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shuffle algebra realization of the former and the PBWD bases of the latter obtained 
in [13].
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1. Introduction

1.1. Summary

For a simple finite-dimensional Lie algebra g, the quantum function algebra is dual to the Lusztig form 
Uv(g) of the quantum group of g. For g = sln, this is reflected by the duality between the Lusztig and the 
RTT integral forms of Uv(sln) with respect to the Drinfeld-Jimbo pairing. In this short note, we establish 
an affine version of the above result for sln replaced with ŝln and the Drinfeld-Jimbo pairing replaced with 
the new Drinfeld pairing.

1.2. Outline of the paper

• In Section 2, we recall the quantum loop (quantum affine with the trivial central charge) algebra 
Uv(Lsln) as well as its two integral forms: Uv(Lsln) (naturally arising in the RTT presentation of [6]) and 
Uv(Lsln) (Lusztig form defined in the Drinfeld-Jimbo presentation). Both integral forms posses triangular 
decompositions, see Propositions 2.17, 2.28, generalizing the one for Uv(Lsln) of Proposition 2.9. We also 
recall our constructions of the PBWD (Poincaré-Birkhoff-Witt-Drinfeld) bases for the “positive” and “neg-
ative” subalgebras of both integral forms established in [13], see Theorems 2.16, 2.31. Finally, in Section 2.4, 
we recall the new Drinfeld topological Hopf algebra structure and the new Drinfeld pairing on Uv(Lsln).
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• In Section 3, we recall the shuffle algebra S(n), its two integral forms, and the shuffle algebra re-
alizations of the “positive” subalgebras U>

v (Lsln), see Theorem 3.4 (first established in [12]), and of 
U>

v (Lsln), U>
v (Lsln), see Theorem 3.7 and Remark 3.8, established in [13]. Finally, we enlarge S(n) to the 

extended shuffle algebra S(n),≥ by adjoining Cartan generators satisfying (3.9), thus obtaining the shuffle 
algebra realization (3.10) of U≥

v (Lsln), and recall the formulas (3.11, 3.12) for the new Drinfeld coproduct 
on it, cf. [12, Proposition 3.5].

• In Section 4, we prove that the integral form Uv(Lsln) is dual to Uv(Lsln) with respect to the new 
Drinfeld pairing, see Theorem 4.1, which constitutes the main result of this note. Our proof is crucially 
based on the shuffle realizations of Section 3 as well as utilizes the entire family of the PBWD bases of 
Uv(Lsln) of Theorem 2.16, see Remark 4.36.
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2. Quantum loop algebra Uv(Lsln) and its integral forms

2.1. Quantum loop algebra Uv(Lsln)

Let I = {1, . . . , n − 1}, (cij)i,j∈I be the Cartan matrix of sln, and v be a formal variable. Following [2], 
define the quantum loop algebra of sln (in the new Drinfeld presentation), denoted by Uv(Lsln), to be the 
associative C(v)-algebra generated by {ei,r, fi,r, ψ±

i,±s}r∈Z,s∈N
i∈I with the following defining relations:

[ψε
i (z), ψε′

j (w)] = 0, ψ±
i,0 · ψ∓

i,0 = 1, (2.1)
(z − vcij w)ei(z)ej(w) = (vcij z − w)ej(w)ei(z), (2.2)
(vcij z − w)fi(z)fj(w) = (z − vcij w)fj(w)fi(z), (2.3)
(z − vcij w)ψε

i (z)ej(w) = (vcij z − w)ej(w)ψε
i (z), (2.4)

(vcij z − w)ψε
i (z)fj(w) = (z − vcij w)fj(w)ψε

i (z), (2.5)

[ei(z), fj(w)] = δij

v − v−1 δ
( z

w

) (
ψ+

i (z) − ψ−
i (z)

)
, (2.6)

ei(z)ej(w) = ej(w)ei(z) if cij = 0,

[ei(z1), [ei(z2), ej(w)]v−1 ]v + [ei(z2), [ei(z1), ej(w)]v−1 ]v = 0 if cij = −1,
(2.7)

fi(z)fj(w) = fj(w)fi(z) if cij = 0,

[fi(z1), [fi(z2), fj(w)]v−1 ]v + [fi(z2), [fi(z1), fj(w)]v−1 ]v = 0 if cij = −1,
(2.8)

where [a, b]x := ab − x · ba and the generating series are defined as follows:

ei(z) :=
∑
r∈Z

ei,rz−r, fi(z) :=
∑
r∈Z

fi,rz−r, ψ±
i (z) :=

∑
s≥0

ψ±
i,±sz∓s, δ(z) :=

∑
r∈Z

zr.

Let U<
v (Lsln), U>

v (Lsln), U0
v(Lsln) be the C(v)-subalgebras of Uv(Lsln) generated respectively by 

{fi,r}r∈Z
i∈I , {ei,r}r∈Z

i∈I , {ψ±
i,±s}s∈N

i∈I . The following is standard (see e.g. [9, Theorem 2]):
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Proposition 2.9. (a) (Triangular decomposition of Uv(Lsln)) The multiplication map

m : U<
v (Lsln) ⊗C(v) U0

v(Lsln) ⊗C(v) U>
v (Lsln) −→ Uv(Lsln)

is an isomorphism of C(v)-vector spaces.
(b) The algebra U>

v (Lsln) (resp. U<
v (Lsln) and U0

v(Lsln)) is isomorphic to the associative C(v)-algebra 
generated by {ei,r}r∈Z

i∈I (resp. {fi,r}r∈Z
i∈I and {ψ±

i,±s}s∈N
i∈I ) with the defining relations (2.2, 2.7) (resp. (2.3, 2.8)

and (2.1)).

2.2. RTT integral form Uv(Lsln) and its PBWD bases

Let {αi}n−1
i=1 be the standard simple positive roots of sln, and Δ+ be the set of positive roots:

Δ+ = {αj + αj+1 + . . . + αi}1≤j≤i<n. Consider the following total ordering “≤” on Δ+:

αj + αj+1 + . . . + αi ≤ αj′ + αj′+1 + . . . + αi′ iff j < j′ or j = j′, i ≤ i′. (2.10)

This gives rise to the total ordering “≤” on Δ+ × Z:

(β, r) ≤ (β′, r′) iff β < β′ or β = β′, r ≤ r′. (2.11)

For any 1 ≤ j ≤ i ≤ n − 1 and r ∈ Z, we choose a decomposition

r = r(αj + . . . + αi, r) = (rj , . . . , ri) ∈ Zi−j+1 such that rj + . . . + ri = r. (2.12)

A particular example of such a decomposition is

r(0) = r(0)(αj + . . . + αi, r) = (r, 0, . . . , 0). (2.13)

Following [13, (2.11, 2.18)], define the elements ẽβ,r ∈ U>
v (Lsln) and f̃β,r ∈ U<

v (Lsln) via

ẽαj+αj+1+...+αi,r := (v − v−1)[· · · [[ej,rj
, ej+1,rj+1 ]v, ej+2,rj+2 ]v, · · · , ei,ri

]v,

f̃αj+αj+1+...+αi,r := (v − v−1)[· · · [[fj,rj
, fj+1,rj+1 ]v, fj+2,rj+2 ]v, · · · , fi,ri

]v.
(2.14)

In the special case r(β, r) = r(0)(β, r), see (2.13), we shall denote ẽβ,r, f̃β,r simply by ẽβ,r, f̃β,r.
Define the RTT integral form Uv(Lsln) as the C[v, v−1]-subalgebra of Uv(Lsln) generated by

{ẽβ,r, f̃β,r, ψ±
i,±s}r∈Z,s∈N

i∈I,β∈Δ+ . Let U<
v (Lsln), U>

v (Lsln), and U0
v(Lsln) be the C[v, v−1]-subalgebras of Uv(Lsln)

generated by {f̃β,r}r∈Z
β∈Δ+ , {ẽβ,r}r∈Z

β∈Δ+ , and {ψ±
i,±s}s∈N

i∈I , respectively.

Remark 2.15. The name “RTT integral form” is motivated by the following two observations:
(a) Due to Theorem 2.16 below, we have Uv(Lsln) ⊗C[v,v−1] C(v) � Uv(Lsln).
(b) Due to [7, Proposition 3.20], the subalgebra Uv(Lsln) coincides with the Υ-preimage of Urtt

v (Lgln), 
where Urtt

v (Lgln) is the RTT integral form of the quantum loop algebra of gln [6] (cf. [7, §3(ii)]), while
Υ: Uv(Lsln) ↪→ Urtt

v (Lgln) ⊗C[v,v−1] C(v) is the C(v)-algebra embedding of [4].

As before, fix a decomposition r(β, r) for each pair (β, r) ∈ Δ+ × Z. We order {ẽβ,r(β,r)}r∈Z
β∈Δ+ with 

respect to (2.11), while {f̃β,r(β,r)}r∈Z
β∈Δ+ are ordered with respect to the opposite ordering on Δ+×Z. Finally, 

choose any total ordering of {ψi,r}r∈Z
i∈I defined via ψi,r :=

{
ψ+

i,r, if r ≥ 0
ψ− , if r < 0

. Having specified these three total 

i,r
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orderings, elements F · H · E with F, E, H being ordered monomials in {f̃β,r(β,r)}r∈Z
β∈Δ+ , {ẽβ,r(β,r)}r∈Z

β∈Δ+ , 
{ψi,r}r∈Z

i∈I (note that we allow negative powers of ψi,0), respectively, are called the ordered PBWD monomials
(in the corresponding generators).

The following was established in [13, Theorems 2.15, 2.17, 2.19, 2.22], cf. [7, Theorem 3.24]:

Theorem 2.16. Fix a decomposition r(β, r) for every pair (β, r) ∈ Δ+ × Z.
(a1) The ordered PBWD monomials in {f̃β,r(β,r), ψi,r, ̃eβ,r(β,r)}r∈Z

i∈I,β∈Δ+ form a basis of the free C[v, v−1]-
module Uv(Lsln).
(a2) The ordered PBWD monomials in {f̃β,r(β,r), ψi,r, ̃eβ,r(β,r)}r∈Z

i∈I,β∈Δ+ form a C(v)-basis of Uv(Lsln).
(b1) The ordered PBWD monomials in {ẽβ,r(β,r)}r∈Z

β∈Δ+ form a basis of the free C[v, v−1]-module U>
v (Lsln).

(b2) The ordered PBWD monomials in {ẽβ,r(β,r)}r∈Z
β∈Δ+ form a C(v)-basis of U>

v (Lsln).
(c1) The ordered PBWD monomials in {f̃β,r(β,r)}r∈Z

β∈Δ+ form a basis of the free C[v, v−1]-module U<
v (Lsln).

(c2) The ordered PBWD monomials in {f̃β,r(β,r)}r∈Z
β∈Δ+ form a C(v)-basis of U<

v (Lsln).
(d1) The ordered PBWD monomials in {ψi,r}r∈Z

i∈I form a basis of the free C[v, v−1]-module U0
v(Lsln).

(d2) The ordered PBWD monomials in {ψi,r}r∈Z
i∈I form a C(v)-basis of U0

v(Lsln).

This result together with Proposition 2.9 implies the triangular decomposition of Uv(Lsln):

Proposition 2.17. The multiplication map

m : U<
v (Lsln) ⊗C[v,v−1] U

0
v(Lsln) ⊗C[v,v−1] U

>
v (Lsln) −→ Uv(Lsln)

is an isomorphism of (free) C[v, v−1]-modules.

2.3. Lusztig integral form Uv(Lsln) and its PBWD basis

To introduce the Lusztig integral form, we recall the Drinfeld-Jimbo realization of Uv(Lsln). Let
Ĩ = I ∪ {i0} be the vertex set of the extended Dynkin diagram and (cij)i,j∈Ĩ be the extended Cartan 
matrix. The Drinfeld-Jimbo quantum loop algebra of sln, denoted by UDJ

v (Lsln), is the associative C(v)-
algebra generated by {Ei, Fi, K

±1
i }i∈Ĩ with the following defining relations:

[Ki, Kj ] = 0, K±1
i · K∓1

i = 1,
∏
i∈Ĩ

Ki = 1, (2.18)

KiEj = vcij EjKi, KiFj = v−cij FjKi, [Ei, Fj ] = δij
Ki − K−1

i

v − v−1 , (2.19)

EiEj = EjEi, FiFj = FjFi if cij = 0, (2.20)

[Ei, [Ei, Ej ]v−1 ]v = 0, [Fi, [Fi, Fj ]v−1 ]v = 0 if cij = −1. (2.21)

The following result is due to [2]:

Proposition 2.22. There is a C(v)-algebra isomorphism UDJ
v (Lsln) ∼−→ Uv(Lsln), such that

Ei 	→ ei,0, Fi 	→ fi,0, K±1
i 	→ ψ±

i,0 for i ∈ I,

Ei0 	→ (−v)−n · (ψ+
1,0 · · · ψ+

n−1,0)−1 · [· · · [f1,1, f2,0]v, · · · , fn−1,0]v,

Fi0 	→ (−v)n · [en−1,0, · · · , [e2,0, e1,−1]v−1 · · · ]v−1 · ψ+
1,0 · · · ψ+

n−1,0.
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For k ∈ N, set [k]v := vk−v−k

v−v−1 , [k]v! :=
∏k

�=1[�]v. For i ∈ Ĩ , k ∈ N, define the divided powers

E
(k)
i := Ek

i

[k]v! and F
(k)
i := F k

i

[k]v! . (2.23)

Define the Lusztig integral form UDJ
v (Lsln) as the C[v, v−1]-subalgebra of UDJ

v (Lsln) generated by
{E

(k)
i , F (k)

i , K±1
i }k∈N

i∈Ĩ
. In view of Proposition 2.22, it gives rise to the C[v, v−1]-subalgebra Uv(Lsln) of 

Uv(Lsln) which shall be referred to as the Lusztig integral form of Uv(Lsln).
Let us now recall a more explicit description of Uv(Lsln). For i ∈ I, r ∈ Z, k ∈ Z>0, define

[
ψ+

i,0; r

k

]
:=

k∏
�=1

ψ+
i,0vr−�+1 − ψ−

i,0v−r+�−1

v� − v−�
. (2.24)

We also define the pairwise commuting generators {hi,r}r �=0
i∈I via

ψ±
i (z) = ψ±

i,0 · exp
(

±(v − v−1)
∑
r>0

hi,±rz∓r

)
. (2.25)

Finally, for i ∈ I, r ∈ Z, k ∈ N, we define the divided powers

e(k)
i,r :=

ek
i,r

[k]v! and f(k)
i,r :=

fk
i,r

[k]v! . (2.26)

Let U<
v (Lsln), U>

v (Lsln), and U0
v(Lsln) be the C[v, v−1]-subalgebras of Uv(Lsln) generated by {f(k)

i,r }r∈Z,k∈N
i∈I ,

{e(k)
i,r }r∈Z,k∈N

i∈I , and {ψ±
i,0, hi,±k

[k]v
, 
[ψ+

i,0;r
k

]
}r∈Z,k∈Z>0

i∈I , respectively.

Remark 2.27. The subalgebra U>
v (Lsln) ⊂ U>

v (Lsln) was first considered in [8].

The following triangular decomposition of Uv(Lsln) is due to [1, Proposition 6.1]:

Proposition 2.28. (a) U<
v (Lsln), U0

v(Lsln), U>
v (Lsln) are C[v, v−1]-subalgebras of Uv(Lsln).

(b) (Triangular decomposition of Uv(Lsln)) The multiplication map

m : U<
v (Lsln) ⊗C[v,v−1] U0

v(Lsln) ⊗C[v,v−1] U>
v (Lsln) −→ Uv(Lsln)

is an isomorphism of (free) C[v, v−1]-modules.

Following (2.13, 2.14), define the elements eβ,r ∈ U>
v (Lsln) and fβ,r ∈ U<

v (Lsln) via

eαj+αj+1+...+αi,r := [· · · [[ej,r, ej+1,0]v, ej+2,0]v, · · · , ei,0]v,

fαj+αj+1+...+αi,r := [· · · [[fj,r, fj+1,0]v, fj+2,0]v, · · · , fi,0]v.
(2.29)

For β ∈ Δ+, r ∈ Z, k ∈ N, we define the divided powers

e(k)
β,r :=

ek
β,r

[k]v! and f(k)
β,r :=

fk
β,r

[k]v! . (2.30)

Note that e(k) ∈ U>
v (Lsln) and f(k) ∈ U<

v (Lsln) for any β, r, k as above, due to [11, Theorem 6.6].
β,r β,r
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Evoking (2.11), the monomials of the form 
→∏

(β,r)∈Δ+×Z
e(kβ,r)

β,r and 
←∏

(β,r)∈Δ+×Z
f(kβ,r)
β,r (with kβ,r ∈ N and 

only finitely many of them being nonzero) are called the ordered PBWD monomials of U>
v (Lsln) and 

U<
v (Lsln), respectively. The following result was established in [13]:

Theorem 2.31. [13, Theorem 8.5] The ordered PBWD monomials form bases of the free C[v, v−1]-modules 
U>

v (Lsln) and U<
v (Lsln), respectively.

2.4. New Drinfeld Hopf algebra structure and Hopf pairing

Let us first recall the general notion of a Hopf pairing, following [10, §3]. Given two Hopf algebras A and 
B over a field k, the bilinear map

ϕ : A × B −→ k

is called a Hopf pairing if it satisfies the following properties (for any a, a′ ∈ A and b, b′ ∈ B):

ϕ(a, bb′) = ϕ(a(1), b)ϕ(a(2), b′), ϕ(aa′, b) = ϕ(a, b(2))ϕ(a′, b(1)), (2.32)

ϕ(a, 1B) = εA(a), ϕ(1A, b) = εB(b), ϕ(SA(a), SB(b)) = ϕ(a, b), (2.33)

where we use the Sweedler notation for the coproduct: Δ(x) = x(1) ⊗ x(2).
Following [5, Theorem 2.1], we endow Uv(Lsln) with the new Drinfeld topological Hopf algebra structure 

by defining the coproduct Δ, the counit ε, and the antipode S as follows:

Δ: ψ±
i (z) 	→ ψ±

i (z) ⊗ ψ±
i (z), ei(z) 	→ ei(z) ⊗ 1 + ψ−

i (z) ⊗ ei(z), fi(z) 	→ 1 ⊗ fi(z) + fi(z) ⊗ ψ+
i (z),

ε : ei(z) 	→ 0, fi(z) 	→ 0, ψ±
i (z) 	→ 1,

S : ei(z) 	→ −ψ−
i (z)−1ei(z), fi(z) 	→ −fi(z)ψ+

i (z)−1, ψ±
i (z) 	→ ψ±

i (z)−1.

Thus, the C(v)-subalgebras U≤
v (Lsln) and U≥

v (Lsln) generated by {fi,r, ψ+
i,s, (ψ+

i,0)−1}r∈Z,s∈N
i∈I and

{ei,r, ψ−
i,−s, (ψ−

i,0)−1}r∈Z,s∈N
i∈I , respectively, are actually Hopf subalgebras of (Uv(Lsln), Δ, S, ε).

The following is well-known (see e.g. [8, §9.3], cf. [12, Propositions 2.27, 2.30]):

Proposition 2.34. The assignment

ϕ(ei(z), fj(w)) = δi,j

v − v−1 δ
( z

w

)
, ϕ(ψ−

i (z), ψ+
j (w)) = vcij z − w

z − vcij w
,

ϕ(ei(z), ψ+
j (w)) = 0, ϕ(ψ−

j (w), fi(z)) = 0,

(2.35)

gives rise to a non-degenerate Hopf algebra pairing ϕ : U≥
v (Lsln) × U≤

v (Lsln) → C(v).

3. Shuffle algebra S(n) and its integral forms

3.1. Shuffle algebra S(n)

Let Σk denote the symmetric group in k elements, and set Σ(k1,...,kn−1) := Σk1 × · · · × Σkn−1 for 
k1, . . . , kn−1 ∈ N. Consider an NI-graded C(v)-vector space S(n) =

⊕
k=(k1,...,kn−1)∈NI

S(n)
k , where S(n)

(k1,...,kn−1)

consists of Σk-symmetric rational functions in the variables {xi,r}1≤r≤ki

i∈I . Define ζi,j(z) := z−v−cij for 
z−1
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i, j ∈ I. Let us introduce the bilinear shuffle product � on S(n): given F ∈ S(n)
k and G ∈ S(n)

� , define 

F � G ∈ S(n)
k+� via

(F � G)(x1,1, . . . , x1,k1+�1 ; . . . ; xn−1,1, . . . , xn−1,kn−1+�n−1) := k! · �!×

SymΣk+�

⎛⎝F
(

{xi,r}1≤r≤ki

i∈I

)
G

(
{xi′,r′}ki′ <r′≤ki′ +�i′

i′∈I

)
·

i′∈I∏
i∈I

r′>ki′∏
r≤ki

ζi,i′(xi,r/xi′,r′)

⎞⎠ .
(3.1)

Here, k! =
∏

i∈I ki!, while for f ∈ C({xi,1, . . . , xi,mi
}i∈I) we define its symmetrization via

SymΣm
(f) ({xi,1, . . . , xi,mi

}i∈I) := 1
m! ·

∑
(σ1,...,σn−1)∈Σm

f
(
{xi,σi(1), . . . , xi,σi(mi)}i∈I

)
.

This endows S(n) with a structure of an associative unital algebra with the unit 1 ∈ S(n)
(0,...,0).

We will be interested only in the subspace of S(n) defined by the pole and wheel conditions:
• We say that F ∈ S(n)

k satisfies the pole conditions if

F =
f(x1,1, . . . , xn−1,kn−1)∏n−2

i=1
∏r′≤ki+1

r≤ki
(xi,r − xi+1,r′)

, where f ∈ (C(v)[{x±1
i,r }1≤r≤ki

i∈I ])Σk . (3.2)

• We say that F ∈ S(n)
k satisfies the wheel conditions if

F ({xi,r}) = 0 once xi,r1 = vxi+ε,s = v2xi,r2 for some ε, i, r1, r2, s, (3.3)

where ε ∈ {±1}, i, i + ε ∈ I, 1 ≤ r1, r2 ≤ ki, 1 ≤ s ≤ ki+ε.
Let S(n)

k ⊂ S(n)
k denote the subspace of all elements F satisfying these two conditions (3.2, 3.3) and set

S(n) :=
⊕

k∈NI

S
(n)
k . It is straightforward to check that the subspace S(n) ⊂ S(n) is �-closed.

The resulting associative C(v)-algebra 
(
S(n), �

)
shall be called the shuffle algebra.

3.2. Shuffle algebra realizations

The shuffle algebra
(
S(n), �

)
is related to U>

v (Lsln) via the following result of [13] (cf. [12]):

Theorem 3.4. The assignment ei,r 	→ xr
i,1 (i ∈ I, r ∈ Z) gives rise to a C(v)-algebra isomorphism 

Ψ: U>
v (Lsln) ∼−→ S(n).

Remark 3.5. This result was manifestly used in [13] to establish parts (b2, c2) of Theorem 2.16.

The proof of Theorem 3.4 in [13] crucially utilized the specialization maps φd [13, (3.12)], which we recall 
next. For a positive root β = αj + αj+1 + . . . + αi, define j(β) := j, i(β) := i, and let [β] denote the integer 
interval [j(β); i(β)]. Consider a collection of the intervals {[β]}β∈Δ+ each taken with a multiplicity dβ ∈ N

and ordered with respect to the total ordering (2.10) (the order inside each group is irrelevant). Define 
� ∈ NI via 

∑
i∈I �iαi =

∑
β∈Δ+ dββ.

Let us now define the specialization map φd (here, d denotes the collection {dβ}β∈Δ+)

φd : S
(n) −→ C(v)[{y±1}1≤s≤dβ

+ ]. (3.6)
� β,s β∈Δ
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Split the variables {xi,r}1≤r≤�i

i∈I into 
∑

β∈Δ+ dβ groups corresponding to the above intervals, and specialize 
those in the s-th copy of [β] to v−j(β) · yβ,s, . . . , v−i(β) · yβ,s in the natural order (the variable xk,r gets 
specialized to v−kyβ,s). For F = f(x1,1,...,xn−1,�n−1 )∏n−2

i=1
∏1≤r′≤�i+1

1≤r≤�i
(xi,r−xi+1,r′ )

∈ S
(n)
� , we define φd(F ) as the corresponding 

specialization of f . Note that φd(F ) is independent of our splitting of the variables {xi,r}1≤r≤�i

i∈I into groups 
and is symmetric in {yβ,s}dβ

s=1 for any β ∈ Δ+.
Following [13, Definition 8.6], an element F ∈ S

(n)
k is called good if the following holds:

• F is of the form (3.2) with f ∈ C[v, v−1][{x±1
i,r }1≤r≤ki

i∈I ];
• φd(F ) is divisible by (v − v−1)

∑
β∈Δ+ dβ(i(β)−j(β)) for any d such that 

∑
i∈I kiαi =

∑
β∈Δ+ dββ.

Let S(n)
k ⊂ S

(n)
k denote the C[v, v−1]-submodule of all good elements. Set S(n) :=

⊕
k∈NI

S(n)
k .

Theorem 3.7. [13, Theorem 8.8] The C(v)-algebra isomorphism Ψ: U>
v (Lsln) ∼−→ S(n) of Theorem 3.4 gives 

rise to a C[v, v−1]-algebra isomorphism Ψ: U>
v (Lsln) ∼−→ S(n).

Remark 3.8. In [13, Theorem 3.34], we also established the shuffle realization of U>
v (Lsln) by showing that 

the isomorphism Ψ of Theorem 3.4 gives rise to a C[v, v−1]-algebra isomorphism Ψ: U>
v (Lsln) ∼−→S(n), 

where S(n) denotes the C[v, v−1]-submodule of all integral elements, see [13, Definition 3.31]. We skip the 
definition of the latter as it is not presently needed.

3.3. Extended shuffle algebra S(n),≥

For the purpose of the next section, define the extended shuffle algebra (cf. [12, §3.4]) S(n),≥ by adjoining 
pairwise commuting generators {ψ−

i,−s, (ψ−
i,0)−1}s∈N

i∈I with the following relations:

ψ−
i (z) � F =

⎡⎣F
(

{xj,r}1≤r≤kj

j∈I

)
·
∏
j∈I

kj∏
r=1

ζi,j(z/xj,r)
ζj,i(xj,r/z)

⎤⎦ � ψ−
i (z) (3.9)

for any F ∈ S
(n)
k , where we set ψ−

i (z) :=
∑

s≥0 ψ−
i,−szs, � denotes the multiplication in S(n),≥, and the 

ζ-factors in the right-hand side are all expanded in the non-negative powers of z.
Then, the isomorphism Ψ of Theorem 3.4 naturally extends to a C(v)-algebra isomorphism

Ψ: U≥
v (Lsln) ∼−→ S(n),≥ with ψ−

i,−s 	→ ψ−
i,−s. (3.10)

Evoking the new Drinfeld Hopf algebra structure on U≥
v (Lsln) of Section 2.4, (3.10) induces the one on 

S(n),≥. The corresponding coproduct Δ is given by (cf. [12, Proposition 3.5]):

Δ(ψ−
i (z)) = ψ−

i (z) ⊗ ψ−
i (z), (3.11)

Δ(F ) =
�≤k∑

�∈NI

[∏
i∈I

∏
r>�i

ψ−
i (xi,r)

]
� F (xi,r≤�i

⊗ xi,s>�i
)∏

i,j∈I

∏s>�j

r≤�i
ζj,i(xj,s/xi,r)

(3.12)

for F ∈ S
(n)
k , where � ≤ k iff �i ≤ ki for all i. We expand the right-hand side of (3.12) in the non-negative 

powers of xj,s/xi,r for s > �j and r ≤ �i, put the symbols ψ−
i,−s to the very left, then all powers of xi,r with 

r ≤ �i, then the ⊗ sign, and finally all powers of xi,r with r > �i.
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4. Main result

The main result of this note is the duality of the integral forms Uv(Lsln) and Uv(Lsln) with respect to 
the C(v)-valued new Drinfeld pairing ϕ on Uv(Lsln) of Proposition 2.34:

Theorem 4.1. (a) U>
v (Lsln) = {x ∈ U>

v (Lsln)|ϕ(x, y) ∈ C[v, v−1] for all y ∈ U<
v (Lsln)}.

(b) U<
v (Lsln) = {y ∈ U<

v (Lsln)|ϕ(x, y) ∈ C[v, v−1] for all x ∈ U>
v (Lsln)}.

Proof. We shall prove only part (a) as the proof of part (b) is completely analogous. Our proof is crucially 
based on the PBWD result for U<

v (Lsln), Theorem 2.16(c1), the shuffle realization of U>
v (Lsln), Theorem 3.7, 

and the shuffle realization (3.12) of the new Drinfeld coproduct. We will first establish Theorem 4.1(a) for 
n = 2, and then generalize our arguments to n > 2.

Case n = 2. For n = 2, we shall skip the first index i. Set f̃(z) := (v − v−1)f(z) =
∑

r∈Z f̃rz−r. Then, 
Theorem 4.1(a) is equivalent to:

U>
v (Lsl2) =

{
x ∈ U>

v (Lsl2) : ϕ
(

x, f̃(z1) · · · f̃(zN )
)

∈ C[v, v−1][[z±1
1 , . . . , z±1

N ]] ∀ N
}

. (4.2)

The algebra Uv(Lsl2) is Z-graded via deg(er) = 1, deg(fr) = −1, deg(ψ±
±s) = 0 for any r ∈ Z, s ∈ N. 

In particular, U>
v (Lsl2) = ⊕k∈NU>

v (Lsl2)[k] with U>
v (Lsl2)[k] consisting of all degree k elements. Due 

to (2.35), the new Drinfeld pairing ϕ is of degree zero, that is

ϕ(x, y) = 0 for homogeneous elements x, y with deg(x) + deg(y) 
= 0. (4.3)

Since U>
v (Lsl2)[1] is spanned by {er}r∈Z and ϕ(er, f̃(z1)) = zr

1 = Ψ(er)|x1 �→z1 , we get

ϕ
(

x, f̃(z1)
)

= Ψ(x)|x1 �→z1 for any x ∈ U>
v (Lsl2)[1]. (4.4)

Combining (4.4) with the shuffle formulas (3.11, 3.12) for the new Drinfeld coproduct Δ and the prop-
erty (2.32), we obtain the general formula for the pairing with f̃(z1) · · · f̃(zN ):

Lemma 4.5. For x ∈ U>
v (Lsl2)[k], we have

ϕ
(

x, f̃(z1) · · · f̃(zN )
)

= δk,N · Ψ(x)|xr �→zr
·

∏
1≤r<s≤N

ζ−1(zr/zs) (4.6)

with the factors ζ−1(zr/zs) expanded in the non-negative powers of zs/zr.

Proof. Due to (4.3), we have ϕ 
(

x, f̃(z1) · · · f̃(zN )
)

= 0 if k 
= N . Henceforth, we will assume k = N . Set 

F := Ψ(x) ∈ S
(2)
N , so that F = F (x1, . . . , xN ) is a symmetric Laurent polynomial.

Due to the property (2.32), we have

ϕ
(

x, f̃(z1) · · · f̃(zN )
)

= ϕ
(

Δ(N−1)(x), f̃(z1) ⊗ · · · ⊗ f̃(zN )
)

, (4.7)

where Δ(�) : U≥
v (Lsln) → U≥

v (Lsln)⊗(�+1) (� ∈ Z>0) are defined inductively via

Δ(1) := Δ and Δ(�) := (Δ ⊗ Id⊗(�−1)) ◦ Δ(�−1) for � ≥ 2.

Evoking the formulas (3.11, 3.12) and the property (4.3), we obtain



10 A. Tsymbaliuk / Journal of Pure and Applied Algebra 225 (2021) 106469
ϕ
(

Δ(N−1)(x), f̃(z1) ⊗ · · · ⊗ f̃(zN )
)

= ϕ
(

Ψ−1(G), f̃(z1) ⊗ · · · ⊗ f̃(zN )
)

, (4.8)

where

G =
(
∏N

r=2 ψ−(xr) ⊗
∏N

r=3 ψ−(xr) ⊗ · · · ⊗ ψ−(xN ) ⊗ 1) � F (x1 ⊗ x2 ⊗ · · · ⊗ xN )∏
1≤r<s≤N ζ(xs/xr) . (4.9)

Recalling the properties (2.32, 4.3) and the formula (4.4), we get

ϕ
(

ψ−(t1) · · · ψ−(t�)x, f̃(z1)
)

=

�∏
r=1

ϕ
(
ψ−(tr), ψ+(z1)

)
· ϕ

(
x, f̃(z1)

)
=

�∏
r=1

ζ(tr/z1)
ζ(z1/tr) · Ψ(x)|x1 �→z1

(4.10)

for x ∈ U>
v (Lsl2)[1], with the right-hand side expanded in the non-negative powers of tr/z1. Combin-

ing (4.7)–(4.10), we finally obtain

ϕ
(

x, f̃(z1) · · · f̃(zN )
)

= Ψ(x)|xr �→zr
·

∏
1≤r<s≤N

ζ−1(zr/zs). (4.11)

This completes our proof of Lemma 4.5. �
Thus, the C[v, v−1]-submodule of U>

v (Lsl2) defined by the right-hand side of (4.2) is N-graded. More-
over, x ∈ U>

v (Lsl2)[k] satisfies ϕ(x, f̃(z1) · · · f̃(zN )) ∈ C[v, v−1][[z±1
1 , . . . , z±1

N ]] for all N if and only if
Ψ(x) ∈ C[v, v−1][x±1

1 , . . . , x±1
k ]. The latter is equivalent to the inclusion x ∈ U>

v (Lsl2), due to Theorem 3.7
(as all specialization maps φ∗ of (3.6) are trivial for n = 2).

This completes our proof of Theorem 4.1(a) in the smallest rank case n = 2.

Case n > 2. For any 1 ≤ j ≤ i ≤ n − 1, define the series

f̃j;i(zj , . . . , zi) := (v − v−1)[· · · [[fj(zj), fj+1(zj+1)]v, fj+2(zj+2)]v, · · · , fi(zi)]v. (4.12)

Note that f̃j;i(zj , . . . , zi) ∈ U<
v (Lsln)[[z±1

j , . . . , z±1
i ]], and its coefficients encode f̃αj+...+αi,r of (2.14) for 

all possible decompositions r ∈ Zi−j+1. For i = j, we shall denote f̃j;j(z) simply by f̃j(z), so that 
f̃j;i(zj , . . . , zi) := (v − v−1)j−i[· · · [[f̃j(zj), f̃j+1(zj+1)]v, f̃j+2(zj+2)]v · · · , f̃i(zi)]v. Similar to the n = 2 case 
treated above, our primary goal is to compute the new Drinfeld pairing with products of these f̃j;i(zj , . . . , zi).

The algebra Uv(Lsln) is ZI -graded via deg(ei,r) = 1i, deg(fi,r) = −1i, deg(ψ±
i,±s) = 0 for all i ∈ I, r ∈

Z, s ∈ N, where 0 = (0, . . . , 0) and 1i = (0, . . . , 1, . . . , 0) with 1 placed at the i-th spot. In particular, 
U>

v (Lsln) = ⊕k∈NI U>
v (Lsln)[k] with U>

v (Lsln)[k] consisting of all degree k elements. Due to (2.35), the 
new Drinfeld pairing ϕ is of degree zero, that is

ϕ(x, y) = 0 for homogeneous elements x, y with deg(x) + deg(y) 
= 0. (4.13)

Similar to (4.4), we obtain

ϕ
(

x, f̃j(zj)
)

= Ψ(x)|xj,1 �→zj
for any x ∈ U>

v (Lsln)[1j ]. (4.14)

The following result generalizes (4.14) and is proved completely analogously to Lemma 4.5:
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Lemma 4.15. For x ∈ U>
v (Lsln)[k] and any collection j1, . . . , jN ∈ I, we have

ϕ
(

x, f̃j1(z(1)
j1

) · · · f̃jN
(z(N)

jN
)
)

= δk,1j1 +...+1jN
· Ψ(x)|xi,r �→z

(∗)
j∗

·
∏

1≤r<s≤N

ζ−1
jr,js

(
z

(r)
jr

/z
(s)
js

)

with the factors ζ−1
jr,js

(z(r)
jr

/z
(s)
js

) expanded in the non-negative powers of z(s)
js

/z
(r)
jr

.

Remark 4.16. The specialization Ψ(x)|xi,r �→z
(∗)
j∗

in Lemma 4.15 should be understood as follows. For each 

i ∈ I, there are ki variables {xi,r}ki
r=1 (“of color i”) featuring in Ψ(x). Since ki = #{1 ≤ t ≤ N |jt = i}, say 

jti,1 = . . . = jti,ki
= i, then we specialize xi,r 	→ z

(ti,r)
jti,r

in Ψ(x).

In what follows, we use the convention that

1
z − w

represents the series
∞∑

m=0
z−m−1wm. (4.17)

For 1 ≤ j ≤ i ≤ n − 1, consider a graph Qj,i whose vertices are labeled by j, j + 1, . . . , i and the vertices 
k, k + 1 (j ≤ k < i) are connected by a single edge. Let Orj,i denote the set of all orientations π of Qj,i. 
Evoking (4.17), for π ∈ Orj,i and j ≤ k < i, define ζ−1

π,k(z, w) via

ζ−1
π,k(z, w) :=

{
(z − w) · 1

z−vw , if k → k + 1 in π

v(z − w) · 1
w−vz , if k ← k + 1 in π

. (4.18)

Simplifying all [a, b]v as ab −vba in (4.12), thus expressing the latter as a sum of 2i−j terms, Lemma 4.15
implies the formula for the new Drinfeld pairing with f̃j;i(zj , . . . , zi):

Lemma 4.19. For x ∈ U>
v (Lsln)[k] and 1 ≤ j ≤ i < n, we have

ϕ
(

x, f̃j;i(zj , . . . , zi)
)

=
δk,1j+...+1i

(v − v−1)i−j
· Ψ(x)|xk,1 �→zk

·
∑

π∈Orj,i

∏
j≤k<i

ζ−1
π,k(zk, zk+1). (4.20)

Remark 4.21. The denominator of Ψ(x)|xk,1 �→zk
is canceled by the numerators of ζ−1

∗,∗-factors.

Corollary 4.22. If ϕ 
(

x, f̃j;i(zj , . . . , zi)
)

∈ C[v, v−1][[z±1
j , . . . , z±1

i ]], then φd(Ψ(x)) is divisible by (v−v−1)i−j, 
where φd is the specialization map (3.6) with d = {dβ}, dβ = δβ,αj+...+αi

.

Proof. Due to (4.13), we may assume that x ∈ U>
v (Lsln)[1j + . . . + 1i], so that

Ψ(x) = p(xj,1, . . . , xi,1)
(xj,1 − xj+1,1) · · · (xi−1,1 − xi,1) with p ∈ C(v)[x±1

j,1 , . . . , x±1
i,1 ]. (4.23)

First, let us assume that p(xj,1, . . . , xi,1) = x
aj

j,1 · · · xai
i,1. Pick sufficiently small integers rj+1, . . . , ri � 0, 

so that ak + rk < 0 for j < k ≤ i. Then, evaluating the coefficient of 
∏i

k=j+1 z−rk

k in the right-hand side 
of (4.20), we get a nonzero contribution only from π ∈ Orj,i with k → k + 1 for all j ≤ k < i. Moreover, the 
corresponding contribution equals

(v − v−1)j−ivAzB
j ·

(
z

aj

j (v−1zj)aj+1 · · · (vj−izj)ai
)

(4.24)
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with

A =
∑

j<k≤i

(j − k)(rk − 1 + δk,i), B =
∑

j<k≤i

(rk − 1). (4.25)

Note that A, B of (4.25) are actually independent of aj, . . . , ai. Thus, for any x as above and the associated 
Laurent polynomial p of (4.23), comparing the coefficients of 

∏i
k=j+1 z−rk

k in (4.20) for sufficiently small 
rj+1, . . . , ri � 0, we obtain

ϕ
(
x, (v − v−1)[· · · [fj(z), fj+1,rj+1 ]v, · · · , fi,ri

]v
)

=

(v − v−1)j−i · vAzB · p(z, v−1z, . . . , vj−iz).
(4.26)

Combining (4.26) and the definition of φd with d = {dβ}, dβ = δβ,αj+...+αi
, (3.6), we see that φd(Ψ(x)) is 

indeed divisible by (v − v−1)i−j . This completes our proof of Corollary 4.22. �
Combining (4.20) with the shuffle formulas (3.11, 3.12) for the new Drinfeld coproduct Δ and the prop-

erty (2.32), we obtain the formula for the pairing with 
∏N

r=1 f̃jr;ir
(z(r)

jr
, . . . , z(r)

ir
):

Lemma 4.27. For x ∈ U>
v (Lsln)[

∑N
r=1

∑ir

k=jr
1k], we have

ϕ
(

x, f̃j1;i1(z(1)
j1

, . . . , z
(1)
i1

) · · · f̃jN ;iN
(z(N)

jN
, . . . , z

(N)
iN

)
)

=
∏
r<s

js≤�≤is∏
jr≤k≤ir

ζ−1
k,� (z(r)

k /z
(s)
� )×

(v − v−1)
∑N

r=1(jr−ir) · Ψ(x)|xi,r �→z
(∗)
i

·
N∏

r=1

⎛⎝ ∑
πr∈Orjr,ir

∏
jr≤k<ir

ζ−1
πr,k(z(r)

k , z
(r)
k+1)

⎞⎠ (4.28)

with the factors ζ−1
k,� (z(r)

k /z
(s)
� ) expanded in the non-negative powers of z(s)

� /z
(r)
k .

Remark 4.29. The specialization Ψ(x)|xi,r �→z
(∗)
i

in (4.28) should be understood as follows. For each i ∈ I, 
there are ki = #{1 ≤ t ≤ N |jt ≤ i ≤ it} variables {xi,r}ki

r=1 (“of color i”) featuring in Ψ(x). If 1 ≤ ti,1 <

. . . < ti,ki
≤ N denote the corresponding indices, such that jti,r

≤ i ≤ iti,r
, then we specialize xi,r 	→ z

(ti,r)
i

in Ψ(x), cf. Remark 4.16.

Since the proof of Lemma 4.27 is entirely analogous to that of Lemma 4.5, we leave details to the interested 
reader. Similar to Corollary 4.22, we obtain the following result:

Corollary 4.30. If ϕ 
(

x, f̃j1;i1(z(1)
j1

, . . . , z
(1)
i1

) · · · f̃jN ;iN
(z(N)

jN
, . . . , z

(N)
iN

)
)

is a C[v, v−1]-valued Laurent poly-

nomial in {z
(r)
i }jr≤i≤ir

1≤r≤N , then φd(Ψ(x)) is divisible by (v − v−1)
∑N

r=1(ir−jr), where φd is the specialization 
map (3.6) with d = {dβ}, dαj+...+αi

= #{1 ≤ r ≤ N |jr = j, ir = i}.

This result, combined with Theorem 3.7, implies the inclusion “⊇” in Theorem 4.1(a):

Proposition 4.31. U>
v (Lsln) ⊇ {x ∈ U>

v (Lsln)|ϕ(x, y) ∈ C[v, v−1] for all y ∈ U<
v (Lsln)}.

Thus, it remains to establish the opposite inclusion “⊆” in Theorem 4.1(a):

Proposition 4.32. U>
v (Lsln) ⊆ {x ∈ U>

v (Lsln)|ϕ(x, y) ∈ C[v, v−1] for all y ∈ U<
v (Lsln)}.
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Proof. Our proof will proceed in several steps by reducing to the setup in which (4.26) applies.
First, evoking the shuffle realization of the subalgebra U>

v (Lsln), Theorem 3.7, and of the new Drinfeld 
coproduct, formula (3.12), we immediately obtain the following result:

Lemma 4.33. For any x ∈ U>
v (Lsln), we have Δ(x) = x′

(1)x(1) ⊗x(2) in the Sweedler notation (the right-hand 
side is an infinite sum) with x(1), x(2) ∈ U>

v (Lsln) and x′
(1)–a monomial in ψ−

∗,∗.

Combining Lemma 4.33 with (2.32), it thus suffices to show that given any x ∈ U>
v (Lsln)[1j + . . . + 1i], 

x′–a monomial in ψ−
∗,∗, and r = (rj , . . . , ri) ∈ Zi−j+1, we have

ϕ
(

x′x, f̃αj+...+αi,r

)
∈ C[v, v−1]. (4.34)

Evoking the property (2.32) once again, for the proof of (4.34) it suffices to establish

ϕ
(

x, f̃αj+...+αi,r

)
∈ C[v, v−1] (4.35)

for any x ∈ U>
v (Lsln)[1j + . . . + 1i] and any r = (rj , . . . , ri) ∈ Zi−j+1.

We shall prove (4.35) by induction in i −j. The base case i = j is obvious. Given x ∈ U>
v (Lsln)[1j +. . .+1i], 

the validity of (4.35) for r = (rj , . . . , ri) with sufficiently small rj+1, . . . , ri � 0 is due to (4.26). We shall 
call such r ∈ Zi−j+1 “x–sufficiently small”. To establish (4.35) for a general r, we shall apply the PBWD 
result of Theorem 2.16(c1) with the choice of decompositions r(β, r) such that r(αj + . . . + αi, r) are all 
“x–sufficiently small”. Then, combining Theorem 2.16(c1) with the ZI -grading on U<

v (Lsln), we see that 
the element f̃αj+...+αi,r can be written as a C[v, v−1]–linear combination of f̃αj+...+αi,r(αj+...+αi,r) (r ∈ Z)
and degree > 1 ordered monomials in f̃αj′ +...+αi′ ,r′ with j ≤ j′ ≤ i′ ≤ i and i′ − j′ < i − j. By the above 

observation, ϕ 
(

x, f̃αj+...+αi,r(αj+...+αi,r)

)
∈ C[v, v−1] for any r ∈ Z. Finally, we claim that the pairing of 

x with degree > 1 monomials in f̃αj′ +...+αi′ ,r′ is C[v, v−1]-valued. To see this, apply the above arguments 
((2.32) and Lemma 4.33) again, subsequently reducing to (4.35) with (j, i) replaced by (j′, i′), which is 
established by the induction assumption.

This completes our proof of Proposition 4.32. �
Combining Propositions 4.31, 4.32, we get the proof of Theorem 4.1(a) for arbitrary n. �

Remark 4.36. The above proof of Theorem 4.1 is crucially based on our construction of the entire family 
of Poincaré-Birkhoff-Witt-Drinfeld bases of Uv(Lsln) for all decompositions r (rather than picking the 
canonical one r(0) of (2.13)).

Remark 4.37. The finite counterpart of Theorem 4.1, where Uv(Lsln) is replaced with Uv(sln) and the new 
Drinfeld pairing ϕ is replaced with the Drinfeld-Jimbo pairing, is well-known, see e.g. [3, §3]. In [3], this 
duality is extended to the duality between the Cartan-extended subalgebras U′ ,≥(sln) and U′ ,≤(sln) (resp. 
U′ ,≤(sln) and U′ ,≥(sln))), where ′ is used to indicate yet enlarged algebras by adding more Cartan elements, 
see [3, Theorem 3.1].
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