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Generalizations of Menchov—Rademacher
Theorem and Existence of Wave Operators
in Schrodinger Evolution

Sergey Denisov and Liban Mohamed

Abstract. 'We obtain generalizations of the classical Menchov-Rademacher theorem to the case of
continuous orthogonal systems. These results are applied to show the existence of Moller wave
operators in Schrédinger evolution.

1 Introduction

The celebrated Menchov-Rademacher Theorem (see, e.g, [10]) gives a general condi-
tion for a.e. convergence of the orthogonal series.

Theorem 1.1 (Menchov-Rademacher) Suppose {¢,(x)},n € N is an orthonormal
system in L*(0,1), and the sequence {a, } satisfies

143 a2 log?(n+1) < oo
n=1

Then the series Y o1 and,(x) converges for a.e. x € (0,1). Moreover, if

def

m(x) = sup‘zn:aj¢j(x)|
neN © j=1

defines a maximal function, then
|m2go) < CI'V?

with some absolute constant C.

This result can be easily modified to cover orthonormal systems in LIZA (0,1) where
y is a measure on (0,1). In this paper, we prove an analog of this result for orthog-
onal systems with “continuous” parameters of orthogonality and apply it to show the
existence of wave operators for Schrédinger evolution.

We start with the following definitions.

Received by the editors May 1, 2019; revised October 2, 2019.

Published online on Cambridge Core December 20, 2019.

The work of SD done in the first two sections was supported by the grant NSF-DMS-1764245, and his
research on the rest of the paper was supported by the Russian Science Foundation (project RScF-19-71-
30004). The work of LM was supported by the grant RTG NSF-DMS-1147523.

AMS subject classification: 34L25, 35P25.

Keywords: scattering, Schrodinger equation, Menchov-Rademacher.

P

Downloaded from https://www.cambridge.org/core. 10 May 2021 at 18:52:04, subject to the Cambridge Core terms of use. @ CrossMark



Generalizations of Menchov-Rademacher theorem 361

Definition ~ We say that f € L2 (R*) if

loc

[Oa|f(r)|2dr< oo

forall a > 0.

Definition  Let a pair (P, ) consist of a function P(r,k): R* xR — C and a
measure ¢ on R. We say that (P, o) is a continuous orthonormal system if

(i) foro-ae keR,P(r,k)eLl (R*);
(ii) forevery f € L>(R*) and every a > 0, we have

L1 srpemar doy = [ I7Par.
Our first result is the following theorem.
Theorem 1.2 Suppose (P, 0) is a continuous orthonormal system and
L fR (1P log?(2 + r)dr.
Then the sequence { [, f(r)P(r,k)dr} converges for a-a.e. k € R. Moreover, if

M(k) % il:g‘fonf(r)P(r,k)dr,

then | M| 2 () < CL? with some absolute constant C.

Definition ~ We will call a continuous orthonormal system (P, o) normalized if
there is a continuous positive function « defined on R such that

2
(L) k1 eL®(R), K%s f‘P(r’kN do < oo.
r>0

For normalized systems, the previous theorem can be improved in the following
way.

Theorem 1.3  Consider a normalized, continuous, orthonormal system (P, 0, «) and
suppose that flog(2 +r) € L*(R"); then

(1.2) f sup\ f F(r)P(r, k)dr‘ AT
(16" i+ K) [ 1f(n)Plog? @ 4 r)dr.

Moreover, as R — oo,

(1.3) foRf(r)P(r,k)dr N fooof(r)P(r,k)dr

for a.e. k with respect to measure o.
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362 S. Denisov and L. Mohamed

One example of continuous orthonormal system is given by solutions {P(r, k)}
to Krein systems [5,12]. Krein systems are given by the following linear system of
differential equations:

, r20.
P.(r,k) =-A(r)P(r, k), P,(0,k)=1

/ _ _ _
W {p (k) = ikP(r,K) = A(P.(r k), P(OK)=1
In this paper, we will always assume that the coefficient A € L} (R"). The Cauchy
problem (1.4) has the unique solution (P(r, k), P.(r,k)). In [12] (see also, e.g., [4]),
Krein showed that { P(r, k) } with r > 0 and k € R can be viewed as continuous analogs
of polynomials, orthogonal on the unit circle. In particular, there is a measure ¢ on

R that satisfies
/ do(k) < oo,
R 1+ k2

and the following property:

(15) L1 soperard do= [“150)ar

holds for every f € L*(R"). In other words, any pair (P, o) gives an example of a
continuous orthonormal system. Notice that (1.5) allows us to define the generalized
Fourier transform of f:

fomf(r)P(r,k)dr

as an element of L2(R).

Under a mild extra assumption on coefficient A, the system (P, 0) becomes nor-
malized, and the previous theorem can be applied. More precisely, the following
lemma holds.

Lemma 1.4  Suppose the coefficient A in a Krein system belongs to the Stummel class,

ie,
def r+1 1/2
Al 2 sup ([ 1AGp)Pdp) < oo
r20 r
Then
P ,k
16) wp [PERE 41 pag,
r>0

Moreover, we have (1.2) and (1.3) with (k) =1+ k* and K S 1+ || A2,

The proof of this Lemma is given in the Appendix.
Another application of our general results to Krein systems is given in the following
lemma.
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Generalizations of Menchov-Rademacher theorem 363

Lemma 1.5  Suppose the coefficient in a Krein system satisfies A(r)log(2 + r) €

L*(R*); then
2
r2 do
’/R(‘nggz /r: A(x)P(x,k)dx‘) =

2 do
AR R e

S+ 1A [ 1AMPIog 2+ ndr p >0.
P
Moreover, for Lebesgue a.e. k € R, there is a limit TL(k) = lim,_, oo P (1, k).

Theorem 1.2, Theorem 1.3, and Lemma 1.5 are proved in the second section. In
section 3, we apply Lemma 1.5 to show existence of wave operators for Schrodinger
evolution, which is our central result. Consider

H=-, +v
on R* with Dirichlet boundary condition at zero and denote by Hy = -2 the free

Schrodinger operator with the same Dirichlet condition at zero. The Moller wave
operators (see, e.g., [15]) are defined by

def oo itH i
W*(H,Hy) = lim "¢ "o,
t—+oo

where the limit is the strong limit in L?(R*). The main result of our paper is the
following theorem.

Theorem 1.6  Suppose v = a’ + q where q € L'(R"), a is absolutely continuous on
R*, and

a' e L°(R"), alog(2+7r)eL*(R").
Then the wave operators W*(H, Hy) exist.

The existence of wave and modified wave operators for Schrodinger and Dirac
equations was extensively studied in the scattering theory of wave propagation; see,
e.g., the classical papers by Agmon [1], Hérmander [9], and a book by T. Kato [11] on
the subject. The case v € LP(R*),1 < p < 2 was considered in [3] where the exis-
tence of modified wave operators was proved. See [6] for later developments. In [4],
the presence of wave operators was established for Dirac equations with potential in
L*(R*). This result is optimal on L? (R*) scale. For more general potentials in Dirac
equations and connection to the Szegé condition on measure o, see [2]. Some related
recent results, including the multidimensional setting, can be found in, e.g., [7,8,13].

Notation (a) If f is defined on R, fdenotes its Fourier transform:

Fk) % [Rf(x)e’ikxdx.

The inverse Fourier transform is defined as

Fk) = (k)< ﬁ fﬂ{{f(x)eik"dx.
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364 S. Denisov and L. Mohamed

(b) C*(R) stands for infinitely smooth functions defined on the real line, and
CZ° (R) denotes the space of smooth functions with compact support.

(c) We will use the symbol C(y, .. 4,) to indicate a nonnegative function that de-
pends on parameters (ay, ..., ax). The actual value of C can change from one
formula to another.

(d) IfE is aseton the real line, E° denotes its complement.

(e) For two non-negative functions f,(,), we write f; < f, if there is an absolute
constant C such that

H<Ch
for all values of the arguments of f;(,). We define 2 similarly and say that f; ~ f,
if fi $ fand f; < fi simultaneously.

(f) If f, is a non-negative function and |f| $ f>, we write fi = O(f2).

2 Menchov-Rademacher Theorem for Continuous Orthogonal
Systems

We start by giving a proof of Theorem 1.2. It is a direct adaptation of the proof of
the Menchov-Rademacher Theorem in [10], but we present it here for the reader’s
convenience.

Proof of Theorem 1.2 For j € N, let P;(k) = fjﬁl f(r)P(r, k)dr and

j 2/
s;.(k):lzp,(k):f1 F(F)P(r, k)dr.

Now, _ _
2/ 2 2/
1Pl = [, fP@ R dato = [ 1f(rPar,
and so
@1 S PP Ee ~ [ () log 2+ .

jeN

For any a > 0, we have

>/ By (ldo (k)
< JZN(f |Pj(k)|2da(k))1/2([: da(k))l/z
<Vo([-a,a]) ]ZN 1] 2 ey i
<Valaal( 371 ||i§(R))l/z(§j-2)l/z
sVoTaa( [ 1fnPlog @ rar) = o(a L

Since a is arbitrary large, by the theorem of Beppo Levi, ¥ i [Pj(k)| converges for
o-a.e. k, as does {S}(k)}.

Downloaded from https://www.cambridge.org/core. 10 May 2021 at 18:52:04, subject to the Cambridge Core terms of use.



Generalizations of Menchov-Rademacher theorem 365

Let S'(k) def sup e [S7(k)| be the maximal function over dyadic partial sums.
Since §'(k) < ¥ ;e |Pj(k)|, we have

1122 Ry < H N7 <SP 2wy = 3. 5Pyl 2y S LV
JjeN jeN JjeN

L3 (R)
after applying the Cauchy-Schwarz inequality and (2.1).
For n € {0,1,2,...,2N}, we can write n = Y. _; €, (n)2N "™ with €, (1) € {0,1}.

For je {0,1,...,N},letn; = J _o€m(n)2Nm,
Noting that | 2?21 xj* < NZ]=1 |x|*, we have

\/ZNZ f(r)P(r,k) dr \Z/ f(r)P(r,k)dr|

| [

N 21 Vi (pe1)2V 2
Ny S| [ F(F)P(r, k)dr
j=1 p=0

f(r)P r, k)dr‘

+tnjy

>

2N+ p2N-j

and the last expression does not depend on . Let

2/

SI(K) % sup fzj " f(P(r k)]

0<n<2i

denote the maximal function over dyadic interval [27, 2/*1]. We apply the above esti-
mate to get

| 2 R R do (k)

Sz - J,
I HLZ(R) RofugN

fNiziz |f2N2 Ni(p+1)2N f(r)p(r,k)drrda(k)

j=1 p=0 +p2N-i
N2 2N (p+1)2V R
; Pt f |/2-N+p2N S f(f)P(r,k)dr| do(k)

2N (p+1)2NI

- iz /s FRar =N [ 5P

+p2N-i

Taking S" = sup ;. 7, we note that §” < (T ey |S;-'|2)1/2, S0

2/t 5 1/2 12
"z (S 7 [ 1f0Par)” s 2

jeN
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366 S. Denisov and L. Mohamed

Finally, we have

IM@mﬁ[ﬁﬂM%WAiy[{WVMMWWdH

n 2
+[sup sup [ f(r)P(r,k)dr| do(k)
R jeN 2i<n<it1 Y2/

1
= [ U @)Pdr 1+ 18" S I
0

Convergence of the sequence { [," f(r)P(r, k)dr} for g-a.e. k follows from the con-
vergence of {S7(k)} established above and the estimate [ 3 jey |S;'|2d0 < L, which

yields convergence of ¥ ;o [S7 |? for o-a.e. k. ]

Proof of Theorem 1.3 We have
t 2do(k)
su r)P(r, k)dr
@ﬁﬁﬂ)()‘m
2do(k)

:/ﬂ;ts:;g f f(r)P(r, k)dr+f f(r)P(r, k)d| ()
S [ sup\ [ F(P(r R)dr| da (k)

ths%E f f(r P(r,k)d‘ dxa((kk)).

The first integral was controlled in Theorem 1.2. The second one can be estimated as
follows:
2do(k)

J, sup f FPer ke S
- 2 do(k
< fosu(f () P(r K ldr) K"((k))
Lo (L ([ a5
SE( ) [ et T
— m n+l r, k)|? 11 R
szo(f £ dr)(fn (/Ru)f{(k))'da(k))dr)(s)KUb,

which proves (1.2).
To establish (1.3), we notice that

[ 100 = [ o) dn s [ fp(p

The first term has a limit as r — oo for o-a.e. k as follows from Theorem 1.2. For the
second one, we can write

\/ f(p) P(p,k)dp| f [F(p)P(p, Kk)|dp,
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Generalizations of Menchov-Rademacher theorem 367

and the last expression goes to 0 for o-a.e. k, since the series

> (L ere k)

neN n

converges for o-a.e. k. This convergence follows from the bound

fRngN(fnﬂﬂ If(r)P(f,k)|dr)2d70
< /R,,ze;\;((/n”arl |f(T)|2d7‘)(fn"+1 |P(r’k)|2dr))dK‘7

P(r, 2 n+l1 )
(s [ FEIa0) 5 [ ippar ' e .
neN 1

r20

Before giving our proof of Lemma 1.5, we list some basic properties of Krein sys-
tems, which will be needed later in the text. We start by remarking that

(2.2) P(r,k) = ei'kP,r(r, k),
provided that k € R. This identity follows directly from (1.4) and can be found in,
e.g., [5].

Next, we consider an important case when A € L*(R"). In [4] (see also orig-
inal Krein’s paper [12]), it was shown that the following properties hold under this

condition.
o There is a function I1(k), k € C* such that
(2.3) lim P, (r, k) =TI(k)

uniformly over compact sets in C*. This IT is outer, and the orthogonality measure o
can be written as follows:

dk

(24) do = W

+doy,

where o; is its singular part.
o Integrating the second equation in (1.4), we have

(25) P.(rk) =1- [ A(IP(p. K)dp.
Therefore,
1-Pu(r k) = [T AG)P(R)dp - A [ AGp)P(p. k),

when r — oo and convergence is in L?(R, ¢) norm. On the other hand, the formula
[4, (12.37)] gives
A(k) =1-TI(k) - Xz,
where E{ denotes the complement to Ej, the support of g,. Therefore,
(2.6) lim [P, (r, k) = TI(k) - gt 2.0 = 0.

¢ From (2.5) and orthogonality, we get

fRIP*(r»k)—uzda: /0r|A(p)|2dp.
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368 S. Denisov and L. Mohamed

Proof of Lemma 1.5 The second equation in (1.4) gives

P, (r3,k) = Pu(n, k) = —/rzA(r)P(r,k)dr.

n
Theorem 1.3 yields the necessary estimate on the maximal function and convergence
of P.(r, k) o-a.e. The limit is equal to IT from (2.3) due to (2.6). [

3 Wave Operators for Schrodinger Evolution: Proof of Theorem 1.6

We start this section by describing a connection between Krein systems and Dirac and
Schrédinger operators on R*. Consider a Krein system with coefficient A € L}, (R").
It corresponds to a Dirac operator

-b dy—a
o o0, )

defined on the Hilbert space (fi, f2) € L*(R*) x L*(R*), where a(x) = 2Re A(2x),

b(x) = 2Im A(2x) with the boundary condition f,(0) = 0. Indeed, define real-valued

functions ¢ and y by writing ¢(x, k) + iy(x, k) o P(2x, k)e " *_ Tt can be checked

[5,12] that (¢, ) are generalized eigenfunctions for Dirac operator (3.1) and that 2¢
is its spectral measure. Define {&(x,k)},x > 0 by

(3.2) &(x, k) < p(2x, k)e k.

This is also a continuous orthonormal system with respect to o, i.e.,

(3.3) [R‘fowf(x)c‘l(x,k)dxrda= 112,

for every f € L*(R") (see [4,12]). Making the extra assumption that A is real-valued,
i.e, that b = 0, and absolutely continuous on R* and taking the square of D reveals
the connections between Dirac and Schrodinger operators. Indeed,

2 _(Hi O
o o (B2,
where Hyf = =07, f + auf, f/(0) + a(0)f(0) = 0, Hof = =03 f + 42, £(0) = 0,
qu=a’-ada,q;=a*+d.
Later in the proof, we will use the spectral decomposition for Dirac D and the formula
(3.4) to write a suitable expression for ez,
The following result implies Theorem 1.6 thanks to Lemma 1.5.

Theorem 3.1 Suppose the coefficient A in a Krein system is real and absolutely con-
tinuous, A € L*(R"), A" e L°(R"), and

2
& do
A(r)P(r,k)dr|] ——= =0.
[ Ao ) 20
Let a(x) = 2A(2x) and let q be a real-valued function on R* satisfying q € L'(R").
Then, taking two operators H = —0%, + a’ + q and Hy = —02, both with Dirichlet
boundary condition at zero, we get the existence of wave operators W*(H, Hy).

3.5 li
(3.5) im R( sup

p—=>0 p<ri<ry
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Generalizations of Menchov-Rademacher theorem 369

This theorem is the central technical result of our paper. Before giving its proof,
we state the following lemma.

Lemma 3.2 Suppose t > 0, y is a measure on R, and p(k), p;(k) € L%(R). Let
|pll2, = 1and

(3.6) lim [pilay =1, lim [ p=piPdu =0

for every interval A c R. Then tlim lp=pel2u=0.

Proof The proof is based on a standard exhaustion principle. For every € € (0,1),

we can choose L > 0 such that [, [p|*du < e where A def [-L,L]. By (3.6), there is a
T so that

1-lpd3ul<e [ lp-piPdu<e

for t > T. Thus, for t > T, we also have

[ o =lpil3, = [ lpddu
~IpilBu- (1= [ lpPdu~ [ (6P ~1piP)an)
<llpilBu =11+ [ loPdu+| [ (1~ lpiP)d
Se+ Ve,

where we used the triangle inequality to estimate
| b = 1peP)dn| = 215 a) - o)

= (Iplizcay + 12z ) - I2d oy = 1ol 3o
Slp-pelliza) < Ve

Thus,
[lp=piPdu= [ lp-piPdu+ [ 1p-pian
<€+2f pl*du +2f lpefdu s Ve
A A¢
for t > T, and the proof is finished. ]

Proof of Theorem 3.1 Since a?, q € L'(R") and relative trace class perturbations do
not change the existence of wave operators (Birman-Kuroda Theorem, [14, p. 27]), it
is enough to consider H = H, = a’ + a*. Take f € L?(R*). We need to prove the
existence of

(3.7) lim e”He_"’H"f,

t—+oo

where the limit is understood in L*(R") topology. Notice that, since both groups
e'™ and e~"Ho preserve L?(R") norm, it is enough to prove the existence of the limit

for every f € T where T is any dense subset in L*(R*). We define T as follows:
g % {f: fo € C(R),0 ¢ suppf, }, where f, denotes the odd extension of f to R.
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From now on, we assume that f € T, f||, = 1 and that t - +o0 in (3.7) (the case

t — —oo can be handled similarly). Denote f, def (Fo - xes0)"s f- def (Fo - xe<o)"-
Working on the Fourier side, we get

emit g 1 ~ [ ([ f)sin(eu)du) sin(gx)dg
_ 1 —ltf ff(”)e zEudu) Ifxdf

27r

The last expression is equal to the restriction of eitdi fo toR*, where 92 _ is considered
on all of R. The large time asymptotic behavior of et hforh e L?(R) is known and
given in Lemma A.1 Since f, (&) = £, (&) for &> 0, it is enough to show that

def eitkz oo pix /(4!)
e

1+i Jo Vit
has a limit in L*(R, 20) when ¢ — +00. Indeed, the spectral measure for Dirac oper-
ator D is equal to 20; the generalized eigenfunctions are (¢, ), and the Schrédinger
operator is related to the Dirac operator by (3.4), so we can use spectral decomposi-
tion for the Dirac operator to compute e where H = H,. To this end, we will use
the following generalized Fourier transform:

(2) —F= A A(x)p(x, k)dx + fo f(x)y(x, k)dx
and the analog of Plancherel’s Theorem

LA + 1 £12 = 113,25

which holds, since f € T, f, is supported on some interval [a, b] and a > 0. Use (2.2)
and substitute

(3.8)

Fo(x/(20))y(x, k)dx

P, (2x, k)e"kJC - P, (2x, k)e”'k"

k) =
y(x, k) 5
into (3.8) to get
I=5L-1
where
eitkz 2bt eixz/(4t) . L L " p
I = 2t))P.(2x, k)e'dx,
s o o Q)P (2 e
eitkz 2bt ix /(4[) )
L= (x/(2t))P,(2x, k)e **dx.

2i(1+i) Jaar  /t iz

Consider I»; the analysis of I; is similar. Integrating by parts, we get

2htP . x eiuz/(‘lt) - " p ld
(2%, ———Fu(u/(2t))e =
[ resn( [ i F(u]@0)e  du) dx

20t e’“ */(at)

P, (4bt, k) f+(u/(2t))e_’k”du J2»

2at
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where, thanks to the second equation in (1.4),

= [ aa0pen( [ 8T e )i

For the first term, we can write

2bt elu /(4t)
P, (4bt, k) f () (2t))e R du

eiuz/(4t) .

—iku
Tl (20)e

Cuat))e M.

- (Pt )~ TIR) ) [

2bt elu /(4[)

Hk' c
+()XES 2at \/_

From (A.9), we get

2t pin?/(a1) _ i
\fz G () (2t))e duHLoo(R)<C(f),

t>1
and (2.6) implies

et /(4[)

7

2bt L
Tim (P (4bt, k) = TI(K) - xp) f Frtuf@0)e ™ dul, -
From (2.4) and (A.8), we obtain

(k) 2bt ezu /(4t)

ztk
Qi) Xego | i ———Fe(u/(2t))e ™ du

\/ﬁﬂ(k)

t—><x> ‘

e (0)|, =
The analysis for I; is analogous, and it also gives a main term converging to

V27 -TI(k)

2i XEfer( k)
and a correction that we call J;. Consider J; and J,. We claim that if we show that
(3.9) lim f |]1|2d0 =0, lim f|]2|2d0:0
t—oo JA t—oo JA

for every interval A c R, then the proof of Theorem 3.1 will be finished after appli-
cation of Lemma 3.2. Indeed, in this lemma, we set 4 = 20, p; = I, and the limiting
function p is
(k) f.(-k) - T1(k) i (k

= VAR TOLR) TR (6)
To apply Lemma 3.2, we notice that |I||,,2, — 1 by Lemma A.1. Moreover, (2.4) gives
[2ll220 = [ fl2=1.

We will prove the second identity in (3.9); the first one can be obtained similarly.
For J,, we have

p=2 [ aeorean( [ Wf+(u/(2t))du)
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One can write

x z(u [(4t)—ku) __ 0 el(u [(4t)~ku) __
[ R Gn)du= s LG

x 1(u [(4t)—ku) __
v [ i Fwlen)d

The first term does not depend on x, and we can use (A.9) and (1.5) to write

0 el(u /(4t)—ku)

(10) | f A(20)P (2, k) f fﬁ(u/(Zt))du)dxH
Cip f IAGPdx,

where the last expression converges to zero as t - co. For the other term, we have

f"mf (u/(Zt))du—e_”sz Mf (u/(2t))du.
o i e T

The integral can be rewritten as

fx el (] (VD =kVD)? __ () (21))d
. —\/_ f+ u U=

fx ei(u/(2VD)=kVD)? _
—oo NG
The second term is x-independent, so its contribution is negligible by an argument

identical to (3.10). For the first one, we change variables and write, using the same
variable u,

0 Qiu/ VDKV _
Ftuj@o)du- [ R/

(3.11)

x iU/ VDKV _
[T l@n)du

NG
(x=2kt) /2t ,
:2/ e™ fu(k +u//t)du

[}

(x=2kt) 2/t 5, -
:2[ e (F(k + u/V/D) - Fr(k) )du
_ (-2k/2VE
+2f+(k)f e du.

(o)

We can continue as follows:

SO (kg - T 6 e
= [ (Flh VD) - Folh) )
) ‘[O(x—zkt)/Z\/? ei”z(ﬁ(k N u/\/Z) _ﬁ(k))du
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The first term on the right-hand side does not depend on x, and it is uniformly bounded
in k € R and t > 1, as can be seen by integrating by parts. Thus, its contribution to
172122 (a) is also negligible.

We want to apply Lemma A.2 to the second term. Since we are interested in k € A
and x € [at,bt], [(x — 2kt)/2t| < C(a,p,n). Hence, the lemma is applicable with

e =1/\/1,g(u) = f. (k + u) - f, (k), which gives

‘fo(x—zkt)/Z\ﬂeiuz (ﬁ(k + u/\/Z) _ﬁ(k))du‘ < Cu,b,A,f/\/Z'

The proof of Lemma A.2 shows that this bound is uniform in k € A. We substitute it
and apply (1.6) along with the generalized Minkowski inequality to get

1 2bt 2 \1/2
(fA‘ﬁ [M |A(2x)P(2x, k)| do)
1 2bt ) 1/2
Sﬁfm |A(2x)|-([A|P(2x,k)| do)" dx
(1.6) C(A;HA”S() 2bt bt 5 1/2
S szm |A(2x)|dxSC(A’“’b’”A”S*)(fM |[A(x)] dx) >

and the last expression converges to zero when t — +o0o. We are only left with con-
trolling the contribution from the last term in (3.11), i.e.,

_ 20t (x-2k8)/(2VD)
f+(k)f A(Zx)P(Zx,k)(/ e du)dx.
2at 0

Let us write a partition of unity
(3.12) L=p_+po+ phss
where g is even, smooth, supported in (-2,2), and

0< o<, up=1 if|x|<L

The function ., is supported on (1, c0) and is non-decreasing, y_(x) &t pi(—x).

Then

u=

(x=2kt)/ (V1) ,
I i
0

( /;(X_Zkt)/uﬂ) ei”zdu)(y_((x = 2kt)/(2V/1)) + po (- ) + i (- ))

We will apply the following trick several times. Notice that the function F(x) &

(s e du)po(x) € C°(R); thus, F e L'(R), and we can write

F((x - 2kt)/(2/1)) = %/ﬂ;ﬁ(f) exp(i&(x — 2kt)/(2/1))dE.
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Then

Y 2bt (x—2t/2\ﬂ),2
Fi (k) f2 : A(zx)p(zx,k)(yo((x—zkt)/(zﬁ)) fo I du)dx

“h fz:tw A(2x)P(2x, K)F((x - 2k1)/(2V/1))dx
1 - —~ ik 2bt .
_E‘/RF(E)(ﬂ(k)e Sk [Zut A(2x)P(2x,k)exp(zfx/(z\/f))dx)df_

We use the generalized Minkowski inequality and (1.5) to estimate the last quantity
as follows:

H% Aﬁ(g)(ﬁ(k)e—iskﬁlaztbfA(ZX)P(zx,k)exp(ifx/(Z\/?))dx)dfuz,g5
(fIF@Iae)FI( [, 1acpax) "

and the last quantity converges to zero when t — co. We apply a similar strategy to
other terms:

(fO(Hkt)/(M) ei“zdu),bt+((x : 2kt)/(2\/z)) = Cus((x - 2kt)/(2\/2))

- ([(x—zkt)/(lx/?) e du)er((x B 2kt)/(2\/2)),
where C %f e ¢ du. Consider
fz iht A(2)P(2x, k)i ((x — 2kt)/(2/7) ) dx
_ fzzt“ ([ aGuypeu, K)du) w, ((x - 2k6) | (2/) dx

([ ;’” AQu)P(2u, K)du )y, (b~ K)VD)

- LI AP k) )

The first term gives the contribution

LR [ ACupeu kydu)u (b-k)VD| do s IF 12 [ 1A@w)Pdy

and the last quantity converges to zero when ¢ — oco. For the second one, we can write
an estimate

(3.13) |f2t [Zt (2u)P(2u, k)du )“’*(("_Zkt)/(z\/z))dxk

2/t
(, sup f " A(2u)P(2u, k)du|)- f2 20 (- zkff)/(zf ))‘

2at<ri<ry 1 t
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Since . was chosen to be non-decreasing, one obtains

r W (= 2kt) [ (2V/
2at 2\/;

Under the assumptions of the theorem, we get
| f A(2u)P(2u, k)|

when t — oo. Consider the expression

( —[(:jzkt)/(zx/?) eiuZdu)y’“((x - 2kt)/(2V/1))

))‘deI.

-0
L3(A)

fel - sup

2at<ri<r;

and apply Lemma A.3 to write it as

( f(x—zkz)/(zﬁ) eiuzdu)ﬂ+((x - 2kt)/(2V1)) =

(zﬂ)_l/zeixz/(zn)e—ixkeikztfeii(x—Zkf)/(Z\ﬁ)‘I’(f)d&
R

where ¥ € L'(R). Then

2bt » o
f A(ZX)P(ZX, k)elx /(4t)e—zxketk t( f
2at

R

. , 26t L, .

ik t[R\P(f)e—sz\/?(f A(2x)e'™ /(4‘)615"/(2\/2)8(%k)dx)df,
2at

ei£(x—2kt)/(2\ﬂ)\y(g)d5) -

where &(x,k) = P(2x,k)e”'** was introduced in (3.2). Using the generalized
Minkowski inequality and (3.3), we get

—_ .12 . th .2 .
f+(k)~e‘k‘fR‘P(£)e“5kﬂ([ AQx)e 0D e (x k) dx e
2at 50

ol (1) -( [ 1apax) ",

and the last quantity converges to zero when ¢ — oo.
The contribution from the term

(‘/O(PZM)/(Z\/E) ei“Zdu)y_((x - 2kt)/(2V/1))

can be handled in the same way. Thus,

lim [ \I,[*do =0
A

t—oo

and our theorem is proved. ]

Remark  Notice that we had to use our additional assumption about the maximal
function (3.5) only when handling (3.13). It is an intriguing question whether this
extra hypothesis can be dropped.
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A Appendix

In this Appendix, we collect results that are used in the main text. Although some of
them are standard, we provide their proofs for completeness.

Proof of Lemma 1.4 In [5, Section 13], the following formula for the Green’s func-
tion of an operator D (i.e., the integral kernel of R, = (D — z)~!) was obtained:

([ Gu(x,9,2) Gra(x,,2)
(AD) G(x’y’Z)_(Gn(x 2) Gzz(x,y,z))

f ¢(x, k)¢(}’ k)da (k) j‘ ¢(X’k)W(y’k)d0d(k)
[ W(Xk)¢(yk)d0 (k) [ W(xk)v/(’vk)do‘d(k)

and 05 = 20. We now introduce an aux111ary parameter p € [1,00) to be chosen
later, as p ~ 1 + | A[3,. Since |P(2x,k)|* = ¢*(x, k) + y*(x, k) and sup,  (k* + p*)/

(k*+1) s p?,
P(x, k)P (k* + p*)|P(x, k)
A2 [ do=sup [ d
(A2) T;Ig R k%+1 ? T;Ig R (k2+p2)(k2+1) 7
2
<psup [ PIRERE -

w0 JR k% +p?
Hence, we only need to prove that
sup Im(Gyi(x,x,ip) + Goa(x,x,ip)) S 1.
x20

To control G(x, y, ip), i.e., the integral kernel of the resolvent R;,, we will use the
standard perturbation series. If R?P denotes the resolvent of free Dirac operator, we
write the second resolvent identity:

0 def b -a
R,-P:R - Ri, VR;,, V—(_a b)
and iterate it to get the series
(A.3) Ry, =R}, - R}, VR} +R} VR) VR{ +

In the series (A.3), each term starting from the second one takes the form
(—1)j+1(R?pV)](RO VRY ) and j = 0,1,2,.... If we denote its kernel by k;(x, y),
then

(A.4) G(x,y,ip) = G*(x, y,ip) = ko(x, y) + ki (x, ) + -+,

and G°(x, y, z) stands for Green’s function of the free Dirac operator. Next, we will
show convergence of this series for suitable choice of parameter p and will provide an
estimate for it.

First, we claim that for every j = 0,1,..., we have

_ _ j+1
e A

(A.5) Ikj(x, y)| < C pGHD/2
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where C is an absolute constant to be specified below. We will prove (A.5) by induc-
tion. To this end, we use formula (A.1) and residue calculus to obtain the bound

IG°(x, y,ip)| < e Py g (xty) < pplroyl
Thus, for ko(x, ¥), we have
ko(ep)l s [ et a@)le g, alal+]p).
0

Continue () to negative & by zero. We write

o0 X [e<]
lko(x0)l s [ e Ha(@ertag< e [Ta@)dre [T a(e)e e
0 0 X
Then, using the Cauchy-Schwarz inequality, one has [;* a(£)d& < (x+x2)| A|ls.. By
a change of variable,

e”"f a(f)e"ZPde:e_P"f e la(x+n)dy.
X 0
We have

/ e la(x +1n)dn

0

1 ol j+1
:fo e_z””a(x+11)d17+2fj e la(x +n)dn
=
1 1/2 1 1/2
S(fo e 4“"’dﬂ) (/0 ocz(x+11)d11)

) ) j+1 1/2
+ Y e [ @ nydn)
j=1 J

 IAls
~ P1/2

by virtue of the Cauchy-Schwarz inequality. Summing up, we get

i

[ko(x,0)] 5 (x + 512+ p™2)e ¥ Al § ——75
P

The Stummel condition is translation-invariant on the line, which implies (A.5) for
j=0:

ko (x, )| € C——77—
’ P

We can write kj.(x, ) = [pe G*(x, & ip) V(E)k;(&, y)d& and use the inductive as-
sumption to conclude that

ki)l <o [ e a() - Iky(6 ) a8

j+1 j+l
<%[ e—p\x—fla(&')e—P\f—)’\/zdf.
p R
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For y = 0, we get
(A.6) fR e—PIx—fla(g)e—Pf/ng = g P2, omPx/2 f epi/Za(g)dg
+ 0
4 eP® f T a(8)e P qe.

Then we write

e*pX/Z/ e”f/zoc(f)di
0
:f e P12 (x - n)dy
0
1 oo j+1
Sfo e"’”/2(x(x—i1)df7+2/; e P12a(x —n)dy
j=1
1 1/2 1 1/2
< “Pid f 2(x-n)d
(foe n) (Oa(x n)dn)
o j+l 12 ||Alse
+Y Pl f a*(x-1n)d S —.
S e mdn) s
Estimating the second integral in (A.6) in a similar way, we have

— /2
—plx—] —pE)2 e P2 Al
fR+e PRE=Slg (&) e P52 dE < Czipl/z

and, using the translation invariance of the Stummel condition,

—plx=y1/2) A
—plx-¢ -plé-yl/2 e’ | Alse
fR+e Pty (&)ePliIqE < ¢, R

Thus,

CICCI e PP A
P2 '
Choosing C sufficiently large, e.g., larger than C,C,, we show (A.5) for j + 1.

This proves the claim. Now, (A.4) implies |G(x, y,ip)| S e P* /2 provided that
p =2C(1+|A|%). Thus, (A.2) finishes the proof. |

Ik jir(x, ) <

Lemma A.1 Let h e L*(R). Then

. 1 x4t __

e ph - — —— Th(x/(2t
)
and, taking the inverse Fourier transform,

eix2/(4t)

Vi

(A7) lim

t—+o0

>

@)

(A.8) lim H %(

t—+oo

Rx/C0) - R

=0
L*(R)

Suppose h € C=(R); then

(A9) sup
t>1,a,B€R

‘fﬁt eixz/(mz( ) a ” c
< .
o NG X e X L= (R) (h)
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Proof Formula (A.7) can be found in [15] (see formulas (4.10) and (4.12) there).
Then (A.8) is a direct corollary. Proof of (A.9) follows from a direct calculation:

eix 2/(4t)
at \/_

—itk?

\/ f exp ( +k\/_) Y/ (21))dx

L V(0. 5ﬁ+k)
/ e i

h(x/(2t))e'**dx

Now, consider the integral

1

exp(i&)h(-k + &/V/1)dE

—

for arbitrary | € R, k € R, t > 1 and let gy be a bump function introduced in (3.12).
We have

folexp(ifz)ﬁ(-k+f/ﬁ)df= folexp(ifz)ﬁ(—mg/ﬁ)yodf
o [ expGENR(k+ EVD - o)

The first integral is bounded uniformly in all parameters since &1 € C°(R). For the
second one, we can write

[ e GeRC-k+ VD0 - wo)dg
:A’(exp(,.gz))fm k+£/2ff)(1 o) 4
- cptary K I (D)
[ et (AR DO O)

The first term is uniformly bounded because 1 — y(0) = 0. For the second one, we
can show that each resulting integral is uniformly bounded, e.g,

) ’expueZ)h'(_“Eéf)(l_“‘))dsl <L f 'k GBI < T

|/ exp(i 52 h( k+£/\/_)#0(£)d£|5‘m“om

and (A.9) is proved. [ |
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Lemma A.2 Lete< (0,1),v>0,a >0, and |ae| < v. We have

| f g(ue)du Cig.v)€
provided that g € C*°(R) and g(0) = 0.

Proof We have

(A.10) fou(e"”z)'g(ue)u-ldu _ eiaze(g(aE))

ae
. iu? ue !
—eg’(O)—e/; e (%) du.

We can write |g(&)| < C(gy)|&| for & € [-v,v], and the ﬁrst term is controlled by

Cg,v)6 since |ae| < v. For the third one, we introduce G(u) (g(u)/u)’ e C*(R)
and write

Gi(1) ¥ G(u) - G(0), G(u) = G(0) + G (u)
so that

f ei“zG(ue)du:G(O)f ei“zdu+f ei”ZGl(eu)du.
0 0 0

The absolute value of the first term is bounded by C(, uniformly in a. For the second
one, we can iterate the argument, since G; € C*°(R) and G;(0) = 0. We get

(A.11) fu ei”ZGl(eu)du
0
_ _0_5i€[u(ei”z)’wdu
0 €u
= —O.Sz'e(e’”2 Gilea) _ Gy(0) - / eiuz(Gl(eu)) du).
€a 0

€u

Writing a rough estimate

|[ G1 eu))d |<C(g)|a|,

and substituting it into (A.11) gives

a .3
‘/ e Gl(eu)du| < Crg)(e+elal) = Cig(e+v).
0

We bring it to (A.10) to finish the proof of the lemma. [ |

H(x):fme”Zdt

This integral can be related to the so-called erf-function whose properties are
well known. However, our purpose is to obtain a specific representation for H

Consider H defined as
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for x € [1, 00), and we proceed directly as follows. We change variables and iteratively
integrate by parts » times to get

2 . .
ix . oo iu n-1 oo iu
e 1 e P2 (o] P2 e
_ _ ix J /I _—ix
H(x)—li_ff —du=e (E =5 tche f 1Edu)
2x  2Je o X1+ 2 untl/

def

L2
e (Hyn + Han)s

where {c;} and ¢}, are some constants. Let y, be a cutoff function that satisfies the
following conditions: p is supported on (1, 00), py(x) = 1for x > 2, u, € C*(R).
Define

def def
Hl(,r:) = Hl,n,“-H Hg,r:) = H2,n[4+'

Lemma A.3 Letn>1 We have Hl(’r:) e L'(R), Hgﬁ) e L'(R).

Proof Consider H ;":l) first. We have
|H§":'l)| <Cp(1+ |x|),(2n+1), |BXH§T1)| <Co(1+ |x|)—(2n))
192, H{™ | < Co(1+ x])~Cm D,
Therefore,
HE (§)] < Cu(1+18)72,

and hence ngz) e L'(R). For Hl(f,’:), consider the first term, x 'y, Other terms can
be handled similarly. We have x' . € C*°(R)nL*(R) and all of its derivatives are in
L*(R). Thus, & (x'u;) € L*(R) for all j € Z*. Therefore, (x~'u, ) (&) € L'(|§] > 1).
For |&| < 1, we can write an estimate

[x~tp] < Cllog &,
which can be verified directly:

oo . oo p—idx
f 7y+(x) e ¥ dx = [ ¢ dx+0(1).
1 x 2

X

For £ € (0,1),

oo ,—ikx co ,—ill 1 ,—iu co ,—il
/ ¢ dx= f e—du:f e—du+[ e—du:O(|logE|+1).
2 x 2 u 26 U 1 u

For & € (-1,0), the argument is analogous and we get the statement of the lemma. m
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