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1. Introduction
1.1. Summary

For a simple finite-dimensional Lie algebra g, the quantum function algebra is dual to the Lusztig form
U, (g) of the quantum group of g. For g = sl,,, this is reflected by the duality between the Lusztig and the
RTT integral forms of U, (sl,) with respect to the Drinfeld-Jimbo pairing. In this short note, we establish
an affine version of the above result for sl,, replaced with ﬁA[n and the Drinfeld-Jimbo pairing replaced with
the new Drinfeld pairing.

1.2. Outline of the paper

e In Section 2, we recall the quantum loop (quantum affine with the trivial central charge) algebra
Uy (Lsl,,) as well as its two integral forms: 4, (Lsl,,) (naturally arising in the RTT presentation of [6]) and
U, (Lsl,,) (Lusztig form defined in the Drinfeld-Jimbo presentation). Both integral forms posses triangular
decompositions, see Propositions 2.17, 2.28, generalizing the one for U, (Lsl,) of Proposition 2.9. We also
recall our constructions of the PBWD (Poincaré-Birkhoff-Witt-Drinfeld) bases for the “positive” and “neg-
ative” subalgebras of both integral forms established in [13], see Theorems 2.16, 2.31. Finally, in Section 2.4,
we recall the new Drinfeld topological Hopf algebra structure and the new Drinfeld pairing on U, (Lsl,).
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e In Section 3, we recall the shuffle algebra S, its two integral forms, and the shuffle algebra re-
alizations of the “positive” subalgebras U, (Lsl,,), see Theorem 3.4 (first established in [12]), and of
Uz (Lsl,,), 8 (Lsl,,), see Theorem 3.7 and Remark 3.8, established in [13]. Finally, we enlarge S to the
extended shuffle algebra S(™)= by adjoining Cartan generators satisfying (3.9), thus obtaining the shuffle
algebra realization (3.10) of UZ(Lsl,), and recall the formulas (3.11, 3.12) for the new Drinfeld coproduct
on it, cf. [12, Proposition 3.5].

e In Section 4, we prove that the integral form U,(Lsl,) is dual to i, (Lsl,) with respect to the new
Drinfeld pairing, see Theorem 4.1, which constitutes the main result of this note. Our proof is crucially
based on the shuffle realizations of Section 3 as well as utilizes the entire family of the PBWD bases of
iy (Lsly,) of Theorem 2.16, see Remark 4.36.
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2. Quantum loop algebra U, (Lsl,,) and its integral forms
2.1. Quantum loop algebra Uy (Lsl,)

Let I ={1,...,n — 1}, (¢ij)i,jer be the Cartan matrix of sl,,, and v be a formal variable. Following [2],

define the quantum loop algebra of sl,, (in the new Drinfeld presentation), denoted by U, (Lsl,,), to be the
associative C(v)-algebra generated by {e;r, fir, 1/Jil,Lis}:e€IZ’SEN with the following defining relations:

[W5(2), ¢S (w)] =0, ¥y - vF, =1,

169) )
(z — viw)Ys§(2)e;(w) = (V92 — w)ej(w)Y; (2),
(v 2 —w)Pi(2) fi(w) = (2 — v w) f(w)Pi (),
) Sy = 205 (2 (1 (o) — v (2), 26
ei(z)ej(w) = ej(w)e;(2) if ¢;; =0, o
[ei(21), [€i(22), € (w)]u-1]w + [€i(22), [€i(21), € (W)]p-1]0 = 0 if ¢;5 = —1,
fi(2) fi(w) = fi(w) fi(2) if ¢;5 =0, (2.8)

[fi(21), [fi(22), fij(w)]o—1]w + [fi(22), [fi(21), fj(w)]p-1]o = 0 if ¢;; = —1,

where [a, b],, := ab — = - ba and the generating series are defined as follows:

ei2) = einz ™, filz) =D firr T UE(2) = Y WL 2T 6(2) =D 2T

reZz rez s>0 rel

Let Uy (Lsl,),U; (Lsl,),U(Lsl,) be the C(v)-subalgebras of U,(Lsl,) generated respectively by

{FiriEF fein ISR {71 J5ET - The following is standard (see e.g. [9, Theorem 2)):
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Proposition 2.9. (a) (Triangular decomposition of Uy(Lsly,)) The multiplication map
m: Uy (Lsly) ®c (o) Uy(Lsly) ®c(v) Uy (Lsl,) — Uy(Lsly,)

is an isomorphism of C(v)-vector spaces.

(b) The algebra U; (Lsly,) (resp. Uy (Lsl,) and US(Lsly,)) is isomorphic to the associative C(v)-algebra
generated by {eiyr};g]z (resp. {fw}:eelz and {qufis}jg}“) with the defining relations (2.2, 2.7) (resp. (2.3, 2.8)
and (2.1)).

2.2. RTT integral form L,(Lsl,) and its PBWD bases

Let {ai}?;f be the standard simple positive roots of sl,, and AT be the set of positive roots:
At ={a; + aj41+ ...+ aiti<j<icn. Consider the following total ordering “<” on AT:

ajtaj+... o <aytapit...tapiff j<jorj=ji<7. (2.10)
This gives rise to the total ordering “<” on A" x Z:
B,r) <P, it B<pB orB=74,r<r. (2.11)
Forany 1 < j <i<n—1andr € Z, we choose a decomposition
r=r(a;+...+a;,r)=(rj,...,r;) € Z" 7 such that r; +... +r; =1 (2.12)
A particular example of such a decomposition is
rO =rO(a; + ... +ay,r)=(r,0,...,0). (2.13)
Following [13, (2.11, 2.18)], define the elements ¢35, € U2 (Lsl,) and fs, € US(Lsl,) via

gaj+aj+1+~~-+ai7£ = (’U - vil)[' o [[ejﬂ“j ) ej+1,7‘j+1]v’ ej+2;7'j+2]v’ e ’ei,'f’i]v’ (2.14)

faj+0£j+1+~»-+04117£ T (’U - Ivil)[. o [[fjﬂ”j ) fj+1,7"j+1]'va fj+2,rj+2]'va co afi,m]v'

In the special case r(8,7) = r(®)(3,r), see (2.13), we shall denote €31, J?ﬁi simply by ég,, f57r.
Define the RTT integral form $,(Lsl,) as the Clv,v~!]-subalgebra of U,(Lsl,) generated by
(B For Ve e L mny - Let 815 (Lsl, ), 43 (Lsl,), and 83 (Lsl, ) be the Clv, v~ 1]-subalgebras of ti,(Lsl,)

generated by {fﬁm}geGZAJr, {’é/gm}EEGZAJr, and {0, }:E], respectively.

Remark 2.15. The name “RTT integral form” is motivated by the following two observations:

(a) Due to Theorem 2.16 below, we have Uy, (Lsl,) @cv,0-1] C(v) =~ Uy(Lsl,).

(b) Due to [7, Proposition 3.20], the subalgebra $l,(Lsl,) coincides with the Y-preimage of LLf*(Lgl,,),
where U (Lgl,) is the RTT integral form of the quantum loop algebra of gl,, [6] (cf. [7, §3(ii)]), while
T: Uy(Lsl,) — 4 (Lgl,,) ®@clv,v-1] C(v) is the C(v)-algebra embedding of [4].

As before, fix a decomposition r(3,r) for each pair (3,r) € AT x Z. We order {gg’z(ﬁy,ﬂ)}gizfr with
respect to (2.11), while {fz ( B’T)}’Z;EGZAJr are ordered with respect to the opposite ordering on A™ x Z. Finally,
¢, ifr>0

. Having specified these three total
Vi ifr <0

choose any total ordering of {w”}:eelz defined via ;. := {
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orderings, elements F' - H - E with F, E, H being ordered monomials in {JFB,z(B,r)}geeZAM {’éﬁ’f(g’r)}geezéﬁ,
{1/JZT}:€EIZ (note that we allow negative powers of ¢; o), respectively, are called the ordered PBWD monomials
(in the corresponding generators).

The following was established in [13, Theorems 2.15, 2.17, 2.19, 2.22], cf. [7, Theorem 3.24]:

Theorem 2.16. Fiz a decomposition r(8,r) for every pair (8,r) € AT X Z.

(al) The ordered PBWD monomials in {fﬁ,r(ﬁ,r)aQ/Ji,rvgﬁ,r(ﬂ,r)};ézﬂexr form a basis of the free Clv,v~1]-
module y,(Lsly,).

(a2) The ordered PBWD monomials in {fgi(ﬁ’,ﬂ),¢i7r,55,£(5’r)}:€€%ﬁ€A+ form a C(v)-basis of U, (Lsly,).
(b1) The ordered PBWD monomials in {gﬂ,ﬂ(ﬂm)}ggeZA+ form a basis of the free C[v, v~ ]-module L (Lsl,).
(b2) The ordered PBWD monomials in {gﬁ,z(ﬁ,r)}ZEZAJr form a C(v)-basis of U (Lsly,).

(c1) The ordered PBWD monomials in {J?B7z([3,r)}geeZA+ form a basis of the free C[v,v™1]-module 43 (Lsl,,).
(¢2) The ordered PBWD monomials in {ﬁjﬂ(ﬁyr)}giﬁJr form a C(v)-basis of Uy (Lsly,).

(d1) The ordered PBWD monomials in {i/lw}:éz form a basis of the free Clv,v~]-module 43 (Lsl,).

(d2) The ordered PBWD monomials in {w”}:eelz form a C(v)-basis of UJ(Lsl,).

This result together with Proposition 2.9 implies the triangular decomposition of L, (Lsl,):
Proposition 2.17. The multiplication map
m: U5 (Lsly) ®c(v,o-1] 49 (Lsl,) @011 Uy (Lsl,) — Uy (Lsl,)
is an isomorphism of (free) C[v,v™1]-modules.

2.8. Lusztig integral form Uy (Lsly,) and its PBWD basis

To introduce the Lusztig integral form, we recall the Drinfeld-Jimbo realization of U, (Lsl,). Let
I = I'U{ip} be the vertex set of the extended Dynkin diagram and (¢ij); jer e the extended Cartan
matrix. The Drinfeld-Jimbo quantum loop algebra of sl,, denoted by UD?(Lsl,), is the associative C (v)-
algebra generated by {E;, F;, K Zil}l <7 with the following defining relations:

[Ki, K] =0, K KF =1, [[Ki =1, (2.18)
iel
KiE; = v E;K;, K;Fj =v % F,K;, [E;, Fj] = 5ijm:—f_il, (2.19)
E;E; = E;E;, F;F; = FF; if ¢;j =0, (2.20)
[Ei, [Ei, Ejly-1]e =0, [F}, [F}, Fjly-1]o = 0if ¢;; = —1. (2.21)

The following result is due to [2]:
Proposition 2.22. There is a C(v)-algebra isomorphism UD? (Lsl,,) == U, (Lsl,,), such that

Ei g €i,05 Fz —> fi70, Kil — ’l/)i:o for ¢ S I,

3

Eiy — (7,0)771 ’ (1/’?_,0 e 1/’:—1,0)71 : [ o [fl,h f2,0]v7 e 7fn—1,0]v,

Fz'o — (_,U)n . [en—l,Oa cee [6270, 617_1]1,71 .. ']v*l . wio .. .¢;l‘_1’0.
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For k € N, set [k], := %, [k]o! = lezl[ﬁ]v. For i € I,k € N, define the divided powers
k k
k. Ei 0 ._ B
E" = —— and F;" = —/—. 2.23
7 [k/,}v! (3 [k/‘}v' ( )

Define the Lusztig integral form UDY(Lsl,) as the C|[v,v~1]-subalgebra of UP7?(Lsl,) generated by
{E;k),Fi(k),Kiil}fee}\I. In view of Proposition 2.22; it gives rise to the C[v,v~1]-subalgebra U, (Lsl,) of
U, (Lsl,,) which shall be referred to as the Lusztig integral form of U, (Lsl,).

Let us now recall a more explicit description of U, (Lsl,). For i € I,r € Z, k € Z~g, define

w:— ,UT—Z+1 _ ,(b‘— v—r+£—1

[wl,i’]: 11 i . (2:24)

(=1

We also define the pairwise commuting generators {h;, T} I via

YE(z) =, exp< v—v )Y Ry ) : (2.25)
r>0
Finally, for ¢ € I,r € Z,k € N, we define the divided powers
k k
(k) ._ Cir w . fir
e, = ! and f;/:= ol (2.26)

Let U<(L5 n), Uz (Lsl,), and UY (Lsl,) be the C[v, v—!]-subalgebras of U, (Lsl,,) generated by {f(k)}feelz’keN,

Z.keN + hy, Tos Z,keZ
(MY rEPMN and {yify, Btk [V PR

, respectively.
Remark 2.27. The subalgebra U (Lsl,) C U (Lsl,,) was first considered in [8].
The following triangular decomposition of U, (Lsl,) is due to [1, Proposition 6.1]:

Proposition 2.28. (a) US (Lsl,),U%(Lsl,), U7 (Lsl,) are Clv, v~ ]-subalgebras of U, (Lsl,).
(b) (Triangular decomposition of Uy(Lsl,)) The multiplication map

m: Ug (Lsl,) ®cpw-1) U (Lsl,) ®cpo-1) Uy (Lsl,) — Uy (Lsly,)
is an isomorphism of (free) Clv,v~1]-modules.

Following (2.13, 2.14), define the elements eg, € Uy (Lsl,) and fz, € Uy (Lsl,) via

Cajtaziatotarr = [ (€ €j41,00s €j42,0]vs ;€ 0], (2.29)
Jajtaint.tair = [ [fir fir10los fir2.0lvs -+ 5 fiolo-
For B € AT,r € Z,k € N, we define the divided powers
k k
e
o) o B gng ) .- Jos (2.30)

B Tk, B Tl

Note that e 6 U, (Lsl,,) and fékz, € Us(Lsl,) for any 8,1,k as above, due to [11, Theorem 6.6].
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— <
Evoking (2.11), the monomials of the form IT e(kf”) and IT f[(jkf”) (with kg, € N and
(B,r)eA+xz (B,r)eA+xZ
only finitely many of them being nonzero) are called the ordered PBWD monomials of U (Lsl,) and

Us (Lsly,), respectively. The following result was established in [13]:

Theorem 2.31. [13, Theorem 8.5] The ordered PBWD monomials form bases of the free C[v,v™1]-modules
Uz (Lsly,) and Ug (Lsl,), respectively.

2.4. New Drinfeld Hopf algebra structure and Hopf pairing

Let us first recall the general notion of a Hopf pairing, following [10, §3]. Given two Hopf algebras A and
B over a field k, the bilinear map

p: Ax B —k

is called a Hopf pairing if it satisfies the following properties (for any a,a’ € A and b,b" € B):

go(a, bbl) = 50(0’(1)3 b)go(a@)a bl)a (p(aalv b) = QD(G,, b(?))@(ala b(l))a (232)
p(a,1p) = €ala), ¢(14,b) = ep(b), ¥(Sa(a),Sp(b)) = ¢(a;b), (2.33)
where we use the Sweedler notation for the coproduct: A(z) = z(1) ® z(y).

Following [5, Theorem 2.1], we endow U, (Lsl,,) with the new Drinfeld topological Hopf algebra structure
by defining the coproduct A, the counit €, and the antipode S as follows:

A F(2) = Y (2) @ UF(2), ei(2) = ei(2) @ 1+ 07 (2) @ ei(2), filz) = 1@ fi(2) + fi(2) @ ¥ (2),
e:ei(2) =0, fi(2) =0, vE(z) =1,
S:ei(z) = =7 (2)tei(2), filz) = —fi(2)9F ()7 i (2) e i (2) T

Thus, the C(v)-subalgebras Ug(Lsl,) and Ug(Lsl,) generated by {fi. v, (1)~ rEEseN and
{eir ;g (hig)™" IEEIZ’SGN, respectively, are actually Hopf subalgebras of (U, (Lsl,), A, S, €).

The following is well-known (see e.g. [8, §9.3], cf. [12, Propositions 2.27, 2.30]):

Proposition 2.34. The assignment

vCiiz —w

z—voiw’ (2.35)

03, _

plei(). fi(w) = =95 (2) ) o7 (2). 9 (w) =
plei(2), v (w) =0, p(¥; (w), fi(2)) =0,

gives rise to a non-degenerate Hopf algebra pairing ¢: UZ (Lsl,) x Us(Lsl,) — C(v).

3. Shuffle algebra S(™) and its integral forms

3.1. Shuffle algebra S™)

Let X denote the symmetric group in k elements, and set X, k., ,) = g, X == X Y, _, for
ki,...,kn_1 € N. Consider an N’-graded C(v)-vector space S(") = &) S,(C"), where ngl) k)
k=(k1,....kn_1)ENT T
. . . . . . <r<k; o—Cii
consists of Yg-symmetric rational functions in the variables {x“}lle—; =" Define (;;(z) := =25 for
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i,j € I. Let us introduce the bilinear shuffle product x on S™: given F e S(En) and G € Sén), define
FxGe ngg via

(F* G)(xl’l, ey X Ry 4Lys ey Tn—1,15 - - - ,xnfl’kn_lJ’»ZH_l) = E' . E!X
el >ky (3 1)
i ki ’Ski/ Zi, :
Symzhg F ({xlvr}lles;ﬂgk ) G ({xi’,r/}i/G?T + ) . H H Ci,i/ ($i,r/l’i’,r’)
i€l r<k;
Here, k! = [ [, k!, while for f € C({zi1,...,%im, }icr) we define its symmetrization via
1
Symy,, (f) ({2i1,- -, i, Yier) == - > f{@ioi1)s -+ s Tisgi(may Yier) -

(0'11<~~70'7171)62m

This endows S(™) with a structure of an associative unital algebra with the unit 1 € Sgg) 0

We will be interested only in the subspace of S(™ defined by the pole and wheel conditions:
e We say that F' € S(&n) satisfies the pole conditions if

f($1,17 cee ,!ﬁnfl,kn,l)

= -2y <k
Hi:l

, where f e (C(v)[{z 1S =F]) >, (3.2)
r<k; (xi,r — Ti41,r/

i,r Jiel

e We say that F' € S,(C”) satisfies the wheel conditions if
F({z;,}) =0once z;,, = 0Titcs= 'uzaci,r2 for some €,1,71, 72,5, (3.3)

where € € {+1}, i,i+eel, 1 <r;,ro <k, 1<s<k.
Let Sén) C S(E") denote the subspace of all elements F' satisfying these two conditions (3.2, 3.3) and set

S .= @ S,(cn). It is straightforward to check that the subspace S™ c S(") is x-closed.
keN!T

The resulting associative C(v)-algebra (S (”),*) shall be called the shuffie algebra.
3.2. Shuffle algebra realizations

The shuffle algebra (S, x) is related to U, (Lsl,) via the following result of [13] (cf. [12]):

Theorem 3.4. The assignment e;, — i, (i € I,r € Z) gives rise to a C(v)-algebra isomorphism
U: Up (Lsl,) = S™).

Remark 3.5. This result was manifestly used in [13] to establish parts (b2, ¢2) of Theorem 2.16.

The proof of Theorem 3.4 in [13] crucially utilized the specialization maps ¢g [13, (3.12)], which we recall
next. For a positive root 8 = a; + a1 + ... + o, define j(5) := j,4(8) := 4, and let [5] denote the integer
interval [j(/5);4(8)]. Consider a collection of the intervals {[5]}gca+ each taken with a multiplicity dg € N
and ordered with respect to the total ordering (2.10) (the order inside each group is irrelevant). Define
£ e N/ via Yierlici = ZﬁeAJr dgp.

Let us now define the specialization map ¢4 (here, d denotes the collection {dg}gen+)

ga: S — C)[{yE ) 5™, (3.6)
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Split the variables {x”};g;q

those in the s-th copy of [3] to v=7(#) . YBsse- U " i) . Ys,s in the natural order (the variable zj, gets

into Y sena+ dp groups corresponding to the above intervals, and specialize

specialized to 'v_ky/g,s). For F = (Ti:qz 1,65,_1) c S/L), we define ¢g(F) as the corresponding
i= 1 1<r<y; (Ti,r—Tip1,07) =

specialization of f. Note that ¢a(F) is independent of our splitting of the variables {xi,r}ilgsei into groups
and is symmetric in {ys s},>; for any B € AT,
Following [13, Deﬁmtlon 8.6], an element F € Sé") is called good if the following holds:
. . . _ £11<r<k;7.
e [ is of the form (3.2) with f € Clv,v 1][{;3“} e L
e ¢4(F) is divisible by (v — v~1)Zseat 4 A=A for any d such that dicr kici = gen+ dpB.

Let Sgﬁn) C S,E,n) denote the C[v,v~!]-submodule of all good elements. Set S := @ S,gn).
B B keNT

Theorem 3.7. [13, Theorem 8.8] The C(v)-algebra isomorphism U : U2 (Lsl,) <=+ S™ of Theorem 3./ gives
rise to a C[v,v~']-algebra isomorphism ¥ : U2 (Lsl,) S,

Remark 3.8. In [13, Theorem 3.34], we also established the shuffle realization of L (Lsl,,) by showing that
the isomorphism ¥ of Theorem 3.4 gives rise to a C[v, v~ !]-algebra isomorphism W¥: 8> (Lsl, ) =~ &™),
where (™ denotes the C[v, v~ !]-submodule of all integral elements, see [13, Definition 3.31]. We skip the
definition of the latter as it is not presently needed.

3.8. Eatended shuffle algebra S(™»=

For the purpose of the next section, define the extended shuffle algebra (cf. [12, §3.4]) S(™:2 by adjoining

71}SEN

pairwise commuting generators {1; ., (¢; ) }je; with the following relations:

U@ F = |F ({oi5=) HHQ” /i) | s (2) (3.9)

T z
jelr=1 JT/

for any F € Sé"), where we set ¢, (z) := Zszo Y; 42", x denotes the multiplication in S(m):= " and the
(-factors in the right-hand side are all expanded in the non-negative powers of z.
Then, the isomorphism ¥ of Theorem 3.4 naturally extends to a C(v)-algebra isomorphism

U: UZ (Lsl,) =5 S™2 with ¢ _, — ;.. (3.10)

i,—S

Evoking the new Drinfeld Hopf algebra structure on UZ (Lsl,) of Section 2.4, (3.10) induces the one on
S():=_ The corresponding coproduct A is given by (cf. [12, Proposition 3.5]):

Ay (2) =9 (2) @9 (2), (3.11)
<k _
~ [Hiel [T, ¥i (2, r)} * F'(2i r<; @ T 5>0,)
A(F) = : 3.12
R VIS TP 12

for F' € Sé”), where £ < k iff ¢; < k; for all i. We expand the right-hand side of (3.12) in the non-negative
powers of z; s /x; » for s > ¢; and r < ¢;, put the symbols ;s to the very left, then all powers of z; , with
r < {;, then the ® sign, and finally all powers of z;, with r > /;.
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4. Main result

The main result of this note is the duality of the integral forms U, (Lsl,) and $4,(Lsl,) with respect to
the C(v)-valued new Drinfeld pairing ¢ on U, (Lsl,) of Proposition 2.34:

Theorem 4.1. (a) U (Lsl,) = {z € U, (Lsl,)|¢(x,y) € Clv,v™!] for all y € U5 (Lsl,)}.
(b) Ugs (Lsl,) = {y € Uy (Lsl,)|p(z,y) € Clv,v™!] for all z € 8 (Lsl,,)}.

Proof. We shall prove only part (a) as the proof of part (b) is completely analogous. Our proof is crucially
based on the PBWD result for 45 (Lsl,, ), Theorem 2.16(c1), the shuffle realization of U, (Lsl,,), Theorem 3.7,
and the shuffle realization (3.12) of the new Drinfeld coproduct. We will first establish Theorem 4.1(a) for
n = 2, and then generalize our arguments to n > 2.

Case n = 2. For n = 2, we shall skip the first index i. Set f(z) := (v — v~ !)f(z) = Yoz frz"". Then,
Theorem 4.1(a) is equivalent to:

U2 (Lsly) = {x U (Lshy) : o (x,f(zl) - -.f(zN)) € Clv,v Y[, ..., A v N} . (4.2)

The algebra U, (Lsly) is Z-graded via deg(e,) = 1,deg(f,) = —1,deg(vE,) = 0 for any r € Z,s € N.
In particular, Uy (Lsly) = @®renU; (Lsle)[k] with Uy (Lsly)[k] consisting of all degree k elements. Due
to (2.35), the new Drinfeld pairing ¢ is of degree zero, that is

p(z,y) = 0 for homogeneous elements x,y with deg(z) + deg(y) # 0. (4.3)

Since Uy (Lslz)[1] is spanned by {e, }rez and @(e,, f(21)) = 27 = ¥(er)|ay1sz,, We get

® (x, f(zl)) = V(&) 3,5, forany x e Uy (Lsly)[1]. (4.4)

Combining (4.4) with the shuffle formulas (3.11, 3.12) for the new Drinfeld coproduct A and the prop-

erty (2.32), we obtain the general formula for the pairing with f(z1)--- f(zn):

Lemma 4.5. For x € U, (Lsly)[k|, we have

@ (.G Fen) =0ew W@ [T ¢ e/20) (4.6)

1<r<s<N

with the factors (~1(z,/zs) expanded in the non-negative powers of zs/ 2.

Proof. Due to (4.3), we have ¢ (x,f(zl) e f(zN)) = 0 if k£ # N. Henceforth, we will assume k = N. Set

F:=V(z) € S](\?), so that F' = F(x1,...,2zx) is a symmetric Laurent polynomial.
Due to the property (2.32), we have

@ (2. 1) flen) = ¢ (AN D (@), fzr) @ @ Flan)) (4.7)

where A©): Uz (Lsl,) — Uz (Lst,) " (

l € Z~) are defined inductively via
AW = Aand AW .= (A@Id®* V) o A for £ > 2.

Evoking the formulas (3.11, 3.12) and the property (4.3), we obtain
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o (AY (@), e @@ flon)) = ¢ (U716, flz) @@ flew)) (4.8)

where

It (@) oI (@) @ ¢~ (an) @ ) x Fo1 @2, ® - ® )
. [Ticrcsen Clas/2r) : (4.9)

Recalling the properties (2.32, 4.3) and the formula (4.4), we get

® (w‘(tl) cahT (b)), f(zl)) -
l

[T 6,0 () - T

r=1 r=1

) (4.10)
’ \Il(x)\w1'—>21

for x € U; (Lslp)[1], with the right-hand side expanded in the non-negative powers of ¢,/z;. Combin-
ing (4.7)-(4.10), we finally obtain

o (2. F() ) = ¥@hoprs, - T] C7ar/20). (4.11)

1<r<s<N

This completes our proof of Lemma 4.5. O

Thus, the C[v,v~1]-submodule of U; (Lslz) defined by the right-hand side of (4.2) is N-graded. More-
over, x € UJ (Lsly)[k] satisfies o(x, f(z1)--- f(2n)) € Clo, v Y[[#, ..., 251] for all N if and only if
U(z) € Clo,v[zi!,. .., zif]. The latter is equivalent to the inclusion = € U3 (Lsly), due to Theorem 3.7
(as all specialization maps ¢, of (3.6) are trivial for n = 2).

This completes our proof of Theorem 4.1(a) in the smallest rank case n = 2.

Case n > 2. For any 1 < j <i <n — 1, define the series

FraCopneonz) = (0= 0D [5G0 Fria oo fisa(aialon - fie)lo (412)
Note that ]?j;l-(zj, Sy %) € ilj(Ls[n)[[z;—Ll, ..., 2zE1), and its coefficients ~encode ]’“va.7.+__,+ai7£~of (2.14) for
all possible decompositions r € Z*77*!. For i = j, we shall denote f;;;(z) simply by f;(z), so that
Fii(zgy ooy zi) = (0 =0 ) [ ([£5(25), fira(2501)]os fi+2(2542)]w -+, fi(20)]o. Similar to the n = 2 case
treated above, our primary goal is to compute the new Drinfeld pairing with products of these f;.i(z;, ..., 2i).
The algebra U, (Lsl,,) is Z!-graded via deg(e; ) = 1;,deg(f;,) = —1i,deg(wztis) =0foralliecl,re
Z,s € N, where 0 = (0,...,0) and 1; = (0,...,1,...,0) with 1 placed at the i-th spot. In particular,
Uy (Lsl,) = @rentUy (Lsly)[k] with Ug (Lsl,)[k] consisting of all degree k elements. Due to (2.35), the
new Drinfeld pairing ¢ is of degree zero, that is

p(z,y) = 0 for homogeneous elements z,y with deg(z) + deg(y) # 0. (4.13)
Similar to (4.4), we obtain
© (x,f;(zj)) = U(2), sz, forany e Uy (Lsl,)[1;]. (4.14)

The following result generalizes (4.14) and is proved completely analogously to Lemma 4.5:
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Lemma 4.15. For x € U; (Lsl,,)[k] and any collection j1,...,jn € I, we have

rs 1 ra N — r s
@ (2 TG Tin G) = By ey 0@, o TT G (50/20)

1<r<s<N

: =1 (), (s) ; ; (s) /()
with the factors (; ~; (z;."/2;.") erxpanded in the non-negative powers of z;” /2; .

Remark 4.16. The specialization ¥(z)
i € I, there are k; variables {ax;,}% | (“of color i”) featuring in ¥(z). Since k; = #{1 <t < N|j; = i}, say

Jtian = .- = Jt.,, = i, then we specialize z; , — z( B f) in ¥(z).

ol y in Lemma 4.15 should be understood as follows. For each

In what follows, we use the convention that

1
represents the series M Ly™, 4.17
— TP > (4.17)

m=0

For 1 <j <i<n-—1, consider a graph ();; whose vertices are labeled by 7,j 4+ 1,...,7 and the vertices
k. k+1 (j <k < 1) are connected by a single edge. Let Or;; denote the set of all orientations m of @, ;.
Evoking (4.17), for 7 € Or;; and j < k < 4, define C;}c(z,w) via

(z—w) =, ifk—k+linm

. (4.18)
ifk<k+1linm

—

v(z —w)-

w—vz’

Simplifying all [a, b],, as ab—wba in (4.12), thus expressing the latter as a sum of 2¢=7 terms, Lemma 4.15
implies the formula for the new Drinfeld pairing with f;;(2;,...,2;):

Lemma 4.19. For x € U, (Lsl,,)[k] and 1 < j <i < n, we have

~ Ok,1, 4. 41,
® (xyfj;i(zjw-'azi)) = m (D) 2y sz Z H ok (20 241)- (4.20)

w€Or; ; j<k<i

Remark 4.21. The denominator of ¥(x )|,U,c sz, is canceled by the numerators of (., !_factors.

Corollary 4.22. If ¢ (33’ fj;i(zjv . Zz)) € Clv, '071][[2;:1, oy 25 Y], then ¢a (¥ (x)) is divisible by (v—v '),

where ¢g is the specialization map (3.6) with d = {dg},dp = 6p,a,+...1a, -

Proof. Due to (4.13), we may assume that « € U; (Lsl,)[1; + ...+ 1;], so that

p(xj,- -, Ti1) : +1 +1
U(x) = with p € C(v)[z51, ...,z ] 4.23
( ) (xj,l _ xj+171) . (mi—l,l _ :I:i71) ( )[ 7,10 ’ 1,1] ( )
First, let us assume that p(z;1,...,2,1) = x;ljl e xfll Pick sufficiently small integers 7j11,...,7; <0,

so that ag + 7, < 0 for 7 < k < i. Then, evaluating the coefficient of HZ:;‘H z; " in the right-hand side
of (4.20), we get a nonzero contribution only from 7 € Or;; with &k — k+1 for all j < k < i. Moreover, the
corresponding contribution equals

(v—v Y TP (2 (0 ) W (072 M) (4.24)
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with
A= > (G=k)rk—1+0,), B= > (n—1). (4.25)
J<k<i j<k<i
Note that A, B of (4.25) are actually independent of aj, ..., a;. Thus, for any = as above and the associated

Laurent polynomial p of (4.23), comparing the coefﬁments of Hk —it1 %k . in (4.20) for sufficiently small
Tjt1,...,7; < 0, we obtain

¥ (l‘, (’U - v_l)[' o [f](z)’ fj+1,Tj+1]v> T 7fi77'i]'v) =

- - (4.26)
(v—v )T WRB p(z vz TR,

Combining (4.26) and the definition of ¢4 with d = {dg},ds = 6p,a;+...+a:» (3.6), we see that ¢4(¥(x)) is
indeed divisible by (v —v~1)*=J. This completes our proof of Corollary 4.22. O

Combining (4.20) with the shuffle formulas (3.11, 3. 12) for the new Drinfeld coproduct A and the prop-

erty (2.32), we obtain the formula for the pairing with [[’_, f;,.i. (2 (r), e f:))
Lemma 4.27. For x € U (Lst,)[S.N, 320 1,], we have
Js<l<ig
1 N s)
( thh( ]1""721(1)) f]NﬂN(zj( )""7 1N ) H H Ckﬁ Zk /ZE )
r<s j.<k<ip

(4.28)

N
SRR | B ERD DR | GRC T

r=1 \7.€0rj, i, jr<k<ir

(’U . 0_1)25,21(]}—%) . \I}(x)

with the factors C,;L} (z,(;)/zés)) expanded in the non-negative powers of zés)/z,(:),
Remark 4.29. The specialization ¥(z )Ir .
there are k; = #{1 <t < N|j, <i <} variables {z;,}* | (“of color i”) featuring in (z). If 1 < t;; <

. < tik; < N denote the corresponding indices, such that j;, . <@ <, ., then we specialize x;, zl(t)
in U(z), cf. Remark 4.16.

( in (4.28) should be understood as follows. For each i € I,

Since the proof of Lemma 4.27 is entirely analogous to that of Lemma 4.5, we leave details to the interested
reader. Similar to Corollary 4.22, we obtain the following result:

Corollary 4.30. If ¢ (% fjm‘l (z(_l) o Z_(l)) . ‘ENVL‘N (Z(_N) L)

J1 7 [R5t JN""’ZN

)) is a Clv,v~'-valued Laurent poly-

nomial in {z(r) }]{55@, then ¢q(V(x)) is divisible by (v — 'U_l)zrzl(iT_jT)’ where ¢q4 is the specialization

map (3.6) with d = {dg}, do,+..4a, = #{1 <7 < Nljr = j, i, = i}.
This result, combined with Theorem 3.7, implies the inclusion “2” in Theorem 4.1(a):
Proposition 4.31. U (Lsl,) 2 {z € U; (Lsl,,)|¢o(z,y) € Clv,v1] for all y € 45 (Lsl,)}.
Thus, it remains to establish the opposite inclusion “C” in Theorem 4.1(a):

Proposition 4.32. U (Lsl,,) C {z € U; (Lsl,,)|¢o(z,y) € Clv,v1] for all y € 45 (Lsl,)}.
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Proof. Our proof will proceed in several steps by reducing to the setup in which (4.26) applies.
First, evoking the shuffle realization of the subalgebra U (Lsl, ), Theorem 3.7, and of the new Drinfeld
coproduct, formula (3.12), we immediately obtain the following result:

Lemma 4.33. For any x € U (Lsl,,), we have A(z) = x’(l)x(l) ®x (2 in the Sweedler notation (the right-hand
side is an infinite sum) with (1), z(2) € U7 (Lsl,) and x{;)~a monomial in ¢, .

Combining Lemma 4.33 with (2.32), it thus suffices to show that given any x € U (Lsl,)[1,; + ... + 1;],
#’~a monomial in ¢, ,, and r = (rj,...,r;) € Z'~IT!, we have

¥ (xlmv fa]‘+...+ai,£) € (C[’U,’U_l]. (434)

Evoking the property (2.32) once again, for the proof of (4.34) it suffices to establish

® (x faj+,..+ai,z) € Clv,v™] (4.35)

for any x € U7 (Lsl,)[1; + ...+ 1;] and any r = (rj,...,r;) € Z*IL

We shall prove (4.35) by induction in i—j. The base case ¢ = j is obvious. Given z € U7 (Lsl,)[1,+...+1;],
the validity of (4.35) for r = (r;,...,r;) with sufficiently small rj;4,...,7; < 0 is due to (4.26). We shall
call such r € Z=+! “g—sufficiently small”. To establish (4.35) for a general r, we shall apply the PBWD
result of Theorem 2.16(cl) with the choice of decompositions r(3,) such that r(a; + ...+ a;,r) are all
“r-sufficiently small”. Then, combining Theorem 2.16(c1) with the Z!-grading on Us (Lsl,), we see that
the element faj+...+ai7£ can be written as a C[v, v~ !]-linear combination of faj+___+ai7r(aj+.__+O%T) (reiz)

and degree > 1 ordered monomials in fo 4. ta, ~ With j < j' <4 <iand i’ —j" <i—j. By the above
observation, ¢ (x, J?aj+...+a,;,g(aj+...+a,<,r)) € C[v,v71] for any r € Z. Finally, we claim that the pairing of

x with degree > 1 monomials in fo , . .4a, r I8 Clv, v 1]-valued. To see this, apply the above arguments
((2.32) and Lemma 4.33) again, subsequently reducing to (4.35) with (j,4) replaced by (j’,4'), which is
established by the induction assumption.

This completes our proof of Proposition 4.32. O

Combining Propositions 4.31, 4.32, we get the proof of Theorem 4.1(a) for arbitrary n. O

Remark 4.36. The above proof of Theorem 4.1 is crucially based on our construction of the entire family
of Poincaré-Birkhoff-Witt-Drinfeld bases of il,(Lsl,) for all decompositions r (rather than picking the
canonical one r(®) of (2.13)).

Remark 4.37. The finite counterpart of Theorem 4.1, where U, (Lsl,,) is replaced with U,(sl,,) and the new
Drinfeld pairing ¢ is replaced with the Drinfeld-Jimbo pairing, is well-known, see e.g. [3, §3]. In [3], this
duality is extended to the duality between the Cartan-extended subalgebras U’-Z(sl,,) and &'><(sl,) (resp.
U= (sl,) and &' =(sl,))), where ’ is used to indicate yet enlarged algebras by adding more Cartan elements,
see [3, Theorem 3.1].
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