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1. Introduction

Consider a probability measure µ on the unit circle T = {z ∈ C : |z| = 1} of the 

complex plane C. The Schur function of µ is the analytic function f in the open unit 

disk D = {z ∈ C : |z| < 1} defined by the relation

1 + zf(z)

1 − zf(z)
=

∫

T

1 + ξ̄z

1 − ξ̄z
dµ(ξ), z ∈ D. (1)

Taking the real part of both sides of (1) and using the Schwarz lemma, it is not difficult 

to see that |f(z)| � 1 for all z ∈ D. In particular, the function f has non-tangential 

boundary values (to be denoted by the same letter f) almost everywhere on the unit 

circle T . Set f0 = f and denote the Schur iterates of f by fn:

zfn+1(z) =
fn(z) − fn(0)

1 − fn(0)fn(z)
, z ∈ D, n � 0. (2)

Schur’s algorithm (2) produces an infinite family {fn}n�0 of analytic contractions unless 

µ is supported on a finite subset of T , or, equivalently, f is a finite Blaschke product. 

Knowing coefficients fk(0) for 0 � k � n, one can set fn+1 = 0 and reverse the recursion 

in (2) to obtain an efficient approximation to f in D by a rational contraction of degree 

n, see Corollary 4.7 in [10].

Let m be the Lebesgue measure on the unit circle T normalized by m(T ) = 1, and 

let µ = w dm + µs be the decomposition of µ into the absolutely continuous and singular 

parts. The measure µ is said to belong to the Szegő class Sz(T ) if log w ∈ L1(T ). To 

every measure µ ∈ Sz(T ), we associate the entropy function

K(µ, z) = log P(µ, z) − P(log w, z), z ∈ D, (3)

where P stands for the harmonic extension to D:

P(µ, z) =

∫

T

1 − |z|2
|1 − ξ̄z|2

dµ(ξ),

and we set P(v, z) = P(v dm, z) for v ∈ L1(T ). Roughly speaking, K(µ, z) measures a 

“size of oscillation” of µ on the arc {ξ ∈ T : |ξ − az| � 1 − |z|}, az = z/|z|. By Jensen’s 

inequality, we have K(µ, z) � 0 for every z ∈ D and K(µ, z) = 0 if and only if µ = m. 

Notice also that K(µ, ·) is superharmonic in D and its nontangential boundary value is 

zero almost everywhere on T .

The celebrated Szegő theorem says that a probability measure µ on the unit circle T

belongs to the Szegő class Sz(T ) if and only if 
∑

n�0 |fn(z)|2 < ∞ for some (and then 

for every) z ∈ D. Moreover, in the latter case we have
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K(µ, 0) = −
∫

T

log w dm = − log
∏

n�0

(1 − |fn(0)|2). (4)

This result has many equivalent reformulations, see, e.g., Section 2.7.8 in [17]. Our first 

aim is to extend formula (4) to the whole unit disk D.

Theorem 1. Let µ ∈ Sz(T ) and let {fn} be the Schur family of µ. Then

K(µ, z) = log
∏

n�0

1 − |zfn(z)|2
1 − |fn(z)|2 , z ∈ D. (5)

Substituting z = 0 into (5), we get (4). As an immediate consequence of (5), we see 

that supn�0 |fn(z)| cannot be close to 1 if K(µ, z) is small.

Given a measure µ ∈ Sz(T ) and its Schur family {fn}, we let µn denote the probability 

measure on T whose Schur function f in (1) equals fn. A standard problem in the field 

is to relate properties of µn to those of µ when n is large. The following inequality is 

another immediate consequence of Theorem 1.

Corollary 1. We have K(µn, z) � K(µ, z) for all n � 0 and all z ∈ D.

Indeed, due to Theorem 1 and Schur’s algorithm, we have

K(µn, z) = log
∏

k�n

1 − |zfk(z)|2
1 − |fk(z)|2 .

Since the terms in the product above are greater than 1, we have K(µn, z) � K(µ, z).

Theorem 1 implies a uniform bound for oscillation of Schur family generated by a 

Szegő measure.

Theorem 2. Suppose µ ∈ Sz(T ) and let {fn} be the family of Schur functions of µ. Then, 

we have

P(|fn − fn(z)|, z) � c
√

K(µ, z), z ∈ D,

with an absolute constant c and all n � 0.

Let us now turn to an application of these results to study asymptotic behavior of 

orthogonal polynomials. To every measure µ ∈ Sz(T ) we associate the Szegő function 

Dμ. This is the outer function in D with modulus 
√

w on T :

Dμ(z) = exp

⎛
⎝

∫

T

log
√

w(ξ) · 1 + ξ̄z

1 − ξ̄z
dm(ξ)

⎞
⎠ , z ∈ D.
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The family {ϕn}n�0 of orthonormal polynomials in L2(µ) is defined by

deg ϕn = n, kn = coeffnϕn > 0, (ϕn, ϕk)L2(μ) = δn,k, (6)

where δn,k is the Kronecker symbol and coeffjQ denotes the coefficient at the power zj in 

polynomial Q. Let also ϕ∗
n(z) = znϕn(1/z̄) denote the reversed orthogonal polynomial. 

Due to a version of Szegő theorem, we have µ ∈ Sz(T ) if and only if for some (and then 

for every) z ∈ D we have

lim
n→+∞

ϕ∗
n(z) = D−1

μ (z). (7)

A well-known conjecture in the theory of orthogonal polynomials on the unit circle 

(an analog of Lusin’s conjecture for trigonometric series [12,9], see p. 135 in [3] for its 

positive solution) asks whether (7) holds for almost every z ∈ T . As usual, for z ∈ T we 

understand D−1
μ (z) as non-tangential boundary value. While not stated explicitly, the 

conjecture goes back to works of Bernstein, Szegő, and Steklov who studied asymptotics 

of orthogonal polynomials. Recently, it attracted more attention due to its connection to 

“nonlinear Carleson problem” in the scattering theory, see, e.g., [4], [5], [14], [15]. In the 

theorem below, we relate pointwise asymptotics of {ϕn(z)}, z ∈ T , to the distribution 

of their zeroes near the unit circle. Our analysis is based on controlling oscillation of 

Schur functions {fn} in terms of the entropy function K in (3). The introduction of K
was inspired by recent analysis of Szegő condition for canonical systems [1], [2].

Given a parameter ρ ∈ (0, 1) and a point ξ ∈ T , define the Stolz angle S∗
ρ(ξ) to be 

the convex hull of ρD and ξ. Here is our main result.

Theorem 3. Let µ ∈ Sz(T ) and Z(ϕn) = {z ∈ D : ϕn(z) = 0}. Take any a > 0

and denote ra,n = 1 − a/n. Then, for almost every ξ ∈ T , the following assertions are 

equivalent:

(a) limn→∞ |ϕ∗
n(ξ)|2 = |D−1

μ (ξ)|2,

(b) limn→∞ dist(Z(ϕn), ξ) n = +∞,

(c) limn→∞ fn(ra,nξ) = 0,

(d) limn→∞ supz∈S∗

ρ (ξ) |fn(z)| = 0 for every ρ ∈ (0, 1).

The paper is organized as follows. In Section 2, we prove Theorem 1 and discuss its 

corollaries. Theorem 2 is proved in Section 3. In Section 4, we collect some facts about 

finite sums of Poisson kernels that will be used in Section 5 to prove Theorem 3.

2. Proof of Theorem 1 and some corollaries

We start by giving an expression for K(µ, z) in terms of f , the Schur function of 

measure µ.
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Lemma 1. If µ ∈ Sz(T ) and f is its Schur function, then

K(µ, z) =

∫

T

log

(
1 − |zf(z)|2
1 − |f(ξ)|2

)
1 − |z|2
|1 − ξ̄z|2

dm(ξ), (8)

for every z ∈ D.

Proof. Let w be the density of µ with respect to m. Taking the real part of both sides 

of (1), we obtain

1 − |zf(z)|2
|1 − zf(z)|2 = P(µ, z), z ∈ D.

Hence, w = 1−|f |2

|1−ξf |2 almost everywhere on T . Then, the mean value formula for harmonic 

function log |1 − zf |2 implies

K(µ, z) = log
1 − |zf(z)|2
|1 − zf(z)|2 −

∫

R

log
1 − |f(ξ)|2
|1 − ξf(ξ)|2

1 − |z|2
|1 − ξ̄z|2

dm(ξ)

= log(1 − |zf(z)|2) −
∫

T

log(1 − |f(ξ)|2)
1 − |z|2
|1 − ξ̄z|2

dm(ξ)

=

∫

T

log

(
1 − |zf(z)|2
1 − |f(ξ)|2

)
1 − |z|2
|1 − ξ̄z|2

dm(ξ).

The lemma follows. �

Now, let µ ∈ Sz(T ) and sequence {fn}n�0 be the family of Schur functions generated 

by µ via the Schur’s algorithm (2). Denote by µn the probability measure on T whose 

Schur function coincides with fn. Its existence follows if we notice that the function 

defined for z ∈ D by

1 − |zfn(z)|2
|1 − zfn(z)|2 = Re

(
1 + zfn(z)

1 − zfn(z)

)

is a nonnegative harmonic function in D and therefore it is a Poisson integral of a unique 

nonnegative measure on T . This is our µn. Taking z = 0 in the formula P(µn, z) =
1−|zfn(z)|2

|1−zfn(z)|2 , we get µn(T ) = 1 so µn is a probability measure.

It is clear from construction that the Schur family of µn is {fn+k}k�0. After making 

these observations, we proceed with the proof of Theorem 1.

Proof of Theorem 1. For a measure µ ∈ Sz(T ), consider the family of Schur functions 

{fn}n�0 and associated probability measures {µn}n�0. By Szegő theorem (see, e.g., p. 
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4 in [17]), we have 
∑

k�0 |fk(0)|2 < ∞. It follows (again from the Szegő theorem) that 

µn ∈ Sz(T ) and

∫

T

log(1 − |fn(ξ)|2) dm = log
∏

k�n

(1 − |fk(0)|2) → 0, n → +∞. (9)

In particular, functions fn tend to zero in Lebesgue measure on T and, since they are 

uniformly bounded, we have limn→∞ fn(z) = 0 for every z ∈ D. From (9) and Lemma 1, 

we get

K(µn, z) =

∫

T

log

(
1 − |zfn(z)|2
1 − |fn(ξ)|2

)
1 − |z|2
|1 − ξ̄z|2

dm(ξ) → 0, n → +∞,

for every z ∈ D. Thus, to prove Theorem 1, we only need to check that

K(µ, z) = K(µ1, z) + log
1 − |zf(z)|2
1 − |f(z)|2 (10)

and then iterate this formula. From (8), we have

K(µ, z) = log(1 − |zf(z)|2) − P(log(1 − |f(ξ)|2), z),

K(µ1, z) = log(1 − |zf1(z)|2) − P(log(1 − |f1(ξ)|2), z),

for every z ∈ D. Due to Schur’s algorithm (2), one can write

zf1(z) =
f(z) − f(0)

1 − f(0)f(z)
, 1 − |zf1(z)|2 =

(1 − |f(0)|2)(1 − |f(z)|2)

|1 − f(0)f(z)|2
.

Using this computation, the mean value formula, and identity |ξ| = 1, ξ ∈ T , we get

K(µ1, z) = log
(1 − |f(0)|2)(1 − |f(z)|2)

|1 − f(0)f(z)|2
− P

(
log

(1 − |f(0)|2)(1 − |f(ξ)|2)

|1 − f(0)f(ξ)|2
, z

)

= log(1 − |f(z)|2) − P
(
log(1 − |f(ξ)|2), z

)

= log
1 − |f(z)|2
1 − |zf(z)|2 + K(µ, z),

as required. �

Corollary 2. Let µ ∈ Sz(T ) and {fn}n�0 be the Schur family of µ. Then,

K(1 − |fn(ξ)|2, z) � K(µ, z)

for every z ∈ D and n � 0.
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Proof. Since |zfn(z)|2 is subharmonic in D, we get

P(|ξfn(ξ)|2, z) � |zfn(z)|2 .

Therefore,

log(1 − |zfn(z)|2) � log P(1 − |fn(ξ)|2, z) .

So, applying Lemma 1 to measure µn, we have

K(µn, z) = log(1 − |zfn(z)|2) −
∫

T

log(1 − |fn(ξ)|2)
1 − |z|2
|1 − ξ̄z|2

dm(ξ)

� log P(1 − |fn(ξ)|2, z) − P(log(1 − |fn(ξ)|2), z)

= K(1 − |fn(ξ)|2, z).

It remains to use Corollary 1. �

Let α ∈ T , and let f be the Schur function of a measure µ ∈ Sz(T ). Then, the family 

of measures µα defined by

P(µα, z) = Re

(
1 + αzf(z)

1 − αzf(z)

)
, z ∈ D,

is called the Aleksandrov-Clark family of µ. From (1), we see that αf is the Schur 

function of µα.

Corollary 3. Let µ ∈ Sz(T ) and let {fn}n�0 be the Schur family of µ. Then, for every 

z ∈ D, the entropy K(µ, z) depends only on absolute value of f(z). In particular, we have 

K(µ, z) = K(µα, z) for every α ∈ T .

Proof. This follows from (8). �

The case α = −1 in Corollary 3 corresponds to the “dual measure” µdual, playing an 

important role in the theory of orthogonal polynomials on the unit circle. The measure 

µdual is defined by

∫

T

1 + ξ̄z

1 − ξ̄z
dµdual(ξ) =

⎛
⎝

∫

T

1 + ξ̄z

1 − ξ̄z
dµ(ξ)

⎞
⎠

−1

, z ∈ D.

From (1), we infer that the Schur function of µdual equals −f . In particular, the last 

corollary yields
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K(µ, z) = K(µdual, z) , z ∈ D. (11)

It is well-known (see, e.g., Section 5 in [10]) that orthonormal polynomials ϕn defined 

in (6) satisfy recurrence relations

√
1 − |an|2 · ϕ∗

n+1 = ϕ∗
n − zanϕn, ϕ0 = ϕ∗

0 = 1, n � 0, (12)

for coefficients an = fn(0) in D, {fn} being the Schur family of µ. Conversely, each 

sequence {ak}k�0 ⊂ D gives rise to a unique probability measure µ on T with infinite 

number of points in supp µ such that its orthonormal polynomials satisfy relations (12). 

In the next result we determine µ̂n,z, a variant of Bernstein-Szegő approximation to µ

such that K(µ, z) = K(µ̂n,z, z) + K(µn+1, z).

Corollary 4. Let n � 0 and z∗ ∈ D. Consider the measure µ̂n,z∗ = wn,z∗ dm, where

wn,z∗(ξ) =
1 − |fn(z∗)|2

|ϕ∗
n(ξ) − ξfn(z∗)ϕn(ξ)|2

, ξ ∈ T . (13)

Then, µ̂n,z∗ is a probability measure whose Schur functions {f̂k} satisfy

f̂k(z∗) =

{
fk(z∗), 0 � k � n,

0, k > n,
(14)

at the point z∗. Moreover, we have K(µ, z∗) = K(µ̂n,z∗ , z∗) + K(µn+1, z∗).

Proof. Consider the family of orthonormal polynomials {ϕ̂j} whose recurrence coeffi-

cients are given by âk = fk(0) for 0 � k � n − 1, ân = fn(z∗), and âk = 0 for k > n. 

It is well-known that the measure ν = |ϕ̂∗
n+1|−2 dm is a probability measure on T and 

its Schur functions {fν,k}k�0 satisfy fν,k(0) = âk for all k � 0. To see this, combine 

formulas (4.17) and (5.11) in [10]. It follows that for all w ∈ D we have fν,n+1(w) = 0. 

Therefore, from the definition of Schur’s algorithm (2), we have

0 =
fν,n(w) − fν,n(0)

1 − fν,n(0)fν,n(w)

for all w ∈ D and so

fν,n(w) = fν,n(0) = ân = fn(z∗).

Then, since âk = fk(0) for all 0 � k � n − 1, we have

fν,k(z∗) = fk(z∗), 0 � k � n − 1
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by Schur’s algorithm (2) since {fν,k} and {fk} satisfy the same recursion at point z∗

when k = 0, 1, . . . , n − 1. We take µ̂n,z∗ = ν, and, to finish the proof, it remains to check 

that |ϕ̂∗
n+1(ξ)|−2 = wn,z∗(ξ) for ξ ∈ T . To this end, observe that polynomials ϕ̂∗

n and 

ϕ∗
n are identical since the recurrence coefficients defining them are the same. Then, from 

(12) we get

√
1 − |ân|2 · ϕ̂∗

n+1 = ϕ̂∗
n − ξânϕ̂n, ân = fn(z∗) .

Hence, (13) follows due to

|ϕ̂∗
n+1(ξ)|−2 =

1 − |fn(z∗)|2

|ϕ̂∗
n − ξfn(z∗)ϕ̂n|2

=
1 − |fn(z∗)|2

|ϕ∗
n(ξ) − ξfn(z∗)ϕn(ξ)|2

,

where we used ϕ̂∗
n = ϕ∗

n and ϕ̂n = ϕn. �

According to a theorem by Khrushchev (Theorem 3 in [10]), the Schur function of 

the probability measure |ϕ∗
n|2 dµ is equal to bnfn, where bn = ϕn/ϕ∗

n is the Blaschke 

product of order n. In other words, we have (formula (2.14) in [10])

∫

T

1 + ξ̄z

1 − ξ̄z
|ϕ∗

n(ξ)|2 dµ(ξ) =
1 + zbn(z)fn(z)

1 − zbn(z)fn(z)
, z ∈ D, (15)

and hence (formula (1.18) in [10])

|ϕ∗
n(ξ)|2w(ξ) =

1 − |fn(ξ)|2
|1 − ξbn(ξ)fn(ξ)|2 , ξ ∈ T . (16)

Identity |bn(ξ)| = 1, ξ ∈ T implies the following corollary.

Corollary 5. We have

K(|ϕ∗
n(ξ)|2 dµ, z) = K(µn, z) + log

(
1 − |zbn(z)fn(z)|2

1 − |zfn(z)|2
)

for every n � 0 and z ∈ D.

Proof. Fix n � 0 and z ∈ D. It follows from (8) that

K(|ϕ∗
n|2 dµ, z) = log(1 − |zbn(z)fn(z)|2) − P(log(1 − |bnfn|2), z)

= log(1 − |zbn(z)fn(z)|2) − P(log(1 − |fn|2), z)

= K(µn, z) + log

(
1 − |zbn(z)fn(z)|2

1 − |zfn(z)|2
)

,

as required. �
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Let us now consider the case when µ is absolute continuous and its density does not 

oscillate too much. We say that w ∈ AP
∞(T ) if

[w]∞,P = sup
z∈D

P(w, z) exp
(

−P(log w, z)
)

< ∞ . (17)

It is known that AP
∞(T ) � A∞(T ), where A∞(T ) is the usual Muckenhoupt class (see 

p. 212 in [18] for its definition).

Lemma 2. We have w ∈ AP
∞(T ) if and only if supz∈D K(w dm, z) < ∞. Moreover, the 

dual measure of wdm is absolutely continuous – i.e., (w dm)dual = wdualdm, and its 

density satisfies wdual ∈ AP
∞(T ).

Proof. The first statement is immediate from the definition. To prove the second one, we 

use (11) and notice that µ ∈ Sz(T ) and K(µ, z) ∈ L∞(D) imply that µ has no singular 

part and µ = wdm with w ∈ AP
∞(T ). Indeed, if µ = w dm + µs where µs is the singular 

measure, then

log (P(µs, z) + P(w, z)) − P(log w, z) � C, z ∈ D,

by our assumptions. This implies

P(µs, z) � P(µs, z) + P(w, z) � C exp (P(log w, z)) � CP(w, z),

by Jensen inequality, hence, µs = 0. �

Corollary 6. Let the probability measure µ be defined by µ = wdm and w satisfy 

w ∈ AP
∞(T ). If {fn} denotes the Schur family of µ, then 1 − |fn|2 ∈ AP

∞(T ) and 

[1 − |fn|2]∞,P � [w]∞,P , n � 0.

Proof. By Corollary 2, for each n � 0 and z ∈ D, we have

log P(1 − |fn|2, z) − P(log(1 − |fn|2), z) � K(µ, z) � log[w]∞,P .

It follows that log[1 − |fn|2]∞,P � log[w]∞,P . �

3. The space BMOη and proof of Theorem 2

Given a function η : D → [0, +∞], we define the space BMOη to be the set of functions 

v ∈ L1(T ) such that the following characteristic

‖v‖∗
η = inf{c � 0 : P(|v − P(v, z)|, z) � cη(z), z ∈ D}

is finite. The next result is a direct analogue of an estimate by M. Korey (see Section 3.2 

in [11]).
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Lemma 3. Suppose that v, ev ∈ L1(T ) and let P(ev, z)/eP(v,z) = 1 + γ for some γ � 0

and z ∈ D. Then,

P(|v − P(v, z)|, z) � c

{√
γ, γ < 1,

log(1 + γ), γ � 1,

for an absolute constant c.

Proof. The proof is an adaptation of the original argument in [11]. For the reader’s 

convenience, we reproduce it here. It suffices to prove the inequality

P(|v − mz(v)|, z) � c

{√
γ, γ < 1,

log(1 + γ), γ � 1,

where mz(v) is the median value of v on T with respect to the probability measure 

ν = (1 − |z|2)/|1 − ξ̄z|2 dm. Adding a constant to v if needed, one can assume that 

mz(v) = 0. Then, there are two disjoint measurable subsets E ⊆ {ξ : v(ξ) � 0} and 

F ⊆ {ξ : v(ξ) � 0} of T such that ν(E) = ν(F ) = 1/2. Set

a = 2P(χEev, z), b = 2P(χF ev, z), a′ = e2P(χEv,z), b′ = e2P(χF v,z).

By construction and by Jensen’s inequality, one gets

1 + γ =
P(ev, z)

eP(v,z)
=

a + b

2
√

a′b′
�

a′ + b′

2
√

a′b′
,

which implies a′/b′ � 1 + c̃ max(
√

γ, γ2) with an absolute constant c̃. On the other hand, 

we have a′/b′ = e2P(χEv,z)−2P(χF v,z). It follows that

P(|v|, z) = P(χEv, z) − P(χF v, z) � c log(1 + max(
√

γ, γ)),

for another absolute constant c, as claimed. �

Given a measure µ ∈ Sz(T ), we introduce the function

η(z) = max
(√

K(µ, z), K(µ, z)eK(μ,z)/2
)

, (18)

on the unit disk D. The next lemma is crucial for later analysis.

Lemma 4. Consider µ ∈ Sz(T ). Let {fn} be the Schur family of µ and {ϕn} be orthogonal 

polynomials generated by µ. Then the functions log |ϕ∗
n−ξfnϕn|2 and fn belong to BMOη

for all n � 0 and
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∥∥∥log |ϕ∗
n − ξfnϕn|2

∥∥∥
∗

η
� c, ‖fn‖∗

η � c, n � 0,

with an absolute constant c.

Proof. Consider the weight vn = 1 − |fn|2 on the unit circle T . By Corollary 2, we have 

K(vn, z) � K(µ, z). Hence, applying Lemma 3 to v = log vn one has

P(| log vn − P(log vn, z)|, z) � c max(
√

K(µ, z), K(µ, z)) � cη(z), z ∈ D.

It follows that ‖ log vn‖∗
η � c for all n � 0. In a similar way, we get log w ∈ BMOη.

We now use (16) to write

log w = log vn − log |ϕ∗
n − ξfnϕn|2,

hence log |ϕ∗
n − ξfnϕn|2 ∈ BMOη with the characteristic ‖.‖∗

η at most 2c. Next, we use 

Jensen’s inequality to write

P(log(1 − |fn|2), z) � log P(1 − |fn|2, z) = log(1 − P(|fn|2, z)).

Therefore, applying Lemma 1 to measure µn, one has

K(µn, z) = log(1 − |zfn(z)|2) − P(log(1 − |fn|2), z) � log
1 − |fn(z)|2

1 − P(|fn|2, z)
.

Since K(µn, z) � K(µ, z) by Corollary 1, we have

1 − |fn(z)|2 � eK(μ,z)(1 − P(|fn|2, z)),

which can be rewritten as

eK(μ,z)P(|fn|2, z) − |fn(z)|2 � eK(μ,z) − 1 .

Since K � 0, the following inequality holds

P(|fn|2, z) − |fn(z)|2 � eK(μ,z)P(|fn|2, z) − |fn(z)|2 � eK(μ,z) − 1 .

The last bound along with mean value formula for harmonic functions implies

P(|fn − P(fn, z)|2, z) = P(|fn − fn(z)|2, z),

= P(|fn|2, z) + |fn(z)|2 − 2P(Re(fnfn(z)), z),

= P(|fn|2, z) − |fn(z)|2 � eK(μ,z) − 1.

By Cauchy-Schwarz inequality, we get
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P(|fn − P(fn, z)|, z) �
√

eK(μ,z) − 1 � cη(z) .

That finishes the proof. �

Proof of Theorem 2. By Lemma 4, for every n � 0 we have

P(|fn − fn(z)|, z) � cη(z), z ∈ D.

On the other hand, P(|fn − fn(z)|, z) � 2 since |fn| � 1 on D ∪ T . This yields the 

statement of the theorem. �

Next, we will estimate the harmonic conjugates of functions in BMOη. Some notation 

is needed first. We denote |E| = m(E) for Borel subsets of T . If I ⊂ T is an arc with 

center at ξ, set zI = ξ(1 − |I|) and denote by 2I the arc with center at ξ such that 

|2I| = 2|I|. We also let 〈f〉I,P = P(f, zI). For u ∈ L1(T ), we define the harmonic 

conjugate function v by the formula

v(ξ) = (Qu)(ξ) = lim
r→1

∫

T

u(ζ)Qr(ζ, ξ) dm(ζ), Qr(ζ, ξ) = Im
1 + rζ̄ξ

1 − rζ̄ξ
, ξ ∈ T .

From the standard estimates for singular integrals, one knows that the limit exists almost 

everywhere on T and defines the function Qu ∈ L1,∞(T ). Notice that the harmonic 

conjugate of a constant function is identically zero. Finally, given real-valued u ∈ L1(T ), 

the function u + i(Qu) is the nontangential boundary value of the function

F(z) =

∫

T

u(ζ)
1 + ζ̄z

1 − ζ̄z
dm(ζ)

analytic in D. Function Re F is Poisson extension of u and harmonic conjugate of u is the 

boundary value of Im F . Next, we recall that, given a parameter ρ ∈ (0, 1), the symbol 

S∗
ρ(ξ) denotes the convex hull of ρD and a point ξ ∈ T .

Below we write A � B for quantities A, B if there is an absolute constant c such that 

A � cB. Notation A ∼ B is used when A � B and B � A.

Lemma 5. Let u ∈ BMOη and let v be the harmonic conjugate of u. Let I be an arc with 

center at ξ0 ∈ T . Then, there is a constant cI such that

|{ξ ∈ I : |v(ξ) − cI | > t}|
|I| � t−1‖u‖∗

η

∑
j�0

2−jη(zj),

for some zj ∈ S∗
0.9(ξ0) such that |zj − ξ0| ∼ 2j |I|, j � 0.



14 R. Bessonov, S. Denisov / Journal of Functional Analysis 280 (2021) 109002

Proof. Write u = u1 + u2 + 〈u〉2I,P for u1 = χ2I(u − 〈u〉2I,P ), u2 = χT\2I(u − 〈u〉2I,P ), 

and denote by v1, v2 the harmonic conjugates of u1, u2, respectively. Since Q is the 

continuous operator from L1(T ) to L1,∞(T ), we have

m({ξ ∈ I : |v1(ξ)| > t}) � t−1‖u1‖L1(T),

� t−1〈|u − 〈u〉2I,P |〉2I,P |I|,
� t−1‖u‖∗

η · η(z0) · |I|,

for z0 = z2I = (1 − 2|I|)ξ0. Next, we estimate the distribution function of v2. Put 

cI =
∫

T\2I
u2(ζ)Q(ζ, ξ0) dm(ζ) and write for ξ ∈ I:

v2(ξ) − cI = (Qu2)(ξ) − cI =

∫

T\2I

u2(ζ)
(

Q(ζ, ξ) − Q(ζ, ξ0)
)

dm(ζ).

Let us estimate the norm of v2 −cI in L1(I) to later use Chebyshev inequality. For k � 1, 

denote by Ik the arcs of T of size 2k|I| with center at ξ0. Notice that we take only those 

k for which |Ik| � 2π. Then, for ξ ∈ I, ζ ∈ Ik+1 \ Ik, we have

|Q(ζ, ξ) − Q(ζ, ξ0)| � |ξ − ξ0|
|(ζ − ξ)(ζ − ξ0)| �

|I|
|Ik|2 =

1

22k|I| .

Using this relation, we get

∫

I

|v2 − cI | dm �
∑

k�1

1

22k|I|

∫

I

∫

Ik+1\Ik

|u2(ζ)| dm(ζ) dm(ξ)

�
∑

k�1

1

22k

∫

Ik+1\Ik

|u2| dm.

Set J0 = 2I and let Jk, k � 1, be one of two arcs of Ik+1 \ Ik such that

∫

Ik+1\Ik

|u2| dm � 2

∫

Jk

|u2| dm.

We have

∫

Jk

|u2| dm � |Jk| ·
(

〈|u − 〈u〉Jk,P |〉Jk,P + |〈u〉Jk,P − 〈u〉2I,P |
)

� 2k|I| ·
(

‖u‖∗
ηη(zk) +

k∑

j=1

|〈u〉Jj ,P − 〈u〉Jj−1,P |
)

,
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0.9(ξ0)

Fig. 1. Points {zj} and S∗

0.9(ξ0).

where zk = (1 − |Jk|)ξk and ξk denotes the center of Jk. Since |ζ − zj | ∼ |ζ − zj+1| for 

ζ ∈ T , we can write

|〈u〉Jj ,P − 〈u〉Jj−1,P | = |P(u − 〈u〉Jj−1,P , zj)| � P(|u − 〈u〉Jj−1,P |, zj−1) � ‖u‖∗
ηη(zj−1) .

Hence,

∫

Jk

|u2| dm � 2k · |I| · ‖u‖∗
η

k∑

j=0

η(zj).

It follows that

1

|I|

∫

I

|v2 − cI | dm � ‖u‖∗
η ·

∑

k�1

2−k
k∑

j=0

η(zj) � ‖u‖∗
η ·

∑

j�0

2−jη(zj).

Now we collect estimates to get the bound

|{ξ ∈ I : |v(ξ) − cI | > 2t}| � |{ξ ∈ I : |v1(ξ)| > t}| + |{ξ ∈ I : |v2(ξ) − cI | > t}|

� t−1‖u‖∗
η · η(z0) · |I| + t−1

∫

I

|v2 − cI | dm

� t−1‖u‖∗
η · |I|

∑
j�0

2−jη(zj).

The simple geometric considerations (see Fig. 1) yield zj ∈ S∗
0.9(ξ0) and the lemma is 

proved. �
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4. Sums of Poisson kernels

In this section, we study the properties of finite sums of Poisson kernels. They will be 

used in the proof of Theorem 3.

We denote by C[a, b] the space of functions continuous on [a, b]. The following ele-

mentary result is well-known (see problem 13(b), p. 167 in [16]).

Lemma 6. Suppose the sequence {gn} of non-decreasing functions converges to a function 

g ∈ C[a, b] on a dense subset of [a, b]. Then, {gn} converges to g uniformly on [a, b].

We start with the calculation, which reveals the connection between the zeroes of the 

polynomial ϕn and the sum of Poisson kernels. Consider bn = ϕn/ϕ∗
n. We can write it 

as

bn(z) = αnzln

mn∏

j=1

z − zj,n

z − z̄−1
j,n

, αn > 0, ln + mn = n ,

where {zj,n} are zeroes of ϕn different from 0. That is the product of Möbius trans-

forms each of which has an argument which is increasing monotonically on T since this 

transform is a conformal map of D onto D. Calculating the derivative of its argument

∂θ arg bn(eiθ) = ln + Im ∂θ

⎛
⎝

mn∑

j=1

log

(
eiθ − zj,n

eiθ − z̄−1
j,n

)⎞
⎠ = ln +

mn∑

j=1

1 − |zj,n|2
|eiθ − zj,n|2 (19)

one can recognize the Poisson kernel as terms in the last sum.

Lemma 7. Assume that hn are smooth functions on (−πn, πn) with derivatives h′
n given 

by

h′
n(t) =

1

n

n∑

k=1

1 − |zk,n|2
|eit/n − zk,n|2 , zk,n ∈ D. (20)

If {hn} converges to a smooth function h uniformly on compact subsets of R, then {h′
n}

converges to h′ uniformly on compact subsets of R.

Proof. We will assume that the points zk,n are enumerated so that

|1 − zk,n| � |1 − zk+1,n|, 1 � k � n.

Take an arbitrary b > 0. It suffices to show that {h′
n} converges to h′ uniformly over 

[−b/2, b/2]. We write h′
n as h′

n = Gn + Hn, where Gn is the sum which corresponds 

to all terms (if any) for which n|1 − zk,n| > 1.9b and, respectively, terms in Hn satisfy 

n|1 − zk,n| � 1.9b. For Gn, we have
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|G′
n(t)| � b−1Gn(t) (21)

when t ∈ [−b, b]. Indeed, if t ∈ [−b, b] and n|1 − z| � 1.9b, we have

∂t

(
1

|eit/n − z|2
)

=
2

n

Re(iz̄eit/n)

|eit/n − z|4 �
1

n|eit/n − z|3 �
1

b|eit/n − z|2 , (22)

which yields the required estimate. It follows that

lim sup
n→∞

b∫

−b

|G′
n| dt � lim sup

n→∞

2b∫

−2b

b−1Gn dt � b−1(h(2b) − h(−2b)).

Thus, functions {Gn} are uniformly bounded. The estimate (21) then implies that the 

set {Gn} is also equicontinuous on [−b, b]. Choose a subsequence {Gnj
} which converges 

to some continuous function G uniformly over [−b, b]. Then, {
∫ x

−b
Gnj

dt} converges to ∫ x

−b
G dt uniformly over [−b, b] as well. Since we know by conditions of the lemma that 

{
∫ x

−b
h′

n dt} converges uniformly to a smooth function, the sequence {
∫ x

−b
Hnj

dt} also 

converges uniformly to a function continuous on [−b, b].

Now let zk,nj
, k = 1, . . . , c(nj) be all points that satisfy nj |1 −zk,nj

| � 1.9b. For every 

z ∈ D such that nj |1 − z| � 1.9b, we have

1

nj

2b∫

−2b

1 − |z|2
|eit/nj − z|2 dt =

2b/nj∫

−2b/nj

1 − |z|2
|eiτ − z|2 dτ � cb > 0,

where the constant cb depends only on b. It follows that

lim sup
j

c(nj) � c−1
b lim sup

j

2b∫

−2b

Hnj
dt � (h(2b) − h(−2b))/cb.

Hence, lim supj c(nj) = Nb for some Nb � 0 (we set Nb = 0 if there are no zeroes zk,nj

such that nj |1 − zk,nj
| � 1.9b for all j large enough). Choosing a subsequence, one can 

assume that c(nj) = Nb for all j. If Nb > 0, we set ξk,nj
= inj(1 − zk,nj

) for every 

k = 1, . . . , Nb. Note that ξk,nj
belong to C

+ = {z ∈ C : Im z > 0} and, moreover, 

|ξk,nj
| < 1.9b. Choosing again a subsequence, we may assume that {ξk,nj

} converges 

to ξk ∈ C+, k = 1, . . . , Nb. We claim that none of these limiting points belongs to the 

segment [−b/2, b/2] on the real line. Indeed, if ξk ∈ [−b/2, b/2], then the sequence of 

functions

1

nj

1 − |zk,nj
|2

|eit/nj − zk,nj
|2 , j = 1, 2, . . . (23)
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converges to 2πδξk
in the weak-∗ sense because substituting the Taylor expansion of 

eit/nj gives the Poisson kernel as the main term. That contradicts the fact that 
∫ x

−b
Hnj

dt

converges uniformly to a continuous function on [−b, b]. Knowing that all limiting points 

ξk are separated from the real line, it is easy to see that {Hnj
} converges uniformly over 

[−b/2, b/2]. Thus, we can guarantee that some subsequence {h′
nj

} converges uniformly 

on [−b/2, b/2]. Denote its limit by F . Since

lim
n→∞

x∫

−b/2

h′
n(t) dt = lim

n→∞

(
hn(x) − hn(−b/2)

)
= h(x) − h(−b/2)

by assumption of the lemma, we get F = h′. In the standard way, we now get 

limn→+∞ h′
n = h′ uniformly on compacts in R over the whole original sequence. In-

deed, if this is not true, then there is ε > 0, b > 0, tn ∈ [−b/2, b/2] and a sequence {mn}
such that |h′

mn
(tn) − h′(tn)| > ε. However, by the argument above we can take a subse-

quence of {mn}, call it {m′
n}, so that {h′

m′

n
} converges to h′ uniformly on [−b/2, b/2]. 

That gives a contradiction. The lemma is proved. �

Lemma 8. If, under the conditions of Lemma 7, we also assume that h(t) = t + c for all 

t ∈ R and some constant c, then

lim
n→∞

(
n min

1�k�n
|1 − zk,n|

)
= ∞.

Proof. Given b ∈ R
+, let {zj,n}, j = 1, . . . , c(n, b), be all zeroes of ϕn, counting mul-

tiplicity, that satisfy n|1 − zj,n| < 1.9b, and set c(n, b) = 0 if there are no such zeroes. 

From the previous proof, we know that lim supn c(n, b) < ∞. We need to show that 

lim supn→∞ c(n, b) = 0 for every b. Suppose this is not the case and there is some b̂ such 

that c1
def
= lim supn→∞ c(n, ̂b) � 1. Then, there is a subsequence {n

(1)
k } such that each 

ϕ
n

(1)
k

(z) has exactly c1 zeroes, counting multiplicity, at points {z
j,n

(1)
k

}, j = 1, . . . , c1, 

and all of these zeroes are inside the open disc of radius 1.9b̂/n centered at 1. Using 

compactness argument, we can find {n̂
(1)
k }, a subsequence of {n

(1)
k }, such that

lim
k→∞

ξ
j,n̂

(1)
k

= ξj , ξj,n
def
= in(1 − zj,n), j = 1, . . . , c1

and c1 points {ξj}, counting multiplicity, all belong to the set {ξ ∈ C
+ : |ξ| � 1.9b̂}. 

Notice that none of these points can be on the real line, that follows from the proof of 

the previous lemma.

Next, we look at zeroes of a polynomial ϕ
n̂

(1)
k

(z) that belong to the annulus

1.9b̂ � n̂
(1)
k |1 − z| < 1.9(̂b + 1).
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Fig. 2. Points {ξj}.

Applying the same argument, we can find {n̂
(2)
k }, a subsequence of {n̂

(1)
k }, for which each 

ϕ
n̂

(2)
k

(z) has exactly c2 zeroes {z
j,n

(2)
k

}, j ∈ {c1, . . . , c1 + c2} in that annulus and they all 

satisfy

lim
k→∞

ξ
j,n̂

(2)
k

= ξj , j = c1, . . . , c1 + c2 .

Notice that it might be that c2 = 0 but we always have c2 < ∞.

At the next step, we consider zeroes of ϕ
n̂

(2)
k

that satisfy

1.9(̂b + 1) � n̂
(2)
k |1 − z| < 1.9(̂b + 2)

and select a subsequence {n̂
(3)
k } out of {n̂

(2)
k } over which these zeroes have limiting values. 

We continue this process and find a subsequence {mn} of the original sequence such that 

all zeroes {zj,mn
} satisfy conditions:

lim
n→∞

ξj,mn
= ξj , ξj ∈ C

+,

for every j = 1, 2, . . . , N , where N =
∑

l�1 cl ∈ [1, ∞]. Moreover, if N = ∞, then 

limj→∞ |ξj | = ∞ by our construction. Fig. 2 illustrates the case when c1 = 2 and c2 = 1.

For z ∈ D and ξ = in(1 − z), we have

1

n

1 − |z|2
|eit/n − z|2 =

n(1 − |z|2)

|in(eit/n − 1) + in(1 − z)|2 =
2 Im ξ − |ξ|2/n

|in(eit/n − 1) + ξ|2 .

That gives

lim
n→∞

1

mn

1 − |zj,mn
|2

|eit/mn − zj,mn
|2 =

2 Im ξj

|t − ξj |2 , (24)

and the convergence is uniform on compact subsets of R. Since all terms in (20) are 

non-negative, we can define U as
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U(t) =

N∑

j=1

2 Im ξj

|t − ξj |2 .

Next, we will study the properties of U(t) and, in particular, show that it is finite. To 

this end, we fix arbitrary l ∈ N and consider the partial sum

l∑

j=1

2 Im ξj

|t − ξj |2 .

From Lemma 7 and our additional assumption h(t) = t + c, we know that

1

n

n∑

k=1

1 − |zk,n|2
|eit/n − zk,n|2 → 1, n → ∞

and this convergence is uniform in t over compacts in R. That implies

lim sup
n→∞

1

n

l∑

k=1

1 − |zk,n|2
|eit/n − zk,n|2 � 1 .

Now, we use (24) in the previous bound to get

l∑

j=1

2 Im ξj

|t − ξj |2 � 1

for every l ∈ N. Thus, U(t) is finite for every t ∈ R. Moreover, U(t) � 1, t ∈ R. 

Substituting t = 0, we see that {ξj} satisfies Blaschke condition in C+. Consider the 

Blaschke product with zeroes at {ξj}, i.e.,

B(ξ) =

N∏

j=1

(
eiαj

ξ − ξj

ξ − ξ̄j

)
, ξ ∈ C

+, N � 1 , (25)

where αj are chosen such that

eiαj
i − ξj

i − ξ̄j

> 0 if ξj �= i and αj = 0 otherwise.

We will show that B(ξ) = ei(β1ξ+β2) with some β1, β2 ∈ R thus getting the contradiction 

with (25). To this end, write

h′
mn

(t) =
1

mn

mn∑

k=1

1 − |zk,mn
|2

|eit/mn − zk,mn
|2 = Ψ1,mn,L(t) + Ψ2,mn,L(t),

where we define
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Ψ1,mn,L(t) =
1

mn

∑

k∈Ω

1 − |zk,mn
|2

|eit/mn − zk,mn
|2 , Ω = {k : |ξk| < L, |ξk,mn

− ξk| < 0.1},

and Ψ2,mn,L = h′
mn

− Ψ1,mn,L. We know from the previous lemma that limn→∞ h′
n = 1

uniformly over compacts in R. When L is fixed and n → ∞, we have

UL(t)
def
=

∑

j:|ξj |<L

2 Im ξj

|t − ξj |2 = lim
n→∞

Ψ1,mn,L(t) � h′(t) = 1, t ∈ R.

Moreover, from (22) we get |Ψ′
2,mn,L(t)| � L−1Ψ2,mn,L(t) uniformly with respect to t ∈

[−L/2, L/2]. Since Ψ1,mn,L and Ψ2,mn,L are both nonnegative, Ψ1,mn,L+Ψ2,mn,L = h′
mn

, 

and h′
mn

→ 1 uniformly over compacts, we have |Ψ′
2,mn,L(t)| � L−1 for t ∈ [−L/2, L/2] if 

n is large enough. Clearly, {Ψ2,mn,L} converges uniformly on [−L/2, L/2] as a difference 

of two uniformly convergent sequences. Therefore, if Ψ2,L denotes its limit, then

‖Ψ2,L‖L∞[−L/2,L/2] � 1, ‖Ψ2,L‖Lip[−L/2,L/2] � L−1 ,

where

‖f‖Lip[a,b]
def
= sup

x,y∈[a,b],x �=y

|f(x) − f(y)|
|x − y| .

Notice that UL + Ψ2,L = 1. Therefore, ‖UL‖Lip[−L/2,L/2] � L−1, that is

|UL(ξ2) − UL(ξ1)| � |ξ1 − ξ2|/L

for ξ1, ξ2 ∈ [−L/2, L/2]. Taking the limit as L → ∞ and recalling that U = limL→∞ UL, 

we see that U is constant on R. A direct calculation shows that (arg B)′ = cU on R for 

some positive constant c. Thus, we have arg B(t) = β1t +β2, t ∈ R, β1 � 0. The function 

Be−i(β1z+β2) is unimodular on R and has zero argument there, so it is equal to 1 on 

R and, by uniqueness of holomorphic functions, B(z) = ei(β1z+β2), z ∈ C
+, yielding a 

contradiction. �

Lemma 9. Assume that smooth functions hn defined on (−πn, πn) have derivatives given 

by (20) and the sequence {hn} converges almost everywhere to some nondecreasing func-

tion h defined on R. If

lim
n→∞

(
n min

1�j�n
|1 − zj,n|

)
= ∞ , (26)

then h = c1t + c2 and {hn} converges uniformly over compacts in R.
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Proof. For arbitrary b > 0, we have

b∫

−b

h′
n(t)dt = hn(b) − hn(−b)

and, since limn→∞ hn(t) = h(t) a.e. and h′
n � 0, one gets

sup
n

b∫

−b

h′
n(t)dt < ∞ . (27)

Moreover, condition (26) and an estimate (22) give

|h′′
n(t)| � εn|h′

n(t)|, lim
n→∞

εn = 0 ,

for t ∈ [−b, b]. Thus, (27) implies

lim
n→∞

b∫

−b

|h′′
n(t)|dt = 0 .

From the relation

h′
n(t)(t2 − t1) = hn(t2) − hn(t1) +

t2∫

t1

t∫

τ

h′′
n(τ1)dτ1dτ ,

we obtain

lim
n→∞

h′
n(t) =

h(t2) − h(t1)

t2 − t1
.

In particular, the right hand side does not depend on t1 and t2. That implies that h is 

a linear function, i.e., h = c1t + c2. Lemma 6 gives uniform convergence. �

5. Proof of Theorem 3

The proof of Theorem 3 is based on careful study of the arguments of orthogonal 

polynomials ϕn and Schur functions fn. We proceed as follows. Theorem 1, Lemma 4, 

and Lemma 5 show that these arguments, after rescaling and taking a limit, satisfy 

equation (41) below. Since the derivative of the argument of a polynomial with zeroes 

in D is a finite sum of Poisson kernels (see formula (19)), equation (41) allows us to 

recover local asymptotics of all objects in Theorem 3 and prove that assertions (a)–(d)

are equivalent to an identity d = 0 in (41).
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In this section, we always assume µ ∈ Sz(T ). We start with several auxiliary results. 

Recall that {fn} denotes the family of Schur functions for a measure µ and that, given 

an arc I ⊂ T with the center at ξI ∈ T , we let zI = (1 − |I|)ξI .

Lemma 10. Let I ⊂ T be an arc and |I| � 1/4. Then,

|{ξ ∈ I : |fn(ξ) − fn(zI)| > t}|/|I| � η(zI)/t,

where the function η is defined in (18).

Proof. By Lemma 4, we have ‖fn‖∗
η � C for some constant C. Since

1 − |zI |2
|1 − ξ̄zI |2

�
1 − (1 − |I|)2

|I|2 �
1

|I| , ξ ∈ I,

one has

1

|I|

∫

I

|fn(ξ) − fn(zI)| dm(ξ) � P(|fn − fn(zI)|, zI) � Cη(zI).

It remains to use Chebyshev inequality. �

Given ξ ∈ T , ρ ∈ (0, 1), δ ∈ (0, 1) and α, β: 0 < α < β, set

Υδ,ρ,α,β(ξ) = {z ∈ S∗
ρ(ξ), αδ < |z − ξ| < βδ}, (28)

where, as before, S∗
ρ(ξ) is the convex hull of ρD and point ξ. For a complex-valued 

function h defined on a domain Ω ⊂ C, we introduce its oscillation as

oscΩ(h) = sup
z1,z2∈Ω

|h(z2) − h(z1)|.

In the next lemma, we show that Schur family {fk} has small oscillation near the bound-

ary of D uniformly in k � 0.

Lemma 11. Suppose ξ ∈ T is such that limr→1 K(µ, rξ) = 0. Then, for every ρ, α, β and 

{δn} such that limn→∞ δn = 0, we have

lim
n→+∞

sup
k

oscΥn
(fk) = 0, Υn = Υδn,ρ,α,β(ξ).

Proof. Take an arc In ⊂ T centered at ξ so that |In| = cnδn for some cn > 0 such that 

cn → ∞, cnδn → 0, and cn
√

ρn → 0, where ρn = η(zn), zn = ξ(1 − |In|). For example, 

one can take cn = 1/(
√

δn + 4
√

ρ̃n), ρ̃n = supr�1−
√

δn
η(rξ). By Lemma 10, we have

|{ξ ∈ In : |fk(ξ) − fk(zn)| > t}|/|In| � η(zn)/t, t > 0. (29)
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For every g that satisfies ‖g‖L∞(T) � 2 and every z ∈ Υn, we have

P(g, z) = P(χIn
g, z) + P(χT\In

g, z) = P(χIn
g, z) + o(1), n → ∞,

since limn→∞ cn = ∞, and this bound holds uniformly in g and z. Thus, having defined 

f̃k = (fk − fk(zn))χIn
, we get

fk(z) − fk(zn) = P(fk − fk(zn), z) = P(f̃k, z) + o(1). (30)

Recall that limn→∞ cn
√

ρn = 0. Thus,

∣∣∣P(f̃k, z)
∣∣∣ � P(χ|f̃k|<√

ρ
n

|f̃k|, z) + P(χ|f̃k|�√
ρ

n

|f̃k|, z) .

The first term is bounded by 
√

ρn. Consider the second one. Since z ∈ Υn, we can 

estimate the Poisson kernel by Cδ−1
n , bound |f̃k| by 2, and apply (29) to write

P(χ|f̃k|�√
ρ

n

|f̃k|, z) �
|In|ρn√

ρ
n
δn

= cn
√

ρn → 0.

From (30), we get

lim
n→∞

sup
k

sup
z∈Υn

|fk(z) − fk(zn)| = 0 .

Since |fk(ξ1) − fk(ξ2)| � |fk(ξ1) − fk(zn)| + |fk(ξ2) − fk(zn)|, we get the statement of 

the lemma. �

Denote the argument of ϕ∗
n on T by ζn. Since ϕ∗

n has no zeroes in D, ζn =

Im log ϕ∗
n(eit) is a continuous function and it coincides with the harmonic conjugate 

of log |ϕ∗
n(eit)| since ϕ∗

n(0) is real. Moreover, ζn(eit) = (nt − γn(t))/2 where γn denotes 

an argument of the Blaschke product bn = ϕn/ϕ∗
n. As was discussed previously, γn(t) is 

increasing in t ∈ [−π, π), see (19).

Lemma 12. The function ϕ∗
n(1 − zbnfn) is outer in D. For almost every t ∈ (−π, π), the 

harmonic conjugate of the function log |ϕ∗
n(1 − ξbnfn)|2, ξ ∈ T , at point eit is given by

vn(t) = nt − γn(t) + 2 arctan

( |fn(eit)| sin(γn(t) + t + κn(t))

1 + |fn(eit)| cos(γn(t) + t + κn(t))

)
. (31)

In this formula, the function κn(t) is uniquely defined by conditions: κn(t) ∈ [−π, π)

and eiκn(t) = −fn(eit)/|fn(eit)| in the case when fn is not identically zero. If fn = 0

identically, then the third term in (31) can be dropped.
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Proof. Since the polynomial ϕ∗
n has no zeroes in D it is an outer function. We also have 

Re(1 − zbnfn) � 0 in D, hence 1 − zbnfn is an outer function as well, see Corollary 4.8 

on page 74 in [7]. The harmonic conjugate of log |ϕ∗
n(1 − zbnfn)| is the sum of harmonic 

conjugates of log |ϕ∗
n| and of log |1 − zbnfn|. The harmonic conjugate of log |ϕ∗

n| is ζn. 

The harmonic conjugate of g = log |1 − ξbnfn| is equal to Im log(1 − ξbnfn) which is the 

boundary value of the argument of function 1 − zbnfn. The latter function has positive 

real part and its absolute value is bounded by 2. Therefore, g̃ is well defined a.e. on T

and g̃ ∈ [−π/2, π/2]. As we have seen in (9), for µ ∈ Sz(R) we have

∫

T

log(1 − |fn|2) dm < +∞,

in particular, |fn| < 1 almost everywhere on T for each n. Suppose that ξ = eit is 

such that fn(ξ), the boundary value of fn, satisfies 0 < |fn(ξ)| < 1. We know that this 

holds for almost every ξ = eit ∈ T (if |fn| = 0 on a set of positive Lebesgue measure, 

then fn = 0 identically and the lemma holds trivially). Take κn(t) ∈ [−π, π) such that 

−fn(eit)/|fn(eit)| = eiκn(t). Then, we have

g̃(ξ) = arctan

( |bn(ξ)fn(ξ)| sin(γn(t) + t + κn(t))

1 + |bn(ξ)fn(ξ)| cos(γn(t) + t + κn(t))

)
,

due to the formula

1 + aeiψ

|1 + aeiψ| = exp

(
i arctan

(
a sin ψ

1 + a cos ψ

))
, (32)

for a ∈ [0, 1], ψ ∈ R: 1 + a cos ψ �= 0, when we notice that Re(1 + ξbnfn) �= 0 almost 

everywhere on T . Since |bn(ξ)| = 1, the lemma is proved. �

Now, we can control the oscillation of υn.

Lemma 13. Let vn be defined by (31) and let I ⊂ T be an arc with center at ξ0 ∈ T . 

Then, there exist numbers cI,n such that

|{ξ ∈ T : |vn(ξ) − cI,n| > t}|/|I| � t−1
∑

j�0

2−jη(zj),

where the function η is defined in (18) and {zj} is the set of points constructed in 

Lemma 5.

Proof. Since vn is the harmonic conjugate of un = log |ϕ∗
n(1 − zbnfn)|2, we obtain

|{ξ ∈ T : |vn(ξ) − cI,n| > t}|/|I| � t−1‖un‖∗
η

∑
j�0

2−jη(zj)
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from Lemma 5. It remains to note that {‖un‖∗
η} is uniformly bounded due to 

Lemma 4. �

We recall that Christoffel-Darboux kernel is defined by

kξ,μ,n(z) =
n−1∑

j=0

ϕj(z)ϕj(ξ) ,

where {ϕj} are polynomials orthonormal with respect to measure µ.

Lemma 14. If ξ = eit and t ∈ R, then ‖kξ,μ,n‖2
L2(μ) = |ϕ∗

n(ξ)|2γ′
n(t).

Proof. For ξ ∈ T and z �= ξ, we have (see [8], Section 1)

kξ,μ,n(z) =
ϕ∗

n(z)ϕ∗
n(ξ) − ϕn(z)ϕn(ξ)

1 − zξ̄
= ϕ∗

n(z)ϕ∗
n(ξ)

1 − bn(z)bn(ξ)

1 − zξ̄
.

Noting that bn(eis) = eiγn(s) for s ∈ [−π, π), we get

‖kξ,μ,n‖2
L2(μ) = kξ,μ,n(ξ) = lim

z→ξ
kξ,μ,n(z),

= |ϕ∗
n(ξ)|2 lim

s→t

1 − ei(γn(s)−γn(t))

1 − ei(s−t)
,

= |ϕ∗
n(ξ)|2γ′

n(t).

The lemma follows. �

Lemma 15. Assume that limn→∞ |ϕ∗
n(ξ)|−2 = |Dμ(ξ)|2 for almost every ξ ∈ T . Let 

rn = 1 − 1/n for n � 1. Then, limn→∞ fn(rnξ) = 0 for almost every ξ ∈ T .

Proof. We claim that for each δ ∈ (0, 1), there exists a subset Gδ(µ) ⊂ T with the 

properties:

m(Gδ(µ)) � 1 − δ, (33)

each point of Gδ(µ) is a Lebesgue point, (34)

lim
ε→0

sup{K(µ, z), z ∈ S∗
ρ(ξ), |z − ξ| < ε} = 0 for ξ ∈ Gδ(µ) and ρ ∈ (0, 1), (35)

lim
n→∞

n−1 · ‖kξ,μ,n‖2
L2(μ) = |Dμ(ξ)|−2 for ξ ∈ Gδ(µ), (36)

lim
n→∞

γ′
n(t)/n = 1 uniformly with respect to t : eit ∈ Gδ(µ). (37)

Indeed, for every µ ∈ Sz(T ) we have (35) almost everywhere on T since the Poisson 

kernel is an approximate identity. Theorem 1 in [13] says that the limit relation in (36)
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holds almost everywhere on T . By Lemma 14, this implies that the limit relation in (37)

holds almost everywhere on [−π, π]. So, there is a set E of full Lebesgue measure on T

such that limit relations in (36), (35), (37) hold for ξ = eit in E. Using Egorov’s theorem, 

one can find a subset Ẽ of E of length 2π(1 − δ) such that the limit relation in (37) is 

uniform with respect to t ∈ [−π, π] provided eit ∈ Ẽ. Then, we can denote by Gδ(µ) the 

set of the Lebesgue points of Ẽ.

Now, it suffices to prove that for every fixed δ > 0 we have limn→∞ fn(rnξ) = 0

for every ξ ∈ Gδ(µ). Without loss of generality, we can assume that ξ = 1. Consider 

any convergent subsequence {fnk
(rnk

)} and let limk→∞ |fnk
(rnk

)| = d. Let us show 

that d = 0. In this proof, we will several times choose subsequences of {fnk
(rnk

)}. To 

simplify notation, we will assume that sequences under consideration converge without 

extracting subsequences. In particular, we let limn→∞ |fn(rn)| = d. By Lemma 11, we 

have limn→∞ |fn(1 − a/n)| = d for every a > 0. Let, as before, γn : [−π, π) → R be a 

continuous branch of the argument of the function bn(eit), where bn = ϕn/ϕ∗
n. Denote 

In(a) = (−a/n, a/n) for all n � 1 and a constant a � 10. Consider n � a/π. It follows 

from Lemma 12, Lemma 13, and condition (35) that there are sets En(a) ⊂ In(a) and 

numbers cn such that functions

vn(t) = nt − γn(t) + 2 arctan

( |fn(eit)| sin(γn(t) + t + κn(t))

1 + |fn(eit)| cos(γn(t) + t + κn(t))

)
(38)

satisfy the following relations:

(a) |vn(t) − cn| � εn for all t ∈ En(a),

(b) |En(a)| � (1 − εn)|In(a)|,

for some positive sequence {εn}n�1 converging to zero. Next, we renormalize (38) as 

follows. For each n, take πn ∈ {2πZ} such that |cn − πn| � π so

|(vn(t) − πn) − (cn − πn)| � εn

for all t ∈ En(a). We denote ĉn = cn − πn, v̂n = vn − πn and γ̂n = γn + πn. Now, (38)

can be rewritten as

v̂n(t) = nt − γ̂n(t) + 2 arctan

( |fn(eit)| sin(γ̂n(t) + t + κn(t))

1 + |fn(eit)| cos(γ̂n(t) + t + κn(t))

)
(39)

and the following relations hold:

(a′) |ĉn| � π and |v̂n(t) − ĉn| � εn for all t ∈ En(a).

Since γ̂n is increasing on (−π, π), relations (39) and (a′) imply that there is a constant 

c(a) depending only on a, such that |γ̂n(t)| � c(a), t ∈ co (En(a)), where co (En(a)) is 
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the convex hull of the set En(a) ⊂ In(a). Note that co (En(a)) contains In(a/2) for n

such that |εn| � 1/2. Hence, for large enough n, the functions

hn : s �→ γ̂n(s/n)

are correctly defined on [−a/2, a/2], increasing, and uniformly bounded by c(a). There-

fore, by Helly’s selection theorem, one can choose a subsequence of {hn} that converges 

pointwise on [−a/2, a/2] to a non-decreasing function h. We again will assume that the 

whole sequence converges to h. One can also assume that functions v̂n(s/n), |fn(eis/n)|
on [−a/2, a/2] converge in measure to constants c ∈ [−π, π], d, respectively. Indeed, 

for v̂n(s/n) this follows from assertion (a′), while for |fn(eis/n)| – from Lemma 10. If 

d �= 0, Lemma 10 implies also the converge of κn(s/n) in measure on [−a/2, a/2] to 

a constant κ ∈ [−π, π]. Choosing, if needed, a subsequence, one can assume (see [6], 

Theorem 2.30) that the convergence of v̂n(s/n), |fn(eis/n)| and κn(s/n) is pointwise on 

a subset E ⊂ [−a/2, a/2] of full Lebesgue measure. Since ξ = 1 is the Lebesgue point of 

the set Gδ(µ) and h′
n(s) = γ′

n(s/n)/n, we use (37) to get

h(s2) − h(s1) = lim
n→+∞

(hn(s2) − hn(s1)) = lim
n→+∞

s2∫

s1

h′
n(s) ds � s2 − s1 (40)

for every s1 � s2 in E. We consider two cases now.

Case 1. If d ∈ [0, 1), then relation (39) implies

c = s − h(s) + 2 arctan

(
d · sin(h(s) + κ)

1 + d · cos(h(s) + κ)

)
, s ∈ E, (41)

where we set κ = 0 if d = 0. The derivative

∂h

(
h − 2 arctan

(
d sin(h + κ)

1 + d cos(h + κ)

))
=

1 − d2

1 + 2d cos(h + κ) + d2

is within [(1 − d)/(1 + d), (1 + d)/(1 − d)] so application of the inverse function theorem 

shows that (41) defines a smooth increasing function on [−a/2, a/2]. Since h is nonde-

creasing, we see that (41) holds for all s ∈ [−a/2, a/2]. Moreover, (40) gives h′(s) � 1

for such s. Differentiating (41), we obtain

h′(s) =
1 + 2d cos(h(s) + κ) + d2

1 − d2
, s ∈ [−a/2, a/2].

Since h′ � 1 and a parameter a is large enough, there is s∗ ∈ [−a/2, a/2] so that 

cos(h(s∗) + κ) = −1. Thus, (1 − d)/(1 + d) � 1 which implies d = 0 and we are done.
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Case 2. Let d = 1 and rewrite (39) as

v̂n(s/n) = s − γ̂n(s/n) + 2 arctan

( |fn(eis/n)| sin(γ̂n(s/n) + s/n + κn(s/n))

1 + |fn(eis/n)| cos(γ̂n(s/n) + s/n + κn(s/n))

)
.

(42)

Taking the limit requires some care in this case. We have

lim
n→∞

(
1 − eis/nfn(eis/n)bn(eis/n)

)
= 1 + ei(κ+h(s))

for almost every s ∈ [−a/2, a/2]. Let Ẽ be a subset of E on which 1 + ei(κ+h(s)) �= 0. If 

the function H is defined by the formula

H(α) = (α − 2πj)/2 if α ∈ (2πj − π, 2πj + π), j ∈ Z,

then an identity

arctan

(
sin α

1 + cos α

)
= H(α), α : cos α �= −1, (43)

is immediate. Given (43), take a limit in (42) for every s ∈ Ẽ to get

c = s − h(s) + 2 arctan

(
sin(h(s) + κ)

1 + cos(h(s) + κ)

)
= s − h(s) + 2H(h(s) + κ) .

Thus, if s1 �= s2 and s1, s2 ∈ Ẽ, then s2 − s1 ∈ πZ and so Ẽ is either finite or empty. 

That implies ei(κ+h) = −1 almost everywhere on [−a/2, a/2] and h is a nondecreasing 

step function. That, however, contradicts (40) and we get d �= 1 under assumptions of 

the lemma. �

We recall that the zeroes of ϕn were denoted by {zj,n} and they are all inside D.

Lemma 16. Suppose there is a > 0 such that

lim
n→∞

fn(ra,nξ) = 0

for almost every ξ ∈ T . Then,

lim
n→∞

|ϕ∗
n(ξ)|2 = |D(ξ)|−2

and

lim inf
n→∞

(
n min

1�j�n
|ξ − zj,n|

)
= +∞ (44)

for almost every ξ ∈ T .
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Proof. Notice that we have

lim
n→∞

sup
z∈Υ

n−1,ρ,α,β
(ξ)

|fn(z)| = 0 (45)

for all ρ, α, β and almost every ξ ∈ T by Lemma 11. Moreover, for almost every ξ ∈ T , 

we have

lim
ǫ→0

sup
z∈S∗

ρ (ξ),|z−ξ|<ǫ

K(µ, z) = 0 (46)

for any ρ ∈ (0, 1), and

lim
n→∞

n−1 · ‖kξ,μ,n‖2
L2(μ) = |Dμ(ξ)|−2 . (47)

Without loss of generality, we assume that ξ = 1 is a point at which all these conditions 

are satisfied and let In(a) = [−a/n, a/n]. Like in the proof of previous lemma, we have

v̂n(t) = nt − γ̂n(t) + 2 arctan

( |fn(eit)| sin(γ̂n(t) + t + κn(t))

1 + |fn(eit)| cos(γ̂n(t) + t + κn(t))

)
(48)

and there is a set En(a) ⊆ In(a) and a sequence ĉn ∈ [−π, π) such that

(a′) |v̂n(t) − ĉn| � εn for all t ∈ En(a),

(b) |En(a)| � (1 − εn)|In(a)|,

for some positive sequence {εn}n�1 converging to zero. Moreover, we can use (45), 

Lemma 10, and (46) to choose En(a) such that an additional condition

(c) |fn(eit)| � εn for all t ∈ En(a)

is satisfied. Rescale t ∈ In(a) as t = s/n, let hn(s) = γ̂n(s/n) as in the previous proof, 

and write

v̂n(s/n) = s − hn(s) + 2 arctan

( |fn(eis/n)| sin(hn(s) + s/n + κn(s/n))

1 + |fn(eis/n)| cos(hn(s) + τ/n + κn(s/n))

)
.

Take a limit in measure on [−a/2, a/2] in the above equation through some subsequence 

{nj}, it exists thanks to (a′) − (c). It follows from (c) that the sequence {hnj
} converges 

to s + c in measure, where c can depend on the choice of subsequence {nj}. From each 

functional sequence converging in measure, we can choose a subsequence converging 

almost everywhere. We denote it by the same {nj}. Since each function hn is increasing, 

this convergence is in fact uniform over [−a/2, a/2] due to Lemma 6. The parameter 

a was arbitrary so we can take an unbounded positive sequence {al} and choose the 
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subsequence of {hn} which converges to a linear function uniformly on all compacts in 

R. We again denote it by {hnj
}. Thus, in view of (19), we can apply Lemma 7 to show that 

{h′
nj

} converges to 1 uniformly over compacts and this convergence holds at point s = 0, 

in particular. Arguing by contradiction, we can prove that in fact limn→∞ h′
n(0) = 1

through the whole sequence. By (47) and Lemma 14, we get an implication:

lim
n→∞

γ′
n(0)

n
= 1 =⇒ lim

n→∞
|ϕ∗

n(1)|2 = |Dμ(1)|−2. (49)

The property (44) of zeroes follows from Lemma 8. Indeed, limn→∞ h′
n = 1 uniformly 

over compacts in R so every subsequential limit of {hn} is a linear function of the form 

h(t) = t + c. So, if

lim inf
n→∞

(
n min

1�j�n
|1 − zj,n|

)
< ∞ , (50)

we can choose a subsequence {kn} over which, first, {hkn
} converges uniformly to a linear 

function and, secondly,

lim inf
n→∞

(
kn min

1�j�n
|1 − zj,kn

|
)

< ∞ . (51)

That contradicts Lemma 8. �

The next result shows that information about zeroes {zj,n} gives control of pointwise 

asymptotics of {|ϕn(ξ)|} for ξ ∈ T .

Lemma 17. Suppose that

lim
n→∞

(
n min

1�j�n
|ξ − zj,n|

)
= +∞ (52)

holds for almost every ξ ∈ T . Then,

lim
n→∞

|ϕ∗
n(ξ)|2 = |Dμ(ξ)|−2

almost everywhere on T .

Proof. We consider ξ in the full measure set of points on T where (39) and (52) hold. 

Assume again without loss of generality, that ξ = 1 and write renormalized equation 

(39) taking s = tn

v̂n(s/n) = s − hn(s) + 2 arctan

( |fn(eis/n)| sin(hn(s) + s/n + κn(s/n))

1 + |fn(eis/n)| cos(hn(s) + s/n + κn(s/n))

)
(53)

and
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(a′) |v̂n(t) − ĉn| � εn for all t ∈ En, and |ĉn| � π.

(b) |En(a)| � (1 − εn)|In(a)|,

for some positive sequence {εn}n�1 converging to zero. Therefore, since hn is increasing,

sup{|hn(s)|, n � 1, s ∈ [−a/2, a/2]} < ∞,

and we can apply Helly’s theorem on [−a/2, a/2] to find a subsequence {hkn
} which 

converges to a limit h almost everywhere on [−a/2, a/2]. The parameter a is arbitrary 

so, going to subsequences, we can find a non-decreasing function h defined on R such that 

a subsequence of {hn} (call it {hkn
} also) converges to h almost everywhere on R. From 

Lemma 9, we know that h = c1t +c2 and convergence limn→∞ hkn
= h is in fact uniform 

on compact subsets of R. Formula (53) gives c1 = 1 if we compare the variations of both 

sides on [−a, a] when a → ∞. Now, by Lemma 7, we get limn→∞ h′
kn

= 1 uniformly over 

compacts in R. In particular, limn→∞ h′
kn

(0) = 1. Arguing by contradiction, we again 

can show that limn→∞ h′
n(0) = 1 over the whole sequence. By the same reasoning we 

used in (49), one gets the statement of the lemma. �

What we proved so far implies that assertions (a), (b), (c) of Theorem 3 are equivalent 

on a subset of T of full Lebesgue measure. Let us proceed with item (d). The paper [10]

will be the main reference in many arguments given below.

Lemma 18. Suppose limn→∞ fn = 0 almost everywhere on T . Then,

lim
n→∞

|ϕ∗
n|2 = |Dμ|−2

almost everywhere on T .

Proof. That immediately follows from Khrushchev’s formula

|ϕ∗
n|2|Dμ|2 =

1 − |fn|2
|1 − ξbnfn|2 ,

see identity (1.18) in [10]. �

Given µ, we recall that the dual measure µdual corresponds to the Schur function which 

is equal to −f . The associated orthonormal polynomials are called the polynomials of the 

second kind and they are denoted {ψn}. The Wall polynomials {An}, {Bn} are connected 

to orthogonal polynomials by (see formula (5.5) in [10])

ϕn+1 = kn+1(zB∗
n − A∗

n), ϕ∗
n+1 = kn+1(Bn − zAn) , (54)

ψn+1 = kn+1(zB∗
n + A∗

n), ψ∗
n+1 = kn+1(Bn + zAn) , (55)
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where kn is the leading coefficient of ϕn. For n � 1, let f̂n be the Schur function of the 

probability measure |ϕ∗
n|−2 dm. In fact, we have f̂n = An−1/Bn−1, see formula (5.11) in 

[10]. Define

F =
1 + zf

1 − zf
, F̂n =

1 + zf̂n

1 − zf̂n

.

Then, from (54), (55) we get identities (see also formulas (5.10) and (5.11) in [10]):

F̂n =
1 + zAn−1/Bn−1

1 − zAn−1/Bn−1
=

ψ∗
n

ϕ∗
n

.

To show that (d) in Theorem 3 follows from the other conditions, we proceed as follows. 

Since the real part of F̂n is nonnegative, it is an outer function in D and its behavior 

can be controlled by the argument. We have arg F̂n = arg ψ∗
n − arg ϕ∗

n and this identity 

will give limn→∞ F̂n(ξ) = F (ξ). The latter condition implies limn→∞ f̂n(ξ) = f(ξ), 

which yields limn→∞ fn(ξ) = 0 by lemma 4.8 in [10]. The estimate on the nontangential 

maximal function will easily follow.

Lemma 19. Suppose Zn ⊂ D and limn→∞ supz∈Zn
|fn(z)| = 0, then

lim
n→∞

sup
z∈Zn

|f(z) − f̂n(z)| = 0.

Proof. Formula (4.19) in [10] reads

f =
An + zB∗

nfn+1

Bn + zA∗
nfn+1

.

That yields

|f − f̂n+1| = |f − An/Bn| =

∣∣∣∣
fn+1z(B∗

n/Bn − (A∗
nAn)/(B2

n))

1 + zfn+1A∗
nB−1

n

∣∣∣∣ .

We have |A∗
n/Bn| � 1, |An/Bn| � 1 in D (see Lemma 4.5 in [10]). Moreover, since Bn

does not vanish in D (by the same Lemma 4.5 in [10]), we also have |B∗
n/Bn| � 1 in D

which follows from the maximum principle and identity |B∗
n/Bn| = 1 that holds on T . 

That proves the lemma. �

Lemma 20. If Xn ⊂ D and limn→∞ supz∈Xn
|F (z) − F̂n(z)| = 0, then

lim
n→∞

sup
z∈Xn

|z(f(z) − f̂n(z))| = 0.

Conversely, if supz∈∪n�1Xn
|f(z)| < 1 and limn→∞ supz∈Xn

|z(f(z) − f̂n(z))| = 0, then
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lim
n→∞

sup
z∈Xn

|F (z) − F̂n(z)| = 0 .

Proof. Recall that

F =
1 + zf

1 − zf
, F̂n =

1 + zf̂n

1 − zf̂n

.

Thus, we have

|F − F̂n| =

∣∣∣∣∣
2z(f − f̂n)

(1 − zf)(1 − zf̂n)

∣∣∣∣∣ �
2|z(f − f̂n)|

(1 − |f |)(1 − |f̂n|)
.

Analogously,

|zf − zf̂n| =

∣∣∣∣∣
2(F − F̂n)

(1 + F )(1 + F̂n)

∣∣∣∣∣ � 2|F − F̂n|,

where we used the fact that Re F � 0, Re F̂n � 0 in D. Now both claims are evident. �

Later, we will need the following technical result.

Lemma 21. Suppose function Gn is analytic on Dn = {η : |η − in| < n}, continuous on 

Dn, and Re Gn > 0 for every n � 1. Assume that there are constants C1 and C2 such 

that Re C1 > 0,

lim
n→∞

Gn(η) = C1 (56)

uniformly over compacts in C+,

lim
n→∞

arg Gn(in − ineit/n) = C2, lim
n→∞

(
arg Gn(in − ineit/n)

)′
= 0, (57)

and these two limits are uniform in t over compacts in R. Then, C2 = arg C1 and

lim
n→∞

sup
η∈Hb,n

|Gn(η) − C1| = 0, (58)

for every b > 0, where Hb,n = Dn ∩ {η : |η| < b}.

Proof. The function un = Im log Gn = arg Gn is harmonic in Dn, continuous on Dn, 

and |un| � π/2. For every point η ∈ Dn, we can write Poisson formula

un(η) =

∫

∂Dn

un(ξ)dωη(ξ),



R. Bessonov, S. Denisov / Journal of Functional Analysis 280 (2021) 109002 35

where ωη is harmonic measure at η for Dn (the rescaled unit disk). The first condition 

in (57) and |un| � π/2 imply that

lim
n→∞

sup
η∈Hb,n

|un(η) − C2| = 0, (59)

for every b. Thus, C2 = arg C1. Next, we will use the fact that the function analytic on 

the compact simply connected domain in C can be recovered from the boundary value 

of its imaginary part (up to a real constant). Indeed, let λn(k) be conformal map of D to 

Hb,n such that the lower arc of ∂Hb,n, i.e., points η : η ∈ ∂Hb,n that satisfy |η − in| = n, 

corresponds to lower semicircle of ∂D, i.e., k : k ∈ ∂D for which Im k < 0. Consider 

Γn(k) = log Gn(λn(k)). It is analytic in D, continuous in D and, given conditions of the 

lemma, satisfies

lim
n→∞

Im Γn(eiθ) = arg C1, lim
n→∞

(Im Γn(eiθ))′ = 0 , (60)

uniformly in θ ∈ [−π+δ, −δ] ∪[δ, π−δ] for every δ > 0. Moreover, limn→∞ Γn(k) = log C1

uniformly on compacts in D and | Im Γn| � π/2 in D. We can recover Γn by the boundary 

values of its imaginary part as follows:

Γn(k) = i

∫

T

Im Γn(ξ) · 1 + ξ̄k

1 − ξ̄k
dm(ξ) + Re Γn(0) .

The conditions on {Γn} and simple estimates on the integral above imply that 

limn→∞ Γn(k) = log C1 uniformly in k : {k ∈ D, |k − 1| � δ, |k + 1| � δ}, where δ

is any positive number. In particular, this yields

lim
n→∞

sup
η∈Hb−1,n

|Gn(η) − C1| = 0

in the variable η. Since b is arbitrary positive, the lemma is proved. �

Lemma 22. In Theorem 3, if (a), (b), or (c) holds, then limn→∞ fn(ξ) = 0 for almost 

every ξ ∈ T .

Proof. From Lemmas 15, 16, and 17, we know that conditions (a)–(c) are equivalent to 

each other. As before, let γn denote the argument of the Blaschke product bn = ϕn/ϕ∗
n

and let γ̃n be the argument of b̃n = ψn/ψ∗
n. The proof of Lemma 16 gives control for 

the derivatives of γn and γ̃n at almost every point ξ ∈ T . Without loss of generality, 

assume that this point ξ is equal to 1. Additionally, assume that the nontangential 

limit f(1) = limz→1 f(z) exists and |f(1)| < 1. That last condition implies existence of 

nontangential limit of F at point 1 and an estimate Re F (1) > 0. From the proof of 

Lemma 16, we have
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lim
n→∞

arg γ′
n(τ/n)/n = 1, lim

n→∞
γ̃′

n(τ/n)/n = 1 (61)

uniformly over compacts in R.

By Lemma 15 and Lemma 11, we get limn→∞ supz∈Υ
n−1,ρ,α,β

|fn(z)| = 0 for ar-

bitrary ρ ∈ (0, 1) and 0 < α < β. From Lemma 19 and Lemma 20, one has 

limn→∞ supz∈Υ
n−1,ρ,α,β

|F (z) − F̂n(z)| = 0. For n � 1 and η in the disk Dn defined 

in Lemma 21, we set Gn(η) = F̂n(1 − η/(in)). The existence of nontangential limit of F

at point z = 1 gives limn→∞ Gn(η) = F (1) for every η ∈ C
+. This convergence is in fact 

uniform over compacts in C+ by Lemma 11. We will apply Lemma 21 next. Notice that 

Re Gn > 0 in Dn. If we define

un(t) = arg Gn(in − ineit/n) = arg F̂n(eit/n) = arg ψ∗
n(eit/n) − arg ϕ∗

n(eit/n),

then limn→∞ u′
n = 0 uniformly over any compact in R as follows from (61) and a simple 

relation between the arguments of bn = ϕn/ϕ∗
n and ϕ∗

n. Since |un| � π/2, we can choose 

a subsequence {unj
} such that

lim
j→∞

unj
= C∗, lim

j→∞
u′

nj
= 0 (62)

where C is some constant and the both convergences are uniform on compact subsets of 

R. Now apply Lemma 21 to Gnj
taking C1 = F (1) and C2 = C∗ to get

lim
j→∞

sup
η∈Hb,n

|Gnj
(η) − F (1)| = 0 (63)

for every b, where the sets Hb,n are defined in Lemma 21. Arguing by contradiction, we 

can strengthen this to

lim
n→∞

sup
η∈Hb,n

|Gn(η) − F (1)| = 0 (64)

for every b. Taking η = 0, we get limn→∞ F̂n(1) = F (1) and thus limn→∞ f̂n(1) = f(1)

by Lemma 20. The last property is equivalent to limn→∞ fn(1) = 0 by Lemma 4.8 in 

[10]. �

In the next lemma, we will control nontangential maximal function.

Lemma 23. Let ρ ∈ (0, 1). If gn is analytic in D, |gn| � 1, and lim
n→∞

gn(ξ) = 0 for almost 

every ξ ∈ T , then supz∈S∗

ρ (ξ) |gn(z)| → 0 for almost every ξ ∈ T .

Proof. By Egorov’s theorem, for every j ∈ N, we can find Ej ⊂ T , |Ec
j | < 1/j and 

limn→∞ gn = 0 on Ej uniformly. We can assume without loss of generality that each 

point of Ej is a Lebesgue point. Take ξ ∈ Ej and let z ∈ S∗
ρ(ξ). Write Poisson formula 
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for harmonic function gn: gn(z) = P(gn, z). By dominated convergence theorem, we have 

limn→∞ gn = 0 uniformly on compacts in D. Then,

sup
|z|>r,z∈S∗

ρ (ξ)

|gn(z)| � δ(r) + sup
η∈Ej

|gn(η)| ,

where limr→1 δ(r) = 0 because ξ is a Lebesgue point for Ej . For the second term, we 

have limn→∞ supη∈Ej
|gn(η)| = 0 due to uniform convergence to zero on Ej. Thus,

sup
z∈S∗

ρ (ξ)

|gn(z)| = sup
|z|<r,z∈S∗

ρ (ξ)

|gn(z)| + sup
|z|>r,z∈S∗

ρ (ξ)

|gn(z)|

and limn→∞ supz∈S∗

ρ (ξ) |gn(z)| = 0 if we first fix r close enough to 1 and then let n → ∞. 

Since j is arbitrary, we get statement of the lemma. �

Finally, we are ready to prove Theorem 3.

Proof of Theorem 3. Lemma 15 shows that (a) implies (c). Lemma 16 shows that (c)

implies (a) and (b). Lemma 17 proves that (b) implies (a). That establishes equivalence 

of (a), (b), and (c). Lemma 18 shows that (d) yields (a). Finally, Lemmas 22 and 23

prove that (a), (b), (c) give (d). �
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