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1 Introduction

Precise measurements of top-quark production and decay properties provide crucial infor-
mation for testing the predictions of the Standard Model (SM) and its possible extensions.
In particular, the study of the associated production of a top-quark pair (¢f) with a high-
energy photon probes the tv electroweak coupling. Furthermore, measurements of the
inclusive and differential cross-sections of this process are of particular interest because
these topologies are sensitive, for instance, to new physics through anomalous dipole mo-
ments of the top quark [1-3] and in the context of effective field theories [4].

First evidence for the production of ¢ in association with a photon (¢t7y) was reported
by the CDF Collaboration [5], while the observation of the tfy process was established by
the ATLAS Collaboration in proton-proton (pp) collisions at /s = 7 TeV [6]. Both the
ATLAS and CMS Collaborations measured the ¢y cross-section at /s = 8 TeV [7, 8].



First measurements of the inclusive and differential cross-sections at /s = 13 TeV were
performed by the ATLAS Collaboration [9].

This paper presents a measurement of the fiducial inclusive and differential combined
tty + tW+ production cross-sections in the final state with one electron and one muon,
referred to as the ex channel. Events where the electrons and muons arise from the leptonic
decays of T-leptons are considered as background. The measurement is performed using the
full data set recorded at the LHC between 2015 and 2018 at a centre-of-mass energy of /s =
13 TeV and corresponding to an integrated luminosity of 139 fb~!. The fiducial inclusive
cross-section is measured using a profile likelihood fit to the distribution of ST, defined as
the scalar sum of all transverse momenta in the event, including leptons, photons, jets and
missing transverse momentum. The differential cross-sections, absolute and normalised to
unity, are measured in the same fiducial region as the inclusive cross-section, as functions
of photon kinematic variables, angular variables related to the photon and the leptons, and
angular separations between the two leptons in the event.

Compared to the previous tty ATLAS analysis with 13 TeV data [9], only the ep
channel is considered since it provides a clean final state with a small background contri-
bution and, thus, no multivariate analysis techniques are needed to separate signal and
background processes. Additionally, the cross-sections are measured at parton level rather
than at particle level to allow comparison with the theory calculation in refs. [10, 11]. The
calculation constitutes the first full computation for t¢ production with a hard final-state
photon in hadronic collisions at next-to-leading order (NLO) in quantum chromodynamics
(QCD), pp — bWbW+, including all resonant and non-resonant diagrams, interferences,
and off-shell effects of the top quarks and the W bosons. Therefore, in this paper the com-
bined cross-section of resonant ¢y and non-resonant ¢+~ production is measured, referred
to as signal in the following. Example Feynman diagrams at leading order in QCD for ¢ty
and tW~ production are shown in figure 1.

The paper is organised as follows. The ATLAS detector is briefly introduced in sec-
tion 2. Details of the event-simulation generators and their theoretical predictions are
given in section 3. The event selection and the analysis strategy are presented in sections 4
and 5. The systematic uncertainties are described in section 6. The results for the fidu-
cial inclusive and differential cross-sections are presented in sections 7 and 8, respectively.
Finally, a summary is given in section 9.

2 ATLAS detector

ATLAS [12-14] is a multipurpose detector with a forward-backward symmetric cylindrical

1

geometry with respect to the LHC beam axis.” The innermost layers consist of tracking

detectors in the pseudorapidity range |n| < 2.5. This inner detector (ID) is surrounded

LATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in
the centre of the detector and the z-axis along the beam pipe. The z-axis points from the IP to the centre
of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, ¢) are used in the transverse
plane, ¢ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar

angle 0 as n = —Intan(#/2). Angular distance is measured in units of AR = /(An)? + (A¢)2.
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Figure 1. Example Feynman diagrams at leading order for ¢y (left) and tW~ production (right)
in the ep channel. The top-quark mass resonances are marked with double-lined arrows, while W
bosons are marked in red.

by a thin superconducting solenoid that provides a 2T axial magnetic field. It is enclosed
by the electromagnetic and hadronic calorimeters, which cover |n| < 4.9. The outermost
layers of ATLAS consist of an external muon spectrometer within || < 2.7, incorporating
three large toroidal magnetic assemblies with eight coils each. The field integral of the
toroids ranges between 2.0 and 6.0 Tm for most of the acceptance. The muon spectrometer
includes precision tracking chambers and fast detectors for triggering. A two-level trigger
system [15] reduces the recorded event rate to an average of 1kHz.

3 Signal and background modelling

The estimation of signal and background contributions relies on the modelling of these
processes with simulated events produced with Monte Carlo (MC) event generators. The
response of the ATLAS detector was simulated [16] with GEANT4 [17]. For some of the
estimates of modelling uncertainties, the fast-simulation package ATLFAST-II was used
instead of the full detector simulation. Additional pp interactions (pile-up) were generated
with PyTHIA 8 [18, 19] using a set of tuned parameters called the A3 tune [20] and the
NNPDF2.3LO parton distribution function (PDF) set [21]. Corrections to the pile-up
profile, selection efficiencies, energy scales and resolutions derived from dedicated data
samples are applied to the MC simulation to improve agreement with data.

This analysis uses both inclusive samples, in which processes were generated at matrix-
element (ME) level without explicitly including a photon in the final state, and dedicated
samples for certain processes, where photons were included in the ME-level generation
step. Dedicated samples with a photon in the ME were generated for the tty and tW+
final states, as well as for V'~ processes with additional jets. Here, V denotes either a W
or a Z boson. Although no photons were generated at ME level in the inclusive samples,
initial- and final-state radiation of photons is accounted for by the showering algorithm.
Combining inclusive and dedicated samples for the modelling of processes might result
in double-counting photon radiation in certain phase-space regions. As a consequence, a
procedure to remove overlaps between the inclusive and dedicated samples was performed.
Photon radiation simulated at ME level in dedicated samples achieves higher accuracy
than the photon radiation in the showering algorithm. On the other hand, kinematic



requirements are applied to the kinematic properties of the photons at ME level in the
dedicated samples. In the overlap-removal procedure, all events from the dedicated samples
are kept while events from the inclusive samples are discarded if they contain a parton-level
photon that fulfils the dedicated samples’ kinematic requirements of pr(vy) > 15GeV and
AR(v,€) > 0.2, where pp(7) is the photon’s transverse momentum and AR(v,¢) is the
angular distance between the photon and any charged lepton.

The dedicated sample for the tty signal process was simulated using the MAD-
GRrRAPH5_aMC@NLO generator (v2.3.3) [22] and the NNPDF2.3LO PDF set at leading
order (LO) in QCD. The events were generated as a doubly resonant 2 — 7 process, e.g.
as pp — blvblvy, thus, diagrams where the photon is radiated from the initial state (in
the case of quark-antiquark annihilation), intermediate top quarks, the b-quarks, and the
intermediate W bosons, as well as the decay products of the W bosons, are included. To
prevent divergences, the photon was required to have py > 15 GeV and |n| < 5.0 and the
leptons to satisfy |n| < 5.0. The AR between the photon and any of the charged particles
among the seven final-state particles were required to be greater than 0.2. The top-quark
mass in this and all other samples was set to 172.5 GeV. The renormalisation and the
factorisation scales were set to 0.5x Y. /m? + p%i, where the sum runs over all the parti-
cles generated from the ME calculation. The event generation was interfaced to PYTHIA 8
(v8.212) using the Al4 tune [23] to model parton showers, hadronisation, fragmentation
and the underlying event. Heavy-flavour hadron decays were modelled with EVTGEN [24];
this program was used for all samples, except for those generated using the SHERPA MC
program [25, 26]. In the latter case, heavy-flavour decays were modelled directly with
SHERPA.

Two dedicated samples for the tW-~ process were generated with the MAD-
GRrAPHH5_aMC@NLO generator as well. The first one was produced at LO in the five-flavour
scheme for the 2 — 3 process (e.g. pp — tW+) assuming a stable top quark. The second
set of events was generated at LO as a 2 — 6 process (e.g. pp — blvlv+y) in the five-flavour
scheme, where the photon is radiated from any other charged final-state particle. In the
five-flavour scheme, the b-quarks are treated as massless and the LO representation of the
process includes a b-quark in the initial state. The two sets of events are complementary
and, once combined, provide a full simulation of the tWW~ process. Both samples make use
of the NNPDF2.3LO PDF set and were interfaced to PYTHIA 8 (v8.212) for parton show-
ering using the A14 tune. The photon was also required to have pr > 15 GeV and |n| < 5.0
and to be separated by AR > 0.2 from any parton. Although possible interference effects
between tty and tW~ are still missing in the simulated LO samples, the tW~ process is
treated as part of the signal in this analysis.

Events with W~ and Z~ final states (with additional jets) were simulated as dedicated
samples. The W~ processes were simulated with SHERPA 2.2.2 at NLO accuracy in QCD
using the NNPDF3.0NNLO PDF set, whereas Z+ events were generated with SHERPA 2.2.4
at LO in QCD with the same PDF set. The samples are normalised to the cross-sections
given by the corresponding MC simulation. The SHERPA generator performs all steps of
the event generation, from the hard process to the observable particles. All samples were



matched and merged by the SHERPA-internal parton showering based on Catani-Seymour
dipoles [27, 28] using the MEPS@QNLO prescription [29-31]. Virtual corrections for the NLO
accuracy in QCD in the matrix element were provided by the OpenLoops library [32, 33].

Inclusive tf production processes were simulated at matrix-element level at NLO accu-
racy in QCD using POWHEG-BoOX v2 [34-36]. The calculation used the NNPDF3.0NLO
PDF set [37]. The parton shower was generated with PyTHIA 8 (v8.230), for which the A14
tune [38] was used. The ¢t events are normalised to a cross-section value calculated with
the ToP++2.0 program at next-to-next-to-leading order (NNLO) in perturbative QCD,
including soft-gluon resummation to next-to-next-to-leading-logarithm order (see ref. [39]
and references therein).

Events with inclusive W- and Z-boson production in association with additional jets
were simulated with SHERPA 2.2.1 [25, 26] at NLO in QCD. The NNPDF3.0NLO PDF
set was used in conjunction with a dedicated tune provided by the SHERPA authors. The
samples are normalised to the NNLO cross-section in QCD [40].

Events with two directly produced vector bosons, i.e. WW, WZ and ZZ, were gener-
ated with SHERPA versions 2.2.2 (purely leptonic decays) and 2.2.1 (all others) at LO in
QCD. The NNPDF3.0NNLO PDF set was used in conjunction with a dedicated tune pro-
vided by the SHERPA authors. The samples are normalised to NLO accuracy cross-sections
in QCD [41].

Events with a ¢t pair and an associated W or Z boson (ttV') were simulated at NLO
at the ME level with MADGRAPH5_aMC@NLO using the NNPDF3.0NLO PDF set. The
ME generator was interfaced to PyTHIA 8 (v8.210), for which the Al4 tune was used in
conjunction with the NNPDF2.3LO PDF set. The samples are normalised to NLO in QCD
and electroweak theory [42].

The background processes are sorted into three categories based on the origin of the
reconstructed photon required in the event selection. The three are estimated from MC
simulation by categorising events from all considered samples that are not classified as signal
events. The MC simulations for all categories include processes without prompt photons
such as tt, W-+jets, Z-+jets, diboson and ¢tV production, as well as background processes
with an additional prompt photon. The first category is labelled h-fake and contains any
type of hadronic fakes that mimic a photon signature in the detector. This category includes
not only photon signatures faked by hadronic energy depositions in the electromagnetic
calorimeter, but also hadron decays involving photons, for example 70 — ~+ decays. It also
includes processes with a prompt photon, where the prompt photon is not reconstructed in
the detector or does not pass the selection requirements, but a h-fake photon does. Studies
performed with data-driven techniques following the approach described in ref. [9] show
that possible data-driven corrections have a negligible effect on the distribution shapes
of relevant observables. Possible differences in the total expected number of events are
covered by a normalisation uncertainty as described in section 6. The second category
is labelled e-fake and contains processes with an electron mimicking a photon signature
in the calorimeter. Similarly to the h-fake category, this category includes contributions
from processes without a prompt photon but with an e-fake photon, as well as processes
with a prompt photon in the simulation but an e-fake photon in the reconstruction. This



category represents a minor background contribution. The third category is called prompt v
background and contains any type of background process with a prompt photon. The
background contribution from ¢t production with a photon produced in an additional pp
interaction in the same bunch crossing was found to be negligible. This was estimated by
comparing the significance of the distance in z between the photon’s origin and the primary
vertex in data and simulation.

The tty and tW+ events where one or both W bosons decay into 7-leptons, which
then subsequently decay into e or p, are categorised as Other tty/tW+, and not as eu
signal, following the definition of signal events in the theory calculation in refs. [10, 11].
Single-lepton events, where a second lepton is faked by hadronic energy depositions, are
also included in the category Other tty/tW+~. The contribution of ¢ty single-lepton events
was found to be negligible in the eu final state in the previous measurement [9] and it is
therefore estimated from the MC simulation.

4 Event selection

The data set used in this analysis corresponds to the 139 fb~! of integrated luminosity
collected with the ATLAS detector during the Run 2 period. Each event in data and
simulation is required to have at least one reconstructed primary vertex with at least two
associated reconstructed tracks. Furthermore, only events where at least one of the single-
electron [43] or single-muon [44] triggers was fired are selected.

The main physics objects considered in this analysis are electrons, muons, photons, jets,
b-jets and missing transverse momentum. Electrons are reconstructed from energy deposits
in the electromagnetic calorimeter associated with reconstructed tracks in the ID system.
They are identified with a combined likelihood technique [45] using a ‘tight’ working point,
and are required to be isolated based on calorimeter and tracking quantities. The pp- and
n-dependent isolation criteria yield an efficiency of 90% for electrons with pr = 25 GeV
and 99% for those with pp = 60 GeV. The origin of the electron track has to be compatible
with the primary vertex. Electrons are calibrated with the method described in ref. [45].
They are selected if they fulfil pp > 25 GeV and |nqus| < 2.47, excluding the calorimeter
barrel /endcap transition region 1.37 < [nens| < 1.52.2

Muons are reconstructed with an algorithm that combines the track segments in the
various layers of the muon spectrometer and the tracks in the ID system. The reconstruc-
tion, identification and calibration methods are described in ref. [46]. Muons are required
to be isolated according to track- and calorimeter-based criteria similar to those applied to
electrons. Only muons with calibrated pp > 25GeV and |n| < 2.5 and passing ‘medium’
quality requirements are considered. The muon track is also required to originate from the
primary collision vertex.

Photons are reconstructed from energy deposits in the central region of the electromag-
netic calorimeters. If the cluster considered is not matched to any reconstructed track in
the ID system, the photon candidate is classified as unconverted. If the cluster is matched
with one or two reconstructed tracks that are consistent with originating from a photon

2?7c1us denotes the pseudorapidity of the calorimeter cell cluster associated with the electron.



conversion and if, in addition, a conversion vertex can be found, the photon candidate is
classified as converted. Both kinds of photons are considered in this analysis. Photons are
reconstructed and identified as described in ref. [47] and their energies are calibrated with
the method described in ref. [48]. They are subject to a tight isolation requirement defined
as ER°|\p g, < 0.022- Br(y) +2.45GeV in conjunction with p§°|, 5, < 0.05- Er(7),
where EX° refers to the calorimeter isolation within AR < 0.4 around the direction of the
photon candidate and p° is the track isolation within AR < 0.2 [47]. Only photons with
calibrated Ex > 20GeV and |nqus| < 2.37, excluding the calorimeter transition region
1.37 < |Nerus| < 1.52, are considered.

Jets are reconstructed using the anti-k; algorithm [49] in the FASTJET implementa-
tion [50] with a distance parameter R = 0.4. They are reconstructed from topological
clusters of cells in the calorimeter [51]. The jet energy scale and jet energy resolution are
calibrated using information from both simulation and data [52]. The jets are required to
have pp > 25GeV and |n| < 2.5. Jets with a large contribution from pile-up vertices are
identified with the Jet Vertex Tagger [53] and rejected.

The b-tagging algorithm (MV2c¢10) applied to the selected jets to identify those from
b-quark hadronisation [54] labelled as b-jets is based on a boosted decision tree combining in-
formation from other algorithms using track impact parameters and secondary vertices, and
a multi-vertex reconstruction algorithm. A working point with a selection efficiency of 85%
on simulated ¢t events is used, corresponding to rejection factors of 3.1 and 35 for jets initi-
ated by charm quarks and light-flavour partons, respectively. The flavour-tagging efficiency
for b-jets, as well as for c-jets and light-flavour jets, is calibrated as described in ref. [55].

The reconstructed missing transverse momentum E%iss [56, 57] is computed as the neg-
ative vector sum over all reconstructed, fully calibrated physics objects, including photons,
and the remaining unclustered energy, also called the soft term. The soft term is estimated
from low-pr tracks associated with the primary vertex but not with any reconstructed
object.

An overlap-removal procedure is applied to avoid the reconstruction of the same energy
clusters or tracks as different objects. First, electron candidates sharing their track with
a muon candidate are removed and jets within a AR = 0.2 cone around any remaining
electron are excluded. Secondly, electrons within a AR = 0.4 cone around any remaining
jet are removed. If the distance between a jet and any muon candidate is AR < 0.4, the
muon candidate is discarded if the jet has more than two associated tracks, otherwise the
jet is removed. Finally, photons within a AR = 0.4 cone around any remaining electron
or muon are removed and then jets within a AR = 0.4 cone around any remaining photon
are excluded.

The selected events must have exactly one electron and exactly one muon, each with
pr > 25GeV. At least one of these leptons has to be matched to a fired single-lepton
trigger. Since the pt threshold of the single-lepton triggers was increased over the different
data-taking periods due to increased collisions rates, the offline pr thresholds for these
electrons and muons that are matched to a fired single-lepton trigger are chosen to be
25 GeV in 2015, 27 GeV in 2016, and 28 GeV in 2017 and 2018 in order to lie above
the trigger thresholds. Electrons and muons must have opposite-sign charges and the eu



Events

tty ep 2391 £ 130
tW~ eu 156 £ 15
Other tty/tW~ 279+ 15
h-fake 78+ 40
e-fake 23+ 12
Prompt v bkg. 87+ 40
Total 3014 + 160
Data 3014

Table 1. Event yields before the profile likelihood fit of the signal and background processes to
data after the full selection. All categories are estimated from MC simulation and include correction
factors for detector effects as described in section 6. The combination of all ¢ty and tW+ categories
is scaled to match the event yields in data. The quoted uncertainties correspond to the total
statistical and systematic uncertainties (cf. section 6) added in quadrature.

invariant mass is required to be higher than 15 GeV. The event is required to have at least
two jets and at least one of the jets must be b-tagged. In addition, all events must contain
exactly one reconstructed photon fulfilling the condition that AR between the selected
photon and any of the leptons is greater than 0.4.

The observed event yields after selection are listed in table 1 for the different signal
and background categories described in section 3. The LO cross-section of the MC samples
underestimates the expected number of signal events; therefore, for illustration purposes
the combination of all tfy and tW+~ categories is normalised to match the event yields
in data. Correction factors for detector effects (described in section 6) are applied, when
needed, to improve the description of the data by the simulation.

The modelling of signal and background processes is inspected through the comparison
of distributions. A selection of these distributions showing a comparison between the
MC simulation before the profile likelihood fit and data is presented in figure 2. The
combination of all ¢ty and tW+y categories is normalised to match the event yields in data
as done in table 1 to allow a comparison of the shapes of the kinematic variables. All
systematic uncertainties that are introduced in section 6 are included in these distributions
and their sum in quadrature, which assumes they are fully uncorrelated, is illustrated by
the shaded error bands.

5 Analysis strategy

The inclusive and differential cross-sections are measured in the fiducial region described in
section 5.1 and the same sources of background contributions and systematic uncertainties
are considered. In the fiducial inclusive cross-section the St distribution is fitted and the
post-fit background yields and systematic uncertainties are used to extract the signal cross-
section, while no fit is performed for the determination of the differential cross-sections.
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Figure 2. Distributions of the transverse momentum of the electron, the muon and all jets (top
row), and the number of jets, E2sS and St (bottom row) after event selection and before the profile
likelihood fit. The combination of all ¢ty and tW+ categories is scaled to match the event yields in
data. The shaded bands correspond to the statistical and systematic uncertainties (cf. section 6)
added in quadrature. Overflow events are included in the last bin of each distribution. In the case
of the St distribution, the underflow events are included in the first bin. The lower part of each
plot shows the ratio of the data to the prediction.

5.1 Fiducial region definition

The cross-sections are reported at parton level in a fiducial region, defined by the kinematic
properties of the signal process, in which all selected final-state objects are produced within
the detector acceptance. This is done in a way that mimics the event selection as defined
in the theoretical calculation. Objects at parton level are taken from the MC simulation
history. Photons and leptons are selected as stable particles after final-state radiation. The
leptons (¢ = e, ) must originate from W-boson decays and they are dressed with nearby
photons within a cone of size of AR = 0.1 around them and must have pt > 25 GeV and
In| < 2.5. Only events with exactly one electron and one muon are considered. Events with
leptons originating from an intermediate T-lepton in the top-quark decay chain are not con-
sidered. The b-jets at parton level in the calculation from refs. [10, 11] are jets clustered with
the anti-k; algorithm with a distance parameter of R = 0.4. Since showering and hadroni-



sation effects are not considered in this calculation, the jets correspond to the b-quarks from
the top-quark decay (with an additional parton in the cases where the NLO real emission
leads to a parton close by a b-quark). To mimic this definition in the LO MC simulation,
parton-level b-jets are defined as follows. The anti-k; algorithm with a distance parameter
R = 0.4 is applied to all partons that are radiated from the two b-quarks (including the
b-quarks themselves) and from the two initial partons. The jets that include a b-quark from
the decay of a top quark are selected as b-jets. The event is kept if there are two b-jets sat-
isfying pr > 25 GeV and |n| < 2.5. Exactly one photon with Et > 20 GeV and |n| < 2.37 is
required. Photons are required to be isolated from nearby jets by imposing a modified cone
approach as described in ref. [58], as it is also done in the theory calculation in refs. [10, 11],
to ensure soft and collinear safety. The event is dropped if any of the following requirements
is not fulfilled: AR(~,¢) > 0.4, AR(e, ) > 0.4, AR(b,b) > 0.4 or AR(¢,b) > 0.4.

5.2 Fiducial inclusive cross-section

The fiducial inclusive cross-section is extracted using a binned profile likelihood fit to the
full St distribution. The distribution of St provides good separation between signal and
background and was found to be less sensitive to systematic uncertainties than other distri-
butions considered, such as the jet multiplicity or the pr of individual jets. The expected
signal and background distributions are modelled in the fit using template distributions
taken from the simulated samples. The parameter of interest, the fiducial cross-section
05d, 18 related to the number of signal events in bin ¢ of the St distribution as:

Nf:anﬁdxfofT.

The term L is the integrated luminosity, fis T is the fraction of generated signal events
falling into bin ¢ of the St distribution after fiducial requirements are applied, and C' is the
correction factor for the signal efficiency e and for migration into the fiducial region fou¢,
defined as follows:

non-fid fid
f . = Nreco €= Nreco = (O = € o Nreco
out — 9 - - - )
N, reco N, 1{1/[% 1- f out N, I{i/[dc

where N,eco is the number of simulated signal events passing the event selection described in
section 4, lei/[dc is the corresponding number of signal events generated in the fiducial region
defined in section 5.1, and Nfd and Npon-fid are the numbers of signal events that pass
the event selection and are generated within and outside the fiducial region, respectively.
The efficiency and outside migration are obtained from simulated ¢ty and tW+ events. The
correction factor is estimated from the signal simulation to be C' = 0.462+0.002 (statistical
uncertainty only).

The likelihood function £, based on Poisson statistics, is given by:

c=1Ir <N£’bS!Nf(5) + ZW(@) x []Gole., 1),
i b t

where ]\fi"bs7 N}, and Nib are the observed number of events in data, the predicted number
of signal events, and the estimated number of background events in bin ¢ of the St distribu-
tion, respectively. The rates of those tty and tWW~ events not counted as part of the signal
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and categorised as Other tty/tWr are scaled with the same parameter as the signal events
in the fit, i.e. no independent production cross-section is assumed for these parts of the
simulated tty/tW+~ process. The vector 5, of components 6;, represents the nuisance pa-
rameters that describe the sources of systematic uncertainties. Each nuisance parameter 6,
is constrained by a Gaussian distribution, G(0]6;,1). The width of the Gaussian function
corresponds to a change of +1 standard deviation of the corresponding quantity in the like-
lihood. For systematic uncertainties related to the finite number of simulated MC events,
the Gaussian terms in the likelihood are replaced by Poisson terms. The cross-section is
measured by profiling the nuisance parameters and minimising —21n £ [59].

5.3 Absolute and normalised differential cross-sections

The measurements of the absolute and normalised differential cross-sections are performed
as functions of the pr and || of the photon, and of angular variables between the photon
and the leptons: AR between the photon and the closest lepton AR(7, €)min, as well as
Ap(l,¢) and |An(¢, )| between the two leptons. The kinematic properties of the photon
are sensitive to the ty coupling. In particular, AR(7, ¢)min is related to the angle between
the top quark and the radiated photon, which could give insight into the structure of this
coupling. The distributions of A¢ (¢, £) and |An(¢, £)| are sensitive to the ¢t spin correlation.
The corresponding distributions in data and SM simulations are compared in figure 3. The
simulation describes reasonably well the data within the uncertainties although it favours
smaller AR(7, £)min and larger A¢ (¥, ¢) values than the observed ones.

The data are corrected for detector resolution and acceptance effects to parton level in
the fiducial phase space using an iterative matrix unfolding that uses Bayes’ theorem [60]
implemented in the ROOUNFOLD package [61]. The differential cross-section is defined as:

do
ka L x AXk X €L Z k x NObs NJZ')) X fepj % (1= fout,j) -

The indices j and k represent the bin indices of the observable X at detector and parton
levels, respectively. The variable N ;’bs is the number of observed events, and le; is the
number of estimated non-tty/tW+ background events (pre-fit) in bin j at detector level.
The contribution from the Other tty/tW+ category is taken into account by correcting
the remaining number of observed events by the signal fraction, f., ;, defined as the ratio
of the number of selected tty and tW+~ eu events to the total number of selected ¢ty and
tW+ events, as determined from simulation. This avoids the dependence on the signal
cross-section used for the normalisation. The efficiency € is the fraction of signal events
generated at parton level in bin £ of the fiducial region that are reconstructed and selected
at detector level. The total integrated luminosity is denoted by L, and A X}, represents the
bin width. The migration matrix My; describes the detector response and expresses the
probability for an event in bin k at parton level to be reconstructed in bin j at detector level,
calculated from events passing both the fiducial-region selection and the event selection.
The outside-migration fraction fous ; is the fraction of signal events generated outside the
fiducial region but reconstructed and selected in bin j at detector level. The normalised
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Figure 3. Distributions of the photon pr and |n| in the top row, and AR(Y,€)min, A¢(L, L)
and |An(4,£)| in the bottom row after event selection and before the profile likelihood fit. The
combination of all ¢ty and tW~ categories is scaled to match the event yields in data. The shaded
bands correspond to the statistical and systematic uncertainties (cf. section 6) added in quadrature.
When overflow events are present, they are included in the last bin of the distribution. The lower
part of each plot shows the ratio of the data to the prediction.

differential cross-section is derived by dividing the absolute result by the total cross-section,
obtained by integrating over all bins of the observable.

The signal MC samples are used to determine €, fout,j, and My;. The unfolding
method relies on the Bayesian probability formula, starting from a given prior of the
parton-level distribution and iteratively updating it with the posterior distribution. The
binning choices of the unfolded observables take into account the detector resolution and the
expected statistical uncertainty. The bin width has to be larger than twice the resolution,
and the statistical uncertainty is required to be around or below 10% across all bins, with
the latter being the limiting factor in most of the cases. The resolution of the lepton and
photon momenta is very high and, therefore, the fraction of events migrating from one bin to
another is small. In all bins, the purity, defined as the fraction of reconstructed events that
originate from the same bin at parton level, is larger than 80%, and it is above 90% for all
observables except for the pr of the photon. The number of iterations chosen is two, which
provides good convergence of the unfolding distribution and a statistically stable result.
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Figure 4. Left: migration matrix relating the photon pt at the reconstruction and parton levels in
the fiducial phase space, normalised by column and shown as percentages. Right: signal reconstruc-
tion and selection efficiency (€), (1 — fout) fraction and resulting C correction factor as a function
of the photon pr.

For illustration purposes, the migration matrix is presented in the left panel of figure 4,
while the right panel shows the efficiency, outside-migration fraction and the resulting C
correction factor obtained for the distribution of the photon pt. The performance of the
unfolding procedure is tested for possible biases from the choice of input model. It was
verified that when reweighting the shape of the signal simulation by up to 50% bin-by-bin
with respect to the nominal shape, the unfolding procedure based on the nominal response
matrix reproduces the altered shapes.

6 Systematic uncertainties

Various systematic uncertainties arising from detector effects are considered, along with
theoretical uncertainties. Signal and background predictions are both subject to these
uncertainties.

6.1 Experimental uncertainties

Experimental systematic uncertainties affect the normalisation and shape of the distribu-
tions of the simulated signal and background samples. These include reconstruction and
identification efficiency uncertainties, as well as uncertainties in the energy and momen-
tum scale and resolution for the reconstructed physics objects in the analysis, including
leptons, photons, jets and E%liss. In addition, uncertainties in the flavour-tagging of jets,
the jet vertex tagger (JVT) discriminant, the integrated luminosity value and the pile-up
simulation are considered.

The photon identification and isolation efficiencies as well as the efficiencies of the lep-
ton reconstruction, identification, isolation, and trigger in the MC samples are all corrected
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using scale factors to match the corresponding values in data. Similarly, corrections to the
lepton and photon momentum scale and resolution are applied in simulation [46, 48]. All
these corrections, which are pt and 7 dependent, are varied within their uncertainties.

The jet energy scale (JES) uncertainty is derived using a combination of simulations,
test-beam data and in situ measurements [52]. Additional contributions from jet-flavour
composition, n-intercalibration, punch-through, single-particle response, calorimeter re-
sponse to different jet flavours, and pile-up are taken into account, resulting in 30 uncorre-
lated JES uncertainty subcomponents, of which 29 are non-zero in a given event depending
on the type of simulation used. The most relevant JES uncertainties are related to the
pile-up correction (JES pile-up correction) and modelling aspects of the in situ calibration
(JES in situ calibration). The jet energy resolution (JER) in simulation is smeared by the
measured JER uncertainty [62] split into eight uncorrelated sources. The uncertainty as-
sociated with the JVT discriminant is obtained by varying the efficiency correction factors
(labelled jet vertex tagging in the results, cf. figure 5).

The uncertainties related to the b-jet tagging calibration are determined separately
for b-jets, c-jets and light-flavour jets [63—-65]. For each jet category, the uncertainties are
decomposed into several uncorrelated components. The corrections are varied by their
measured uncertainties.

The uncertainties associated with energy scales and resolutions of photons, leptons and
jets are propagated to the ErT“iSS. Additional uncertainties originate from the modelling of
its soft term [66].

The uncertainty in the combined 2015-2018 integrated luminosity is 1.7% [67], obtained
using the LUCID-2 detector [68] for the primary luminosity measurements.

The uncertainty associated with the modelling of pile-up in the simulation is assessed
by varying the pile-up reweighting in the simulation within its uncertainties.

6.2 Signal and background modelling uncertainties

The tt~y signal modelling uncertainties include the uncertainties owing to the choice of QCD
scales, parton shower, amount of initial-state radiation (ISR), and PDF set. The effect of
the QCD scale uncertainty is evaluated by varying the renormalisation and factorisation
scales separately up and down by a factor of two from their nominal chosen values. The
uncertainty from the parton shower and hadronisation (tty PS model) is estimated by
comparing the tfy nominal samples, produced with MADGRAPH5_aMC@NLO + PYTHIA 8,
with an alternative sample interfaced to HERWIG 7 [69, 70]. The ISR uncertainty (tty ISR)
is studied by comparing the nominal MADGRAPH5_aMCQ@QNLO + PYTHIA 8 sample with
the results of varying the A14 tune parameter for radiation [23]. The PDF uncertainty (tty
PDF') is evaluated using the standard deviation in each bin of the respective distribution
formed by the set of 100 replicas of the NNPDF set [21].

For the tW~ process the uncertainties due to the choice of renormalisation and factori-
sation scales are also estimated by varying them up and down separately by a factor of two
relative to the nominal sample value. A systematic uncertainty from the parton shower and
hadronisation model is considered by comparing PyTHIA 8 and HERWIG 7 both interfaced
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to MADGRAPH5_aMC@NLO. The tW+~ modelling uncertainties are treated as uncorrelated
with the ¢t signal modelling uncertainties.

The tW~ process was generated in the five-flavour scheme at leading order in QCD
and one of the two b-quarks is not included in the matrix-element generation step. This
b-quark, expected to be produced in the initial state through the PDF, is only found in
a fraction of the events at parton level in the MC simulation. The fractions of generated
tW~ events without a second b-quark were found to be around 30% and 50% for the
MC samples interfaced with HERWIG and PYTHIA, respectively. Therefore, an additional
uncertainty associated with this possibly lost b-quark is assigned (W=~ parton definition) as
follows. Relative to the nominal tW+ simulation, the parton-level event yields are doubled,
assuming all b-jets are found, while the number of reconstructed events is kept constant.
This leads to a variation of the correction factor C of 2.8%.

Several uncertainties in the modelling of ¢t processes, which give a dominant contri-
bution to the h-fake and prompt v background categories, are considered as shape-only
uncertainties. The uncertainties associated with the parton shower and hadronisation are
estimated by comparing the nominal simulation with alternative showering by HERWIG 7.
Uncertainties in the modelling of final-state radiation are estimated by evaluating the ef-
fects of varying four different parameters in the POWHEG + PYTHIA 8 generator set-up
described in the following. Uncertainties due to the renormalisation and factorisation scales
are estimated by varying them up and down independently by a factor of two relative to the
default scale choice. These scale variations are implemented with corresponding weights
which are available as part of the nominal MC sample. Uncertainties due to the value of ag
used in the ISR parton shower modelling are estimated by comparing the nominal POWHEG
+ PyTHIA 8 simulation with alternative samples that correspond to higher and lower radi-
ation parameter settings in the A14 tune, controlled by the var8c parameter in PYTHIA 8.
This parameter is varied within its uncertainties corresponding to variations of ag(my)
between 0.115 and 0.140. An additional ISR uncertainty is obtained by comparing the
nominal sample with an additional one where the hgamp, parameter, which controls the pr
of the first additional emission, is varied by a factor of two as supported by measurements
reported in ref. [71].

In addition to those background modelling uncertainties, global normalisation uncer-
tainties of 50% are assigned to the following three categories: h-fake photons, e-fake photons
and prompt v background [9] (h-fakes, e-fakes, and prompt v normalisation).

6.3 Treatment of the systematic uncertainties in the measurements

As stated in section 5, the impact of systematic uncertainties on the fiducial inclusive
cross-section measurement is taken into account via nuisance parameters in the likelihood
function. The nuisance parameters g are profiled in the maximum-likelihood fit. Variations
of the nuisance parameters can affect the rate of events as well as the shape of the St
distribution. In the case of signal modelling uncertainties, the rate uncertainty is composed
of variations of the efficiency € and the fraction fout. All MC samples used to evaluate signal
modelling uncertainties are scaled to the same number of events in the fiducial phase space,
N&%. The only uncertainty that is not included as a nuisance parameter in the profile
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likelihood fit is the uncertainty from the t{W+~ parton definition. This uncertainty does
not affect the number of reconstructed events in the corresponding template in the profile
likelihood fit. It comprises only an uncertainty in the number of generated events in the
fiducial phase space. Thus, the tW~ parton definition uncertainty is added in quadrature
to the post-fit uncertainty of the profile likelihood fit.

To reduce the sensitivity to statistical fluctuations due to the limited number of events
in the MC samples used in systematic variations, smoothing techniques are applied to the
MC templates used to evaluate the signal and background modelling systematic uncertain-
ties in the template fit. Additionally, the systematic uncertainties are symmetrised, taking
the average of the up- and down-variation as the uncertainty. In the cases where both
variations have the same sign or only one variation is available (e.g. the uncertainty from
the parton shower and hadronisation signal modelling) the largest variation or the avail-
able one, respectively, is taken as both the up- and down-variations for the corresponding
source. The ISR uncertainty suffers from statistical fluctuations in the available tty MC
samples, so a more conservative approach is chosen for the symmetrisation. In this case,
the largest of the two variations is taken and mirrored around the nominal prediction.

In the case of the differential cross-section measurements, each systematic uncertainty
is determined individually in each bin of the measurement by varying the corresponding
efficiency, resolution, and model parameter within its uncertainty. The same symmetrisa-
tion approach described for the fiducial inclusive cross-section is used for this measurement.
For each variation, the measured differential cross-section is recalculated and the devia-
tion from the nominal result per bin is taken as the systematic uncertainty. The overall
uncertainty in the measurement is then derived by adding all contributions in quadrature,
assuming the sources of systematic uncertainty to be fully uncorrelated.

Sources of systematic uncertainty relating only to the background prediction are eval-
uated by shifting the nominal distribution of the corresponding background process by
its associated uncertainty. For the experimental uncertainties, the input is varied by the
corresponding shift, which typically affects both the shape and normalisation of signal and
background process distributions. The resulting distribution is unfolded and compared
with the nominal unfolded distribution and the difference is assigned as an uncertainty.
The systematic uncertainties due to signal modelling are evaluated by varying the signal
corrections, i.e. the migration matrix Mj;, the efficiency €, and the fraction fout,;, by
the corresponding model parameter uncertainty and calculating the difference between the
resulting unfolded distributions and the nominal ones.

7 Fiducial inclusive cross-section measurement

The number of signal events is extracted using a profile likelihood fit to the St distribution
and is translated into the signal cross-section in the fiducial phase space given by the
kinematic boundaries of the signal as described in section 5.

The best-fit values of the nuisance parameters ranked highest in impact are shown
in figure 5 along with their impact on the result. Rate and shape uncertainties from
the tty PS model and tty ISR variations are treated as separate nuisance parameters.
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Category Uncertainty
tty/tW~ modelling 3.8%
Background modelling 2.1%
Photons 1.9%
Luminosity 1.8%
Jets 1.6%
Pile-up 1.3%
Leptons 1.1%
Flavour-tagging 1.1%
MC statistics 0.4%
Soft term EZss 0.2%
tW~ parton definition 2.8%
Total syst. 6.3%

Table 2. Illustrative summary of the systematic uncertainties on the fiducial inclusive cross-section
measurement grouped into different categories and their relative impact on the measurement (sym-
metrised). The categories ‘tty/tW~ modelling’ and ‘Background modelling’ include all correspond-
ing systematic uncertainties described in section 6.2. The ‘tW+~ parton definition’ uncertainty is
listed separately since it does not enter the profile likelihood fit directly as described in section 6.3.
The category ‘Photons’ corresponds to the uncertainties related to photon identification and isola-
tion as well as photon energy scale and resolution. ‘Jets’ includes the total uncertainty from the
JES, JER and JVT discriminant, while the b-tagging-related uncertainties are given in a separate
category (‘Flavour-tagging’). The category ‘Leptons’ represents the uncertainties related to lepton
identification, isolation and energy/momentum calibration.

This approach prevents pulls on the rate uncertainty due to differences in the shape of
the St distribution between the data and simulation, in particular in the tail where the
data overshoot the prediction and the fit compensates for this discrepancy by pulling the
nuisance parameter of the tty PS model shape uncertainty. The impact of the individual
nuisance parameters is evaluated as the difference between the reference best-fit value of
the cross-section and the one obtained when fixing the corresponding nuisance parameter
under scrutiny to its best-fit value and its &+ one standard deviation (+1c). Table 2 shows
the systematic uncertainties and their relative impact on the measurement of the fiducial
inclusive cross-section. The effect of each category of uncertainties is calculated from the
variance (02) difference between the total uncertainty in the measured fiducial cross-section
and the uncertainty from the fit with the corresponding nuisance parameters fixed to their
fitted values. The uncertainties in the signal modelling, especially the rate uncertainties
from the ¢ty PS model and the ISR variation, have the largest impact on the result.

The distribution of the fitted St variable is shown in figure 6. The dashed band
represents the post-fit uncertainties. The expected yields after the fit describe the data well.
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Figure 5. Ranking of the systematic uncertainties included in the profile likelihood fit used in the
fiducial inclusive cross-section measurement. The blue and turquoise bands indicate the post-fit
impact on the fit result, whereas the outlined blue and turquoise rectangles show the pre-fit impact.
The difference between the two reflects the constraint of the nuisance parameter due to correlations
in the fit. Most nuisance parameters are not or only marginally constrained. The impact is overlaid
with the post-fit values of the nuisance parameters (pulls) shown by the black dots. The black lines
represent the post-fit uncertainties normalised to the pre-fit uncertainties. For uncertainties param-
eterised with more than one nuisance parameter, the index (1) refers to the leading component.

Extrapolated to the fiducial phase space using the correction factor C, the fit result
corresponds to a fiducial inclusive cross-section for the combined tiv/tW+ process in the eu
channel of ohq = 39.6 + 0.8 (stat) 755 (syst) fb = 39.6 13% fb. The measured cross-section
is in good agreement with the dedicated theoretical calculation provided by the authors of
refs. [10, 11], which predicts a value of oq = 38.50 7935 (scale) T1-93 (PDF) fb for the chosen
fiducial phase space using the CT14 PDF set [72]. The uncertainty in the theory prediction
includes uncertainties owing to the scales and PDF. The PDF uncertainty is rescaled to
the 68% CL. In the theoretical calculation, the renormalisation and factorisation scales are
chosen as 1/4 of the total transverse momentum of the system, defined as the scalar sum
of the pr of the leptons, b-jets, photon and the total missing pr from the neutrinos. The
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Figure 6. Post-fit distribution of the St variable. The uncertainty band represents the post-
fit uncertainties. Underflow and overflow events are included in the first and last bins of the
distribution, respectively. The lower part of the plot shows the ratio of the data to the prediction.

mass of the top quark is set to 173.2 GeV. The electroweak coupling in the calculation is
derived from the Fermi constant G, and it is set to ag, ~ 1/132, while it is 1/137 for the
leading emission. Further details can be found in ref. [10].

8 Differential cross-section measurements

The absolute differential cross-sections are shown in figure 7 while the normalised measured
differential cross-sections are presented in figure 8. The cross-sections are compared with
the NLO calculation in the same fiducial phase space and with the combination of the tty
and tW~ LO MADGRAPH5_aMC@NLO simulations interfaced with PYTHIA 8 and HERWIG
7, referred to as MG5_aMC+PyTHIA8 and MG5_aMC+HERWIGT in the following plots and
tables. The calculated x?/ndf values for the absolute and normalised cross-sections and
their corresponding p-values are summarised in tables 3 and 4, quantifying the probability
of compatibility between data and each of the predictions. The x? values are calculated as:

X = Z(Jj,data — 0 pred.) - kal - (Ok,data — Ok,pred.) »
i,k
where 04ata and opreq. are the unfolded and predicted differential cross-sections, Cjy is
the covariance matrix of ogata, calculated as the sum of the covariance matrix for the
statistical uncertainty and the covariance matrices for the systematic uncertainties, and
j and k are the binning indices of the distribution. The covariance matrix for each of the
systematic uncertainties is estimated as o; X oy, where o; and o} are the symmetrised
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Predictions

pr(v)
x%/ndf p-value

()]
x%/ndf  p-value

AR(’Y? Z)min
x%/ndf  p-value

Ag(L,0)
x%/ndf p-value

|An(e,0)]
x%/ndf p-value

Theory NLO

6.1/11  0.87

45/8  0.81

11.7/10  0.31

5.8/10  0.83

6.2/8  0.62

Table 3. x?/ndf and p-values between the measured absolute cross-sections and the NLO calcula-
tion.

pr(y) ()] ARV, Omin  Ap(L,0) |An(£,0)]
Predictions x*/ndf p-value|x? /ndf p-value|x? /ndf p-value|x? /ndf p-value|x?/ndf p-value
tty+tW~ (MG5_aMC+PyTHIAS) |6.3/10 0.79 | 7.3/7 0.40 [20.1/9 0.02 [30.8/9 <0.01|6.5/7 0.48
thy+tW (MG5_.aMC+HERWIGT)|5.3/10 0.87 | 7.7/7 0.36 |18.9/9 0.03 [31.6/9 <0.01|6.8/7 0.45
Theory NLO 6.0/10 0.82 |4.5/7 0.72 |13.5/9 0.14 | 5.8/9 0.76 |5.6/7 0.59

Table 4. x?/ndf and p-values between the measured normalised cross-sections and various predic-
tions from the MC simulation and the NLO calculation.

uncertainties for bin j and bin k of the unfolded distribution. In the case of the normalised
differential cross-sections, the last bin is removed from the x? calculation and the number
of degrees of freedom is reduced by one.

The shape of the measured differential distributions is generally well described by
both the LO MC predictions from MADGRAPH5_ aMCQNLO and the NLO theory pre-
diction. The latter tends to describe the shape of the measured distribution slightly bet-
The shapes of AR(7y,¢)min and A¢(¢,¢) are not perfectly modelled by the MAD-
GRAPH5_ aMC@NLO simulation, while the NLO prediction provides a better description
of these distributions.

ter.

The systematic uncertainties of the unfolded distributions are decomposed into signal
modelling uncertainties, experimental uncertainties, and background modelling uncertain-
ties. The breakdown of the categories of systematic uncertainties and the statistical one,
which is the dominant source of uncertainty, is illustrated in figures 9 and 10 for the abso-
lute and normalised differential cross-sections, respectively. The systematic uncertainty is
dominated by the background and signal modelling.

9 Conclusions

Measurements of the fiducial inclusive production cross-section, as well as absolute and
normalised differential production cross-sections, of the combined ttvy/tW+ process in the
eit decay channel are presented using pp collisions at a centre-of-mass energy of 13 TeV,
corresponding to an integrated luminosity of 139 fb~! recorded by the ATLAS detector
at the LHC. For the estimation of efficiencies and acceptance corrections, a LO Monte
Carlo simulation of the 2 — 7 process pp — evuvbby was used for the tty part of the
signal. The contribution from tW+ was estimated from a combination of LO Monte Carlo
simulations for the 2 — 3 process pp — tW~ and the 2 — 6 process pp — evuvby. The
simulations include initial- and final-state radiation of the photon from all involved objects
in the matrix element. The resonant top-quark production is taken into account in the
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Figure 8. Normalised differential cross-section measured in the fiducial phase space as a function
of the photon pr, photon ||, AR(7Y,€)min, A¢(¢,£), and |An(¢,£)| (from left to right and top to
bottom). Data are compared with the NLO calculation provided by the authors of refs. [10, 11] and
the MADGRAPH5 _ aMC@NLO simulation interfaced with PYTHIA 8 and HERWIG 7. The uncertainty
in the calculation corresponds to the total scale and PDF uncertainties. The PDF uncertainty is
rescaled to the 68% CL. The lower parts of each plot show the ratio of the prediction to the data
and the ratio of the NLO calculation to the MC simulations.
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simulation of #ty. Possible singly resonant production leading to the same final state is
included in the simulation of the tW+ process.

The results are compared with the prediction from the LO Monte Carlo simulations
and also a dedicated NLO theory prediction which includes all off-shell contributions.
The measured fiducial inclusive cross-section of ¢ = 39.6 fg:gfb is found to be in good
agreement with the predicted NLO cross-section. All considered differential distributions
are also found to be well described by the NLO theory prediction.
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