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A B S T R A C T   

Climate change affects temperatures, sea level, and salinities, all of which can affect fish distributions. In order to 
assess the impact of climate change on the marine fish communities of Texas, fish diversity response to climate 
variables was modeled. Leveraging 33 years of gillnet survey data from eight major bays along the coast of Texas, 
asymptotic Shannon diversity was estimated for each bay, season, and year using rarefaction analysis. This 
allowed for the estimation of spatial, temporal, and seasonal trends in fish diversity. In order to assess the impact 
of climate-related variables on the fish communities of Texas, we associated the Shannon diversity index with 
environmental variables using a repeated measures model approach. We found significant increasing trends in 
fish diversity across all eight bays in fall and six of eight bays in spring. Among the variables identified as sig
nificant, temperature, salinity, and sea level stood out as most important for driving the increase in fish diversity. 
Our results suggest that observed increases may be attributable to changing habitat availability resulting from 
sea-level rise and increasing winter temperatures. Mangrove expansion and warmer winters are likely allowing 
for range expansion by tropical species, driving the observed increase in fish diversity.   

1. Introduction 

Biodiversity is recognized as an important community metric for 
conservation and management due to positive associations with func
tional diversity and redundancy, and thus with ecosystem stability, 
resilience, and functioning (Hooper et al., 2005; Stachowicz et al., 2007; 
Tilman and Downing, 1994; Tilman et al., 1997). Additionally, biodi
versity has been shown to be associated with productivity (Danovaro 
et al., 2008; Hooper et al., 2005; Micheli et al., 2014). Therefore, the 
maintenance of biodiversity should be one of the top priorities for both 
conservation and fishery management purposes. 

Despite the importance of maintaining marine fish diversity, it is 
currently changing at an unprecedented rate globally (Hutchings et al., 
2010; Worm et al., 2006). Global marine biomass is predicted to 
decrease substantially over the next century in response to a changing 
climate especially at higher trophic levels (Jones et al., 2014; Lotze 
et al., 2019); this will likely negatively impact marine biodiversity 
(Bryndum-Buchholz et al., 2019). On the other hand, in some temperate 
coastal ecosystems, the changing climate has led to an expansion of 
southern associated species leading to increased fish diversity (Beare 
et al., 2004; Collie et al., 2008; Hiddink and Ter Hofstede, 2008; 

Murawski, 1993). In general, the response of marine ecosystems to 
changing climate is highly variable among regions. Consequently, our 
ability to predict regional changes in biodiversity from climate change is 
still limited. 

While many threats to biodiversity come directly from human 
interaction through habitat degradation (e.g., increased nutrient input 
from agriculture, pollution by pesticides and microplastics, and loss of 
marshland due to development), fragmentation, and over-harvesting 
(Wood et al., 2000), the indirect anthropogenic effect of climate 
change is a particularly serious concern because of its large-scale effects 
on multiple environmental variables that affect marine ecosystems. 
Coastal ecosystems, in particular, will experience increasing tempera
tures, sea-level rise, ocean acidification, and increased intensity of 
storms and extreme weather events (He and Silliman, 2019). As the 
effects of climate change are thought to be reaching their tipping points, 
studies of climate impacts on coastal ecosystems are urgently needed. A 
variety of studies have sought to address this issue; however, relatively 
few have focused on fish species diversity (Comte and Olden, 2017; Hare 
et al., 2016; Nicolas et al., 2011; Poloczanska et al., 2016). In particular, 
it is crucial to identify significant trends in fish diversity and quantify 
important drivers of fish community dynamics in order to properly 
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manage and conserve these valuable and highly vulnerable marine 
ecosystems. 

Environmental data from the bays of Texas suggests that abiotic 
conditions in the bays are shifting, with temperatures increasing, sea 
level rising, and salinity changing (Fujiwara et al., 2019). Additionally, 
studies in the Gulf of Mexico, including the Texas coast, have shown 
expansion of mangrove habitat, suggesting a shift in fish habitat avail
ability (Armitage et al., 2015; Comeaux et al., 2012; Guo et al., 2017). 
These changes are likely to affect the distribution of fish species within 
the bays, and thus may affect the diversity and composition of the fish 
assemblages. Although a recent study focusing on juvenile fish in the 
bays of Texas found evidence for increasing fish diversity (Fujiwara 
et al., 2019), it is unclear whether the observed increase simply repre
sents increased dispersal of juveniles to the bays without the subsequent 
establishment of adults. 

Within the Gulf of Mexico, Texas is a major contributor to marine 
fisheries, with approximately 29 percent of the total fisheries value in 
the Gulf coming from Texas landings (NOAA Fisheries). The coastal bays 
of Texas also serve as important nursery habitat for many juvenile fish 
and invertebrate species (Rozas et al., 2007; Zimmerman and Minello, 
1984), highlighting not only the economic importance but the ecological 
importance of this ecosystem as well. Understanding how climate 
change will affect marine fish biodiversity within Texas is thus of high 
importance. 

Here, we investigate the change in biodiversity of adult fishes along 
the subtropical coast of Texas in order to address three main questions: 
1) Has climate change affected the adult fish assemblages along the 
Texas coast? 2) What environmental variables are responsible for 
driving trends in adult fish diversity? 3) Do seasonal differences exist in 
the fish community response to the changing climate? We answer these 
questions using the intensive monitoring data along the Texas coast 
collected by the Texas Parks and Wildlife Department (TPWD) over a 33- 
year study period. In order to identify temporal, spatial, and seasonal 
trends in adult fish diversity, and relate those trends to changing cli
matic conditions, we estimated the Shannon index for fish in eight major 
bays along the Texas coast, for spring and fall, in all years. The long-term 
intensive monitoring data along the Texas coast has provided a rare 
opportunity to study the change in fish biodiversity in the subtropics, 
which have been studied far less when compared with temperate and 
tropical systems. 

2. Methods 

2.1. Data collection 

The species data used for this study were collected by the Coastal 
Fisheries Division of the TPWD from 1986 to 2018. Data consist of 
samples collected from Sabine Lake, Galveston Bay, Matagorda Bay, San 
Antonio Bay, Aransas Bay, Corpus Christi Bay, Upper Laguna Madre, and 
Lower Laguna Madre (Fig. 1). Sampling was conducted twice each year 
during a spring sampling season (April–June) and a fall sampling season 
(September–November). A total of 45 gillnet samples were collected for 
each bay in all sampling seasons. The gillnets used in sampling consisted 
of four equal length (45.7 m) panels of differing mesh sizes (76 mm, 102 
mm, 127 mm, and 152 mm). Each sampling area was divided into a 1- 
min latitude by a 1-min longitude sample grid, with each grid square 
divided into 144 gridlets of 5-s latitude by 5-s longitude. Sampling was 
conducted following a stratified cluster sampling protocol, whereby grid 
locations were randomly selected without replacement from the pre
defined sample grid within each bay, and locations within each grid 
randomly selected for net placement. Nets were set perpendicular to the 
shoreline, with the smallest mesh size nearest to the shore, and allowed 
to soak from sunset to sunrise for an average of 13.5 h (Martinez-An
drade, 2015). 

For each sample, all organisms were identified to the lowest taxo
nomic level possible (often species) and counted. The total catch for 

each species in each sample was recorded. Total catch data were con
verted to presence-absence (incidence) data for the sample-based rare
faction method (see Rarefaction Analysis). In addition to the species 
composition data, concurrent environmental data were recorded for 
each sample, as well as latitude and longitude of the sample location. 
Environmental data collected by TPWD included temperature (oC), 
salinity, dissolved oxygen (ppm), and turbidity (Nephelometric 
Turbidity Units). 

In addition to the environmental data, sea level was included as a 
potential predictor of species diversity in this study. The monthly mean 
sea level was obtained from the NOAA Center for Operational Oceano
graphic Products and Services (CO-OPS, 2018). The stations used for this 
study were selected based on data availability from 1986 to 2018 
(Fig. 1). Sea level data was assigned to each bay based on the closest 
available station. For all environmental variables, seasonal averages 
over the sampling periods were calculated for each bay and then stan
dardized using a z-score. Additionally, the data were reduced to only 
include fish species; invertebrates and genus or family level data were 
excluded from analyses. Species for which fewer than 3 individuals were 
observed over the entire study period were considered to be too rare for 
inclusion and thus were excluded from further analyses. The removal of 
these species had very little effect on the outcome due to the diversity 
metric used in this study, Shannon diversity, which takes into account 
the frequency of each species observed. Additionally, some concern may 
exist for uncertainty in the data inherent in long-term monitoring studies 
(Carstensen and Lindegarth, 2016); however, the sampling was done 
consistently based on the detailed sampling protocols as described by 
Martinez-Andrade (2015) and was overseen by a quality control com
mittee. Additionally, the TPWD gillnet monitoring program has been 
recognized for its high quality (Gruss et al., 2018). All analyses con
ducted in this study were done using the R language and environment 
for statistical computing (R Core Team, 2018). 

2.2. Rarefaction analysis 

When comparing species diversity indices across multiple sites, it is 
necessary to account for the sampling effort at each site in order to make 
a comparison. This is due to the fact that as sampling effort increases, the 
number of species observed will also increase (Colwell and Coddington, 
1994; Fisher et al., 1943; Sanders, 1968; Simberloff, 1972). Although in 
this study sampling effort was standardized across bays, rarefaction 
analyses provide the additional benefit of being able to extrapolate the 
diversity of a given site to its asymptotic value, thereby estimating the 
“true” diversity of the system (i.e. the diversity you would calculate 

Fig. 1. Locations of the NOAA water level stations for the data used in this 
study. SPN= Sabine Pass North, station #8770570; GP21 = Galveston Pier 21, 
station #8771450; RPT = Rockport, station #8774770; BHP=Bob Hall Pier, 
station #8775870; PI=Port Isabel, station #8779770. 
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given infinite sampling effort). In order to assess the fish species di
versity in each bay for each season and year, estimates for the Asymp
totic Shannon Diversity Index were calculated following the methods for 
sample-based rarefaction described by Chao et al. (2014), whereby a 
species accumulation curve is estimated using resampling methods and 
then extrapolated out to an asymptote. In order to calculate the 
asymptotic Shannon diversity, an unbiased estimator for Shannon di
versity (D̂(∞)), which is given as the exponential of Shannon entropy 
(Ĥ(∞)) (Chao et al., 2014); is calculated using equation (1): 

Ĥ(∞)=
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where A = 2f2/[(n – 1)f1 + 2f2, n is the sample size, Xi is the frequency of 
the ith species, and fk is the number of species with observed frequency k 
(Chao et al., 2014). The asymptotic Shannon diversity is thus 1D̂(∞) =

exp[Ĥ(∞)]. Asymptotic diversity estimates were calculated using the 
“iNEXT” package in the R statistical computing environment (Hsieh 
et al., 2018). Once these estimates were calculated, along with an 
associated standard error for each estimate, they were used as the 
response variable for modeling the effects of environmental drivers on 
fish species diversity. Additionally, analysis of variance (ANOVA) was 
conducted on the diversity estimates in order to determine whether fish 
diversity was significantly different among bays and seasons. 

2.3. Trend analysis 

A trend analysis was conducted in order to test the significance of 
observed trends in asymptotic Shannon diversity. Our response variable 
was an estimate and not an observed value; therefore, a parametric 
bootstrap method was used to test the significance of the trend (Efron 
and Tibshirani, 1986). For each diversity estimate (i.e. for each bay, 
season, and year combination), 999 additional estimates were randomly 
generated following a normal distribution with a mean equal to the 
value of the estimate, and the standard deviation equal to the standard 
error for the given estimate. This resulted in one thousand time-series for 
each season (x2) in each bay (x8). For each time-series, a simple linear 
regression was fit to the bootstrapped data with the diversity estimates 
as the response variable and year as the explanatory variable. For each 
linear model, the slope and p-value of the slope were recorded. The 
number of slopes out of one thousand that were positive and signifi
cantly different from 0 at the 5% significance level were recorded for 
each bay in each season. If a bay had more than 950 significant positive 
slopes for a given season, it was considered to have a significant 
increasing trend over time. Spring and fall assemblages were modeled 
separately in order to account for differences in fish occupying the bays 
in different seasons. 

2.4. Repeated measures analysis 

In order to test for the effects of environmental variables on fish 
species diversity, repeated measures analysis was used (Laird and Ware, 
1982). Repeated measures models are appropriate when multiple mea
surements have been taken from the same subject (in this case, each bay 
is a subject) through time, and multiple subjects are being modeled 
concurrently. It is advantageous in that it accommodates a variety of 
covariance structures in the response variable, an important consider
ation for repeated measures data where independence and homogeneity 
assumptions are violated. Standard least squares methods cannot be 
employed in this case due to the fact that observations taken from a 
given bay will be more similar to one another than observations from 
other bays, and observations taken more closely together in time will be 

more similar than those taken farther apart (Laird et al., 1987; Laird and 
Ware, 1982). Repeated measures analysis using mixed-effects models 
allows for the specification of both fixed and random effects, as well as a 
covariance structure, thereby accounting for between-individual varia
tion, as well as within-individual autocorrelation. In our study, by 
specifying bay as a random factor, and environmental variables as fixed 
factors, we were able to model environmental driving variables with a 
constant effect (slope) across bays, while allowing for random intercepts 
for each bay, thereby accounting for differences in the diversity of each 
bay at the start of the study period. 

For the repeated measures analysis, the assemblages were again 
modeled by season, with a separate model estimated for spring and fall. 
For each model, all environmental variables were included in the initial 
model, as well as, lagged variables (lag 1 – last year’s observation for the 
given variable, and lag 2 – observation from 2 years ago for the given 
variable) for temperature, salinity, and sea level (i.e. in the spring 
model, lag 1 of temperature would be last spring’s temperature). Lags 
were included in order to account for the delayed response of the di
versity metric to changing environmental conditions. A delayed 
response may be particularly likely in this system due to the fact that 
environmental variables will operate most strongly on larval and juve
nile fishes, which require time to grow before they are large enough to 
be captured in a gillnet. 

Environmental variables were modeled as fixed effects, while the 
grouping factor, bay, was modeled as the random effect to allow for 
independent intercepts for each bay. Each model was fit using maximum 
likelihood, and the fixed effects were reduced based on the associated p- 
values for the parameter estimates (backward selection process). The 
maximum likelihood method is appropriate for comparing models with 
differing fixed effects, while the restricted maximum likelihood method 
is preferred for comparing candidate covariance structures and making 
final inferences on the significance and effect size of explanatory vari
ables (Commenges and Jacqmin-Gadda, 2016). Odds ratio tests were 
used after each removal of a variable in order to confirm the significance 
of a variable. If the p-value of the odds ratio test was not significant, the 
removal of that variable did not significantly reduce the explanatory 
power, and thus it was permanently removed from the model. This 
process was conducted until all remaining variables had significant 
explanatory power. 

Next, candidate covariance structures were tested in order to deter
mine the covariance structure that best fits the data. Models were fit 
using the restricted maximum likelihood method with either no 
covariance structure specified or an auto-regressive process of order 1. 
Because the models were not nested (i.e. same fixed effects, only 
covariance structure differed), the Akaike Information Criterion (AIC) 
was used to select the best covariance structure. In the event that pre
viously significant variables became non-significant after accounting for 
correlation structure (i.e. the p-value associated with the parameter 
estimate was no longer below 0.05), the model with specified covariance 
was fit using the maximum likelihood method and variables with non- 
significant p-values were removed. Odds ratio tests were then used to 
test the significance of the parameter removals (as previously 
described). Once the final model had been selected (i.e. all non- 
significant variables removed) and correlation structure accounted for, 
the final model was fit using the restricted maximum likelihood method, 
and the results from this model were used for inference on parameter 
significance and effect sizes. 

3. Results 

3.1. Rarefaction and trend analysis 

The results of the rarefaction analysis showed clear spatial differ
ences in fish diversity (ANOVA p-val < 0.001). In spring, Galveston Bay, 
Matagorda Bay, Corpus Christi Bay, and San Antonio Bay, had consis
tently higher diversity compared to the other bays. In fall, the 
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assemblages were less closely grouped; however, Matagorda, Corpus 
Christi, and San Antonio bays were consistently higher in diversity. 
Galveston Bay was slightly lower in diversity than Matagorda, Corpus 
Christi, and San Antonio bays, but still higher than the remaining bays 
(Figs. 4 and S1). Seasonal differences were also evident (ANOVA p-val 
<0.001), with fish diversity being consistently higher in fall assemblages 
compared to spring (Fig. 4). 

The trend analysis was conducted to determine the significance of 
temporal trends in fish diversity. The results showed that, for spring 
assemblages, six out of eight bays had significant increasing temporal 
trends – Sabine Lake and Lower Laguna Madre were not significant 
(Fig. 2, Table 1). For fall assemblages, all eight bays showed significant 
increasing temporal trends (Fig. 3, Table 1). The distributions of slopes 
from the trend analysis revealed clear differences in the rate of increase 
between bays for both spring and fall assemblages, with Sabine Lake, 

Upper Laguna Madre, and Lower Laguna Madre showing slower rates of 
increase than the other bays in spring, and Sabine Lake and Lower 
Laguna Madre showing the slowest increase in fall (Figs. 5 and S2). 

3.2. Repeated measures analysis – spring model 

The results from the repeated measures analysis using backward 
selection showed that spring fish assemblage diversity was best modeled 
by temperature, salinity, lag-1 salinity (salinity from 1 year ago), mean 
sea level, and lag-2 sea level (mean sea level from 2 springs ago). The 
final model for spring was: 

ŷij ∼ β0i + β1Tij + β2Sij + β3Sij−1 + β4Lij + β5Lij−2 (2)  

where ŷij is the predicted asymptotic Shannon diversity in the spring for 

Fig. 2. Spring Assemblage Rarefaction analysis results. Asymptotic Shannon Diversity estimates for spring fish assemblages in the bays of Texas from 1986 to 2018. 
Error bars show the 95% confidence interval for the diversity estimate. Panel a) Sabine Lake, b) Galveston Bay, c) Matagorda Bay, d) San Antonio Bay, e) Aransas Bay, 
f) Corpus Christi Bay, g) Upper Laguna Madre, and h) Lower Laguna Madre. 
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bay i and year j, β0i is the bay-specific intercept, β1 is the effect of 
temperature, Tij is the observed mean spring temperature in bay i and 
year j, β2 is the effect of salinity, Sij is the observed mean spring salinity 
in bay i and year j, β3 is the effect of the previous year’s salinity, Sij−1 is 
the observed mean spring salinity in bay i and year j-1, β4 is the effect of 
sea level, Lij is the observed mean sea level in bay i and year j, β5 is the 
effect of sea level from two years prior, and Lij−2 is the observed mean 
spring sea level in bay i and year j-2. The effect sizes and associated p- 
values for β1 − β5 are presented in Table 2. The lag-2 sea level had the 
largest effect size, followed by sea level, temperature, lag-1 salinity, and 
salinity. This highlights the importance of a delayed response to changes 
in sea level. The individual estimates for β0i are presented in Table 3, and 
larger intercept values correspond to bays with higher diversity. It 
should be noted that the intercept value listed in Table 2 is simply the 

mean of the random factor intercepts (β0i). 
The final model also included a first-order autoregressive covariance 

structure with autoregressive parameter (φ) = 0.332. This covariance 
structure accounted for temporal autocorrelation in the data within a 
given bay. It is important to note that the covariance structure is asso
ciated with the covariance matrix of the response, and is thus not a 
parameter in equation (2), and was not used in calculating ŷij. The 
covariance structure is taken into account when fitting the model, and 
thus affects the parameter estimates and p-values of the parameter es
timates, but is not explicitly included in equation (2). Plotting the 
observed Shannon diversity estimates versus the fitted values (Fig. 6a) 
shows that the model has a good fit to the data. 

Fig. 3. Fall Assemblage Rarefaction analysis results. Asymptotic Shannon Diversity estimates for fall fish assemblages in the bays of Texas from 1986 to 2018. Error 
bars show the 95% confidence interval for the diversity estimate. Panel a) Sabine Lake, b) Galveston Bay, c) Matagorda Bay, d) San Antonio Bay, e) Aransas Bay, f) 
Corpus Christi Bay, g) Upper Laguna Madre, and h) Lower Laguna Madre. 
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3.3. Repeated measures analysis – fall model 

The results from the repeated measures analysis for the fall assem
blages showed that fish diversity was best modeled by temperature, sea 
level, lag-1 sea level, dissolved oxygen, and lag-1 salinity. The final 
model for fall was thus: 

ŷij ∼ β0i + β6Tij + β7Lij + β8Lij−1 + β9Dij + β10Sij−1 (3) 

Fig. 4. Distributions of the asymptotic Shannon diversity estimates over the 33- 
year study period, by season. Fall diversity distributions are shown in white, 
and spring distributions in grey. Black dots represent outliers following the 
standard definition of Q1 and Q3 ±1.5IQR. 

Table 1 
Trend analysis results. Columns show the number of linear regression models out 
of 1000 that had a significant positive slope (α = 0.05). A bay is considered to be 
significantly increasing if more than 950 trials resulted in a significant positive 
slope. Asterisks show bays with a significant increasing trend.  

Major Area Spring Fall 

Sabine Lake 596 980* 
Galveston Bay 1000* 1000* 
Matagorda Bay 998* 1000* 
San Antonio Bay 1000* 1000* 
Aransas Bay 1000* 1000* 
Corpus Christi Bay 1000* 1000* 
Upper Laguna Madre 999* 1000* 
Lower Laguna Madre 937 984*  

Fig. 5. Regression slope distributions from the bootstrapped data. Spring (a) and Fall (b) slopes from the linear models fit to the bootstrapped data by bay. Boxplots 
for each bay are arranged from North to South. SL= Sabine Lake, GB = Galveston Bay, MGB = Matagorda Bay, SAB=San Antonio Bay, ARB = Aransas Bay, 
CCB=Corpus Christi Bay, ULM=Upper Laguna Madre, and LLM = Lower Laguna Madre. 

Table 2 
Repeated Measures Model Results. Parameter estimates and associated p-values 
for the fixed effects of the repeated measures model for spring (a) and fall (b) fish 
assemblage diversity. All variables were standardized by z-score prior to analysis 
to control for effect size. The intercept listed here is the mean of the random 
factor intercepts estimated for each bay. Bay-specific intercepts are provided in 
Table 3.  

Parameter Estimate Standard 
Error 

Degrees of 
Freedom 

t-value p-value 

a. Spring Model 
Mean of the 

random factor 
β0i 

17.597 1.053 232 16.708 <0.001 

Temperature (β1) 0.253 0.091 232 2.789 0.006 
Salinity (β2) 0.191 0.092 232 2.077 0.039 
Lag-1 Salinity (β3) −0.196 0.085 232 −2.303 0.022 
Sea Level (β4) 0.435 0.111 232 3.920 <0.001 
Lag-2 Sea Level 

(β5) 
0.533 0.107 232 4.980 <0.001  

b. Fall Model 
Mean of the 

random factor 
β0i 

20.144 1.264 229 15.938 <0.001 

Temperature (β6) 0.307 0.112 229 2.741 0.007 
Sea Level (β7) 0.458 0.151 229 3.038 0.003 
Lag-1 Sea Level 

(β8) 
0.680 0.152 229 4.463 <0.001 

Dissolved Oxygen 
(β9) 

−0.296 0.120 229 −2.472 0.014 

Lag-1 Salinity 
(β10) 

0.278 0.113 229 2.459 0.015  
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where ŷij is the asymptotic Shannon diversity in the fall for bay i and 
year j, β0i is the bay-specific intercept, β6 is the effect of temperature, Tij 
is the observed mean fall temperature in bay i and year j, β7 is the effect 
of sea level, Lij is the observed mean fall sea level in bay i and year j, β8 is 
the effect of the previous year’s sea level, Lij−1 is the observed mean fall 
sea level in bay i and year j-1, β9 is the effect of dissolved oxygen, Dij is 
the observed mean dissolved oxygen in bay i and year j, β10 is the effect 
of salinity from the previous year, and Sij−1 is the observed mean fall 
salinity in bay i and year j-1. The effect sizes and associated p-values for 
β6 − β10 are presented in Table 2. As with the spring model, current and 
past sea level had the largest effect size. The individual intercept values 
(β0i) for the fall model are presented in Table 3. As with the spring 
model, the final model included a first-order autoregressive covariance 
structure. The autoregressive parameter for the fall model was (φ) =
0.430, which was a slightly larger magnitude compared to spring, and 
may be indicative of stronger temporal autocorrelation in fall assem
blages when compared to spring. Fig. 6b shows the observed versus 
predicted plot for the fall model, and as with spring, the model fit ap
pears strong. 

4. Discussion 

Our results show that species diversity has increased significantly 

through time in the bays of Texas (Figs. 2 and 3, Table 1). In addition to 
clear temporal trends, spatial and seasonal differences in fish diversity 
were evident (Fig. 4). Trend analysis showed significant increases in 
diversity in both spring and fall assemblages, with fall assemblages 
increasing at a faster rate than spring (Fig. 5). The higher underlying 
diversity in fall assemblages and a faster rate of increase may be the 
result of different mechanisms operating on fish entering and leaving the 
bays. Fall salinity is consistently higher than spring salinity (t-test of 
paired differences, p-val <0.001) suggesting that a minimum salinity 
threshold may be needed before tropical species will enter the bays, 
while retention within the bays may be mediated by winter water 
temperatures, with cold water forcing movement of tropical species out 
of the bays prior to spring sampling. Because there is a higher diversity 
of fish in the tropics compared to subtropics (Hillebrand, 2004), it is 
predicted that fish diversity and production will shift poleward as spe
cies adjust their distributions to changing climate (Barange et al., 2014; 
Cheung et al., 2010), our results are consistent with this prediction, 
showing increasing fish diversity through time. 

While many studies have shown species diversity to have a positive 
relationship with ecosystem functioning (Chapin III et al., 2000; Hooper 
et al., 2005; Naeem et al., 1994; Schlapfer and Schmid, 1999; Tilman, 
1999; Tilman and Downing, 1994), this is not always the case, and in 
fact, an increase in species diversity can potentially lead to a decrease in 
functional diversity (Mayfield et al., 2010). These shifts in distribution, 
and thus in community structure, are also interesting in the Gulf of 
Mexico where species are limited in their ability to continue shifting 
northward due to the presence of the coastline. The inability of sub
tropical species in the Gulf of Mexico to continue their shift northward 
may lead to novel interactions and unexpected functional consequences, 
highlighting the importance of not only determining how fish diversity 
is changing but also the implications of that change. This remains to be 
explored in the future research. 

In order to better understand and predict future changes to fish as
semblages in the face of climate change, it was necessary to identify the 
environmental variables which may be responsible for driving the 
observed increase in diversity. Repeated measures models identified 
several environmental covariates that are likely responsible for the 
observed increase. In particular, temperature, salinity, and sea level 

Table 3 
Bay-specific Model Intercepts. Parameter estimates for the intercepts for each 
bay. As previously noted, models were constructed assuming a constant effect of 
environmental variables across bays (i.e. same slope for environmental effects, 
regardless of bay).  

Major Area Spring Model Intercept Fall Model Intercept 

Sabine Lake 14.868 16.294 
Galveston Bay 19.890 21.547 
Matagorda Bay 20.634 23.390 
San Antonio Bay 20.415 23.719 
Aransas Bay 16.378 18.439 
Corpus Christi Bay 19.866 23.875 
Upper Laguna Madre 13.130 14.862 
Lower Laguna Madre 15.592 19.026  

Fig. 6. Observed versus predicted plots for repeated measures models. Panel a) shows the observed versus predicted values for the spring assemblage model. Panel b) 
shows the observed versus predicted values for the fall assemblage model. 
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were identified as important covariates in both the spring and fall 
models, either as current or lagged variables. The importance of lagged 
variables in the repeated measures models highlights the delayed 
response of the adult fish assemblage to changing environmental factors. 
Due to the highly selective nature of gillnets (Hamley et al., 1975), fish 
caught in this study were predominantly larger, consisting mainly of 
adult fish. It is thought that environmental filters tend to act most 
strongly on larval and juvenile fish (e.g. Fuiman and Werner, 2009); 
therefore, changes in the fish assemblage due to changing environ
mental variables may not be observed in gillnet samples until the fish 
have grown large enough to be available to the sampling gear, which 
may take a year or more. 

Salinity showed a significant positive relationship with diversity for 
the spring assemblage, while lagged salinity showed a significant 
negative relationship in spring and a positive relationship in fall. Salinity 
may be responsible for seasonal and spatial differences in diversity, as it 
was consistently lower in spring than fall, suggesting more tropical 
species may be unable to enter the bays under brackish conditions. 
Salinity has been shown to affect the growth rate of many species, 
whether freshwater, marine, or estuarine (Boeuf and Payan, 2001). 
Ontogenetic shifts in species distribution have been shown to correlate 
with the development of salinity tolerance in many species (Varsamos 
et al., 2005). Additionally, some studies have shown distributional 
changes of fish within an estuary in response to salinity gradients 
(Barletta et al., 2005; Martino and Able, 2003). Increasing salinity in the 
bays of Texas may be allowing for distributional changes in fish species, 
with increasing abundance of more marine species and potentially a 
decrease in abundance of fresh- and brackish-water associated species. 

Temperature showed a significant positive relationship with di
versity for both the spring and fall assemblages. Temperature has been 
shown to affect fish growth, survival, and distribution (Fuiman and 
Werner, 2009), and many studies have shown distributional shifts of 
temperate species in response to the warming climate (Collie et al., 
2008; Murawski, 1993; Perry et al., 2005; Wernberg et al., 2016). In the 
bays of Texas, temperatures are rising, thereby allowing for potential 
colonization by tropical species, which had previously been excluded 
from this system. Relaxation of an important environmental filter 
(temperature) combined with changing vegetation cover in the bays of 
Texas are likely working synergistically to drive the observed increase in 
fish diversity. 

Sea level was also identified as a significant variable explaining fish 
diversity. One possible explanation could be related to changing vege
tation type and cover in response to rising sea level. In both salt marshes 
and mangrove forests, stabilizing biophysical feedbacks allow for the 
expansion of these habitat types in response to sea-level rise (Kirwan and 
Megonigal, 2013). In Texas, mangrove species appear to be competi
tively dominant over native salt marsh species, when not limited by cold 
winter air temperatures (Armitage et al., 2015; Kirwan and Megonigal, 
2013). Evidence from previous studies suggests that mangrove cover has 
been increasing through time in the bays of Texas (Armitage et al., 2015; 
Bianchi et al., 2013), likely in response to both increasing winter min
imum temperatures and rising sea level. Mangroves function as impor
tant nursery habitat for juvenile fish (Beck et al., 2001; Lee, 2008; Lee 
et al., 2014; Nagelkerken et al., 2008), provide refuge from predators 
(Guo et al., 2017; Nanjo et al., 2014), and may serve as a valuable 
feeding ground for larger fish (Lugendo et al., 2007). Thus, we hy
pothesize that in addition to changing abiotic filters (i.e. temperature 
and salinity), the changing biotic environment may have contributed to 
increasing fish diversity, via increased mangrove cover, for which sea 
level may be a reasonable proxy variable. However, further research to 
associate the change in sea level and vegetation coverage or other 
environmental factors is needed to draw a definitive conclusion. 

Additionally, dissolved oxygen was found to have a significant 
negative relationship with diversity in fall. While dissolved oxygen was 
identified as being a significant predictor of fall assemblage diversity, 
this may be an artefact of the relationship between temperature, salinity, 

and dissolved oxygen. The mean dissolved oxygen in fall ranged be
tween 6 and 12 ppm for 99% of observations, meaning the dissolved 
oxygen was not likely dropping out of normal ranges, though there was a 
consistent decreasing trend through time. The combined effect of 
increasing temperature and salinity is likely leading to a decreasing 
trend in dissolved oxygen, and thus, a significant negative correlation 
with our increasing diversity estimates. 

The results found in this study are consistent with findings from a 
previous study conducted by Fujiwara et al. (2019) in the bays of Texas. 
In their study, Fujiwara et al. (2019) analyzed data collected using bag 
seines, which target juvenile fish. Diversity trend analyses and occu
pancy analyses were conducted, and the results showed that for small 
fish and invertebrates occurring nearshore, abundance and diversity 
increased through time. The majority of species modeled showed 
increasing occupancy probability through time, with fewer species 
showing decreasing trends. Species showing increasing trends were 
predominantly tropical, and tended to be associated with submerged 
vegetation, suggesting a change in the aquatic habitat may be contrib
uting to the change in prevalence. Additionally, their occupancy ana
lyses found that salinity was the most important driver of differences 
among bays, while temperature and sea level were important in 
explaining temporal trends in a variety of species, which was consistent 
with the important abiotic drivers identified in the current study. These 
results are consistent with our hypothesis that relaxed abiotic filters 
(temperature and salinity), combined with increased mangrove cover 
due to rising sea level may be contributing to increasing fish diversity in 
the bays of Texas. These analyses together provide a better picture of the 
fish community dynamics in the bays of Texas, showing that the 
observed increases at the larval or juvenile stage are persisting, and new 
species are surviving and recruiting to the adult assemblages. 

5. Conclusion 

Our results demonstrate that adult fish diversity is increasing 
through time in the Gulf of Mexico, with distinct spatial and seasonal 
differences in the underlying diversity of the bays, and the rate of in
crease in diversity. The results of our modeling analysis suggest that the 
observed increase is likely the result of tropical species expanding their 
geographic ranges into the bays. While temperature is often assumed to 
be the most important driving variable in fish distribution shifts in 
response to climate change, our study identified rising sea level as an 
important contributing variable. These results may suggest that in sub
tropical systems where temperature is less limiting, habitat availability 
may be important in driving distribution shifts. 

The goal of our study was to identify the effects of climate change on 
the subtropical fish communities of Texas, and our results have clearly 
answered the questions we had identified; however, it has also identified 
new questions. While increasing biodiversity is generally considered 
beneficial to the ecosystem, the fact that invasion of species is leading to 
the observed increase in this system suggests that there may be unin
tended functional consequences to this increase. In order to assess the 
impact of this increase on the functioning of this system, further studies 
will seek to investigate changes to the functional diversity and structure 
of this system and the potential effects of climate change on the as
sembly mechanisms of this system. 
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