2/ndf p-value χ2/ndf p-value χ2/ndf p-value χ2/ndf p-value

Theory NLO 6.1/11 0.87 4.5/8 0.81 11.7/10 0.31 5.8/10 0.83 6.2/8 0.62

Table 3. χ2/ndf and p-values between the measured absolute cross-sections and the NLO calcula-

tion.

pT(γ) |η(γ)| ∆R(γ,`)min ∆φ(`,`) |∆η(`,`)|
Predictions χ2/ndf p-value χ2/ndf p-value χ2/ndf p-value χ2/ndf p-value χ2/ndf p-value

tt̄γ+tWγ (MG5 aMC+Pythia8) 6.3/10 0.79 7.3/7 0.40 20.1/9 0.02 30.8/9 < 0.01 6.5/7 0.48

tt̄γ+tWγ (MG5 aMC+Herwig7) 5.3/10 0.87 7.7/7 0.36 18.9/9 0.03 31.6/9 < 0.01 6.8/7 0.45

Theory NLO 6.0/10 0.82 4.5/7 0.72 13.5/9 0.14 5.8/9 0.76 5.6/7 0.59

Table 4. χ2/ndf and p-values between the measured normalised cross-sections and various predic-

tions from the MC simulation and the NLO calculation.

uncertainties for bin j and bin k of the unfolded distribution. In the case of the normalised

differential cross-sections, the last bin is removed from the χ2 calculation and the number

of degrees of freedom is reduced by one.

The shape of the measured differential distributions is generally well described by

both the LO MC predictions from MadGraph5 aMC@NLO and the NLO theory pre-

diction. The latter tends to describe the shape of the measured distribution slightly bet-

ter. The shapes of ∆R(γ, `)min and ∆φ(`, `) are not perfectly modelled by the Mad-

Graph5 aMC@NLO simulation, while the NLO prediction provides a better description

of these distributions.

The systematic uncertainties of the unfolded distributions are decomposed into signal

modelling uncertainties, experimental uncertainties, and background modelling uncertain-

ties. The breakdown of the categories of systematic uncertainties and the statistical one,

which is the dominant source of uncertainty, is illustrated in figures 9 and 10 for the abso-

lute and normalised differential cross-sections, respectively. The systematic uncertainty is

dominated by the background and signal modelling.

9 Conclusions

Measurements of the fiducial inclusive production cross-section, as well as absolute and

normalised differential production cross-sections, of the combined tt̄γ/tWγ process in the

eµ decay channel are presented using pp collisions at a centre-of-mass energy of 13 TeV,

corresponding to an integrated luminosity of 139 fb−1 recorded by the ATLAS detector

at the LHC. For the estimation of efficiencies and acceptance corrections, a LO Monte

Carlo simulation of the 2 → 7 process pp → eνµνbbγ was used for the tt̄γ part of the

signal. The contribution from tWγ was estimated from a combination of LO Monte Carlo

simulations for the 2 → 3 process pp → tWγ and the 2 → 6 process pp → eνµνbγ. The

simulations include initial- and final-state radiation of the photon from all involved objects

in the matrix element. The resonant top-quark production is taken into account in the
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Figure 7. Absolute differential cross-section measured in the fiducial phase space as a function

of the photon pT, photon |η|, ∆R(γ, `)min, ∆φ(`, `), and |∆η(`, `)| (from left to right and top to

bottom). Data are compared with the NLO calculation provided by the authors of refs. [10, 11].

The uncertainty in the calculation corresponds to the total scale and PDF uncertainties. The PDF

uncertainty is rescaled to the 68% CL. The lower part of each plot shows the ratio of the prediction

to the data.
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Figure 8. Normalised differential cross-section measured in the fiducial phase space as a function

of the photon pT, photon |η|, ∆R(γ, `)min, ∆φ(`, `), and |∆η(`, `)| (from left to right and top to

bottom). Data are compared with the NLO calculation provided by the authors of refs. [10, 11] and

the MadGraph5 aMC@NLO simulation interfaced with Pythia 8 and Herwig 7. The uncertainty

in the calculation corresponds to the total scale and PDF uncertainties. The PDF uncertainty is

rescaled to the 68% CL. The lower parts of each plot show the ratio of the prediction to the data

and the ratio of the NLO calculation to the MC simulations.
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Figure 9. Contribution of each category of systematic uncertainties in each bin of the measurement

of the absolute cross-sections as functions of the photon pT, photon |η|, ∆R(γ, `)min, ∆φ(`, `) and

|∆η(`, `)|.

simulation of tt̄γ. Possible singly resonant production leading to the same final state is

included in the simulation of the tWγ process.

The results are compared with the prediction from the LO Monte Carlo simulations

and also a dedicated NLO theory prediction which includes all off-shell contributions.

The measured fiducial inclusive cross-section of σ = 39.6 +2.7
−2.3 fb is found to be in good

agreement with the predicted NLO cross-section. All considered differential distributions

are also found to be well described by the NLO theory prediction.
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Figure 10. Contribution of each category of systematic uncertainties in each bin of the mea-

surement of the normalised cross-sections as functions of the photon pT, photon |η|, ∆R(γ, `)min,

∆φ(`, `) and |∆η(`, `)| (from left to right and top to bottom).
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S. Kersten 181, B.P. Kerševan 92, S. Ketabchi Haghighat 166, M. Khader 172, F. Khalil-Zada
13, M. Khandoga 144, A. Khanov 129, A.G. Kharlamov 122b,122a, T. Kharlamova 122b,122a,

E.E. Khoda 174, A. Khodinov 165, T.J. Khoo 54, G. Khoriauli 176, E. Khramov 80,

J. Khubua 158b, S. Kido 83, M. Kiehn 36, E. Kim 164, Y.K. Kim 37, N. Kimura 95,

A. Kirchhoff 53, D. Kirchmeier 48, J. Kirk 143, A.E. Kiryunin 115, T. Kishimoto 162,

D.P. Kisliuk 166, V. Kitali 46, C. Kitsaki 10, O. Kivernyk 24, T. Klapdor-Kleingrothaus 52,

M. Klassen 61a, C. Klein 34, M.H. Klein 106, M. Klein 91, U. Klein 91, K. Kleinknecht 100,

P. Klimek 121, A. Klimentov 29, T. Klingl 24, T. Klioutchnikova 36, F.F. Klitzner 114,

P. Kluit 120, S. Kluth 115, E. Kneringer 77, E.B.F.G. Knoops 102, A. Knue 52,

D. Kobayashi 88, M. Kobel 48, M. Kocian 152, T. Kodama 162, P. Kodys 142, D.M. Koeck
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E. Skorda 97, P. Skubic 128, M. Slawinska 85, K. Sliwa 169, R. Slovak 142, V. Smakhtin 179,

B.H. Smart 143, J. Smiesko 28b, N. Smirnov 112, S.Yu. Smirnov 112, Y. Smirnov 112,

L.N. Smirnova 113,r, O. Smirnova 97, E.A. Smith 37, H.A. Smith 134, M. Smizanska 90,

K. Smolek 141, A. Smykiewicz 85, A.A. Snesarev 111, H.L. Snoek 120, I.M. Snyder 131,

S. Snyder 29, R. Sobie 175,ab, A. Soffer 160, A. Søgaard 50, F. Sohns 53, C.A. Solans Sanchez
36, E.Yu. Soldatov 112, U. Soldevila 173, A.A. Solodkov 123, A. Soloshenko 80,

O.V. Solovyanov 123, V. Solovyev 137, P. Sommer 148, H. Son 169, A. Sonay 14, W. Song
143, W.Y. Song 167b, A. Sopczak 141, A.L. Sopio 95, F. Sopkova 28b, S. Sottocornola 71a,71b,

R. Soualah 67a,67c, A.M. Soukharev 122b,122a, D. South 46, S. Spagnolo 68a,68b, M. Spalla 115,
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173, L. Valéry 46, R.A. Vallance 21, A. Vallier 36, J.A. Valls Ferrer 173, T.R. Van Daalen 14,

P. Van Gemmeren 6, S. Van Stroud 95, I. Van Vulpen 120, M. Vanadia 74a,74b, W. Vandelli
36, M. Vandenbroucke 144, E.R. Vandewall 129, A. Vaniachine 165, D. Vannicola 73a,73b,

R. Vari 73a, E.W. Varnes 7, C. Varni 55b,55a, T. Varol 157, D. Varouchas 65, K.E. Varvell
156, M.E. Vasile 27b, G.A. Vasquez 175, F. Vazeille 38, D. Vazquez Furelos 14,

T. Vazquez Schroeder 36, J. Veatch 53, V. Vecchio 101, M.J. Veen 120, L.M. Veloce 166,

F. Veloso 139a,139c, S. Veneziano 73a, A. Ventura 68a,68b, A. Verbytskyi 115, V. Vercesi 71a,

M. Verducci 72a,72b, C.M. Vergel Infante 79, C. Vergis 24, W. Verkerke 120, A.T. Vermeulen
120, J.C. Vermeulen 120, C. Vernieri 152, P.J. Verschuuren 94, M.C. Vetterli 151,al,

N. Viaux Maira 146d, T. Vickey 148, O.E. Vickey Boeriu 148, G.H.A. Viehhauser 134,

L. Vigani 61b, M. Villa 23b,23a, M. Villaplana Perez 3, E.M. Villhauer 50, E. Vilucchi 51,

M.G. Vincter 34, G.S. Virdee 21, A. Vishwakarma 50, C. Vittori 23b,23a, I. Vivarelli 155,

M. Vogel 181, P. Vokac 141, S.E. von Buddenbrock 33e, E. Von Toerne 24, V. Vorobel 142,

– 40 –

https://orcid.org/0000-0002-0791-9728
https://orcid.org/0000-0002-4185-6484
https://orcid.org/0000-0003-2399-8945
https://orcid.org/0000-0003-0182-7088
https://orcid.org/0000-0001-9679-0323
https://orcid.org/0000-0002-7511-4614
https://orcid.org/0000-0003-0276-8059
https://orcid.org/0000-0001-7582-6227
https://orcid.org/0000-0003-2460-6659
https://orcid.org/0000-0002-8913-0981
https://orcid.org/0000-0001-7253-7497
https://orcid.org/0000-0002-0465-5472
https://orcid.org/0000-0002-6972-7473
https://orcid.org/0000-0003-0958-7656
https://orcid.org/0000-0002-0062-2438
https://orcid.org/0000-0002-8302-386X
https://orcid.org/0000-0002-7863-3778
https://orcid.org/0000-0002-2382-6951
https://orcid.org/0000-0002-1639-4484
https://orcid.org/0000-0002-1728-9272
https://orcid.org/0000-0001-9610-0783
https://orcid.org/0000-0001-6976-9457
https://orcid.org/0000-0001-6980-0215
https://orcid.org/0000-0001-7755-5280
https://orcid.org/0000-0001-9155-3898
https://orcid.org/0000-0003-3943-2495
https://orcid.org/0000-0002-4807-6448
https://orcid.org/0000-0003-2925-279X
https://orcid.org/0000-0003-2340-748X
https://orcid.org/0000-0002-2685-6187
https://orcid.org/0000-0001-8802-7184
https://orcid.org/0000-0003-4409-4574
https://orcid.org/0000-0001-7021-9380
https://orcid.org/0000-0003-4893-8041
https://orcid.org/0000-0001-6906-4465
https://orcid.org/0000-0002-7199-3383
https://orcid.org/0000-0001-7287-0468
https://orcid.org/0000-0002-4679-6767
https://orcid.org/0000-0003-3447-5621
https://orcid.org/0000-0003-4422-6493
https://orcid.org/0000-0001-9585-7215
https://orcid.org/0000-0002-0918-9175
https://orcid.org/0000-0003-3917-3761
https://orcid.org/0000-0002-5800-4798
https://orcid.org/0000-0003-3425-794X
https://orcid.org/0000-0002-4580-2475
https://orcid.org/0000-0002-2611-8563
https://orcid.org/0000-0003-1135-1423
https://orcid.org/0000-0003-3142-030X
https://orcid.org/0000-0002-3143-8510
https://orcid.org/0000-0001-9985-6033
https://orcid.org/0000-0001-9994-5802
https://orcid.org/0000-0002-9929-1797
https://orcid.org/0000-0002-3659-7270
https://orcid.org/0000-0003-1251-3332
https://orcid.org/0000-0002-9252-7605
https://orcid.org/0000-0002-9296-7272
https://orcid.org/0000-0002-0584-8700
https://orcid.org/0000-0002-5060-2208
https://orcid.org/0000-0002-4244-502X
https://orcid.org/0000-0001-5785-7548
https://orcid.org/0000-0002-1535-9732
https://orcid.org/0000-0002-3335-6500
https://orcid.org/0000-0001-8760-7259
https://orcid.org/0000-0003-0090-2170
https://orcid.org/0000-0002-1831-4871
https://orcid.org/0000-0002-6596-9125
https://orcid.org/0000-0001-5545-6513
https://orcid.org/0000-0001-9977-3836
https://orcid.org/0000-0003-4803-5213
https://orcid.org/0000-0001-6520-8070
https://orcid.org/0000-0003-0132-5723
https://orcid.org/0000-0003-3388-3906
https://orcid.org/0000-0003-1274-8967
https://orcid.org/0000-0002-8768-2272
https://orcid.org/0000-0001-8214-2763
https://orcid.org/0000-0003-1882-5572
https://orcid.org/0000-0002-9746-4172
https://orcid.org/0000-0002-6620-9734
https://orcid.org/0000-0001-6965-6604
https://orcid.org/0000-0001-7050-8203
https://orcid.org/0000-0002-6239-7715
https://orcid.org/0000-0001-6031-2768
https://orcid.org/0000-0003-1594-9350
https://orcid.org/0000-0001-8178-5257
https://orcid.org/0000-0002-9634-0581
https://orcid.org/0000-0002-8023-6448
https://orcid.org/0000-0002-3698-3585
https://orcid.org/0000-0002-0294-6727
https://orcid.org/0000-0003-2445-1132
https://orcid.org/0000-0003-2433-231X
https://orcid.org/0000-0003-4666-3208
https://orcid.org/0000-0001-8777-0590
https://orcid.org/0000-0002-8262-1577
https://orcid.org/0000-0002-1027-1213
https://orcid.org/0000-0002-1824-034X
https://orcid.org/0000-0002-8580-9145
https://orcid.org/0000-0002-4603-2070
https://orcid.org/0000-0001-8127-9653
https://orcid.org/0000-0003-1129-9792
https://orcid.org/0000-0003-2911-8910
https://orcid.org/0000-0003-0822-1206
https://orcid.org/0000-0002-5507-7924
https://orcid.org/0000-0001-9898-480X
https://orcid.org/0000-0001-6485-2227
https://orcid.org/0000-0001-9128-6080
https://orcid.org/0000-0001-5543-6192
https://orcid.org/0000-0002-0902-491X
https://orcid.org/0000-0002-9820-1729
https://orcid.org/0000-0002-3806-6895
https://orcid.org/0000-0002-8224-6105
https://orcid.org/0000-0002-6127-5847
https://orcid.org/0000-0001-5913-0828
https://orcid.org/0000-0001-6204-4445
https://orcid.org/0000-0001-9500-2487
https://orcid.org/0000-0001-7688-5165
https://orcid.org/0000-0002-7997-8524
https://orcid.org/0000-0003-1041-9131
https://orcid.org/0000-0001-8249-7150
https://orcid.org/0000-0002-5151-7101
https://orcid.org/0000-0001-6938-5867
https://orcid.org/0000-0001-7878-6435
https://orcid.org/0000-0003-1731-5853
https://orcid.org/0000-0002-6632-0440
https://orcid.org/0000-0002-2119-8875
https://orcid.org/0000-0002-9104-2884
https://orcid.org/0000-0002-8965-6676
https://orcid.org/0000-0001-8157-6711
https://orcid.org/0000-0002-2055-4364
https://orcid.org/0000-0001-8212-6894
https://orcid.org/0000-0002-5865-183X
https://orcid.org/0000-0001-6307-1437
https://orcid.org/0000-0001-5384-3843
https://orcid.org/0000-0002-7672-7754
https://orcid.org/0000-0001-6506-3123
https://orcid.org/0000-0002-3353-133X
https://orcid.org/0000-0001-8740-796X
https://orcid.org/0000-0001-6131-5725
https://orcid.org/0000-0002-0410-0055
https://orcid.org/0000-0002-9813-7931
https://orcid.org/0000-0001-8130-7423
https://orcid.org/0000-0002-1646-0621
https://orcid.org/0000-0002-1384-286X
https://orcid.org/0000-0002-3274-6531
https://orcid.org/0000-0003-2005-595X
https://orcid.org/0000-0002-4170-8537
https://orcid.org/0000-0002-2209-8198
https://orcid.org/0000-0002-7633-8441
https://orcid.org/0000-0002-0887-7953
https://orcid.org/0000-0001-5032-7907
https://orcid.org/0000-0002-7110-8065
https://orcid.org/0000-0001-8703-6978
https://orcid.org/0000-0001-6729-1584
https://orcid.org/0000-0003-1492-5007
https://orcid.org/0000-0003-4086-9432
https://orcid.org/0000-0001-9362-8451
https://orcid.org/0000-0001-9931-2896
https://orcid.org/0000-0002-0486-9569
https://orcid.org/0000-0003-2044-6539
https://orcid.org/0000-0002-9776-5880
https://orcid.org/0000-0002-5510-1111
https://orcid.org/0000-0002-6782-1941
https://orcid.org/0000-0002-2254-125X
https://orcid.org/0000-0002-7227-4006
https://orcid.org/0000-0002-7969-0301
https://orcid.org/0000-0001-7074-5655
https://orcid.org/0000-0003-2684-276X
https://orcid.org/0000-0001-6581-9410
https://orcid.org/0000-0001-9055-4020
https://orcid.org/0000-0003-3453-6156
https://orcid.org/0000-0002-0367-5666
https://orcid.org/0000-0001-6814-4674
https://orcid.org/0000-0002-2814-1337
https://orcid.org/0000-0001-7820-9144
https://orcid.org/0000-0001-6733-4310
https://orcid.org/0000-0002-0697-5808
https://orcid.org/0000-0002-0734-4442
https://orcid.org/0000-0003-1017-1295
https://orcid.org/0000-0001-8415-0759
https://orcid.org/0000-0002-3285-7004
https://orcid.org/0000-0003-1631-2714
https://orcid.org/0000-0002-5551-3546
https://orcid.org/0000-0002-9780-099X
https://orcid.org/0000-0003-0855-0958
https://orcid.org/0000-0002-1351-6757
https://orcid.org/0000-0001-5284-2451
https://orcid.org/0000-0003-1827-2955
https://orcid.org/0000-0002-5956-4244
https://orcid.org/0000-0002-2598-2659
https://orcid.org/0000-0002-3368-3413
https://orcid.org/0000-0002-3713-8033
https://orcid.org/0000-0001-7670-4563
https://orcid.org/0000-0001-8209-4757
https://orcid.org/0000-0002-3228-6715
https://orcid.org/0000-0002-8884-7112
https://orcid.org/0000-0003-4378-5736
https://orcid.org/0000-0002-0235-1053
https://orcid.org/0000-0002-4233-7563
https://orcid.org/0000-0002-7223-2965
https://orcid.org/0000-0002-5102-9140
https://orcid.org/0000-0002-1596-2611
https://orcid.org/0000-0002-6497-6809
https://orcid.org/0000-0002-0237-292X
https://orcid.org/0000-0002-6270-9176
https://orcid.org/0000-0002-9181-8048
https://orcid.org/0000-0002-0048-4602
https://orcid.org/0000-0002-4839-6281
https://orcid.org/0000-0002-5338-8972
https://orcid.org/0000-0002-6779-5595
https://orcid.org/0000-0001-8832-0313
https://orcid.org/0000-0001-9156-970X
https://orcid.org/0000-0003-0097-123X
https://orcid.org/0000-0003-0672-6868
https://orcid.org/0000-0002-3429-4778
https://orcid.org/0000-0002-8399-9993
https://orcid.org/0000-0001-8899-4027
https://orcid.org/0000-0001-8757-2180


J
H
E
P
0
9
(
2
0
2
0
)
0
4
9

K. Vorobev 112, M. Vos 173, J.H. Vossebeld 91, M. Vozak 101, N. Vranjes 16,

M. Vranjes Milosavljevic 16, V. Vrba 141, M. Vreeswijk 120, N.K. Vu 102, R. Vuillermet 36,

I. Vukotic 37, S. Wada 168, P. Wagner 24, W. Wagner 181, J. Wagner-Kuhr 114, S. Wahdan
181, H. Wahlberg 89, R. Wakasa 168, V.M. Walbrecht 115, J. Walder 143, R. Walker 114,

S.D. Walker 94, W. Walkowiak 150, V. Wallangen 45a,45b, A.M. Wang 59, A.Z. Wang 180,

C. Wang 60a, C. Wang 60c, F. Wang 180, H. Wang 18, H. Wang 3, J. Wang 63a, P. Wang
42, Q. Wang 128, R.-J. Wang 100, R. Wang 60a, R. Wang 6, S.M. Wang 157, W.T. Wang
60a, W. Wang 15c, W.X. Wang 60a, Y. Wang 60a, Z. Wang 106, C. Wanotayaroj 46,

A. Warburton 104, C.P. Ward 32, R.J. Ward 21, N. Warrack 57, A.T. Watson 21,

M.F. Watson 21, G. Watts 147, B.M. Waugh 95, A.F. Webb 11, C. Weber 29, M.S. Weber
20, S.A. Weber 34, S.M. Weber 61a, A.R. Weidberg 134, J. Weingarten 47, M. Weirich 100,

C. Weiser 52, P.S. Wells 36, T. Wenaus 29, B. Wendland 47, T. Wengler 36, S. Wenig 36,

N. Wermes 24, M. Wessels 61a, T.D. Weston 20, K. Whalen 131, A.M. Wharton 90,

A.S. White 106, A. White 8, M.J. White 1, D. Whiteson 170, B.W. Whitmore 90,

W. Wiedenmann 180, C. Wiel 48, M. Wielers 143, N. Wieseotte 100, C. Wiglesworth 40,

L.A.M. Wiik-Fuchs 52, H.G. Wilkens 36, L.J. Wilkins 94, H.H. Williams 136, S. Williams 32,

S. Willocq 103, P.J. Windischhofer 134, I. Wingerter-Seez 5, E. Winkels 155, F. Winklmeier
131, B.T. Winter 52, M. Wittgen 152, M. Wobisch 96, A. Wolf 100, R. Wölker 134,

J. Wollrath 52, M.W. Wolter 85, H. Wolters 139a,139c, V.W.S. Wong 174, N.L. Woods 145,
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V, Rabat; Morocco

– 42 –



J
H
E
P
0
9
(
2
0
2
0
)
0
4
9

36 CERN, Geneva; Switzerland
37 Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America
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72 (a)INFN Sezione di Pisa;(b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy
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