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1. Introduction

Consider a probability measure g on the unit circle T = {z € C : |z| = 1} of the
complex plane C. The Schur function of u is the analytic function f in the open unit
disk D = {z € C : |z| < 1} defined by the relation

du(§),  zeD. (1)

1+ z2f(2) 1+¢&z
1—2zf(2) /

- 1—§_z

Taking the real part of both sides of (1) and using the Schwarz lemma, it is not difficult
to see that |f(z)| < 1 for all z € D. In particular, the function f has non-tangential
boundary values (to be denoted by the same letter f) almost everywhere on the unit
circle T. Set fo = f and denote the Schur iterates of f by f,:

LE-LO s @)

R AT

Schur’s algorithm (2) produces an infinite family { f,, }n>0 of analytic contractions unless
1 is supported on a finite subset of T, or, equivalently, f is a finite Blaschke product.
Knowing coefficients f;(0) for 0 < k < n, one can set f,+1 = 0 and reverse the recursion
in (2) to obtain an efficient approximation to f in D by a rational contraction of degree
n, see Corollary 4.7 in [10].

Let m be the Lebesgue measure on the unit circle T normalized by m(T) = 1, and
let ;1 = w dm + pg be the decomposition of i into the absolutely continuous and singular
parts. The measure y is said to belong to the Szegé class Sz(T) if logw € L(T). To
every measure p € Sz(T), we associate the entropy function

K(u, z) =log P(p, z) — P(logw, 2), z €D, (3)

where P stands for the harmonic extension to D:

1— 2
P, 2) = H_%HQ dpu(§),
T

and we set P(v,2) = P(vdm,z) for v € L'(T). Roughly speaking, K(u, z) measures a
“size of oscillation” of p on the arc {£ € T : | —a.| < 1—|z|}, a, = z/|z|. By Jensen’s
inequality, we have K(u,z) > 0 for every z € D and K(u,2) = 0 if and only if u = m.
Notice also that IC(g, ) is superharmonic in D and its nontangential boundary value is
zero almost everywhere on T.

The celebrated Szeg6 theorem says that a probability measure y on the unit circle T
belongs to the Szegé class Sz(T) if and only if > -, |fn(2)|? < oo for some (and then
for every) z € D. Moreover, in the latter case we have
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K(.0) = = [ logwam = ~1og [T (1 - 11,0 (1)

T n=0

This result has many equivalent reformulations, see, e.g., Section 2.7.8 in [17]. Our first
aim is to extend formula (4) to the whole unit disk D.

Theorem 1. Let p € Sz(T) and let {f,} be the Schur family of . Then

= log H |Zf" ‘2 , zeD. (5)

n=0

Substituting z = 0 into (5), we get (4). As an immediate consequence of (5), we see
that sup,,>¢ | f»(2)| cannot be close to 1 if K(u, z) is small.

Given a measure p € Sz(T) and its Schur family { f,,}, we let u,, denote the probability
measure on T whose Schur function f in (1) equals f,,. A standard problem in the field
is to relate properties of pu, to those of p when n is large. The following inequality is
another immediate consequence of Theorem 1.

Corollary 1. We have K(un,z) < K(u, 2) for alln >0 and all z € D.

Indeed, due to Theorem 1 and Schur’s algorithm, we have

Kloae2) = tog [T L2EL

k>n Z)

Since the terms in the product above are greater than 1, we have K(p,, 2) < K(u, 2).
Theorem 1 implies a uniform bound for oscillation of Schur family generated by a
Szeg6 measure.

Theorem 2. Suppose p € Sz(T) and let { fn} be the family of Schur functions of p. Then,
we have

P(‘fn_fn(zﬂaz) <C /C(,u,z), Z€D7
with an absolute constant ¢ and all n > 0.

Let us now turn to an application of these results to study asymptotic behavior of
orthogonal polynomials. To every measure pu € Sz(T) we associate the Szegd function
D,,. This is the outer function in D with modulus \/w on T

D, (z) =exp /log\/ +£Z m(&) |, zeD.

T
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The family {¢y, }n>0 of orthonormal polynomials in L?(y) is defined by

deg v = n, kyn = coeff,on, >0, (©ns k) L2(0) = On ks (6)

where 6, 5, is the Kronecker symbol and coeff ;@ denotes the coefficient at the power 27 in
polynomial Q. Let also ¢%(2) = 2", (1/2) denote the reversed orthogonal polynomial.
Due to a version of Szegé theorem, we have p € Sz(T) if and only if for some (and then
for every) z € D we have

im i (z) = D (), 7)
A well-known conjecture in the theory of orthogonal polynomials on the unit circle
(an analog of Lusin’s conjecture for trigonometric series [12,9], see p. 135 in [3] for its
positive solution) asks whether (7) holds for almost every z € T. As usual, for z € T we
understand D;l(z) as non-tangential boundary value. While not stated explicitly, the
conjecture goes back to works of Bernstein, Szegd, and Steklov who studied asymptotics
of orthogonal polynomials. Recently, it attracted more attention due to its connection to
“nonlinear Carleson problem” in the scattering theory, see, e.g., [4], [5], [14], [15]. In the
theorem below, we relate pointwise asymptotics of {¢,(2)}, 2 € T, to the distribution
of their zeroes near the unit circle. Our analysis is based on controlling oscillation of
Schur functions {f,} in terms of the entropy function X in (3). The introduction of K
was inspired by recent analysis of Szegd condition for canonical systems [1], [2].
Given a parameter p € (0,1) and a point { € T, define the Stolz angle S} (§) to be
the convex hull of pD and £. Here is our main result.

Theorem 3. Let p € Sz(T) and Z(p,) = {z € D : @,(2) = 0}. Take any a > 0
and denote rq, =1 —a/n. Then, for almost every { € T, the following assertions are
equivalent:

(a) limp oo |07 () = [D (),

(b) limy, 00 dist(Z(pn), &) n = 400,

(C) hmn%oo fn (Ta,ng) = 0:

(d) limy, 00 SUD 5 (¢) |fn(2)| =0 for every p € (0,1).

The paper is organized as follows. In Section 2, we prove Theorem 1 and discuss its
corollaries. Theorem 2 is proved in Section 3. In Section 4, we collect some facts about
finite sums of Poisson kernels that will be used in Section 5 to prove Theorem 3.

2. Proof of Theorem 1 and some corollaries

We start by giving an expression for K(u,z) in terms of f, the Schur function of
measure f.
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Lemma 1. If p € Sz(T) and f is its Schur function, then

e (1o (Lo1FFEPY 122 |
K(u, 2) T/lg< ) dm(€) ®

L—[f(OF ) |1 —¢&z?
for every z € D.

Proof. Let w be the density of p with respect to m. Taking the real part of both sides
of (1), we obtain

1—|2f(2)
— = =P(u, 2), z € D.
[1—zf(2))?
Hence, w = % almost everywhere on T. Then, the mean value formula for harmonic

function log |1 — zf|? implies

T=2fGF ) I - &P
log(1— 12£()2) — [ os(1 — 1£(E)2) =L g
= log(1 ~ =f(2)") — [ log(1 ~F(©) [ = & m(®

T
~ L= 2R 1=z
_T/log( 1—|f(£)|2) T

The lemma follows. O

Now, let u € Sz(T) and sequence {f,,}n>0 be the family of Schur functions generated
by p via the Schur’s algorithm (2). Denote by u,, the probability measure on T whose
Schur function coincides with f,,. Its existence follows if we notice that the function
defined for z € D by

1—|z2fn(2)|? _ Re 14+ zfn(2)
T fu)f <1—an(2))

is a nonnegative harmonic function in D and therefore it is a Poisson integral of a unique

nonnegative measure on T. This is our p,. Taking z = 0 in the formula P(pn, z) =
1—|zfn(2)|?
M—zfn(2)?

It is clear from construction that the Schur family of p, is {fn+#}r>0. After making

, we get u,(T) =1 so u, is a probability measure.
these observations, we proceed with the proof of Theorem 1.

Proof of Theorem 1. For a measure u € Sz(T), consider the family of Schur functions
{fn}n>0 and associated probability measures {j,}n>0. By Szegd theorem (see, e.g., p.



[ R. Bessonov, S. Denisov / Journal of Functional Analysis 280 (2021) 109002

4 in [17]), we have Y, -, [f&(0)]* < oo. It follows (again from the Szegd theorem) that
tn € Sz(T) and

/ log(1 — |fa(€)?) dm = log [ (1= |f(O)P) =0,  n— +oc. (9)

T k>n

In particular, functions f,, tend to zero in Lebesgue measure on T and, since they are
uniformly bounded, we have lim,_,c fn(z) = 0 for every z € D. From (9) and Lemma 1,

we get

_ L—zfa(2)P\ 1— 2
K(pn, ) T/log( TG ) TrEE dm(&) — 0, n — 400,

for every z € D. Thus, to prove Theorem 1, we only need to check that

1—|2f(2)

SE (10)

K(p, z) = K(p, 2) + log

and then iterate this formula. From (8), we have

K(u, z) = log(1 — |2f(2)*) — P(log(1 — [£()]), 2),
K(u1,2) =log(1 = |zf1(2)]*) = Plog(1 = |£1(§)*), 2),

for every z € D. Due to Schur’s algorithm (2), one can write

o JA IO (1 ORI FEE)
M=oy ) I OIGE

Using this computation, the mean value formula, and identity [{| =1, € T, we get

K(p1,z) = log = 1= f(0)f()?

1= F(0)f(2)]?
= log(1 — |f(2)|*) = P (log(1 = [£()[*). 2)

IRE Ol
ST 2P

- JOPO 1P, <10g (L-1fOP)( -~ If(é)IQ),Z>

=1 + K, 2),

as required. O
Corollary 2. Let pp € Sz(T) and {fn}n>0 be the Schur family of u. Then,

K1 = £2(8)1%, 2) < K(u, 2)

for every z € D and n > 0.
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Proof. Since |zf,(z)|? is subharmonic in D, we get

Plefa(€)?,2) = 2fn(2)

Therefore,

log(1 — |zfn(2)]?) = log P(1 — | fu (€)%, 2) -
So, applying Lemma 1 to measure u,,, we have

1|22

K(pn, z) = log(1 — |2fa(2)]) —/10g(1— Ifn(é)lz)m m(§)

T
> log P(1 = |fa(€)I?,2) = Pllog(1 = [ fu(§)%), 2)
=K1~ [fa(&)% 2).

It remains to use Corollary 1. O

Let o € T, and let f be the Schur function of a measure u € Sz(T). Then, the family
of measures p, defined by

P(fta, z) = Re (%) . zeD,

is called the Aleksandrov-Clark family of p. From (1), we see that af is the Schur
function of .

Corollary 3. Let p € Sz(T) and let {fn}n>0 be the Schur family of p. Then, for every
z € D, the entropy K(u, z) depends only on absolute value of f(z). In particular, we have
K(p, z) = K(pa, 2) for every a € T.

Proof. This follows from (8). O

The case a = —1 in Corollary 3 corresponds to the “dual measure” pqual, playing an
important role in the theory of orthogonal polynomials on the unit circle. The measure
Hdual is defined by

-1

/1+§2dudua1<5>: /1+£Zdu(£) . zeD.
T T

1—-¢&2 1—¢z

From (1), we infer that the Schur function of pgua equals —f. In particular, the last
corollary yields



8 R. Bessonov, S. Denisov / Journal of Functional Analysis 280 (2021) 109002

’C(/J, Z) = K(Mdualvz)a z €D. (11)

It is well-known (see, e.g., Section 5 in [10]) that orthonormal polynomials ¢,, defined
in (6) satisfy recurrence relations

V1—=lan|* @1 = @) — 20000, o=y =1, n >0, (12)

for coefficients a, = f,(0) in D, {f,} being the Schur family of p. Conversely, each
sequence {ax}r>0 C D gives rise to a unique probability measure g on T with infinite
number of points in supp p such that its orthonormal polynomials satisfy relations (12).
In the next result we determine fi, ., a variant of Bernstein-Szeg6 approximation to u
such that K(u, 2) = K(fin,z, 2) + K(pn+1, 2)-

Corollary 4. Let n > 0 and z* € D. Consider the measure [ip ,~ = Wy, .~ dm, where

1_|fn(Z*)‘2 , §€T (13)

) O — e e O

Then, fin .+ is a probability measure whose Schur functions {ﬁc} satisfy

. {fk(z*), 0<k<n, (14)

fu(z") =
#(=") 0, k> n,

at the point z*. Moreover, we have K(u, 2*) = K(lin, 2+, 2*) + K(tn+t1, 2%).

Proof. Consider the family of orthonormal polynomials {¢;} whose recurrence coeffi-
cients are given by ax = fx(0) for 0 < k < n—1, a, = fo(z*), and ap = 0 for k > n.
It is well-known that the measure v = |3} ;|72 dm is a probability measure on T and
its Schur functions {f, x}r>0 satisty f,x(0) = @y for all £ > 0. To see this, combine
formulas (4.17) and (5.11) in [10]. It follows that for all w € D we have f, p4+1(w) = 0.
Therefore, from the definition of Schur’s algorithm (2), we have

_ fll,’ﬂ(w) — fu,n(o)
1- fl/,n(o)fu,n(w)

0

for all w € D and so
fu,n(w) = fu,n(o) =0n = fn(2%).
Then, since a; = f3(0) for all 0 < k < n — 1, we have

for(z%) = fu(27), 0<k<n—1
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by Schur’s algorithm (2) since {f, x} and {fx} satisfy the same recursion at point z*
when k£ =0,1,...,n— 1. We take fi, .~ = v, and, to finish the proof, it remains to check
that |@} 1 (&) 72 = wn,.+(€) for £ € T. To this end, observe that polynomials @7 and
@y are identical since the recurrence coeflicients defining them are the same. Then, from
(12) we get

1- ‘an|2'@2+1 :Q/O\foaana Gp = fn(2").
Hence, (13) follows due to

|50 1( )|—2: 1_|fn(2*)‘2 _ 1_|fn(2*)|2
" 155 — EFa(z)Bnl? 105 (E) — EFu(z")pn )]

where we used @y, = ¢ and @, = ¢,. O

According to a theorem by Khrushchev (Theorem 3 in [10]), the Schur function of
the probability measure |7 |? du is equal to by, f,, where b, = ¢, /¢’ is the Blaschke
product of order n. In other words, we have (formula (2.14) in [10])

LHE L o ge - LRG|
[ e g - IR, cp (15)

T

and hence (formula (1.18) in [10])

1—[fa(§)?
|1 - fbn(g)fn(fﬂw

Identity |b,(£)] = 1,€ € T implies the following corollary.

|0 (€)Pw(€) = §eT. (16)

Corollary 5. We have

1- Ian(Z)fn(Z)l2>

K(I@5(€)* du, 2) = K(pn, 2) + log ( 1= [2fu(2)2

for everyn >0 and z € D.
Proof. Fix n > 0 and 2z € D. It follows from (8) that

K(lep? dp, 2) = log(1 = |2bn(2) fa(2)|?) = P(log(1 = [buful?), 2)
= log(1 — [z (2) fn(2)*) — P(log(1 — | ful*), 2)

1
1 — |2b,(2) fn(2)]?
= K(pin, ) + log ( 1|, |z(fn)(J;)(|2)| > ;

as required. O
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Let us now consider the case when p is absolute continuous and its density does not
oscillate too much. We say that w € AL (T) if

[W]oo,p = sup P(w, z) exp(fP(logw, z)) < 00. (17)
zeD

It is known that AL (T) € A, (T), where A, (T) is the usual Muckenhoupt class (see
p. 212 in [18] for its definition).

Lemma 2. We have w € AL (T) if and only if sup,cp K(wdm, 2) < co. Moreover, the
dual measure of wdm is absolutely continuous — i.e., (Wdm)dual = Wauardm, and its
density satisfies wqua € AL (T).

Proof. The first statement is immediate from the definition. To prove the second one, we
use (11) and notice that u € Sz(T) and K(p, z) € L*°(D) imply that p has no singular
part and p = wdm with w € AL (T). Indeed, if p = wdm + us where pg is the singular
measure, then

log (P(us, 2) + P(w, 2)) — P(logw,2) < C, ze€D,
by our assumptions. This implies
Pps,z) < Plus,z) + P(w, z) < Cexp (P(logw, z)) < CP(w, 2),
by Jensen inequality, hence, us = 0. O

Corollary 6. Let the probability measure p be defined by p = wdm and w satisfy
w € AL (T). If {f.} denotes the Schur family of p, then 1 — |f,|> € AL (T) and
[]- - |fn|2]oo,P < [w]oo,P; n > 0.

Proof. By Corollary 2, for each n > 0 and z € D, we have

log P(1 — |ful? 2) = P(log(1 — | fal*),2) < K(u, 2) < logw]eo,p-
It follows that log[l — | fy|*]oc.p < log[w]eo p. O
3. The space BMO;, and proof of Theorem 2

Given a function 7 : D — [0, 4+-00], we define the space BMO,, to be the set of functions
v € LY(T) such that the following characteristic

[vll;, = inf{c > 0: P(Jv — P(v, 2)[,2) < en(z), z € D}

is finite. The next result is a direct analogue of an estimate by M. Korey (see Section 3.2
in [11]).
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Lemma 3. Suppose that v,e’ € LY(T) and let P(e?, 2)/eP¥*) =1+~ for some v = 0
and z € D. Then,

NaD v <1,

’P(|”U*’P(U,Z)|,Z) < c
log(1+7), v>1,

for an absolute constant c.

Proof. The proof is an adaptation of the original argument in [11]. For the reader’s
convenience, we reproduce it here. It suffices to prove the inequality

) <1a
Pllo—m () 2) <cd V) v
log(1+7), v=>1,

where m,(v) is the median value of v on T with respect to the probability measure
v =(1—-|2%)/|1 — €2|?dm. Adding a constant to v if needed, one can assume that
m,(v) = 0. Then, there are two disjoint measurable subsets E C {£ : v(§) > 0} and
F C{¢:v() <0} of T such that v(E) = v(F) =1/2. Set

a=2P(xge’,z), b=2P(xre’,z), o = ?Phrvz) -y = 2P (xrvz)

By construction and by Jensen’s inequality, one gets

P(e’, z a+b a +b
L+ V= 7(3(1) z)) = 2 )
e\ 2vVad't  2v/a'
which implies a’ /b’ < 1+ ¢max(,/7,7?) with an absolute constant ¢. On the other hand,
we have o' /b = ¢?P(xEv,2)=2P(xrv:2) Tt follows that

P(lvl, 2) = P(xpv, 2) — P(xrv,2) < clog(l + max(y/7,7)),
for another absolute constant ¢, as claimed. O

Given a measure p € Sz(T), we introduce the function

n(z) = max VK, 2), K, 2)e<0-)/2) (18)

on the unit disk D. The next lemma is crucial for later analysis.

Lemma 4. Consider p € Sz(T). Let {fn} be the Schur family of i and {pn} be orthogonal
polynomials generated by pi. Then the functions log |p% —& fren|? and f, belong to BMO,,
for alln >0 and
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flosler —epmenl| < Ufaly<e m>o0
with an absolute constant c.

Proof. Consider the weight v,, = 1 — |f,|? on the unit circle T. By Corollary 2, we have
K(vn, z) < K(u, 2). Hence, applying Lemma 3 to v = logv,, one has

P(|log v, — P(log vy, 2)|, 2) < ecmax(v/K(u, 2), K(u, 2)) < en(z), z €D.

It follows that || logv,[|;; < ¢ for all n > 0. In a similar way, we get logw € BMO,,.
We now use (16) to write

1ng = logvn - IOg |90:; - ffn‘pn|27

hence log |y}, — £fun|® € BMO,, with the characteristic ||.|[} at most 2¢. Next, we use
Jensen’s inequality to write

Plog(1 = [fal?),2) <log P(1 — |ful? 2) = log(1 = P(Ifal*, 2)).
Therefore, applying Lemma 1 to measure p,,, one has

1— |fn(2)?

K(pin, 2) = log(1 — |2fa(2)]?) = P(log(1 — | ful?), 2) = log T-PULE D)

Since (i, z) < K(u, 2) by Corollary 1, we have
L= [fu(2)]* <21 = P(Ifal?, 2)),
which can be rewritten as
MEAP(|ful?,2) = |ful2)]? < &2 — 1.
Since K > 0, the following inequality holds
P(lfal?2) = [fn(2)[2 < XEDP( o], 2) = [fa(2) < 5002 — 1,
The last bound along with mean value formula for harmonic functions implies

,P(‘fn - P(fna Z)|27Z) = P(|fn - fn(z)|2’z)a
= 7)(|fn|27z) + |fn(z)|2 - 2P(Re(fnfn—(z))72)a
P(Ifal?,2) = 1 fu(2)* < 502 — 1.

By Cauchy-Schwarz inequality, we get
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P(|fn = P(fn:2)],2) < VeFa) —1 < en(z).
That finishes the proof. O

Proof of Theorem 2. By Lemma 4, for every n > 0 we have

P(lfn — fu(2)],2) < en(z2), zeD.

On the other hand, P(|f, — fn(2)],2) < 2 since |f,| < 1 on D U T. This yields the
statement of the theorem. 0O

Next, we will estimate the harmonic conjugates of functions in BMO,,. Some notation
is needed first. We denote |E| = m(FE) for Borel subsets of T. If I C T is an arc with
center at &, set z; = £(1 — |I|) and denote by 2I the arc with center at £ such that
|21| = 2|I|. We also let (f)r,p = P(f,z2r). For u € L'(T), we define the harmonic
conjugate function v by the formula

= (Qu =lim [ u m = mil—l-rC_f
o(6) = (Qu)(©) ’1%/ (©Q6 (), QG =Tm 1%, e,

From the standard estimates for singular integrals, one knows that the limit exists almost
everywhere on T and defines the function Qu € LY*°(T). Notice that the harmonic
conjugate of a constant function is identically zero. Finally, given real-valued u € L*(T),
the function u + ¢(Qu) is the nontangential boundary value of the function

analytic in D. Function Re F is Poisson extension of u and harmonic conjugate of w is the
boundary value of Im F. Next, we recall that, given a parameter p € (0,1), the symbol
S5 (&) denotes the convex hull of pD and a point € T.

Below we write A < B for quantities A, B if there is an absolute constant ¢ such that
A < ¢B. Notation A ~ B is used when A < B and B < A.

Lemma 5. Let v € BMO,, and let v be the harmonic conjugate of u. Let I be an arc with
center at &y € T. Then, there is a constant c; such that

{Eel: )
1|

—cr| >t _ o
2 gl Y 2 nee)

for some z; € S§o(£0) such that |z; — &| ~ 27|1|, j = 0.
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Proof. Write u = uy + ug + (u)2r,p for ur = xor(u — (u)2r,p), ua = xT\21(00 — (W)2r1,P),
and denote by v1, vo the harmonic conjugates of uy, us, respectively. Since @ is the
continuous operator from L'(T) to L1'*°(T), we have

m({& €1 : |vi(&)]>t}) St HullLr(r),
St u = (War,pl)erp

<t lully - n(z0) - 111,

1|,

for zg = zor = (1 — 2|I])&o. Next, we estimate the distribution function of vy. Put
cr = fT\2I u2(0)Q(¢, &) dm(¢) and write for £ € I:

wl€) o = Qua)©) ~er = [ wa(O(QU6E) - QG &) dmc).

T\21

Let us estimate the norm of v —cy in L' (1) to later use Chebyshev inequality. For k > 1,
denote by Iy, the arcs of T of size 2F|I| with center at &y. Notice that we take only those
k for which |I| < 27. Then, for £ € I, { € Ix11 \ I, we have

I
€O &) ~ P ~ 21

Q(C,€) — Q¢ &) S |

Using this relation, we get

1
[l =eitam £ Y g [ [ @l dm() dme
I k=1 I I \Ik
1
< 5% / |uz| dm.
k21 Ty \Ik

Set Jo = 2I and let Ji, k > 1, be one of two arcs of Iy \ I such that

/ lug| dm < 2/|u2|dm.
Jr

T41\ 1

We have

/|u2\ dm < | Jg] - ((|U =) gy, P )i, p + (W) p — <u>21,P|)
Jk
k

S 21 (Ilallgn() + 3 o, p = by, y.p]),

Jj=1
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S5.9(&o &o

Fig. 1. Points {z;} and S o(&o)-

where 2z, = (1 — |Ji|)&x and & denotes the center of Ji. Since |¢ — z;j| ~ |( — z;41]| for
¢ €T, we can write

[(u)g;,p = (w) g,y pl = P(u—(u)y;_,py25)| S P(lu—(u)s,_ . plzj—1) S llullyn(zi-1)-

Hence,

k
/ sl dm < 25111 ulls 3 0(z):
T Jj=0

It follows that

k
1 * — * —J
|I|/|v2 —erldm S ully - D27 Y " nlz) S lully - o277 n(z).
T 7=0

k=1 §>0
Now we collect estimates to get the bound
{€e v —cl>2t} < {E €T (€ >t} + {E €T [v2(E) —er| >t}

< ull; - nz0) - 1]+ / v — 1] dm
I

Sty - 1 Zj>02*j77(zj)~

The simple geometric considerations (see Fig. 1) yield z; € S§ (&) and the lemma is
proved. O
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4. Sums of Poisson kernels

In this section, we study the properties of finite sums of Poisson kernels. They will be
used in the proof of Theorem 3.

We denote by Cla,b] the space of functions continuous on [a,b]. The following ele-
mentary result is well-known (see problem 13(b), p. 167 in [16]).

Lemma 6. Suppose the sequence {g,} of non-decreasing functions converges to a function
g € Cla,b] on a dense subset of [a,b]. Then, {g,} converges to g uniformly on [a,].

We start with the calculation, which reveals the connection between the zeroes of the
polynomial ¢,, and the sum of Poisson kernels. Consider b, = ¢, /. We can write it

as
™ z—z
_ l <) _
bn(2) = apz™ Hﬁ, an >0, ly+my=mn,
j=1 z ij

where {z;,} are zeroes of ¢, different from 0. That is the product of Mébius trans-
forms each of which has an argument which is increasing monotonically on T since this
transform is a conformal map of D onto ID. Calculating the derivative of its argument

il9 ez

i0 — % |24,

Og arg b, (e”) =1, + Im 9y Zlog <4zﬂi> =1, +Z|619_;n ; (19)
J=1 j,n n

one can recognize the Poisson kernel as terms in the last sum.

Lemma 7. Assume that h,, are smooth functions on (—mwn,7n) with derivatives h!, given
by

— |2k,n]?
Z |ezt/n _ ZZ ‘ ? Zk,n E ]D) (20)

If {h,} converges to a smooth function h uniformly on compact subsets of R, then {h] }
converges to h' uniformly on compact subsets of R.

Proof. We will assume that the points zj ,, are enumerated so that
11— zpn| <1 — 2kt1nl, 1<k<n.

Take an arbitrary b > 0. It suffices to show that {h],} converges to h’ uniformly over
[-b/2,b/2]. We write h!, as h!, = G,, + H,, where G, is the sum which corresponds
to all terms (if any) for which n|l — zx,,| > 1.9b and, respectively, terms in H,, satisfy
n|l — zx | < 1.90. For G,,, we have
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G0 S b7Galt) (21)

when t € [—b,b]. Indeed, if t € [-b,b] and n|1 — z| > 1.9, we have

1 2 Re(ize't/™) 1 1
0, , = —— < — S — ; 22
t (|ezt/n _ z|2> n |eit/n — 2[4 = pleit/n — 23 ~ pleit/n — 4|2 (22)

which yields the required estimate. It follows that

b 2
limsup/ |G, | dt < lim sup / b LG, dt < b (h(2b) — h(—2b)).
b “2b

Thus, functions {G,,} are uniformly bounded. The estimate (21) then implies that the
set {G,} is also equicontinuous on [—b, b]. Choose a subsequence {G,,, } which converges
to some continuous function G uniformly over [—b,b]. Then, { [, Gy, dt} converges to
ffb G dt uniformly over [—b, b] as well. Since we know by conditions of the lemma that
{ ffb Rl dt} converges uniformly to a smooth function, the sequence { ffb H,, dt} also
converges uniformly to a function continuous on [—b, b].

Now let zxn;, k= 1,...,¢(n;) be all points that satisfy n;|1 -z ;| < 1.9b. For every
z € D such that n;|1 — 2| < 1.9b, we have

2b | ‘2 2b/n; | |2
1 1—|z 1—|z
_ " dt = [N >
n] |eit/nj _ Z|2dt / |ei7— — Z|2d7— Z Cp > 0,
—2b —2b/n;

where the constant ¢, depends only on b. It follows that

2b
lim sup ¢(n;) < ¢; ! lim sup / H,,, dt < (h(2b) — h(—2b))/cy.
J J

—2b

Hence, lim sup; c(nj) = N, for some N, > 0 (we set N, = 0 if there are no zeroes 2k,
such that n;[1 — 2z ;| < 1.9b for all j large enough). Choosing a subsequence, one can
assume that c(n;) = N for all j. If Ny > 0, we set &, = in;(1 — 21.5,) for every
k =1,...,N;. Note that & n, belong to Ct* = {z € C : Imz > 0} and, moreover,
|€k,n,| < 1.9b. Choosing again a subsequence, we may assume that {,,} converges
to & € CH, k=1,...,N,. We claim that none of these limiting points belongs to the
segment [—b/2,b/2] on the real line. Indeed, if & € [—b/2,b/2], then the sequence of
functions
2
L 1=l i=1,2,... (23)

n_j |eit/nj — Zkm, |2 )
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converges to 2mdg, in the weak-* sense because substituting the Taylor expansion of
e't/™i gives the Poisson kernel as the main term. That contradicts the fact that ffb H,,dt
converges uniformly to a continuous function on [—b, b]. Knowing that all limiting points
&k are separated from the real line, it is easy to see that {H,,,} converges uniformly over
[=b/2,b/2]. Thus, we can guarantee that some subsequence {h;, } converges uniformly
on [—b/2,b/2]. Denote its limit by F. Since

T

lim / Wt dt = Tim (ho(x) — ha(~5/2)) = h(z) — h(~b/2)

n—oo n—oo
—b/2

by assumption of the lemma, we get F = h'. In the standard way, we now get
lim,, o0 h), = B’ uniformly on compacts in R over the whole original sequence. In-
deed, if this is not true, then there ise > 0,b > 0, t,, € [-b/2,b/2] and a sequence {m,, }
such that |h;, (t,) —h'(t,)| > €. However, by the argument above we can take a subse-
quence of {m,}, call it {m/] }, so that {h/ , } converges to h’ uniformly on [—b/2,b/2].
That gives a contradiction. The lemma is p?oved. O

Lemma 8. If, under the conditions of Lemma 7, we also assume that h(t) =t + ¢ for all
t € R and some constant c, then

lim (n min |1 —Zk,n|) = 0.

n— o0 1<k<n

Proof. Given b € R*, let {z;,}, j = 1,...,¢(n,b), be all zeroes of ¢,, counting mul-
tiplicity, that satisfy n|l — z;,| < 1.9b, and set c¢(n,b) = 0 if there are no such zeroes.
From the previous proof, we know that limsup,, ¢(n,b) < co. We need to show that
lim sup,,_, . ¢(n,b) = 0 for every b. Suppose this is not the case and there is some b such
that ¢; 2 lim sup,_, ., ¢(n,b) > 1. Then, there is a subsequence {n,(cl)} such that each
cpng)(z) has exactly c; zeroes, counting multiplicity, at points {zjmg)},j =1,...,cq,

and all of these zeroes are inside the open disc of radius 1.93/71 centered at 1. Using

compactness argument, we can find {ﬁ](:)}, a subsequence of {ng)}, such that

i def . .
kli{go gj,ﬁ](cl) = gja gj,n = Zﬂ(l — ij), 7= 1,....c1

and ¢; points {{;}, counting multiplicity, all belong to the set {{ € C* : [¢] < 1.9@}.
Notice that none of these points can be on the real line, that follows from the proof of
the previous lemma.

Next, we look at zeroes of a polynomial Pam (z) that belong to the annulus

1.9 <l — 2| < 1.9+ 1).
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Fig. 2. Points {¢;}.

Applying the same argument, we can find {ﬁf) }, a subsequence of {ﬁg) }, for which each

D) (z) has exactly co zeroes {zj n(2>},j € {e1,...,c1 +co} in that annulus and they all
k "k
satisfy
Am & e =&, J=ci,...,c10+ e

Notice that it might be that co = 0 but we always have co < 0.
At the next step, we consider zeroes of ¢_2) that satisfy
k

~ (2 ~

190 +1) <A1 — 2| < 1.9(b +2)

and select a subsequence {ﬁ,(f')} out of {ﬁ,(f)} over which these zeroes have limiting values.
We continue this process and find a subsequence {m,} of the original sequence such that
all zeroes {2, } satisfy conditions:

nh~>nolo gj,mn = é-jv fj € C+7
for every j = 1,2,..., N, where N = }7,-, ¢ € [1,00]. Moreover, if N = oo, then
lim;_, |€;] = 0o by our construction. Fig. 2 illustrates the case when ¢; =2 and ¢; = 1.
For z € D and & = in(1 — z), we have

11—z n(1 —|2*) __2Im¢—[¢f*/n
nleit/n — 2|2 Jin(eit/m — 1) +in(1 —2)|2  |in(eft/n — 1) 4+ €]2°

That gives

1 1—|2im, |2 21 ;
lim |ij n| _ mg] (24)

nro0 g [ — 2 2 | &

and the convergence is uniform on compact subsets of R. Since all terms in (20) are
non-negative, we can define U as
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21m§]
-5

Next, we will study the properties of U(¢t) and, in particular, show that it is finite. To
this end, we fix arbitrary [ € N and consider the partial sum

2Im¢;
th—f >

From Lemma 7 and our additional assumption h(t) =t 4 ¢, we know that

and this convergence is uniform in ¢ over compacts in R. That implies

1—1z
lim sup — Z |e | kn' ;< 1.

n—00 it/n — Zk,n

Now, we use (24) in the previous bound to get
!

2Im¢;
th—QIQ N

for every I € N. Thus, U(t) is finite for every ¢ € R. Moreover, U(t) < 1,t € R.
Substituting ¢t = 0, we see that {¢;} satisfies Blaschke condition in C*. Consider the
Blaschke product with zeroes at {£;}, i.e.,

T (e €6
:H<ema‘—3>, EeCt,N>1, (25)
j=1 5 - 6]
where «; are chosen such that

i—§

Z_J

>0 if ¢ #4 and o; =0 otherwise.

We will show that B(€) = e*(P1€+52) with some £y, B2 € R thus getting the contradiction
with (25). To this end, write

Mn

1 - |Zk7;mn 2 _ \I] \I]
Z AT r——— L, L () + Wom,, (),

where we define
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1- |Zk,mn|2

1
Wi, () = — > Q= {k: [&] <L [&m, — &l <0.1},

i lettlmn = 2 m, 2

and Wy . 1 = hy,  — W1, . We know from the previous lemma that lim, . h;, = 1
uniformly over compacts in R. When L is fixed and n — oo, we have

Moreover, from (22) we get [Wh  (t)| < L™'Wy p, 1(t) uniformly with respect to t €
[—L/2, L/2]. Since ¥y ;1 and Wy ., 1 are both nonnegative, Uy 1, 1 +Vom, L = hy,
and hy,, - — 1 uniformly over compacts, we have |W5 , ; (t)| < L™ for t € [-L/2, L/2] if
n is large enough. Clearly, {Us .1} converges uniformly on [-L/2, L/2] as a difference
of two uniformly convergent sequences. Therefore, if W5 ;, denotes its limit, then

IWo Lllzei-r/2,020 <1, 1 ¥oLllLip-r/2,0/20 S L7,
where

def |f(z) = f(y)l
Hf”Lip[a,b] = sup -
syeladlaty T Yl

Notice that Up, 4+ Wy 1, = 1. Therefore, ||UL ||rip—1/2,0/2) S L™ ", that is

|UL(&2) — UL(&1)| < 161 — &l /L

for &1,& € [—L/2, L/2]. Taking the limit as L — oo and recalling that U = limy,_, o, Up,
we see that U is constant on R. A direct calculation shows that (arg B)’ = ¢U on R for
some positive constant c. Thus, we have arg B(t) = S1t+ (2, t € R, $1 > 0. The function
Be~#F12+82) is unimodular on R and has zero argument there, so it is equal to 1 on
R and, by uniqueness of holomorphic functions, B(z) = e(#12+82) 5 ¢ C*, yielding a
contradiction. 0O

Lemma 9. Assume that smooth functions h,, defined on (—wn,mn) have derivatives given

by (20) and the sequence {h,} converges almost everywhere to some nondecreasing func-
tion h defined on R. If

i (i 1= 500 ) = o, (26)

then h = c1t + c2 and {h,} converges uniformly over compacts in R.
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Proof. For arbitrary b > 0, we have

b
/h;(t)dt — i (b) — B (—b)
%

and, since lim,_,o0 by (t) = h(t) a.e. and k), > 0, one gets

b
Sup/h;(t)dt < 0. (27)
b

n

Moreover, condition (26) and an estimate (22) give
(D] < enlhy, (@), lim e, =0,
n—oo

for t € [—b,b]. Thus, (27) implies

n—oo

b
lim / | (t)]|dt = 0.
—b

From the relation

to t

B (8) (b2 — 1) = B (t2) — hn(t1) + / / B! (ry)dridr |

t1

we obtain

lim A, (t) = hits) = h(ty)

n—00 to — 11

In particular, the right hand side does not depend on t; and ts. That implies that & is
a linear function, i.e., h = ¢1t + c3. Lemma 6 gives uniform convergence. [

5. Proof of Theorem 3

The proof of Theorem 3 is based on careful study of the arguments of orthogonal
polynomials ¢,, and Schur functions f,,. We proceed as follows. Theorem 1, Lemma 4,
and Lemma 5 show that these arguments, after rescaling and taking a limit, satisfy
equation (41) below. Since the derivative of the argument of a polynomial with zeroes
in D is a finite sum of Poisson kernels (see formula (19)), equation (41) allows us to
recover local asymptotics of all objects in Theorem 3 and prove that assertions (a)—(d)
are equivalent to an identity d = 0 in (41).
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In this section, we always assume p € Sz(T). We start with several auxiliary results.
Recall that {f,} denotes the family of Schur functions for a measure p and that, given
an arc I C T with the center at £y € T, we let z; = (1 — |I])¢;.

Lemma 10. Let I C T be an arc and |I| < 1/4. Then,

{E € T:[fnl&) = fulz)| > t}/I1] < mlz1)/t,

where the function n is defined in (18).

Proof. By Lemma 4, we have || f,, |7 < C for some constant C. Since

[

L=z J1-(0-)* 1
11— &zrf? S e III

§el,

one has

u/fn — JuleD)l dm(€) S P~ falzr)l,21) < Onle).

It remains to use Chebyshev inequality. O
Given £ € T, p€(0,1),0 € (0,1) and «, 5: 0 < a < 3, set

Ts.p.0,88) ={z € 5,(§), ad <[z —¢| < B}, (28)

where, as before, S7(¢) is the convex hull of pD and point §. For a complex-valued
function h defined on a domain 2 C C, we introduce its oscillation as

osco(h) = sup |h(z2) — h(z1)].
21,2269

In the next lemma, we show that Schur family { fx} has small oscillation near the bound-
ary of D uniformly in k > 0

Lemma 11. Suppose £ € T is such that lim,_,1 K(u, 7€) = 0. Then, for every p, a, 5 and
{6n} such that lim, o 6, = 0, we have

lim Sup oscr,, (fx) =0, Yo ="Ts, p.a,8(8)-

n——4oo

Proof. Take an arc I,, C T centered at £ so that |I,,| = ¢,d, for some ¢, > 0 such that
Cn = 00, Cpy — 0, and ¢, \/pn — 0, where p, = n(z,), 2, = £(1 — |I,,]). For example,
one can take ¢, = 1/(v/0, + v/ pn), Pn = SUD,>1- /5, n(rf). By Lemma 10, we have

{E € In k(&) = fr(zn)l > 8}/ In] S 0(zn)/t, > 0. (29)
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For every g that satisfies ||g|| (1) < 2 and every z € T,,, we have

P(g,2) = P(xr1,9-2) + P(XT\1,9:2) = P(X1,9,2) +0(1), n— o0,

since lim,,_,+, ¢, = 00, and this bound holds uniformly in g and z. Thus, having defined
e = (fx = fu(zn))x1,, We get

Fe(2) = fr(zn) = P(fx — fi(zn), 2) = P(fr, 2) + o(1). (30)
Recall that lim,, oo ¢ny/prn = 0. Thus,

[P 2)| < P0Gz <y 1o 2) + POty il 2)

The first term is bounded by ‘/pn Consider the second one. Since z € T,, we can
estimate the Poisson kernel by Cd,;*, bound | fk| by 2, and apply (29) to write

[ 1n|pn
VP,0n

,P(X‘fk|>\/5n|fk|7z)§ *Cn\/pnﬁo'

From (30), we get

lim sup sup |fi(2) — fi(za)| = 0.

n—o0  Lo2eY,

Since |fi(€1) — fi(€2)] < [fu(&0) = fu(za)l + [x(&2) = fu(2a)], we got the statement of
the lemma. O

Denote the argument of ¢} on T by (,. Since ¢} has no zeroes in D, ¢ =
Imlog ¢} (e') is a continuous function and it coincides with the harmonic conjugate
of log |7 ()| since ¢} (0) is real. Moreover, ¢, (') = (nt — v, (t))/2 where v,, denotes
an argument of the Blaschke product b, = ¢, /@) . As was discussed previously, v, (t) is
increasing in t € [—m, ), see (19).

Lemma 12. The function ¢} (1 — zby, fr) is outer in D. For almost every t € (—m,m), the
harmonic conjugate of the function log |k (1 — b, fn)|?, € € T, at point e is given by

vn(t) = nt — yu(t) + 2arctan ( [fn(e™)|sin(yn (t) + ¢ + Fn(t)) ) .

L+ | fa(e®)] cos(n(t) +t + rn(t)) (81)

In this formula, the function r,(t) is uniquely defined by conditions: k,(t) € [—m, )
and () = —f () /| fu(e™)| in the case when f, is not identically zero. If f, = 0
identically, then the third term in (31) can be dropped.



R. Bessonov, S. Denisov / Journal of Functional Analysis 280 (2021) 109002 25

Proof. Since the polynomial ¢} has no zeroes in D it is an outer function. We also have
Re(1 — zb,, f,,) =2 0 in D, hence 1 — zb,, f,, is an outer function as well, see Corollary 4.8
on page 74 in [7]. The harmonic conjugate of log |} (1 — zby, fr)| is the sum of harmonic
conjugates of log || and of log |1l — zb, f,|. The harmonic conjugate of log |¢¥]| is Cy.
The harmonic conjugate of g = log |1 — &b, | is equal to Imlog(1 — &by, f,) which is the
boundary value of the argument of function 1 — zb,, f,,. The latter function has positive
real part and its absolute value is bounded by 2. Therefore, g is well defined a.e. on T
and g € [—7/2,7/2]. As we have seen in (9), for u € Sz(R) we have

/log(l — | ful?) dm < +o0,

T
in particular, |f,| < 1 almost everywhere on T for each n. Suppose that ¢ = e is
such that f,(£), the boundary value of f,,, satisfies 0 < |f,(£)] < 1. We know that this
holds for almost every & = e € T (if |f,| = 0 on a set of positive Lebesgue measure,
then f, = 0 identically and the lemma holds trivially). Take &, (t) € [—m,7) such that
—fa(€) /| fn(e®)| = e Then, we have

3(€) = arctan ( 16 () Fa(E)] Sin(ya(£) + 1 + A (1)) ) |

1+ [bn () fn(E)| cos(yn(t) + 1 + ()

due to the formula

1+ ae™ asiny
—_— = , arct _— 32
1+ aet| P (zarc an<1+acos¢ ’ (32)

for a € [0,1], ¥ € R: 1 + acosy # 0, when we notice that Re(1 + &b, fn) # 0 almost
everywhere on T. Since |b,,(§)| = 1, the lemma is proved. O

Now, we can control the oscillation of v,.

Lemma 13. Let v, be defined by (31) and let I C T be an arc with center at & € T.
Then, there exist numbers cr , such that

[{E €T on(€) —ernl > M/ S 7Y 277n(z)),

Jj=20

where the function n is defined in (18) and {z;} is the set of points constructed in

Lemma 5.

Proof. Since v, is the harmonic conjugate of u,, = log |} (1 — 2b, f,)|?, we obtain

HE €T :|on(§) —crml > /IS t—lllunlli‘yz:j20 2771(25)



26 R. Bessonov, S. Denisov / Journal of Functional Analysis 280 (2021) 109002

from Lemma 5. It remains to note that {[|un|;} is uniformly bounded due to
Lemma 4. O

We recall that Christoffel-Darboux kernel is defined by

n—1
keun(2) = Y i(2)95(6)
j=0

where {¢;} are polynomials orthonormal with respect to measure p.
Lemma 14. If € = ¢ and t € R, then [[keun 22, = 05 (€) 214 (0).

Proof. For £ € T and z # &, we have (see [8], Section 1)

ké,u,n(z) _ @Z(z)%(ﬁ)—in(z)%({f) _ vz(z)m%;zzn(f)

Noting that b, (e**) = ") for s € [~m,T), we get

ke m 1720y = Ken(€) = lim ke pun(2),

—¢

1 — et (8) =T ()

_ * 27:
= len (O lim ———r—

= len ()P ().

)

The lemma follows. O

Lemma 15. Assume that lim, . |¢5(6)|72 = |Du(&)|* for almost every & € T. Let
rn=1—1/n forn > 1. Then, lim, o fn(rn§) =0 for almost every £ € T.

Proof. We claim that for each § € (0,1), there exists a subset Gs(u) C T with the
properties:

m(Gs(p)) =1 -4, (33)

each point of Gs(u) is a Lebesgue point, (34)
lim sup{K(p, z), 2 € S,(€), [z =& < e} = 0 for £ € Go(p)and p € (0,1),  (35)
E—r

Tim 1 22 = 1Du(€)] 2 for € € Gilp), (36)
lim +/ (t)/n = 1 uniformly with respect to ¢ : e € Gs(u). (37)
n—oo

Indeed, for every p € Sz(T) we have (35) almost everywhere on T since the Poisson
kernel is an approximate identity. Theorem 1 in [13] says that the limit relation in (36)
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holds almost everywhere on T. By Lemma 14, this implies that the limit relation in (37)
holds almost everywhere on [—m, 7]. So, there is a set F of full Lebesgue measure on T
such that limit relations in (36), (35), (37) hold for ¢ = €% in E. Using Egorov’s theorem,
one can find a subset E of E of length 2m(1 — ) such that the limit relation in (37) is
uniform with respect to t € [—m, 7] provided e € E. Then, we can denote by Gj(u) the
set of the Lebesgue points of E.

Now, it suffices to prove that for every fixed § > 0 we have lim, o frn(rn€) = 0
for every £ € Gs(u). Without loss of generality, we can assume that £ = 1. Consider
any convergent subsequence {fy, (rn,)} and let limg o0 | fn, (7n,)| = d. Let us show
that d = 0. In this proof, we will several times choose subsequences of {fy, (rn,)}. To
simplify notation, we will assume that sequences under consideration converge without
extracting subsequences. In particular, we let lim, o | fn(7n)| = d. By Lemma 11, we
have lim,,_,o | fn(1 — a/n)| = d for every a > 0. Let, as before, 7, : [-m,7) — R be a
continuous branch of the argument of the function b, (e®), where b, = ¢, /% . Denote
I,(a) = (—a/n,a/n) for all n > 1 and a constant a > 10. Consider n > a/w. It follows
from Lemma 12, Lemma 13, and condition (35) that there are sets E,(a) C I,(a) and
numbers ¢, such that functions

(38)

U (t) = nt — 7, (t) + 2arctan ( | ()| $in(yn (£) + t + £, (1)) )

1+ [fu(e™)| cos(yn(t) +t + £in(t))

satisfy the following relations:

(a) |vn(t) — cn| < &, for all t € Ey,(a),
() |En(a)| =2 (1 —en)|In(a)],

for some positive sequence {e,}n>1 converging to zero. Next, we renormalize (38) as
follows. For each n, take m,, € {2nrZ} such that |¢, — m,| < 7 so

|(Un(t) = m0) = (cn — )| < €n

for all t € E,,(a). We denote ¢, = ¢, — mp, Up, = v, — T, and 7, = ¥y, + 7. Now, (38)
can be rewritten as

T [ (€] cos(3m (&) + £+ (6] (39)

Ba(t) = nt — Fu(t) + 2arctan ( [ (€[S (Fn (1) + 1t + i (1)) )
n - n

and the following relations hold:

(a') [en] < 7 and [U,(t) — Cu| < &y, for all t € B, (a).

Since 7, is increasing on (—m, ), relations (39) and (a’) imply that there is a constant
¢(a) depending only on a, such that |3,(t)| < c(a), t € co(E,(a)), where co (E,(a)) is
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the convex hull of the set E,(a) C I,(a). Note that co(E,(a)) contains I,(a/2) for n
such that |e,| < 1/2. Hence, for large enough n, the functions

iyt 8= Ap(s/n)

are correctly defined on [—a/2,a/2], increasing, and uniformly bounded by ¢(a). There-
fore, by Helly’s selection theorem, one can choose a subsequence of {h,} that converges
pointwise on [—a/2,a/2] to a non-decreasing function h. We again will assume that the
whole sequence converges to h. One can also assume that functions o, (s/n), | f.(e**/™)]
on [—a/2,a/2] converge in measure to constants ¢ € [—m,x], d, respectively. Indeed,
for ¥,,(s/n) this follows from assertion (a’), while for |f,(e**/™)| — from Lemma 10. If
d # 0, Lemma 10 implies also the converge of k,(s/n) in measure on [—a/2,a/2] to
a constant k € [—m, w]. Choosing, if needed, a subsequence, one can assume (see [6],
Theorem 2.30) that the convergence of U, (s/n), | f.(e**/™)| and &, (s/n) is pointwise on
a subset E C [—a/2,a/2] of full Lebesgue measure. Since £ = 1 is the Lebesgue point of
the set Gs(u) and hl (s) =, (s/n)/n, we use (37) to get

S2

h(s2) —h(s1) = nETw(hn(Sg) —hp(s1)) = nEToo Rl (s)ds > sy — s1 (40)

for every s; < so in E. We consider two cases now.

Case 1. If d € [0,1), then relation (39) implies

se kb, (41)

B d-sin(h(s) + k)
c—s—h(s)+2arctan(1+d_cos(h(8)+ﬁ)> ,

where we set k = 0 if d = 0. The derivative

: 2
o, (h—2arctan< dsin(h + k) )) 1—d

1+ dcos(h+ k) :1+2dcos(h—|—/€)—|—d2

is within [(1 —d)/(1+d), (1 +d)/(1 — d)] so application of the inverse function theorem
shows that (41) defines a smooth increasing function on [—a/2,a/2]. Since h is nonde-
creasing, we see that (41) holds for all s € [—a/2,a/2]. Moreover, (40) gives h'(s) > 1
for such s. Differentiating (41), we obtain

1+ 2dcos(h(s) + k) + d?

() e ,

s€[—a/2,a/2].

Since A’ > 1 and a parameter a is large enough, there is s* € [—a/2,a/2] so that
cos(h(s*) + k) = —1. Thus, (1 —d)/(1 +d) > 1 which implies d = 0 and we are done.
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Case 2. Let d = 1 and rewrite (39) as

|fa(e™/™) sin(Fn(s/n) + 5/ + Kn(s/n)) )
L+ |fu(e?/m) [ cos(An(s/n) + s/n+ kn(s/n)) )
(42)

Un(s/n) = s —F,(s/n) + 2arctan <

Taking the limit requires some care in this case. We have

tim (1= ¢/ (€7D (¢59/7) ) = 1 4 ()

n—oo

for almost every s € [—a/2,a/2]. Let E be a subset of E on which 1 + e!("th(=)) £ 0, If
the function H is defined by the formula

H(a) = (a—275)/2 ifae (2rj—m2nj+m), jEL,
then an identity

sin o

arctan | ———
1+ cosa

) =H(a), «: cosa#—1, (43)

is immediate. Given (43), take a limit in (42) for every s € E to get

sin(h(s) + k)
1+ cos(h(s) + k)

c=s—h(s)—|—2arctan< )ZS—h(S)—I—QH(h(S)—I—K,).

Thus, if s; # so and sy, 82 € E’, then sy — s7 € 7Z and so E is either finite or empty.
That implies e!(**") = —1 almost everywhere on [—a/2,a/2] and h is a nondecreasing
step function. That, however, contradicts (40) and we get d # 1 under assumptions of
the lemma. 0O

We recall that the zeroes of ¢, were denoted by {z;,} and they are all inside D.
Lemma 16. Suppose there is a > 0 such that
lim f,(r4.n€) =0
n—oo
for almost every € € T. Then,

lim |5 (€)]? = [D(€)] 2

n—oo

and

hnrglgf (n min € — Zjn|) = 400 (44)

for almost every € € T.
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Proof. Notice that we have

lim sup  [fu(2)] =0 (45)

n—oo ZeTn—l,p,a,B(g)

for all p, a, 5 and almost every £ € T by Lemma 11. Moreover, for almost every £ € T,
we have

lim sup K(u,z) =0 (46)
70285 (6),]z—¢l<e

for any p € (0,1), and
Tim 0 eyl 22 = DA 2. (a7)

Without loss of generality, we assume that £ = 1 is a point at which all these conditions
are satisfied and let I,,(a) = [—a/n,a/n]. Like in the proof of previous lemma, we have

(48)

Un(t) = nt —n(t) + 2arctan < [fn ()] sin(Fn(t) +t + Kn(t)) >

L+ |fu(e™) cos(hn(t) +t + rin(t))

and there is a set E,(a) C I,,(a) and a sequence ¢, € [—m, ) such that

(@) |Un(t) —¢n| < &y for all t € B, (a),
(0) [En(a)] = (1 —en)[In(a)l,

for some positive sequence {e,}n>1 converging to zero. Moreover, we can use (45),
Lemma 10, and (46) to choose E,(a) such that an additional condition

() |fale™)] < 2y for all ¢ € By (a)

is satisfied. Rescale t € I,,(a) as t = s/n, let h,(s) = Y,(s/n) as in the previous proof,
and write

eis/n sin s s/n 4k (s/n
ﬁn(S/”):5—hn(8)+2arctan< [ Fn(e")|sin(hn(s) + 5/n + Kn(5/m)) >

L+ |fa(e®/m) cos(hn(s) + 7/n + kn(s/n))

Take a limit in measure on [—a/2,a/2] in the above equation through some subsequence
{n;}, it exists thanks to (a’) — (c). It follows from (c) that the sequence {hy,} converges
to s + ¢ in measure, where ¢ can depend on the choice of subsequence {n;}. From each
functional sequence converging in measure, we can choose a subsequence converging
almost everywhere. We denote it by the same {n;}. Since each function h,, is increasing,
this convergence is in fact uniform over [—a/2,a/2] due to Lemma 6. The parameter
a was arbitrary so we can take an unbounded positive sequence {a;} and choose the
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subsequence of {h,} which converges to a linear function uniformly on all compacts in
R. We again denote it by {hy, }. Thus, in view of (19), we can apply Lemma 7 to show that
{h;lj} converges to 1 uniformly over compacts and this convergence holds at point s = 0,
in particular. Arguing by contradiction, we can prove that in fact lim, . h, (0) = 1
through the whole sequence. By (47) and Lemma 14, we get an implication:

!
0
lim 7a(0)

n— 00 n

=1 = lim |} ()" =[Du(1)|7*. (49)

[A—

n, = 1 uniformly

The property (44) of zeroes follows from Lemma 8. Indeed, lim,,_, o A
over compacts in R so every subsequential limit of {h,} is a linear function of the form

h(t) =t + c. So, if

lim inf (n min |1 — z]n\) < 00, (50)

n— o0 1<j<n

we can choose a subsequence {k, } over which, first, {hy, } converges uniformly to a linear
function and, secondly,

lim inf (kn min |1 —z;
n— 00 1<j<n ’

)<oo. (51)

n |

That contradicts Lemma 8. O

The next result shows that information about zeroes {z; ,} gives control of pointwise
asymptotics of {|p,(§)|} for £ € T.

Lemma 17. Suppose that

i (v i 1€ zinl) = o0 )

holds for almost every & € T. Then,

lim |, () = |D,(€)7

n—oo

almost everywhere on T.

Proof. We consider ¢ in the full measure set of points on T where (39) and (52) hold.
Assume again without loss of generality, that £ = 1 and write renormalized equation
(39) taking s = tn

[ (€M) sin(ha(s) + /0 + Kn(s/n)) ) (53)

Un(s/n) = s — hn(s) + 2arctan (1 + [ fa(e/m) cos(hn(s) + s/n + kn(s/n))

and
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(') |Un(t) —¢n| <&y forallt € E,, and |¢,] < 7.
(0) [En(a)] = (1 = en)|In(a)],

for some positive sequence {e,},>1 converging to zero. Therefore, since h,, is increasing,
sup{|hn(s)], n =1, s € [-a/2,a/2]} < oo,

and we can apply Helly’s theorem on [—a/2,a/2] to find a subsequence {hy, } which
converges to a limit & almost everywhere on [—a/2,a/2]. The parameter a is arbitrary
S0, going to subsequences, we can find a non-decreasing function h defined on R such that
a subsequence of {hy} (call it {hs, } also) converges to h almost everywhere on R. From
Lemma 9, we know that h = ¢t + ¢z and convergence lim,,_, o by, = h is in fact uniform
on compact subsets of R. Formula (53) gives ¢; = 1 if we compare the variations of both
sides on [—a, a] when a — co. Now, by Lemma 7, we get lim,,_,o. hj, = 1 uniformly over
compacts in R. In particular, lim, h;cn (0) = 1. Arguing by contradiction, we again
can show that lim,, . h},(0) = 1 over the whole sequence. By the same reasoning we
used in (49), one gets the statement of the lemma. 0O

What we proved so far implies that assertions (a), (b), (¢) of Theorem 3 are equivalent
on a subset of T of full Lebesgue measure. Let us proceed with item (d). The paper [10]
will be the main reference in many arguments given below.

Lemma 18. Suppose lim,_,~ f,, = 0 almost everywhere on T. Then,

lim |y |* = D]~

n—oo

almost everywhere on T .

Proof. That immediately follows from Khrushchev’s formula

1 - |fn|2

* |2 2
Ol Dul” = 72>
| | | M‘ |1_£bnfn|2

see identity (1.18) in [10]. O

Given p, we recall that the dual measure fiqya) corresponds to the Schur function which
is equal to — f. The associated orthonormal polynomials are called the polynomials of the
second kind and they are denoted {1, }. The Wall polynomials {A,}, { B, } are connected
to orthogonal polynomials by (see formula (5.5) in [10])

Pn+1 = kn—&-l(zB:L - A:), @:H—l = kn+1(Bn - ZATL) ’ (54)
VYnt1 = kny1(2B;, + A), Z/J:H-l = knt1(Bn + 2A45) (55)
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where k,, is the leading coefficient of ¢,,. For n > 1, let fn be the Schur function of the
probability measure |¢7| =2 dm. In fact, we have f,, = A,,_1/By_1, see formula (5.11) in
[10]. Define

14 2f ﬁ_1+zfn

F= , = —.
1—=zf 1—zf,

Then, from (54), (55) we get identities (see also formulas (5.10) and (5.11) in [10]):

- 1+ ZAn—l/Bn—l 1;[);:,
F, = = —.
1—2A,_1/Bn-1 ©%

To show that (d) in Theorem 3 follows from the other conditions, we proceed as follows.
Since the real part of F, is nonnegative, it is an outer function in D and its behavior
can be controlled by the argument. We have arg ﬁn = argy, — arg ¢y, and this identity
will give lim,, o ﬁn(ﬁ) = F(§). The latter condition implies limnﬁoofn(ﬁ) = f(&),
which yields lim,, .« fr(£) = 0 by lemma 4.8 in [10]. The estimate on the nontangential
maximal function will easily follow.

Lemma 19. Suppose Z, C D and lim,, o0 sup,c |fn(2)| =0, then

lim sup | f(2) = fu(2)| = 0.

n—00 2€EZn,

Proof. Formula (4.19) in [10] reads

o An —|— ZB;;fn-‘rl

f - Bn + ZA:an+1 ’

That yields

fot12(B;,/Bn — (A:LA")/(BTQL))

_/;l = _An Bn:
£~ Fual = 1f = Au/B| L,

We have |A}/B,| < 1,|A,/B,| < 1in D (see Lemma 4.5 in [10]). Moreover, since B,
does not vanish in D (by the same Lemma 4.5 in [10]), we also have |B}/B,| < 1in D
which follows from the maximum principle and identity |B}/B,| = 1 that holds on T.
That proves the lemma. O

Lemma 20. If X,, C D and lim, o sup,¢x, |F(2) — E,(2)| =0, then

lim sup |2(f(z) = Fu(2))] = 0.

n—o0 X,

Conversely, if sup,c., _ x, |f(2)] <1 and lim, o sup,cx, |2(f(2) — ﬁl(z))| =0, then
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lim sup |F(z) — Fn(2)| = 0.

n—=0 e X,

Proof. Recall that

1 ~ 14 2zf,
p_ L4zl s l4zf

S 1—zf’ n_lfzfAn.
Thus, we have
FoBy | 2P | 2(-Fal
(I—zf)A—zfn)|  @=[fDA = [fal)
Analogously,
LT — 2<F_ﬁn) o
|Zf an‘— (1+F)(1+ﬁn) <2|F F’rL|7

where we used the fact that Re F' > 0, Re ﬁn > 0 in D. Now both claims are evident. O
Later, we will need the following technical result.

Lemma 21. Suppose function G,, is analytic on D, = {n : |n — in| < n}, continuous on

D, and ReG,, > 0 for every n > 1. Assume that there are constants Cy and Cy such
that ReCy > 0,

Jim G(n) = C (56)
uniformly over compacts in CT,
. ) /
lim arg G, (in — ine'/") = G5, lim (arg Glin — ine"/ ")) -0, (57

and these two limits are uniform in t over compacts in R. Then, Co = arg Cy and

lim  sup [Gn(n) — C1| =0, (58)

n— oo =
nNENb,n

for every b > 0, where $pn, = Dy, N {0 : |n| < b}.

Proof. The function u, = ImlogG, = argG, is harmonic in ©,,, continuous on D,
and |uy| < 7/2. For every point n € ©,,, we can write Poisson formula

n () = / 1 (€) e (€),

0D,



R. Bessonov, S. Denisov / Journal of Functional Analysis 280 (2021) 109002 35

where w,, is harmonic measure at n for ®,, (the rescaled unit disk). The first condition
in (57) and |u,| < 7/2 imply that

lim  sup |un(n) — Ca| =0, (59)

e
" OCUEﬁb,n

for every b. Thus, Cy = arg C;. Next, we will use the fact that the function analytic on
the compact simply connected domain in C can be recovered from the boundary value
of its imaginary part (up to a real constant). Indeed, let A, (k) be conformal map of D to
$Hpn such that the lower arc of 99y, i.e., points 1 : n € 09, that satisfy |n —in| = n,
corresponds to lower semicircle of 9D, i.e., k : k € 0D for which Imk < 0. Consider
[ (k) = log G (M (k)). Tt is analytic in D, continuous in D and, given conditions of the
lemma, satisfies

lim ImT, (") = argCy, lim (ImT,(e)) =0, (60)
n—oo n—oo

uniformly in § € [—7+6, —d]U[0, m— 3] for every § > 0. Moreover, lim,, o I'y (k) = log Cy

uniformly on compacts in D and |ImT',,| < 7/2 in D. We can recover I',, by the boundary

values of its imaginary part as follows:

(k) = i/Im T, (€) - % dm(€) + Re T, (0).

T

The conditions on {I',} and simple estimates on the integral above imply that
lim,, oo I (k) = log C; uniformly in k : {k € D, |k — 1] > 6,k + 1| > d}, where §
is any positive number. In particular, this yields

lim sup |Gn(n)—Ci1| =0

e 2
nree NENv—1,n

in the variable 7. Since b is arbitrary positive, the lemma is proved. O

Lemma 22. In Theorem 3, if (a), (b), or (c) holds, then lim, o fn(§) = 0 for almost
every £ € T.

Proof. From Lemmas 15, 16, and 17, we know that conditions (a)—(c) are equivalent to
each other. As before, let «, denote the argument of the Blaschke product b, = ¢, /¢%
and let 7, be the argument of by = Yn /9%, The proof of Lemma 16 gives control for
the derivatives of «,, and 7, at almost every point £ € T. Without loss of generality,
assume that this point £ is equal to 1. Additionally, assume that the nontangential
limit f(1) = lim,_,1 f(2) exists and |f(1)|] < 1. That last condition implies existence of
nontangential limit of F' at point 1 and an estimate Re F'(1) > 0. From the proof of
Lemma 16, we have
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lim arg~, (7/n)/n =1, lim 7/ (t/n)/n=1 (61)

uniformly over compacts in R.
By Lemma 15 and Lemma 11, we get lim, oo Sup,cy _, . |fn(2)] = 0 for ar-
n=1,pa,
bitrary p € (0,1) and 0 < a < (. From Lemma 19 and Lemma 20, one has

lim, oo SUpcy , |F(2) = Fu(2)] = 0. For n > 1 and 7 in the disk ®,, defined
in Lemma 21, we set G, (n) = ﬁn(l —n/(in)). The existence of nontangential limit of F

Py, B

at point z = 1 gives lim,,_,, G,,(n) = F(1) for every n € C*. This convergence is in fact
uniform over compacts in CT by Lemma 11. We will apply Lemma 21 next. Notice that
ReG,, > 0in ®,,. If we define

un(t) = arg G, (in — ine“/”) = arg ﬁn(eit/") = arg 1/);;(6“/") —arg @Z(eit/"),

then lim,, o u/, = 0 uniformly over any compact in R as follows from (61) and a simple
relation between the arguments of b, = ¢, /@) and 2. Since |u,| < 7/2, we can choose
a subsequence {u,, } such that

lim w,, =C, lim u), =0 (62)

J—00 j—o0 7

where C' is some constant and the both convergences are uniform on compact subsets of
R. Now apply Lemma 21 to Gy, taking C; = F(1) and Cy = Ci to get

lim sup [Gn;(n) — F(1)| =0 (63)

Jree WGTJb,n

for every b, where the sets ) ,, are defined in Lemma 21. Arguing by contradiction, we
can strengthen this to

lim sup |G(n) — F(1)] =0 (64)

n— oo =
nN€ENb,n

~

for every b. Taking n = 0, we get lim, o0 F,(1) = F(1) and thus lim, fn(l) = f(1)
by Lemma 20. The last property is equivalent to lim, . fn(1) = 0 by Lemma 4.8 in
[10]. O

In the next lemma, we will control nontangential maximal function.

Lemma 23. Let p € (0,1). If gy, s analytic in D, |g,| < 1, and lim g, (&) =0 for almost
n—oo
every § € T, then sup,c g« (¢) |gn(2)| = 0 for almost every £ € T.
P

Proof. By Egorov’s theorem, for every j € N, we can find E; C T, [Ef| < 1/j and
limy, o0 gn = 0 on E; uniformly. We can assume without loss of generality that each
point of Ej; is a Lebesgue point. Take { € E; and let z € S;(g). Write Poisson formula
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for harmonic function g,: gn(2) = P(gn, 2). By dominated convergence theorem, we have
lim,,_, o0 g = 0 uniformly on compacts in D. Then,

sup  [gn(2)| S (r) + sup [gn(n)|,
|2|>r,2€55 (€) neE,

where lim,_,1 §(r) = 0 because ¢ is a Lebesgue point for E;. For the second term, we
have lim;, o Sup,c g, [9n(17)| = 0 due to uniform convergence to zero on Ej. Thus,

sup |gn(2)|=  sup  [gn(2)[+  sup  |ga(2)]
2€835(8) [z|<r,2€85(€) |z|>r,2€85(€)

and limy, 00 SUP, e g+ (¢) [9n (2)| = 0 if we first fix 7 close enough to 1 and then let n — oo.
3
Since j is arbitrary, we get statement of the lemma. 0O

Finally, we are ready to prove Theorem 3.

Proof of Theorem 3. Lemma 15 shows that (a) implies (¢). Lemma 16 shows that (c)
implies (@) and (b). Lemma 17 proves that (b) implies (a). That establishes equivalence
of (a), (b), and (c¢). Lemma 18 shows that (d) yields (a). Finally, Lemmas 22 and 23
prove that (a), (b), (c) give (d). O
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