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Climate change affects temperatures, sea level, and salinities, all of which can affect fish distributions. In order to
assess the impact of climate change on the marine fish communities of Texas, fish diversity response to climate
variables was modeled. Leveraging 33 years of gillnet survey data from eight major bays along the coast of Texas,
asymptotic Shannon diversity was estimated for each bay, season, and year using rarefaction analysis. This
allowed for the estimation of spatial, temporal, and seasonal trends in fish diversity. In order to assess the impact
of climate-related variables on the fish communities of Texas, we associated the Shannon diversity index with
environmental variables using a repeated measures model approach. We found significant increasing trends in
fish diversity across all eight bays in fall and six of eight bays in spring. Among the variables identified as sig-
nificant, temperature, salinity, and sea level stood out as most important for driving the increase in fish diversity.
Our results suggest that observed increases may be attributable to changing habitat availability resulting from
sea-level rise and increasing winter temperatures. Mangrove expansion and warmer winters are likely allowing

for range expansion by tropical species, driving the observed increase in fish diversity.

1. Introduction

Biodiversity is recognized as an important community metric for
conservation and management due to positive associations with func-
tional diversity and redundancy, and thus with ecosystem stability,
resilience, and functioning (Hooper et al., 2005; Stachowicz et al., 2007;
Tilman and Downing, 1994; Tilman et al., 1997). Additionally, biodi-
versity has been shown to be associated with productivity (Danovaro
et al., 2008; Hooper et al., 2005; Micheli et al., 2014). Therefore, the
maintenance of biodiversity should be one of the top priorities for both
conservation and fishery management purposes.

Despite the importance of maintaining marine fish diversity, it is
currently changing at an unprecedented rate globally (Hutchings et al.,
2010; Worm et al., 2006). Global marine biomass is predicted to
decrease substantially over the next century in response to a changing
climate especially at higher trophic levels (Jones et al., 2014; Lotze
et al., 2019); this will likely negatively impact marine biodiversity
(Bryndum-Buchholz et al., 2019). On the other hand, in some temperate
coastal ecosystems, the changing climate has led to an expansion of
southern associated species leading to increased fish diversity (Beare
et al., 2004; Collie et al., 2008; Hiddink and Ter Hofstede, 2008;

Murawski, 1993). In general, the response of marine ecosystems to
changing climate is highly variable among regions. Consequently, our
ability to predict regional changes in biodiversity from climate change is
still limited.

While many threats to biodiversity come directly from human
interaction through habitat degradation (e.g., increased nutrient input
from agriculture, pollution by pesticides and microplastics, and loss of
marshland due to development), fragmentation, and over-harvesting
(Wood et al., 2000), the indirect anthropogenic effect of climate
change is a particularly serious concern because of its large-scale effects
on multiple environmental variables that affect marine ecosystems.
Coastal ecosystems, in particular, will experience increasing tempera-
tures, sea-level rise, ocean acidification, and increased intensity of
storms and extreme weather events (He and Silliman, 2019). As the
effects of climate change are thought to be reaching their tipping points,
studies of climate impacts on coastal ecosystems are urgently needed. A
variety of studies have sought to address this issue; however, relatively
few have focused on fish species diversity (Comte and Olden, 2017; Hare
etal., 2016; Nicolas et al., 2011; Poloczanska et al., 2016). In particular,
it is crucial to identify significant trends in fish diversity and quantify
important drivers of fish community dynamics in order to properly
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manage and conserve these valuable and highly vulnerable marine
ecosystems.

Environmental data from the bays of Texas suggests that abiotic
conditions in the bays are shifting, with temperatures increasing, sea
level rising, and salinity changing (Fujiwara et al., 2019). Additionally,
studies in the Gulf of Mexico, including the Texas coast, have shown
expansion of mangrove habitat, suggesting a shift in fish habitat avail-
ability (Armitage et al., 2015; Comeaux et al., 2012; Guo et al., 2017).
These changes are likely to affect the distribution of fish species within
the bays, and thus may affect the diversity and composition of the fish
assemblages. Although a recent study focusing on juvenile fish in the
bays of Texas found evidence for increasing fish diversity (Fujiwara
et al., 2019), it is unclear whether the observed increase simply repre-
sents increased dispersal of juveniles to the bays without the subsequent
establishment of adults.

Within the Gulf of Mexico, Texas is a major contributor to marine
fisheries, with approximately 29 percent of the total fisheries value in
the Gulf coming from Texas landings (NOAA Fisheries). The coastal bays
of Texas also serve as important nursery habitat for many juvenile fish
and invertebrate species (Rozas et al., 2007; Zimmerman and Minello,
1984), highlighting not only the economic importance but the ecological
importance of this ecosystem as well. Understanding how climate
change will affect marine fish biodiversity within Texas is thus of high
importance.

Here, we investigate the change in biodiversity of adult fishes along
the subtropical coast of Texas in order to address three main questions:
1) Has climate change affected the adult fish assemblages along the
Texas coast? 2) What environmental variables are responsible for
driving trends in adult fish diversity? 3) Do seasonal differences exist in
the fish community response to the changing climate? We answer these
questions using the intensive monitoring data along the Texas coast
collected by the Texas Parks and Wildlife Department (TPWD) over a 33-
year study period. In order to identify temporal, spatial, and seasonal
trends in adult fish diversity, and relate those trends to changing cli-
matic conditions, we estimated the Shannon index for fish in eight major
bays along the Texas coast, for spring and fall, in all years. The long-term
intensive monitoring data along the Texas coast has provided a rare
opportunity to study the change in fish biodiversity in the subtropics,
which have been studied far less when compared with temperate and
tropical systems.

2. Methods
2.1. Data collection

The species data used for this study were collected by the Coastal
Fisheries Division of the TPWD from 1986 to 2018. Data consist of
samples collected from Sabine Lake, Galveston Bay, Matagorda Bay, San
Antonio Bay, Aransas Bay, Corpus Christi Bay, Upper Laguna Madre, and
Lower Laguna Madre (Fig. 1). Sampling was conducted twice each year
during a spring sampling season (April-June) and a fall sampling season
(September-November). A total of 45 gillnet samples were collected for
each bay in all sampling seasons. The gillnets used in sampling consisted
of four equal length (45.7 m) panels of differing mesh sizes (76 mm, 102
mm, 127 mm, and 152 mm). Each sampling area was divided into a 1-
min latitude by a 1-min longitude sample grid, with each grid square
divided into 144 gridlets of 5-s latitude by 5-s longitude. Sampling was
conducted following a stratified cluster sampling protocol, whereby grid
locations were randomly selected without replacement from the pre-
defined sample grid within each bay, and locations within each grid
randomly selected for net placement. Nets were set perpendicular to the
shoreline, with the smallest mesh size nearest to the shore, and allowed
to soak from sunset to sunrise for an average of 13.5 h (Martinez-An-
drade, 2015).

For each sample, all organisms were identified to the lowest taxo-
nomic level possible (often species) and counted. The total catch for
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Fig. 1. Locations of the NOAA water level stations for the data used in this
study. SPN= Sabine Pass North, station #8770570; GP21 = Galveston Pier 21,
station #8771450; RPT = Rockport, station #8774770; BHP=Bob Hall Pier,
station #8775870; PI=Port Isabel, station #8779770.

each species in each sample was recorded. Total catch data were con-
verted to presence-absence (incidence) data for the sample-based rare-
faction method (see Rarefaction Analysis). In addition to the species
composition data, concurrent environmental data were recorded for
each sample, as well as latitude and longitude of the sample location.
Environmental data collected by TPWD included temperature (°C),
salinity, dissolved oxygen (ppm), and turbidity (Nephelometric
Turbidity Units).

In addition to the environmental data, sea level was included as a
potential predictor of species diversity in this study. The monthly mean
sea level was obtained from the NOAA Center for Operational Oceano-
graphic Products and Services (CO-OPS, 2018). The stations used for this
study were selected based on data availability from 1986 to 2018
(Fig. 1). Sea level data was assigned to each bay based on the closest
available station. For all environmental variables, seasonal averages
over the sampling periods were calculated for each bay and then stan-
dardized using a z-score. Additionally, the data were reduced to only
include fish species; invertebrates and genus or family level data were
excluded from analyses. Species for which fewer than 3 individuals were
observed over the entire study period were considered to be too rare for
inclusion and thus were excluded from further analyses. The removal of
these species had very little effect on the outcome due to the diversity
metric used in this study, Shannon diversity, which takes into account
the frequency of each species observed. Additionally, some concern may
exist for uncertainty in the data inherent in long-term monitoring studies
(Carstensen and Lindegarth, 2016); however, the sampling was done
consistently based on the detailed sampling protocols as described by
Martinez-Andrade (2015) and was overseen by a quality control com-
mittee. Additionally, the TPWD gillnet monitoring program has been
recognized for its high quality (Gruss et al., 2018). All analyses con-
ducted in this study were done using the R language and environment
for statistical computing (R Core Team, 2018).

2.2. Rarefaction analysis

When comparing species diversity indices across multiple sites, it is
necessary to account for the sampling effort at each site in order to make
a comparison. This is due to the fact that as sampling effort increases, the
number of species observed will also increase (Colwell and Coddington,
1994; Fisher et al., 1943; Sanders, 1968; Simberloff, 1972). Although in
this study sampling effort was standardized across bays, rarefaction
analyses provide the additional benefit of being able to extrapolate the
diversity of a given site to its asymptotic value, thereby estimating the
“true” diversity of the system (i.e. the diversity you would calculate
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given infinite sampling effort). In order to assess the fish species di-
versity in each bay for each season and year, estimates for the Asymp-
totic Shannon Diversity Index were calculated following the methods for
sample-based rarefaction described by Chao et al. (2014), whereby a
species accumulation curve is estimated using resampling methods and
then extrapolated out to an asymptote. In order to calculate the
asymptotic Shannon diversity, an unbiased estimator for Shannon di-
versity (D(c0)), which is given as the exponential of Shannon entropy
(H (00)) (Chao et al., 2014); is calculated using equation (1):

n—X;
H(co _il > Xi@+‘%(l—14)"H{—log(A)—nZ%(l—A)'}

(c0)= =
k:]klgx,gn—kn n—1
k

where A = 2fs/[(n— 1)f1 + 2f2, n is the sample size, X; is the frequency of
the ith species, and f is the number of species with observed frequency k
(Chao et al., 2014). The asymptotic Shannon diversity is thus 15(00) =
exp[ﬁ (c0)]. Asymptotic diversity estimates were calculated using the
“INEXT” package in the R statistical computing environment (Hsieh
et al., 2018). Once these estimates were calculated, along with an
associated standard error for each estimate, they were used as the
response variable for modeling the effects of environmental drivers on
fish species diversity. Additionally, analysis of variance (ANOVA) was
conducted on the diversity estimates in order to determine whether fish
diversity was significantly different among bays and seasons.

=1

@

2.3. Trend analysis

A trend analysis was conducted in order to test the significance of
observed trends in asymptotic Shannon diversity. Our response variable
was an estimate and not an observed value; therefore, a parametric
bootstrap method was used to test the significance of the trend (Efron
and Tibshirani, 1986). For each diversity estimate (i.e. for each bay,
season, and year combination), 999 additional estimates were randomly
generated following a normal distribution with a mean equal to the
value of the estimate, and the standard deviation equal to the standard
error for the given estimate. This resulted in one thousand time-series for
each season (x2) in each bay (x8). For each time-series, a simple linear
regression was fit to the bootstrapped data with the diversity estimates
as the response variable and year as the explanatory variable. For each
linear model, the slope and p-value of the slope were recorded. The
number of slopes out of one thousand that were positive and signifi-
cantly different from 0 at the 5% significance level were recorded for
each bay in each season. If a bay had more than 950 significant positive
slopes for a given season, it was considered to have a significant
increasing trend over time. Spring and fall assemblages were modeled
separately in order to account for differences in fish occupying the bays
in different seasons.

2.4. Repeated measures analysis

In order to test for the effects of environmental variables on fish
species diversity, repeated measures analysis was used (Laird and Ware,
1982). Repeated measures models are appropriate when multiple mea-
surements have been taken from the same subject (in this case, each bay
is a subject) through time, and multiple subjects are being modeled
concurrently. It is advantageous in that it accommodates a variety of
covariance structures in the response variable, an important consider-
ation for repeated measures data where independence and homogeneity
assumptions are violated. Standard least squares methods cannot be
employed in this case due to the fact that observations taken from a
given bay will be more similar to one another than observations from
other bays, and observations taken more closely together in time will be
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more similar than those taken farther apart (Laird et al., 1987; Laird and
Ware, 1982). Repeated measures analysis using mixed-effects models
allows for the specification of both fixed and random effects, as well as a
covariance structure, thereby accounting for between-individual varia-
tion, as well as within-individual autocorrelation. In our study, by
specifying bay as a random factor, and environmental variables as fixed
factors, we were able to model environmental driving variables with a
constant effect (slope) across bays, while allowing for random intercepts
for each bay, thereby accounting for differences in the diversity of each
bay at the start of the study period.

For the repeated measures analysis, the assemblages were again
modeled by season, with a separate model estimated for spring and fall.
For each model, all environmental variables were included in the initial
model, as well as, lagged variables (lag 1 —last year’s observation for the
given variable, and lag 2 — observation from 2 years ago for the given
variable) for temperature, salinity, and sea level (i.e. in the spring
model, lag 1 of temperature would be last spring’s temperature). Lags
were included in order to account for the delayed response of the di-
versity metric to changing environmental conditions. A delayed
response may be particularly likely in this system due to the fact that
environmental variables will operate most strongly on larval and juve-
nile fishes, which require time to grow before they are large enough to
be captured in a gillnet.

Environmental variables were modeled as fixed effects, while the
grouping factor, bay, was modeled as the random effect to allow for
independent intercepts for each bay. Each model was fit using maximum
likelihood, and the fixed effects were reduced based on the associated p-
values for the parameter estimates (backward selection process). The
maximum likelihood method is appropriate for comparing models with
differing fixed effects, while the restricted maximum likelihood method
is preferred for comparing candidate covariance structures and making
final inferences on the significance and effect size of explanatory vari-
ables (Commenges and Jacqmin-Gadda, 2016). Odds ratio tests were
used after each removal of a variable in order to confirm the significance
of a variable. If the p-value of the odds ratio test was not significant, the
removal of that variable did not significantly reduce the explanatory
power, and thus it was permanently removed from the model. This
process was conducted until all remaining variables had significant
explanatory power.

Next, candidate covariance structures were tested in order to deter-
mine the covariance structure that best fits the data. Models were fit
using the restricted maximum likelihood method with either no
covariance structure specified or an auto-regressive process of order 1.
Because the models were not nested (i.e. same fixed effects, only
covariance structure differed), the Akaike Information Criterion (AIC)
was used to select the best covariance structure. In the event that pre-
viously significant variables became non-significant after accounting for
correlation structure (i.e. the p-value associated with the parameter
estimate was no longer below 0.05), the model with specified covariance
was fit using the maximum likelihood method and variables with non-
significant p-values were removed. Odds ratio tests were then used to
test the significance of the parameter removals (as previously
described). Once the final model had been selected (i.e. all non-
significant variables removed) and correlation structure accounted for,
the final model was fit using the restricted maximum likelihood method,
and the results from this model were used for inference on parameter
significance and effect sizes.

3. Results
3.1. Rarefaction and trend analysis

The results of the rarefaction analysis showed clear spatial differ-
ences in fish diversity (ANOVA p-val < 0.001). In spring, Galveston Bay,

Matagorda Bay, Corpus Christi Bay, and San Antonio Bay, had consis-
tently higher diversity compared to the other bays. In fall, the
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assemblages were less closely grouped; however, Matagorda, Corpus
Christi, and San Antonio bays were consistently higher in diversity.
Galveston Bay was slightly lower in diversity than Matagorda, Corpus
Christi, and San Antonio bays, but still higher than the remaining bays
(Figs. 4 and S1). Seasonal differences were also evident (ANOVA p-val
<0.001), with fish diversity being consistently higher in fall assemblages
compared to spring (Fig. 4).

The trend analysis was conducted to determine the significance of
temporal trends in fish diversity. The results showed that, for spring
assemblages, six out of eight bays had significant increasing temporal
trends — Sabine Lake and Lower Laguna Madre were not significant
(Fig. 2, Table 1). For fall assemblages, all eight bays showed significant
increasing temporal trends (Fig. 3, Table 1). The distributions of slopes
from the trend analysis revealed clear differences in the rate of increase
between bays for both spring and fall assemblages, with Sabine Lake,
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Upper Laguna Madre, and Lower Laguna Madre showing slower rates of
increase than the other bays in spring, and Sabine Lake and Lower
Laguna Madre showing the slowest increase in fall (Figs. 5 and S2).

3.2. Repeated measures analysis — spring model

The results from the repeated measures analysis using backward
selection showed that spring fish assemblage diversity was best modeled
by temperature, salinity, lag-1 salinity (salinity from 1 year ago), mean
sea level, and lag-2 sea level (mean sea level from 2 springs ago). The
final model for spring was:

Vi ~ Bo + BTy + BrSy + BySy—1 + BiLy + BsLi» ®))

where ?ij is the predicted asymptotic Shannon diversity in the spring for
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Fig. 2. Spring Assemblage Rarefaction analysis results. Asymptotic Shannon Diversity estimates for spring fish assemblages in the bays of Texas from 1986 to 2018.
Error bars show the 95% confidence interval for the diversity estimate. Panel a) Sabine Lake, b) Galveston Bay, c) Matagorda Bay, d) San Antonio Bay, e) Aransas Bay,

f) Corpus Christi Bay, g) Upper Laguna Madre, and h) Lower Laguna Madre.
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Fig. 3. Fall Assemblage Rarefaction analysis results. Asymptotic Shannon Diversity estimates for fall fish assemblages in the bays of Texas from 1986 to 2018. Error
bars show the 95% confidence interval for the diversity estimate. Panel a) Sabine Lake, b) Galveston Bay, ¢) Matagorda Bay, d) San Antonio Bay, e) Aransas Bay, f)

Corpus Christi Bay, g) Upper Laguna Madre, and h) Lower Laguna Madre.

bay i and year j, f,; is the bay-specific intercept, f; is the effect of
temperature, Tj is the observed mean spring temperature in bay i and
year j, §, is the effect of salinity, Sj; is the observed mean spring salinity
in bay i and year j, f; is the effect of the previous year’s salinity, S;j_; is
the observed mean spring salinity in bay i and year j-1, f, is the effect of
sea level, L;j is the observed mean sea level in bay i and year j, fs is the
effect of sea level from two years prior, and L;_; is the observed mean
spring sea level in bay i and year j-2. The effect sizes and associated p-
values for f; — fs5 are presented in Table 2. The lag-2 sea level had the
largest effect size, followed by sea level, temperature, lag-1 salinity, and
salinity. This highlights the importance of a delayed response to changes
in sea level. The individual estimates for §; are presented in Table 3, and
larger intercept values correspond to bays with higher diversity. It
should be noted that the intercept value listed in Table 2 is simply the

mean of the random factor intercepts (f,).

The final model also included a first-order autoregressive covariance
structure with autoregressive parameter (¢) = 0.332. This covariance
structure accounted for temporal autocorrelation in the data within a
given bay. It is important to note that the covariance structure is asso-
ciated with the covariance matrix of the response, and is thus not a
parameter in equation (2), and was not used in calculating ?U The
covariance structure is taken into account when fitting the model, and
thus affects the parameter estimates and p-values of the parameter es-
timates, but is not explicitly included in equation (2). Plotting the
observed Shannon diversity estimates versus the fitted values (Fig. 6a)
shows that the model has a good fit to the data.
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3.3. Repeated measures analysis — fall model

The results from the repeated measures analysis for the fall assem-
blages showed that fish diversity was best modeled by temperature, sea
level, lag-1 sea level, dissolved oxygen, and lag-1 salinity. The final
model for fall was thus:

Yi ~ Boi+BsTy +B7Li + BsLy 1 + oDy + B1oSi 3

Table 2

Repeated Measures Model Results. Parameter estimates and associated p-values
for the fixed effects of the repeated measures model for spring (a) and fall (b) fish
assemblage diversity. All variables were standardized by z-score prior to analysis
to control for effect size. The intercept listed here is the mean of the random
factor intercepts estimated for each bay. Bay-specific intercepts are provided in
Table 3.

year study period, by season. Fall diversity distributions are shown in white, Parameter Estimate  Standard Degrges of  tvalue  pvalue
and spring distributions in grey. Black dots represent outliers following the Error Freedom
standard definition of Q1 and Q3 +1.5IQR. a. Spring Model
Mean of the 17.597 1.053 232 16.708 <0.001
random factor
Table 1 T o ture (p))  0.253 0.091 232 2789 0.006
. . . emperature (py . . . B
Trend analysis resul'ts. .C<.)1urnns S}.IO.W the number of linear regresslon. models out Salinity (B) 0.191 0.092 2392 2.077 0.039
of 1000 that had a significant positive slope (a = 0.05). A bay is considered to be Lag-1 Salinity (Bs)  —0.196 0.085 232 2303 0.022
significantly increasing if more than 950 trials resulted in a significant positive Sea Level (Bs) 0.435 0.111 232 3.920 <0.001
slope. Asterisks show bays with a significant increasing trend. Lag-2 Sea Level 0.533 0.107 232 4.980 <0.001
Major Area Spring Fall (Bs)
Sabine Lake 596 980* b. Fall Model
Galveston Bay 1000~ 1000 Mean of the 20.144 1.264 229 15.938  <0.001
Matagorda Bay 998* 1000* random factor
San Antonio Bay 1000* 1000* Poi
Aransas Bay 1000* 1000* Temperature (§s)  0.307 0.112 229 2.741 0.007
Corpus Christi Bay 1000* 1000* Sea Level (B7) 0.458 0.151 229 3.038 0.003
Upper Laguna Madre 999* 1000* Lag-1 Sea Level 0.680 0.152 229 4.463 <0.001
Lower Laguna Madre 937 984* (Bs)
Dissolved Oxygen —0.296 0.120 229 —2.472 0.014
(Bo)
Lag-1 Salinity 0.278 0.113 229 2.459 0.015
(B10)
a) . . b) 3
. : H
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Fig. 5. Regression slope distributions from the bootstrapped data. Spring (a) and Fall (b) slopes from the linear models fit to the bootstrapped data by bay. Boxplots
for each bay are arranged from North to South. SL= Sabine Lake, GB = Galveston Bay, MGB = Matagorda Bay, SAB=San Antonio Bay, ARB = Aransas Bay,
CCB=Corpus Christi Bay, ULM=Upper Laguna Madre, and LLM = Lower Laguna Madre.
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Table 3

Bay-specific Model Intercepts. Parameter estimates for the intercepts for each
bay. As previously noted, models were constructed assuming a constant effect of
environmental variables across bays (i.e. same slope for environmental effects,
regardless of bay).

Major Area Spring Model Intercept Fall Model Intercept
Sabine Lake 14.868 16.294
Galveston Bay 19.890 21.547
Matagorda Bay 20.634 23.390
San Antonio Bay 20.415 23.719
Aransas Bay 16.378 18.439
Corpus Christi Bay 19.866 23.875
Upper Laguna Madre 13.130 14.862
Lower Laguna Madre 15.592 19.026

where yij is the asymptotic Shannon diversity in the fall for bay i and
year j, B; is the bay-specific intercept, fq is the effect of temperature, Tj;
is the observed mean fall temperature in bay i and year j, §, is the effect
of sea level, L; is the observed mean fall sea level in bay i and year j, fg is
the effect of the previous year’s sea level, L;_; is the observed mean fall
sea level in bay i and year j-1, §, is the effect of dissolved oxygen, Dj; is
the observed mean dissolved oxygen in bay i and year j, f, is the effect
of salinity from the previous year, and S;_; is the observed mean fall
salinity in bay i and year j-1. The effect sizes and associated p-values for
Pe — Pro are presented in Table 2. As with the spring model, current and
past sea level had the largest effect size. The individual intercept values
(Byi) for the fall model are presented in Table 3. As with the spring
model, the final model included a first-order autoregressive covariance
structure. The autoregressive parameter for the fall model was (¢) =
0.430, which was a slightly larger magnitude compared to spring, and
may be indicative of stronger temporal autocorrelation in fall assem-
blages when compared to spring. Fig. 6b shows the observed versus
predicted plot for the fall model, and as with spring, the model fit ap-
pears strong.

4. Discussion

Our results show that species diversity has increased significantly

a) 25

Observed Shannon Diversity Estimate

125 15.0 17.5 20.0 225

Predicted Shannon Diversity Estimate

Estuarine, Coastal and Shelf Science 249 (2021) 107121

through time in the bays of Texas (Figs. 2 and 3, Table 1). In addition to
clear temporal trends, spatial and seasonal differences in fish diversity
were evident (Fig. 4). Trend analysis showed significant increases in
diversity in both spring and fall assemblages, with fall assemblages
increasing at a faster rate than spring (Fig. 5). The higher underlying
diversity in fall assemblages and a faster rate of increase may be the
result of different mechanisms operating on fish entering and leaving the
bays. Fall salinity is consistently higher than spring salinity (t-test of
paired differences, p-val <0.001) suggesting that a minimum salinity
threshold may be needed before tropical species will enter the bays,
while retention within the bays may be mediated by winter water
temperatures, with cold water forcing movement of tropical species out
of the bays prior to spring sampling. Because there is a higher diversity
of fish in the tropics compared to subtropics (Hillebrand, 2004), it is
predicted that fish diversity and production will shift poleward as spe-
cies adjust their distributions to changing climate (Barange et al., 2014;
Cheung et al., 2010), our results are consistent with this prediction,
showing increasing fish diversity through time.

While many studies have shown species diversity to have a positive
relationship with ecosystem functioning (Chapin III et al., 2000; Hooper
et al., 2005; Naeem et al., 1994; Schlapfer and Schmid, 1999; Tilman,
1999; Tilman and Downing, 1994), this is not always the case, and in
fact, an increase in species diversity can potentially lead to a decrease in
functional diversity (Mayfield et al., 2010). These shifts in distribution,
and thus in community structure, are also interesting in the Gulf of
Mexico where species are limited in their ability to continue shifting
northward due to the presence of the coastline. The inability of sub-
tropical species in the Gulf of Mexico to continue their shift northward
may lead to novel interactions and unexpected functional consequences,
highlighting the importance of not only determining how fish diversity
is changing but also the implications of that change. This remains to be
explored in the future research.

In order to better understand and predict future changes to fish as-
semblages in the face of climate change, it was necessary to identify the
environmental variables which may be responsible for driving the
observed increase in diversity. Repeated measures models identified
several environmental covariates that are likely responsible for the
observed increase. In particular, temperature, salinity, and sea level

b)
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16 20 24
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Fig. 6. Observed versus predicted plots for repeated measures models. Panel a) shows the observed versus predicted values for the spring assemblage model. Panel b)

shows the observed versus predicted values for the fall assemblage model.
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were identified as important covariates in both the spring and fall
models, either as current or lagged variables. The importance of lagged
variables in the repeated measures models highlights the delayed
response of the adult fish assemblage to changing environmental factors.
Due to the highly selective nature of gillnets (Hamley et al., 1975), fish
caught in this study were predominantly larger, consisting mainly of
adult fish. It is thought that environmental filters tend to act most
strongly on larval and juvenile fish (e.g. Fuiman and Werner, 2009);
therefore, changes in the fish assemblage due to changing environ-
mental variables may not be observed in gillnet samples until the fish
have grown large enough to be available to the sampling gear, which
may take a year or more.

Salinity showed a significant positive relationship with diversity for
the spring assemblage, while lagged salinity showed a significant
negative relationship in spring and a positive relationship in fall. Salinity
may be responsible for seasonal and spatial differences in diversity, as it
was consistently lower in spring than fall, suggesting more tropical
species may be unable to enter the bays under brackish conditions.
Salinity has been shown to affect the growth rate of many species,
whether freshwater, marine, or estuarine (Boeuf and Payan, 2001).
Ontogenetic shifts in species distribution have been shown to correlate
with the development of salinity tolerance in many species (Varsamos
et al., 2005). Additionally, some studies have shown distributional
changes of fish within an estuary in response to salinity gradients
(Barletta et al., 2005; Martino and Able, 2003). Increasing salinity in the
bays of Texas may be allowing for distributional changes in fish species,
with increasing abundance of more marine species and potentially a
decrease in abundance of fresh- and brackish-water associated species.

Temperature showed a significant positive relationship with di-
versity for both the spring and fall assemblages. Temperature has been
shown to affect fish growth, survival, and distribution (Fuiman and
Werner, 2009), and many studies have shown distributional shifts of
temperate species in response to the warming climate (Collie et al.,
2008; Murawski, 1993; Perry et al., 2005; Wernberg et al., 2016). In the
bays of Texas, temperatures are rising, thereby allowing for potential
colonization by tropical species, which had previously been excluded
from this system. Relaxation of an important environmental filter
(temperature) combined with changing vegetation cover in the bays of
Texas are likely working synergistically to drive the observed increase in
fish diversity.

Sea level was also identified as a significant variable explaining fish
diversity. One possible explanation could be related to changing vege-
tation type and cover in response to rising sea level. In both salt marshes
and mangrove forests, stabilizing biophysical feedbacks allow for the
expansion of these habitat types in response to sea-level rise (Kirwan and
Megonigal, 2013). In Texas, mangrove species appear to be competi-
tively dominant over native salt marsh species, when not limited by cold
winter air temperatures (Armitage et al., 2015; Kirwan and Megonigal,
2013). Evidence from previous studies suggests that mangrove cover has
been increasing through time in the bays of Texas (Armitage et al., 2015;
Bianchi et al., 2013), likely in response to both increasing winter min-
imum temperatures and rising sea level. Mangroves function as impor-
tant nursery habitat for juvenile fish (Beck et al., 2001; Lee, 2008; Lee
et al., 2014; Nagelkerken et al., 2008), provide refuge from predators
(Guo et al., 2017; Nanjo et al., 2014), and may serve as a valuable
feeding ground for larger fish (Lugendo et al., 2007). Thus, we hy-
pothesize that in addition to changing abiotic filters (i.e. temperature
and salinity), the changing biotic environment may have contributed to
increasing fish diversity, via increased mangrove cover, for which sea
level may be a reasonable proxy variable. However, further research to
associate the change in sea level and vegetation coverage or other
environmental factors is needed to draw a definitive conclusion.

Additionally, dissolved oxygen was found to have a significant
negative relationship with diversity in fall. While dissolved oxygen was
identified as being a significant predictor of fall assemblage diversity,
this may be an artefact of the relationship between temperature, salinity,
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and dissolved oxygen. The mean dissolved oxygen in fall ranged be-
tween 6 and 12 ppm for 99% of observations, meaning the dissolved
oxygen was not likely dropping out of normal ranges, though there was a
consistent decreasing trend through time. The combined effect of
increasing temperature and salinity is likely leading to a decreasing
trend in dissolved oxygen, and thus, a significant negative correlation
with our increasing diversity estimates.

The results found in this study are consistent with findings from a
previous study conducted by Fujiwara et al. (2019) in the bays of Texas.
In their study, Fujiwara et al. (2019) analyzed data collected using bag
seines, which target juvenile fish. Diversity trend analyses and occu-
pancy analyses were conducted, and the results showed that for small
fish and invertebrates occurring nearshore, abundance and diversity
increased through time. The majority of species modeled showed
increasing occupancy probability through time, with fewer species
showing decreasing trends. Species showing increasing trends were
predominantly tropical, and tended to be associated with submerged
vegetation, suggesting a change in the aquatic habitat may be contrib-
uting to the change in prevalence. Additionally, their occupancy ana-
lyses found that salinity was the most important driver of differences
among bays, while temperature and sea level were important in
explaining temporal trends in a variety of species, which was consistent
with the important abiotic drivers identified in the current study. These
results are consistent with our hypothesis that relaxed abiotic filters
(temperature and salinity), combined with increased mangrove cover
due to rising sea level may be contributing to increasing fish diversity in
the bays of Texas. These analyses together provide a better picture of the
fish community dynamics in the bays of Texas, showing that the
observed increases at the larval or juvenile stage are persisting, and new
species are surviving and recruiting to the adult assemblages.

5. Conclusion

Our results demonstrate that adult fish diversity is increasing
through time in the Gulf of Mexico, with distinct spatial and seasonal
differences in the underlying diversity of the bays, and the rate of in-
crease in diversity. The results of our modeling analysis suggest that the
observed increase is likely the result of tropical species expanding their
geographic ranges into the bays. While temperature is often assumed to
be the most important driving variable in fish distribution shifts in
response to climate change, our study identified rising sea level as an
important contributing variable. These results may suggest that in sub-
tropical systems where temperature is less limiting, habitat availability
may be important in driving distribution shifts.

The goal of our study was to identify the effects of climate change on
the subtropical fish communities of Texas, and our results have clearly
answered the questions we had identified; however, it has also identified
new questions. While increasing biodiversity is generally considered
beneficial to the ecosystem, the fact that invasion of species is leading to
the observed increase in this system suggests that there may be unin-
tended functional consequences to this increase. In order to assess the
impact of this increase on the functioning of this system, further studies
will seek to investigate changes to the functional diversity and structure
of this system and the potential effects of climate change on the as-
sembly mechanisms of this system.
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