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Data from gravitational wave detectors are recorded as time series that include contributions from
myriad noise sources in addition to any gravitational wave signals. When regularly sampled data are
available, such as for ground based and future space based interferometers, analyses are typically
performed in the frequency domain, where stationary (time invariant) noise processes can be modeled very
efficiently. In reality, detector noise is not stationary due to a combination of short duration noise transients
and longer duration drifts in the power spectrum. This nonstationarity produces correlations across samples
at different frequencies, obviating the main advantage of a frequency domain analysis. Here an alternative
time-frequency approach to gravitational wave data analysis is proposed that uses discrete, orthogonal
wavelet wave packets. The time domain data is mapped onto a uniform grid of time-frequency pixels. For
locally stationary noise—that is, noise with an adiabatically varying spectrum—the time-frequency pixels
are uncorrelated, which greatly simplifies the calculation of quantities such as the likelihood. Moreover, the
gravitational wave signals from binary systems can be compactly represented as a collection of lines in
time-frequency space, resulting in a computational cost for computing waveforms and likelihoods that
scales as the square root of the number of time samples, as opposed to the linear scaling for time or
frequency based analyses. Key to this approach is having fast methods for computing binary signals

directly in the wavelet domain. Multiple fast transform methods are developed in detail.
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I. INTRODUCTION

Gravitational wave data analysis employs many of the
standard tools of time-series analysis. With some excep-
tions, the majority of gravitational wave data analysis is
performed in the frequency domain. Notable exceptions
include the time domain analysis of pulsar timing array data
[1], time domain low-latency LIGO/Virgo searches [2,3],
analysis of black hole ringdowns [4,5], and wavelet domain
searches for gravitational wave transients [6,7]. The pri-
macy of frequency domain analyses is due to the advan-
tages it confers for modeling detector noise, under the
assumption that the noise properties are at least approx-
imately stationary [8]. Since most analyses are performed
in the frequency domain, significant effort has gone into
developing frequency domain waveform models [9-17].

As ground based interferometers continue to improve in
sensitivity, especially at low frequencies, and with the
advent of future space based interferometers, the duration
that gravitational wave signals spend in the sensitive band
of the detectors will increase. The assumption that the noise
can be treated as approximately stationary will break down
for these long duration signals. It is time for gravitational
wave data analysis to leave the frequency domain.

The wavelet domain provides a time-frequency repre-
sentation of that data that is well suited for modeling
nonstationary noise processes. Indeed, for certain discrete
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wavelet bases, and for noise with statistical properties that
vary slowly in time, the noise correlation matrices are
diagonal in the wavelet domain, with diagonal entries given
by the dynamic, or evolutionary power spectrum [18] of the
noise, S(f,r). The Wilson-Daubechies-Meyer (WDM)
wavelet basis [19] employed by the coherent WaveBurst
algorithm [6,7] is a good choice for more general gravi-
tational wave analyses. The WDM wavelet basis provides
excellent frequency separation and a uniform tiling in time
and frequency. The coherent WaveBurst algorithm uses the
WDM basis to represent both data and signals—all data
conditioning, power spectral estimation and likelihood
calculations are carried out in the wavelet domain. In
contrast to the coherent WaveBurst algorithm, which
reconstructs signals as a collection of WDM wavelets,
here the WDM basis simply replaces the Fourier basis—
any signal model, including waveform templates derived
from general relativity, can be mapped to the WDM basis.
A key ingredient for the wavelet domain analysis is having
waveform models that can be computed directly and
efficiently in the wavelet domain. For the most commonly
encountered type of gravitational wave signal—produced
by the merger of compact binary stars on quasicircular
orbits—it turns out that the waveforms can be computed
much more efficiently in the wavelet domain than in the
time or frequency domains. The computational cost in the
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wavelet domain scales as the square root of the observation
time, as opposed to linearly with time as is the case in the
time and frequency domains. Methods are introduced for
computing binary inspiral-merger-ringdown waveforms
directly and efficiently in the wavelet domain.

II. MOTIVATION

Gravitational wave data is recorded as a collection of
time series from a network of detectors. Evenly spaced data
from interferometric detectors are amenable to the standard
techniques of time series analysis, such as linear filtering
and spectral analysis [20,21]. A key quantity that appears in
both frequentist and Bayesian approaches to time series
analysis is the noise weighted inner product, (a|b), of time
series a and b, given by the expression

(alb) =a®-C'-b = a,C;'b/, (1)

where C;; is the noise correlation matrix. Here the sums run
over the individual data samples from each detector in the
array. Important examples where this inner product is used
include the match-filter signal-to-noise ratio

__dlh)

where d is the data and % is a waveform model for the
signal, and the likelihood function for Gaussian noise

1 1 .-
dlh) = ——— ¢—3(d-h)"-C"-(d-h) 3
p(d|h) T 22C) 3)

Several challenges present themselves when computing
these quantities. The first is that the noise correlation matrix
is not known in advance and has to be estimated from the
data. The second is the computation cost of evaluating the
inverse of the noise correlation matrix and the cost of
evaluating the sum that appears in (1). Interferometer noise
is usually highly colored, with both red and blue compo-
nents, leading to strong correlations between data samples
in the time domain. With N data samples, the cost of
inverting the noise correlation matrix in the time domain
scales as N2, while the cost of the sums scale as N2. It is
also very difficult to estimate the N’ elements of the
correlation matrix from the N observed data points. One
solution to these problems is to apply a linear transform to
the time series: a = Q-a that diagonalizes the noise
correlation matrix:

a;b,

o

(alp) =a"- (Q'CT'Q) - b =5, (4)

~r

where o7 are the diagonal entries of the transformed noise
correlation matrix. The computation cost of the matrix

inversion and sum now scales linearly with the number of
data points N. The cost of the matrix inversion has been
traded for the cost of finding the linear transform Q. If the
data happen to be stationary, that is, if the correlations
between the time domain samples only depends on the time
interval between samples, and not the sample times
themselves, then Q can be found using several different
methods. One method is to fit an auto regressive (AR) or
auto regressive moving average model to the data, then use
the inverse of this model to prewhiten the data [22,23]. A
simpler method is to Fourier transform the data, since for
stationary time series the noise correlation matrix is
diagonal in the frequency domain, with C’,-/- = S(f:)d:)»
where S(f) is the Fourier power spectrum. The power
spectrum can be estimated by a variety of methods,
including classical methods such as Welch averaging, or
Bayesian methods that use parametric [24] or semipara-
metric [25] modeling.

In reality, the noise encountered in gravitational wave
data analysis is nonstationary [26—28], which significantly
complicates the estimation of the noise correlation matrix
and the calculation of noise weighted inner products. If the
noise properties vary slowly in time, and are approximately
constant over the time a signal is in the sensitive band of the
detectors, then it is possible to treat the data as stationary in
the short data segment containing the signal. The data is
then analyzed in short chunks, with the power spectral
density (PSD) recomputed for each chunk. This approach
becomes increasingly inaccurate as the duration of the
signals increases. For example, binary neutron star signals
will be in-band for minutes or hours as the low frequency
sensitivity of ground based detectors improves. For space
based detectors such as LISA, the signals will be in band
for months or years. Even if the LISA instrument noise is
perfectly stationary (unlikely!), the residual signal from
unresolved galactic binaries will be highly nonstation-
ary [29].

The usual frequency domain approach fails for non-
stationary data as the noise correlation matrix is no longer
diagonal. When the variations in the noise properties are
small, the frequency domain noise correlation matrix
becomes band diagonal. A N x N band diagonal matrix
with bandwidth n can be decomposed into a product of upper
and lower triangular matrices in order n>N operations [30].
These triangular matrices can be inverted in order N2
operations, resulting in the total cost of the inverse scaling
as N. Since the inverse of a band diagonal matrix is generally
not band diagonal, the cost of the sum and the inverse in (1)
will both scale as N2. Added to this increased computational
cost is the challenge of estimating the O(nN) off-diagonal
elements of the noise correlation matrix.

Nonstationary noise has been shown to impact frequency
domain matched filter searches for gravitational waves,
resulting in significant losses of efficiency for long duration
signals [31,32]. It was found the loss of efficiency could be
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mitigated to some extent by applying PSD drift corrections
[31] or by reranking the search statistic [32]. These work-
arounds avoid the more costly step of using a nondiagonal
noise correlation matrix, but it is unclear if these
approaches could be adapted for use in other settings,
such as Bayesian parameter estimation.

An alternative approach that has been proposed is to
generalize the auto regressive moving average prewhiten-
ing to allow for nonstationary noise [33,34]. It is unclear
how the computational cost of such an approach will scale
given the added complexity of the nonstationarity, but it is
likely to be significantly more expensive than the standard
frequency space analysis. As a point of comparison, fitting
an AR(p) model to a stationary time requites order pN
operations to compute the p lagged autocorrrelation func-
tions, and order p2 operations to solve the Yule-Walker
equations to find the model coefficients. For typical LIGO-
Virgo spectra the model order p will be order V. Note that
both the data and the waveform templates have to be
filtered by the model at a cost that scales as pN. The
computational cost for nonstationary time series will likely
be significantly higher.

Given that the noise properties vary with time, it is
natural to consider wavelet based time-frequency methods.
A discrete wavelet (or wavelet wave packet) transformation
provides a linear mapping from the time domain to the two-
dimensional time-frequency domain indexed by time n and
frequency m. With an appropriate wavelet basis, and for a
wide array of locally nonstationary processes [35,36], the
wavelet noise correlation matrix is diagonal:

C(nm)(n’m’) = 5nn’5mm’S(tn7fm)’ (5)

where S(¢,f) is the dynamic, or evolutionary, power
spectrum [18]. Given the diversity of nonstationary proc-
esses, there is no general proof that the wavelet correlation
matrix will always be diagonal, but proofs exist for certain
cases. To understand, at least heuristically, why the wavelet
noise correlation matrix might be diagonal, it is helpful to
recall why the Fourier domain noise correlation matrix is
nondiagonal for nonstationary processes. In the Fourier
domain, information about when an event occurred is
encoded in the Fourier phase, not the Fourier spectrum
S(f). For stationary processes, the phase in each Fourier
bin is uncorrelated, and the noise correlation matrix is
diagonal. For nonstationary processes the time dependence
leads to correlations in the Fourier phases, and this gets
encoded in the off-diagonal elements of the noise corre-
lation matrix. In contrast, the wavelet domain has an
evolutionary spectrum S(¢, f) that can account for certain
types of nonstationarity, so the time dependence does not
have to be encoded in the off-diagonal elements of the noise
correlation matrix. The noise correlation matrix has been
shown to be orthogonal for waveletlike bases, such as
certain types of windowed Fourier transforms [37,38]. The

WDM wavelet family [19] used in the analyses in this paper
can be computed using an FFT with a specially chosen
window function. Additionally, discrete wavelet bases that
are well localized in frequency, such as the ones used here,
have been shown to yield approximately diagonal corre-
lation matrices for locally stationary red noise processes
[39]. Turning things around, the condition (5) has been
used to define a class of locally stationary wavelet
processes [40,41] that can be used to simulate and model
nonstationary time series.

III. DISCRETE WAVELET WAVE PACKETS

Time-frequency representations of gravitational wave data
using oversampled continuous wavelets (e.g., O scans [42])
provide nice visualizations of the gravitational wave signals,
and are also widely used to identify noise transients. The
oversampling makes for nice smooth images, but the result-
ing correlations between pixels excludes these representa-
tions from being used in quantitative analyses. In contrast,
orthonormal discrete wavelet transform produce poor visu-
alizations, but provide a critically sampled representation of
the data with a lossless inverse and appealing statistical
properties for handling colored, nonstationary noise.

While there are many choices of discrete wavelet bases,
there is one that is ideally suited for gravitational wave data
analysis: the WDM wavelet wave packets introduced by
Necula et al. [19]. The WDM representation produces a
uniform time-frequency grid, as opposed to the more
common Dyadic representations which shrink in time as
they go up in frequency. The WDM wavelets provide
excellent spectral separation, with a bandpass that maintains
the same shape across all frequencies. Unlike typical wavelet
transform that are computed using repeated application of
filer function, the WDM transform can be computed using
windowed fast Fourier transforms. Indeed, the WDM trans-
form can be thought of as a short-time Fourier transform
(SFT) with a well-designed window function. Because of the
close relationship to SFTs, the WDM transform can be
computed efficiently using FFTs, and the time translations
can be incorporated using Fourier domain phase shifts [19].

The WDM wavelet wave packets form a complete,
orthogonal basis that can be used to faithfully represent
any time series:

Py

n

S

angnm [k]' (6)
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A time series of duration T sampled at a cadence At = T/N
can be represented by a rectangular grid with N, time slices
of width AT and N frequency slices of width AF:

AT = N,At,
1
F= : 7
2AIN, )
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Each of the N = N,N cells has area ATAF = 1/2. The
time and frequency resolution can be varied by changing
Ny, such that as Ny — N/2 the expansion approaches a
Fourier series, and as Ny — 1 the expansion approaches the
original time series. The orthogonality condition

=z

-1

Gnm {k]gpq[k] = (Snpémq (8)
0

~
Il

can be used to find an expression for the expansion
coefficients:

N

Wam = zx[k]gnm [k] (9)

k=1

The WDM wavelets are actually a wavelet family, with
their precise shapes controlled by three parameters, the
half-width of the flat response in frequency, A, the width of
the frequency roll-off B, and the steepness of the frequency
roll-off d, subject to the constraint 2A + B = AQ, where
AQ =27 AF. Accordingly the wavelets are defined in the
frequency domain:

Jum(@) = e "8 (C,,,, D (0 — mAQ)
+C;, @ (0 + mAQ)), (10)

where C,,, = 1 for (n + m) even and C,,,, = i for (n + m)
odd. Note that the m = 0 frequency band needs to be
handled a little differently from the others—see Ref. [19]
for details. The Meyer [43] window function ®(w) is
defined:

. o] < A
O(w) = _ :
\/ﬁcos [ud<§|‘”lTA>}, A<|w|<A+B

(11)

where v,4(x) is the normalized incomplete Beta function

eyt —y)tay
valx) = ay (1= y)dtdy”

(12)

Figure 1 shows the window function in the time domain,
(1), and frequency domain ®(f) for d =4, A = AQ/4
and B = AQ/2. Formally ¢(¢) extends indefinitely in time,
but in practice it can be truncated without incurring a
significant error. For the example shown in Fig. 1, the time
domain window is truncated beyond +gAT with ¢ = 16.
The usual rules for time-frequency localization pertain—a
well-localized frequency response (large d and small B)
comes at the cost of a longer window in the time domain.

1k i

0
1 1 1 1 1 1 1
-15 -10 -5 0 5 10 15
VAT
T T T
1k i
O 1 1 1
-1 -0.5 0 0.5 1
f/AF
FIG. 1. The window function for the WDM wavelets for the

choice d =4, A = AQ/4 and B = AQ/2. For this choice of
window parameters the wavelets are better localized in frequency
than they are in time. Here the overall normalization is arbitrary.

Using the definition of the WDM wavelets (10) and the
expression (9), the expansion coefficients are given by

K/2-1
Wan = V2AIRC,, > ™ NixlnN; + K[k (13)
k=—K/2

Here K = 2¢gN f is the width of the window function, where
q > 1is amultiplier that sets the size of the window relative
to the temporal extent of the time-frequency pixels. Defining
the windowed discrete Fourier transform of x[nN, + k| as

K/2-1
Xalil = > KK x[nN ; + K|p[k], (14)
k=-K/2
we have
Wi = V2AIRC,,, X, [mq]. (15)

In other words, the WDM transform of a time series can be
computed using N, windowed short Fourier transforms of
length K, then downsampling to extract every gth coefficient.
The cost of these operations scale as N,KIn(K) =
2gN In(2gN ), as compared to the N In(N) cost of a standard
fast Fourier transform of the data. For the window parameters
used in Fig. 1, ¢ = 16 and the WDM transform is more than
an order of magnitude slower than a straight FFT.

The additional cost of the time-domain WDM transform
is due to the length of the time domain window function.
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Since the window function is more compact in the
frequency domain, it turns out to be faster to compute
the transform using the discrete Fourier transform of the
data X[/]:

Wom = \/E(_l)nmmcnmxm[n]’ (16)

where

N,/2-1
Xpln] = e 27N X1 + mN,/2]®[l].  (17)
I=-N,/2

Note that the discrete Fourier samples are evaluated at
f=IAf, where Af = 1/T, and T = NAt is the total span
of the data. The x,,[n] can be computed using a FFT of
length N, for each m. The total computational cost of the
frequency domain version of the transform is then
N¢N,In(N,) = NIn(N,). This is less than the cost of the
FFT of the full time series that has to be done before
computing the frequency domain WDM transform.
Performed this way, the total cost of the WDM transform
is less than twice the cost of the full FFT.

While the gravitational wave data has to be transformed
directly using the above methods, gravitational wave
signals for which analytic models exist can be evaluated
directly in the wavelet domain at a much reduced computa-
tional cost using techniques described in later sections.

A. Likelihood, Fisher matrix and searches

The Whittle log likelihood can be evaluated in the
wavelet domain:

_ 2
In p(d|h) = —%Z <1n(27rSnm) + (‘1’"54}1)> (18)

nm nm

where S, is the evolutionary power spectrum. For sta-
tionary noise, the evolutionary power spectrum can be
related to the usual power spectral density S(f) using
Egs. (16) and (17):

N,/2-1
> S[i+mN, /2@ ~ S(f,)AF.  (19)
I==N,/2

Snm =

where f,, = mN,/2 is the central frequency of the wavelet
band, and AF is the width of the band. Note that the §,,,, are
dimensionless.

The Fisher information matrix,
—0,0;E[In p(d|h)|y,], is given by

hnm.ihnm. j
[y =y =l (20)

nm Snm

defined as I =

The wavelet domain Fisher matrix avoids taking derivatives
of rapidly oscillating waveforms and is thus more stable

than versions based on direct numerical evaluation in the
frequency domain or time domain.
The signal-to-noise statistic p is given by

p(h) — Zhnmdnm , (21)

nm Snm

where h,,, = h,,/(h|h)'/? is a unit normalized waveform
template. The waveform templates typically depend on
multiple parameters, including intrinsic parameters such as
the masses and spins of a binary system, in addition to
extrinsic parameters such as the overall amplitude, phase
and reference time. The later three parameters are usually
analytically maximized over in a search [8] resulting in
considerable computational savings. The maximization
over time exploits the fact that time shifts ¢ appear as
linear phase shifts exp(2zifdt) in the frequency domain.
Similar tricks can be used in the wavelet domain, after
taking care of some complications caused by the evolu-
tionary power spectrum S,,,. When the noise is nonsta-
tionary S, # S, for n# [, and the time-translation
invariance of the template normalization is broken. The
time shifted normalization,

(hlh)y = 3 Bl (22)

o S(nym

is typically a slowly varying quantity that can be computed
for a small number of time shifts k and interpolated for
intermediate values. The computational cost of evaluating
(h|h), for a binary system is low since the #,,,,, are typically
only nonzero for order v/N points (more precisely, for a
single harmonic the waveforms are nonzero for between
~N, and ~gN ; points). The total cost to compute (/|h), is
less than N for waveforms with a single dominant har-
monic. The inner product (h|d) can be maximized with
respect to the overall phase ¢, using the usual method of
quadrature phase waveforms h(¢y = 0) and h(¢py = 7/2).
The maximization over the time shift 6¢ can be performed
in a number of ways. The simplest and fastest method is to
overwhiten the data using the evolutionary spectrum,
dyyy = dyp/S,um» then inverse wavelet transform the data
to the frequency domain d(f). The time maximization can
then be done by inverse Fourier transforming the quantity

z = 4h(f)d(f)O(f). (23)

where ©(f) is the Heaviside step function. The signal-to-
noise statistic is then given by p(8t) = |z(5t)|/(h|h),]{/2
with k = [6¢/AT]. The cost of this procedure is roughly
two to three times that of a purely frequency domain
implementation due to the extra Fourier transforms
involved in computing d,,, then d(f), and the additional
cost of computing the time-shift template normalization
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(h|h). On the other hand, if the data is nonstationary on the
time scale of the signal, the wavelet based search statistic
will be more robust. This method shares some similarities
to the PSD drift correction approach [31].

The approach described above can be incorporated in
existing search pipelines with minimal changes to the
existing codes. The frequency domain waveforms that
are currently being used can be transformed to the wavelet
domain using Eq. (16). While not as fast as the direct
wavelet domain methods described in later sections, the
cost is only a factor of two larger than the standard
frequency domain calculation, and requires no changes
to the waveform libraries that have been developed over
many years. The main new ingredient is the wavelet domain
whitening and associated estimation of the evolutionary
spectrum S,,,,. Methods for implementing these steps are
described in the next section.

The time-shift maximization can also be performed
directly in the wavelet domain by treating h,, and d,,,
as time series in n and applying an FFT to each:

N1
Hylk) = emimkiNip,,, (24)

n=0
and similarly for d,,,,. The inverse FFT, z[p] of the quantity

Z[K) =Y Hu[kD [ (25)

yields p(pAT) = |z[p]|. The cost of the N, FFTs used to
compute H,,, and D,,, scale as N,In N/, so the total cost of
computing Z; scales as NInN,. The limitations of this
approach are that the time maximization is quantized in units
of AT = N At, which is much coarser than the A7 resolution
of the usual time maximization (23). The time resolution can
be improved by generating p reference templates spaced by
AT/p and repeating the maximization for each shifted
template. The cost of achieving the full Az resolution is then
N times greater than the usual Fourier domain approach,
though using lower time resolutions may be acceptable. With
WDM wavelets the time maximization yields a maximiza-
tion across frequency bands that may be useful for computing
banded time-frequency statistics [44]. Using Eqgs. (16) and
(17), the signal-to-noise statistic becomes

Ny N,/2-1

p(h) :%Z > (H[l+mN,/2]D*[l + mN,/2]
m=0 [=-N,/2

+H*[I+ mN,/2)D[l + mN,/2))®[I]2, (26)

where H|j] denotes the DFT of 4 and D[] denotes the DFT of
d. The above expression follows from performing the sum
over the time index n and using the identity

N,/2-1
Z e—2ﬂi(l—k)"/N1 = Ntélk‘ (2’7)
n=N,/2

Introducing the time-shifted template
Hyj) = H[jle=>m T, (28)
and setting 6t = pAT, we have

Ny

p(PAT) = (=1)""uy[p], (29)

m=0

where u,,[p] is given by the inverse FFT of
U,ll] = H[l + mN,/2]D*[l + mN,/2]®[l]*>. (30)

The cost of the banded time maximization scales as
N;N;InN,. The time resolution of the maximization can
be increased by setting 6t = pAT /a for some integer a, and
extending the sum over [/ in (26) to run from —aN,/2 to
aN,/2 — 1 and writing

Ny
p(PAT) =) " e~mirm/ay,, [p]. (31)

m=0

Since ®[/] is zero for |/| > N,/2 the U,,[l] are simply being
zero padded to increase the temporal resolution. Note that for
a = N the temporal resolution is equal to the original
sample cadence At. Using a standard FFT, the cost of the
banded time maximization scales as aN In(aN,), but it may
be possible to achieve faster speeds using sparse FFTs that
are optimized for almost empty arrays.

Figure 2 compares the standard Fourier domain time
maximization to the banded WDM time maximization. The

40 w
a=N; ——
35 | a=16 —%— |

30

25 -

FIG. 2. The signal-to-noise time series p(5f) for a chirplet
waveform with ¢, = 2.6 s. The curve labeled a = N, used the
standard Fourier domain time maximization with time resolution
Ar = 1/1024 s, while the curve labeled a = 16 used the WDM
banded maximization with resolution A7/16 = 1/60 s.
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simulation used a chirplet waveform [defined in Eq. (55) of
Sec. V C] with central time 7, = 2.6 s, central frequency
fp =416 Hz, duration 7 = 3.23 s, and frequency spread
y = 13 Hz, sampled at cadence At = 1/1024 s. The WDM
transform used Ny = 256, N, = 32 and AT = 0.25 s.

IV. GLITCHES, GAPS AND OTHER GREMLINS

“We don’t need your fancy statistics, we just need to
build better detectors”—Rainer Weiss, to the author, at the
tenth Harvard-Smithsonian Conference on Theoretical
Astrophysics, May 2018.

The noise in an ideal detector would be stationary and
Gaussian, with a level set by irreducible quantum uncer-
tainty. In reality, the noise encountered in contemporary
gravitational wave detectors is neither stationary nor
Gaussian due to frequent short duration noise transients
(glitches), in addition to longer duration drifts in the system
[8]. The data also has many gaps, and the dynamic noise
spectra are littered with dozens of sharp spectral lines that
wander around in frequency and vary in amplitude.
Performing analyses in the wavelet domain helps reduce
the impact of many of these issues, but the main benefit is
in dealing with relatively slow changes in the noise
properties. Methods such as Bayesian data augmentation,
edge wavelets and glitch subtraction are still needed to
mitigate the impact of gaps and short duration noise
transients. The coherent WaveBurst algorithm [6,7] uses
the WDM transform for noise modeling, including for
power spectrum estimation and spectral line removal [45].

The Heisenberg-Gabor uncertainty relation [46] (which
is saturated for discrete wavelets: ATAF = 1/2) implies a
trade-off between spectral and temporal resolution in the
wavelet transform. The time resolution AT should be short
compared to the timescale of the nonstationarity of the data,
while the frequency resolution AF should be small com-
pared to the scale on which the average power spectrum
S(f) varies. If the data are highly non-stationary and also
contains sharp spectral features it can be difficult to satisfy
both criteria simultaneously with a single choice of
resolution, and multi-resolution approaches may be
required (e.g., first removing spectral lines using a trans-
form with large AT, then taking care of the nonstationarity
using a transform with a smaller AT).

A. Drifts in the noise spectrum

Nonstationary noise comes in myriad forms. Stationary
noise, heuristically speaking, is generated by a random
process with statistical properties that are unchanging in
time. Wide sense stationary (WSS) noise (sometimes called
weak sense stationary) requires that the first (mean) and
second (covariance) moments of the random process are
unchanging in time. For WWS processes the autocorrela-
tion between data at times #, and #, depends only on the lag
7 = |t; — t,|. In practice, noise is never exactly WSS. A

more realistic approximation is the concept of locally
stationarity noise (LS), where the statistical properties of
the noise process vary slowly with time [35,47]. The
autocorrelation properties of LS processes can be described
in terms of dynamic, or evolutionary, spectra S(f, ¢) [18]. In
contrast to stationary processes, where the frequency
domain autocorrelation (power spectrum) is nonzero, non-
stationary processes produce nonvanishing cross-correla-
tions between frequencies [37]. The traditional way to
estimate S(f, ¢) is using periodograms of short time Fourier
transforms. Scalograms computed from discrete wavelet
transforms are a powerful tool for estimating evolutionary
spectra.

As discussed earlier, a major advantage of the WDM
wavelet basis over a Fourier basis is that it yields a diagonal
noise correlation for a range of nonstationary processes. As
a concrete example of a nonstationary process with an
evolutionary spectra, consider the AR(N) model with time
varying variance:

N 25(i=N/2)?
D apli-jl=(1+pe 2 )5, (32)

=0

where §; is a zero norm, unit variance Gaussian random
variate, 5; ~AN(0,1), and N is the total number of time
samples x[i]. Setting the coefficients a; such that

2j—-2—-a
aj = (T) aj—l (33)

with a, = 1 generates colored noise with a 1/f* spectrum
[48]. When f is nonzero the process is nonstationary.
Figure 3 shows one realization of this AR(N) process with
N =22, a =2 and g = 9. The nonstationarity is evident
in the increased variance of the process for samples near the
midpoint. The nonstationarity can also be seen in the
Fourier domain correlation coefficients ¢, = C/C,, where
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FIG. 3. A realization of the AR(N) process described by
Eq. (32) with N =2, ¢ =2 and = 9.
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." (RLIXC[i + K + X [R]i + 4]),

oo !
FTN—k

(34)
and X[i] are the whitened Fourier coefficients. Here these
are found by taking a FFT of the time domain data and
dividing the Fourier coefficients by the square root of the
theoretical 1/f* spectrum. To reduce spectral leakage, a
Tukey filter that is flat across 95% of the data was applied
to the time domain data before transforming to the
frequency domain. Figure 4 shows the first 100 Fourier
domain correlation coefficients for stationary (f = 0) and
nonstationary (f = 9) realizations of the AR(N) process.
Strong correlations between Fourier bins are evident for
nonstationary case. The correlation coefficients for the
stationary case deviate slightly from zero due to the
application of the Tukey window. As discussed in more
detail later, apodizing windows introduce nonstationarity to
otherwise stationary time series.

The evolutionary spectrum S(¢, f) can be estimated in
many different ways. One method is to introduce a para-
metric model for the evolutionary spectra, Sy(¢, f), and solve
for the parameters of the model, . Under the assumption that
the noise is Gaussian distributed, the model parameters can
be estimated by maximizing the Whittle log likelihood

1Hp(d|6) = —inzm <1H(277.'S9(ln,fm)) +%> . (35)

Alternatively, the Whittle likelihood can be used to infer the
model parameters in a Bayesian setting. To avoid over-
parameterizing the model, transdimensional methods are
preferable. For example, the Bayesline spectral estimation
algorithm [24] can be generalized to use a bicubic spline
model, where the number of spline points and their

1

e
B=9 ——
05 R
S 0F \//\
05 - R
1 L L P L L P
1 10 100

k

FIG. 4. Fourier domain correlation coefficients c; for the
AR(N) process with & = 2 and f# = 0 (stationary case) and f§ =
9 (nonstationary). The index k corresponds to the number of
frequency bins between the data samples used to compute the
correlation.

amplitudes are allowed to vary. A much simpler, though
less accurate estimate for the evolutionary spectra can be
found using a fixed grid of bicubic spline points and
estimating their amplitude from the median of the points
in the scalogram, w2,,, surrounding the spline control point.
The median is more robust to outliers than the mean. The
median of the scalogram has to be divided by a factor of
73/} to yield an estimate of S(z, f) under the assumption
that the scalogram is chi-squared distributed with one degree
of freedom. Here 77 = 1 and 72 /j7? = 0.4549364231... are
the mean and median of the chi-squared distribution. The
median is found from the transcendental equation
I'[}. 373 =3T3, where I'a, b] and I'[a] are the incomplete
and complete Gamma functions, respectively.

Figure 5 shows a bicubic spline fit to the evolutionary
spectrum for the AR(N) process (32) with @ =2 and
p = 9. The spectrum varies over seven decades in magni-
tude. The time series was generated with N = 22° points
and the WDM transform was computed on a grid with N, =
N; = 1024 points. The bicubic spline control points were
spaced at intervals of 32 points in the both time and
frequency directions. The whitened wavelet amplitudes,
Wom = W/ /So(t,, fn) follow a A(0,1) unit normal
distribution (verified using an Anderson-Darling test).

Under the hypothesis that the wavelet noise correlation
matrix is diagonal, the products W, W, for n # n' and/
or m # m’ should follow a product normal distribution,
p(x) = Ko(|x|)/m, where Ky(x) is a modified Bessel
function of the second kind. A histogram of the products
confirms this expectation. A more quantitative test is to
look at estimates of the whitened noise correlation matrix

1
Cij = E[anWn+i,m+j] ~ Nzwnmwn—&-i,m-ﬁ-j' (36)

In the limit that N — oo, the off-diagonal elements of c¢;;
should vanish. To allow for the finite number of samples,

1000 [ T T T

frequency

time

FIG. 5. A bicubic spline fit to logarithm of the evolutionary
spectrum, InS(f,7), for the nonstationary AR(N) model de-
scribed by Eq. (32) with a =2 and = 9.
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FIG. 6. The scaled off-diagonal noise correlation coefficients
¢;; of the WDM wavelet transform for the nonstationary AR(N)
model described by Eq. (32) with a =2 and = 9.

the ¢;; can be scaled by the standard deviation of the sample
mean, which is given by o* = Var[W,,, W, ., ,]/N. The
scaled correlations, ¢;; = ¢;;/o should follow aN(0,1) unit
normal distribution for i # j. Figure 6 shows the first 10000
¢;j for the data shown in Fig. 3. The distribution appears to be
consistent with unit variance white noise, with no discernible
correlation pattern. Figure 7 shows a histogram and quantile-
quantile plot of the coefficients, and confirms that they follow
a N (0, 1) unit normal distribution.

Similar tests were applied to a variety of noise processes,
including stationary white noise, stationary red noise,
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FIG. 7. Histogram (upper panel) and quantile-quantile plot
(lower panel) for the scaled off-diagonal noise correlation
coefficients ¢;; shown in Fig. 6. The ¢;; follow a N(0,1) unit
normal distribution, confirming that the WDM noise correlation
matrix is diagonal.
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FIG. 8. The upper panel shows the WDT transform of 256 sec-
onds of data from the LIGO Hanford detector centered on GPS
time 1165067917. The data has been whitened using the median
wavelet PSD S(f). The lower panel shows the same data
whitened and made stationary by the evolutionary spectrum
PSD S(f,1).

cyclo-stationary noise, nonstationary white noise with
variance that increased linearly with time, and nonsta-
tionary red noise generated by the AR(N) process with
different values of @ and f. In all cases the WDM wavelet
noise correlation matrix was found to be diagonal.

A more relevant question is whether the WDM transform
yields a diagonal noise correlation matrix when applied to
real gravitational wave data. The LIGO-Virgo data analysis
guide paper [8] investigated a particular stretch of LIGO
Hanford data that exhibited nonstationary noise. The WDM
scalogram of the same 256 second stretch of data studied in
Ref. [8] is shown in Fig. 8, focusing on the frequency band
below 250 Hz where the nonstationarity is most pro-
nounced. The WDM transform had a time resolution of
AT = 0.5 s and a frequency resolution of AF = 1 Hz. The
upper panel in Fig. 8 shows the whitened data, using an
estimate for S(f) based on the median of the scalogram in
each frequency band. The lower panel in Fig. 8 shows the
same data, now whitened with the evolutionary spectrum
S(f,t). Applying the same analysis to the off-diagonal
noise correlation coefficients, ¢;;, as was done previously
for the nonstationary AR(N) model yields the distribution
shown in Fig. 9. The scaled coefficients ¢;; follow a
N(0,1) unit normal distribution, confirming that the
WDM noise correlation matrix for this stretch of nonsta-
tionary LIGO Hanford data is diagonal.

B. Gaps and edge effects

It is well known that time domain data with edges and
gaps lead to spectral leakage in the Fourier domain. The
spectral leakage can be mitigated using window functions,
but at the cost of lost data, and artificial nonstationarity. The
latter point is not widely appreciated. Even using a Tukey
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FIG. 9. Histogram (upper panel) and quantile-quantile plot
(lower panel) for the scaled off-diagonal noise correlation
coefficients ¢;; for the LIGO Hanford data shown in Fig. 8.
The ¢;; follow a (0, 1) unit normal distribution, confirming that
the WDM noise correlation matrix is diagonal.

window that is flat across a large fraction on the data results
in a nondiagonal noise correlation matrix in the Fourier
domain. Figure 10 shows the Fourier domain noise corre-
lation function c¢; for 16 seconds of stationary white noise,
x[i], sampled at 4096 Hz, with a Tukey window applied.
The Tukey window had a rise and decay time of 0.4 s to
mimic the settings in typical LIGO analyses [8]. The
window is flat across 1—a of the data, with
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FIG. 10. The off diagonal elements of the Fourier domain noise
correlation function ¢, for stationary white noise with a Tukey
window function applied. The index k corresponds to the number
of frequency bins between the data samples used to compute the
correlation.
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FIG. 11. The WDM transform of a sine wave (upper panel), a
sine wave with an edge at time 131072 (middle panel), and a sine
wave with a gap of width AT = 1/32 (lower panel). The
amplitude of the sine wave is 8, but the color scale has been
capped between [—1,1] to better show the leakage of power
caused by the edge and gap.

a =0.8/16 = 0.05. The magnitude of the maximum cor-
relation is of order a.

Wavelet transforms are not immune to the edge effects
and gaps, though the impact is more localized. Edges and
gaps introduce spurious sharp features in the data that cause
Gibbs oscillation and spectral leakage, as also happens with
a Fourier transform. Another way of looking at it is that the
edges and gaps render the wavelet basis functions non-
orthogonal, resulting in leakage of power between wavelet
pixels. The leakage is confined to wavelets whose time
domain filters overlap with the edge or gap. Recall that the
time domain window functions are always wider than the
wavelet pixels time span AT, typically by factors of order
ten. Figure 11 illustrates the effects of edges and short
duration gaps (less than the width of wavelet pixel) on the
WDM transform of a sine wave. The time domain window
function for the WDM transform had width gAT with
q = 16. The power leakage due to the signal having a sharp
edge extends for order 16AT in time and 32AF in
frequency. The short data gap leads to a similar pattern
of leakage, with a slightly smaller extent in time and
slightly larger extent in frequency.

Methods for mitigating the effects of edges and gaps that
are used in frequency domain analyses, such as apodizing
the edges with a window function, and filling the gaps with
fake data using Bayesian data augmentation [49] or
otherwise [31], can also be used with wavelet transforms.
An alternative is to introduce specialized boundary
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wavelets and gap wavelets that maintain orthogonality and
eliminate leakage [50-52], but at the cost of added
computational complexity, and a decrease in frequency
separation in the regions covered by these special wavelets.

C. Glitches and spectral lines

The data from ground based interferometers exhibit
sharp spectral features and suffer from frequent noise
transients, or glitches [8]. Figure 12 compares Fourier
domain and wavelet domain estimates of the power spectral
density of the 256 seconds of LIGO Hanford data used to
produce Fig. 8. The Fourier domain estimate used a running
median of the Fourier periodogram combined with an
outlier identification to catch the spectral lines. The wavelet
domain estimate used the median of the wavelet scalogram
across each frequency band. The spectrum contains numer-
ous spectral lines. The weaker lines are absent in the
wavelet estimate as the contribution from the weaker lines
is a small contribution to the total integrated power across a
wavelet. The wavelet estimate is more robust against the
nonstationary excess below 250 Hz, which is why the
wavelet estimate sits below the Fourier domain estimate at
low frequencies.

Spectral lines can be both very narrow in frequency and
very large in amplitude. Strong lines can saturate an entire
wavelet frequency band, rending the data useless in that
band. The fraction of otherwise useable data lost to strong
lines scales as the ratio of the width of the line §f to the
bandwidth of the wavelet layer, AF. This suggests choos-
ing a small AF to avoid losing information. However, small
AF implies large AT, and transforms with large AT are less
effective in dealing with nonstationarity. A way around this
problem is to first transform the data using a small value for
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FIG. 12. Estimates of the power spectral density of the LIGO
Hanford data shown in Fig. 8 using Fourier domain and wavelet
domain methods. The spectrum exhibits many sharp spectral
lines. Some of the weaker lines are smoothed away in the wavelet
domain analysis.

AF, and use this transform to estimate the power spectrum
S(f), ignoring any nonstationarity for now. The data can
then be whitened using this estimate, returned to the time or
frequency domain, then wavelet transforming a second time
using a larger AF. The evolutionary power spectrum of the
retransformed data, S(¢, f), can then be computed. The full
dynamic power spectrum is given by S(f, 1) = S(f)S(t, f).

In addition to slow drifts in the evolutionary power
spectrum, such as those seen in the LIGO Hanford data in
Fig. 8, interferometer data also manifest frequent short
duration noise transients or glitches. In contrast to long
term drifts, which can be modeled as Gaussian noise with a
time varying power spectrum, glitches are short duration,
coherently structured non-Gaussian features. A better term
for them might be “instrument generated signals.”
Figure 13 shows the WDM transform of 16 seconds of
LIGO Livingston data surrounding the binary neutron star
merger GW 170817 [53]. A very loud glitch can be seen
roughly one second prior to merger. Whitening the data
with the evolutionary wavelet spectrum helps mask the
effect of the glitch, but a much better approach is to
coherently model and remove the glitch from the data, as
was done in the original analysis of GW 170817 [53], where
the BayesWave algorithm [54] was used to subtract the
glitch from the data. Treating glitches as instrument signals
and removing them from the data is superior to gating the
affected data or whitening the data with the evolutionary
spectrum, as the later approaches lead to a loss of
information, while the former approach preserves all of
the data [55].

. .
b b LA o a2 wdh b A o N o
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FIG. 13. The upper panel shows the WDT transform of
16 seconds of data from the LIGO Livingston detector surround-
ing the BNS merger GW170817. The data has been whitened
using the median wavelet PSD S(f). The lower panel shows the
same data whitened and made stationary by the evolutionary
spectrum S(f, ¢). The loud noise transient is significantly reduced
by the evolutionary PSD. The inspiral track of the GW signal is
visible in lower left of both panels.
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V. WAVELET DOMAIN WAVEFORMS

Gravitational wave data analysis often requires millions
of likelihood calculations, each involving one or more
waveform evaluations. While the computational cost of the
WDM wavelet transform is comparable to a standard FFT
based frequency domain analysis, the cost can be prohibi-
tive for long-lived signals. To reduce the computational cost
of standard frequency domain analyses, significant effort
has gone into producing waveform models that can be
evaluated directly in the frequency domain [9-17]. The
goal here is to develop fast wavelet domain waveforms
using time domain or frequency domain waveforms as a
starting point. Remarkably, it turns out that waveforms can
be generated more efficiently in the wavelet domain: the
computational cost scales as the square root of the number
of data points, as opposed to linearly, or worse, for the time
and frequency domains.

Let us assume that the waveform templates for binary
systems can be expressed in the form

h(t) = 0> _Ag(1)e™ ), (37)

or equivalently

h(f) = A(f)e®. (38)

k

Here the amplitude and phase are taken to include con-
tributions from the instrument response in addition to
contributions from the evolution of the binary system.
The series does not have to be harmonic, though that will
often be the case [56]. The fast wavelet transform is applied
term by term in the sums. In some cases only a few terms
are needed to accurately model the signal, such as for
comparable mass spin-aligned binaries on quasicircular
orbits. In other cases a large number of terms will be
needed, such as for system on highly eccentric orbits with
large mass ratios. The efficiency of the rapid wavelet
transforms degrades as the number of terms in the sum
increases, eventually reaching the point where there are no
savings to be gained over directly transforming the full
signal. Similar considerations apply when computing
frequency domain waveforms for eccentric binaries [17].

Figure 14 illustrates the time-frequency evolution of one
term in the sums (37), (38). During the early inspiral
(horizontal shaded region) the signal evolves slowly in
time, and fast time-domain transforms are most efficient.
During the late inspiral, merger and ringdown (vertical
shaded region) the signal evolves rapidly in frequency, and
fast-frequency domain transforms are most efficient. In
each region there are (at least) two fast methods for
computing the wavelet transform. The first method, sparse
sampling, involves no approximations and is typically one
or two orders of magnitude faster than the direct transform.

t

FIG. 14. Anillustration of the time-frequency decomposition of
a single term in the expansion of the signal from a binary merger.
The horizontal (light blue) shaded region indicates where fast
time-domain transforms are most efficient, while the vertical
(light red) shaded region indicates where fast frequency-domain
transforms are most efficient.

The second method employs a local Taylor series expan-
sion of the amplitude and phase, and interpolation over a
look-up table. The second method is typically two to three
orders of magnitude faster than the direct transform. The
computational savings are greatest for long-lived signals,
such as binary Neutron star mergers for ground based
detectors and systems with masses below 10° M, for space
based detectors.

A. Fast wavelet waveforms: Sparse sampling

The sparse sampling technique employs a stationary-
phase-inspired time-frequency mapping defined:

() = 5 ),
fult) = 5 20 (39)

and similarly for the time and frequency derivatives:

1 d*0
1 =5 )
. 1 &Y
Fule) = 5 i) (40)

The sparse sampling approach can be understood as a form
of heterodyning, or equivalently, a stationary phase evalu-
ation. At time t;, = nAT the signal has a frequency f; =
mAF for some specific m. Alternatively, the signal has
frequency f;, = mAF at some time t; & nAT for some
specific n. At these instances, the oscillatory factors in
Egs. (14) and (17) largely cancel the oscillations due to the
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phase terms e/¥+() or ¢9(/), Since the summands are then
slowly varying, the sums can be evaluated using a much
sparser sampling in time or frequency, thereby significantly
reducing the computational cost. Time-domain sparse
sampling is most efficient in regions where the signal is
slowly evolving in frequency: f «Iw < AF, where T\, is the
duration of the wavelet window function. Frequency-
domain sampling is most efficient in regions where the
signal is rapidly evolving in frequency: #, F\, < AT, where
F,, is the bandwidth of the wavelet window function.

Sparse sampling in the time domain works by reducing
the sample cadence such that the time samples are spaced
by pAt, where p is some power of two. The larger the p the
greater the savings in computational cost. The downsam-
pling is limited by how rapidly the amplitude and hetero-
dyned phase vary. Significant savings (p = 256 or larger)
are only possible when the amplitude and heterodyned
phase are evolving relatively slowly in time. Considering a
single harmonic of the waveform, and dropping the sub-
scripts to simplify the notation, the wavelet coefficients are
given by

Wam = V2AIRC,,,, S, [(m = m,)q], (41)

where m, = [f(nAT)/AF] is the central frequency band
and

L/2-1
Sn [l] — Z eZﬂijl/LA [an/p]¢[j]ei(‘{’[an/p]—2nmL.qj/L)’
j=—L/2

(42)

with L = K/p. The S,; can be computed using a FFT at
cost LIn L for each n, yielding a total cost that scales as
N,;L1n(L). This is more than factor of p faster than the full
time domain transform. The sparse transform is exact so
long as the summand in (42) is adequately sampled. The
downsampling factor p can be dynamically adjusted
according to how fast the signal is evolving.

Sparse sampling in the frequency domain works by
decreasing the time span T — T/r such that the frequency
samples are spaced by /T, where r is some power of two.
The time span must be equal to or greater than the window
size T,, = KAt, so that »r < N/K. Since the frequency
domain method is most useful when the signals are rapidly
evolving, we saturate the bound and set r = N,/(2q). The
wavelet coefficients are then given by

Wom = V2(=1)"RC, [ — 1], (43)
where n. = [t(mAF)/AT] is the central time slice and
q-1

Sm[j] _ Z e—ﬂilj/qA[l+ mq]q)[l]ei<®[l+mq]+”ln”/q). (44)
l=—q

Evaluating (44) for each m using a FFT yields a total cost of
2N ;qIn(2q), which is a factor of r = N,/(2q) less than the
full frequency domain transform. The limitation of using a
time span equal to the window size is that the time is
periodic with period T, meaning that the transformation
becomes multivalued for slowly evolving signals. For (44)
to be single valued we require that the signal evolves to
occupy a new frequency layer in the time it takes to cross
the window function. That is, we require fT,, > AF. When
this condition is met the sparse frequency domain transform
is exact.

B. Fast wavelet waveforms: Taylor expansion

The second fast transform takes advantage of the fact that
the individual harmonics of the gravitational wave signal
from a binary system go from evolving slowly in frequency
to evolving slowly in time (see Fig. 14). During the early
inspiral the signals evolve slowly in time, and the amplitude
are frequency are approximately constant across an indi-
vidual wavelet. Consider a wavelet centered at #, = nAT.
The gravitational wave amplitude and phase can be Taylor
expanded:

W(1) = W(t,) +27(t — 1,)f(t,) + (1 — 1,)2F (1,) + ...,
A(t) A(tn) + (t - tn)A(tn) + .. (45)

where the expressions for f(z) and f(t) are given in
Egs. (39) and (40). To achieve high accuracy these
expansions can be continued to higher order, but it is
usually enough to stop at second order in the phase and
zeroth order in the amplitude. The wavelet coefficients

N
Wam = > Gum KA (1) (46)
k=1

are then given by

Wam = A1) (Com (f (£). f (1)) cos ¥ (1)

_Snm(f(tn)7f(tn)) Sinlp(tn))7 (47)

where

el ]) = / g (1) cos(2ae(t — 1,)f + 7t — 1,)°)
(48)

and similarly for s,,,(f.f) with the cosine replaced by a
sine. The c¢,,, and s,, can be precomputed on a grid in
(f, f ) and interpolated. This procedure can be used for any
wavelet family. The WDM wavelets offer an additional
advantage in that they have a uniform window in frequency,
so that the coefficients, computed relative to the central
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FIG. 15. An illustration of the lookup table for the cosine

(upper) and sine (lower) coefficients used to compute the time
domain expansion coefficients c,, (f,f) and s,,(f,f). The
horizontal axis shows the successive frequency samples, while
the vertically offset lines show increments of the frequency
derivative.

frequency of one layer, are the same for all layers. This
dramatically shrinks the size of the lookup table since it only
has to be computed for a single frequency layer. The lookup
table is generated on a grid spaced by 0f = eAF with ¢ &
0.01 and 8f = eAF/T, with ¢~0.1. The number of
frequency derivative samples depends on the maximum
frequency we wish to cover—typically fomx = 8AF /T,, is
sufficient. The number of frequency samples required
depends on the filter bandwidth (A + B)/z and the fre-
quency evolution of the signal, which increases with increas-
ing f. The total number of frequency samples scales as
((A+ B)/7 + fmaxT\)/5f- The full lookup table typically
has order 10° entries. For very slowly evolving signals, such
as LISA galactic binaries, the number is far less—of order
100. Note that since ((A + B)/z + fT,,) > AF, the wavelet
coefficients at each time sample n often span several
frequency layers m. Figure 15 illustrates the time domain
expansion coefficients ¢, (f, f), $um(f. f) as a function of
the instantaneous frequency (across the horizontal) and
frequency derivative (vertically offset lines) of the signal.
The WDM wavelets used to generate this figure used the
same settings as those used in Fig. 1, namely d =4,
A=AQ/4, B=AQ/2 and g = 16.

As a binary system approaches merger, the frequency
evolution accelerates rapidly and the time domain approach
becomes inefficient as it has to cover a larger and larger

range of frequency derivatives. Rather than expanding the
phase in df/dt, it becomes more efficient to switch to the
frequency domain and expand the phase in dt/df:

O(f) = O(fm) + 27(f = fu)t(fn)
+a(f = fu)? (fn) + s
A(f) = Alfw) + (f = Fu) A () + s (49)

where f,, = mAF, and the expressions for 7(f) and 7 (f)
are given in Egs. (39) and (40). To leading order in the
amplitude and second order in the phase expansion, the
wavelet expansion coefficients are given by

Waim = A(fm)(cnm(t(fm)’ Z/(fm)) cos ®(fm)
_snm(t(fm)7t/(fm)) Sin@(fm))’ (50)

where

eom(1.7) = / Af Gum () cOSQ(f = fon)t 4+ 7(f = fir)20)
(51)

and similarly for s,,,(,#) with cosine replaced by sine.
Since the WDM wavelets are uniform in time and fre-
quency, the coefficients need only be computed for a single
reference frequency band and time slice. The lookup table
is generated on a grid spaced by 6t = T,,/M with M ~ 400,
and 6t = ¢/(AF?) with € ~0.1. Figure 16 illustrates the
frequency domain expansion coefficients c,,,, (¢, 1), 5,,,,, (¢, ')
as a function of the instantaneous time (across the horizontal)
and time derivative (vertically offset lines) of the signal. The
number of time derivatives in the table is chosen so as to cover
a maximum time derivative 7, that overlaps with the
time domain expansion. Writing .. = a/AF?, fmax =
bAF/T, and demanding that f,, > 1/t to ensure
overlap of the two expansions, leads to the requirement
ab > AFT,, = q. The lookup tables used here have g = 16,
a =8 and b = 8. The number of time samples required
depends on the filter duration, T',,, and time evolution of the
signal which increases with increasing #'. The total number
of time samples scales as (T, + f;,.AF)/6t. Since
(T, + AF) > AT, the wavelet coefficients for frequency
band m span at least 2¢g time slices.

C. Waveform test case

To test the fast wavelet domain transforms it is helpful to
work with a simple, analytically tractable waveform model.
A good example is a “chirplet’—Gaussian enveloped
sinusoid with linearly evolving frequency [57,58]. In the
frequency domain, a chirplet with central time ¢, central
frequency f, time extent 7 and frequency extent y have
frequency domain phase and amplitude
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FIG. 16. An illustration of the lookup table for the cosine
(upper) and sine (lower) coefficients used to compute the
frequency domain expansion coefficients ¢, (f,#) and
Spm(2,1'). The horizontal axis shows the successive time samples,
while the vertically offset lines show increments of the time
derivative.

T
O(f) =0y +2xf1, +ﬂ;(f_fp)27
A(f) = Ape= =101 (52)
The time-frequency mapping follows from Eq. (39):

t—t, f-1,
T y

(53)

The time domain signal can be found by using the inverse
stationary phase approximation:

2T iapees o) ta/e) (54)

h(t) = -A(f(t)) |®”(f(t))|

The time domain amplitude and phase evaluate to

W(1) = 2nf,(t - t,) + ng (t—1,)* + O + /4,

All) = \ﬁAOe—(t—tp)z/(Zrz), (55)
T

The expression is exact up to fractional corrections of order

A" ()] (A(f)O"(f))| =~ 1/(4myt). The quantity yz is pro-
portional to the time-frequency volume of the chirplet,
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FIG. 17. The WDM transform of a chirplet. Time is in units of
AT and frequency is in units of AF. The upper panel shows the
full signal, while the lower panel enlarges a smaller segment. The
color bar indicates the wavelet amplitudes.

indicating that the stationary phase approximation
improves as the time-frequency volume increases.

Figure 17 shows the WDM transform of a chirplet with
parameter ¢, = 1024AT, f, = 103.4AF, A, = 10000,
©, =00, f =y/t=3.1AF/T, andy = fp/4. The wave-
let transform has N, = 2048 time slices and N = 2048
frequency bands. Only the frequency bands occupied by
the signal are shown in Fig. 17. The unweighted match
between two wavelet transform w,,,,, u,,,, can be defined as

o b -

VO lw) (ufue)

where
Wlat) =Y Wl (57)

The mismatch MM =1 —M between the direct WDM
transform and the various fast approximations was MM =
6 x 10710 for the sparse time domain transform, MM =
4x 107 for the sparse frequency domain transform,
MM = 3 x 107 for the Taylor expanded time domain
transform and MM = 3 x 107> for the Taylor expanded
frequency domain transform. In this instance the fast
frequency domain transforms are slightly less accurate
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than the fast time domain transforms since the data was
generated using the time domain expression (55), while the
frequency domain transforms use the frequency domain
expression (52). These differ slightly since only the lowest
order stationary phase approximation was used to map
between the time and frequency domain expressions. If
necessary, the accuracy of the Taylor expanded WDM
transforms can be improved by including the leading order
amplitude evolution. Using a single 2.9 GHz CPU core, the
direct time domain transform took 5.6 s, and the direct
frequency domain transform took 0.9 s. These numbers do
not include the 4.1 s it took to generate the full time domain
waveform. The sparse time domain transform took 15 ms,
the sparse frequency domain transform took 2 ms, the
Taylor expanded time domain transform took 0.7 ms and
the Taylor expanded frequency domain transform took
0.9 ms.

D. Fast inspiral-merger-ringdown transform

The time domain and frequency domain fast wavelet
transform techniques can be combined together to yield a
fast wavelet transform for inspiral-merger-ringdown mod-
els. As an illustrative example, consider the frequency
domain “PhenomD” phenomenological model [14], which
describes the dominant # = |m| =2 mode of a quasicir-
cular, spin-aligned binary system using a combination of
the TaylorF2 post-Newtonian model for the inspiral and a
black hole perturbation theory model for the ringdown,
bridged by a fit to a suite of numerical relativity waveforms
describing the final inspiral and merger. The PhenomD
model returns expression for the frequency domain ampli-
tude and phase, A(f), ©(f). A numerical implementation
of the stationary phase approximation (SPA) can be used to
find the time domain amplitude and phase A(t), ¥(¢). The
SPA breaks down at merger, but this is not a limitation since
the time domain expressions are only used at early times
where the signal is slowly evolving. To generate a reference
time domain signal to be used with the direct wavelet
transform the SPA waveform is spliced together with the
inverse FFT of the frequency domain signal, which has to be
smoothly tapered to zero at low frequencies to avoid Gibbs
oscillations in the time domain. The splicing procedure is
illustrated in Fig. 18. Note that the SPA and the FFT match
perfectly in amplitude and phase at the transition point.

A fast wavelet transform of the PhenomD waveform can
be constructed by combining the time domain Taylor
expansion for early times and the sparse frequency domain
transform for late times. The transition time is chosen such
that the times t,, t,,, corresponding to successive fre-
quency bands m, m + 1 are separated by no more than half-
width of the sparse transform: ¢, —1t, < gAT. This
condition ensures that the sparse frequency domain trans-
form covers the time slices occupied by the signal. The
binary black hole systems shown in Fig. 18 had masses
my = 35 Mg, m, = 30 M, dimensionless spins y; = 0.3,
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FIG. 18. Construction of the reference time-domain signal for a
binary black hole merger. At early times the signal is computed
using the stationary phase approximation, while at late times the
inverse Fourier transform is used. The transition between the two
regimes is marked by a vertical black line. The inset shows the
breakdown of the SPA at merger.

x> = 0.1 and merger time t. = 27 s. For this system the
transition from the time domain transform to the frequency
domain transform occurred at 7, = 21.5 s. The transform
was computed using N, = 1024, N, = 128, At = 1/4096
and covered 32 s. The wavelet transform of the signal is
shown in Fig. 19. The mismatch between the direct wavelet
transform of the signal and the fast wavelet transform was
MM = 1.05 x 10~*. The match could be improved by
including time evolution of the amplitude in the time domain
Taylor expansion. The fast wavelet transform took 1.3 ms.
This is a significant saving compared to the native frequency
domain waveform, which took 8.5 ms to generate. The
wavelet transform covered N, = 9339 ~ 26N pixels.
The computational savings increase for lower mass
systems. For example, consider a system with neutron star

100 4

f (Hz)
-
o

1 L L L I L L
0 5 10 15 20 25 30

t(s)

FIG. 19. The WDM wavelet transform of the binary black hole
signal shown in Fig. 18. The vertical black line marks the
transition from the time domain Taylor transform to the sparse
frequency domain transform.
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FIG. 20. The WDM wavelet transform of a binary system with

neutron star masses and spins. The vertical black line marks the

transition from the time domain Taylor transform to the sparse
frequency domain transform.

masses and spins: m; = 1.6 Mg, my, = 1.4 Mg, y; = 0.02,
x> = 0.03 and merger time ¢, = 123 s. The WDM transform
of this signal is shown in Fig. 20 for N, = 1024, N, = 512,
At = 1/4096 covering 128 s. In this case the transition
between the time domain Taylor expansion and the sparse
frequency domain transform occurred at 7, = 98.25 s. The
mismatch between the direct wavelet transform of the signal
and the fast wavelet transform was MM = 3.6 x 1076, The
fast wavelet transform took 4.0 ms, which is significantly less
than the 45 ms for the native frequency domain signal. The

wavelet transform covered N, = 32843 ~ 45v/N pixels.

E. Fast LISA ultra compact binary transforms

Ultra compact galactic binaries (UCBs) are expected to
be the most common source detected by future space based
gravitational wave detectors operating in the mHz regime
[59]. Most UCBs are expected to be on slowly evolving,
quasicircular orbits, producing signals that can be accu-
rately modeled using leading order post-Newtonian wave-
forms. For detectors such as LISA, which orbit the Sun and
have time-dependent response functions, the UCB signals
pick up amplitude and frequency modulations that vary on
the orbital timescale. Wavelet transforms in the mHz
regime will typically have pixels that are several hours
in extent and hundredths of a mHz in bandwidth. The
modulated UCB signals are effectively constant across the
wavelet pixels, and can be accurately modeled using
the leading order fast time domain Taylor transform. The
A, E, T time delay interferometry channels can each be
expressed in the form h;(¢) = A;(¢) cos ¥;(¢). In the low
frequency limit the expressions have the form [60]

Al(r) = (AL (OF2, (1) + A2 ()3, (1),
(1) = / 2 f (1)t + W1, (1) + Pra(1),

f(f):fo+fof+§fof2, (58)

with amplitudes

AMB(nf(1)*3 (1 + costt
Al = Dy ( 2 >
Ax<t> — WCOSZ, (59)
Dy,

and polarization and Doppler phases

- —Ap (Z)FIX
¥;,(t) = atan (m)

W,,(t) = 2zf(t) AUsin@cos(2znt/yr + ¢o — ). (60)

Here M is the chirp mass, D; is the luminosity distance, 1 is
the orbital inclination relative to the line off sight and 0, ¢ are
the sky location of the source in ecliptic coordinates. The
time dependent antenna patterns F; (), F,(f) depend on
the sky location and polarization angle of the source. Similar,
yet more complicated expressions for the time dependent
amplitude and phase can be found for the full response
function, taking into account finite armlength effects—see
Appendix B of Ref. [61] for details. The results shown here
utilize the full LISA instrument response.

To leading order, the intrinsic frequency change for a

UCB scales as
f 137 M \5/3 .
H , 61
3 mHz 1 Mg zs7, (61)

f=3.255%x10"'6 <
while the magnitude of the maximum Doppler shift scales as

Fu=593 %1071 <ﬁ) sing Hzs™'.  (62)
For typical choices of AT ~ 105 — 10°s and AF~1—
10 uHz, the fractional frequency change across the window

function, f7,, /AF,is of order 1072 or less. Consequently, the
lookup table for UCBs only has to cover zeroth order in
frequency change across the filter.

Figure 21 shows the WDM transform of the LISA
response to a galactic binary with f, =3 mHz, f,=
2.584 x 10716 Hzs™!, sky location cos@ = 0.2, ¢ = 1.0,
orientation cos: = —0.3, y = 0.8, initial phase ¥, = 1.2
and amplitude Ay = 1.96 x 102!, These parameters are
encoded into the “bar-code” structure of the WDM trans-
form. Each galactic binary will have a unique bar code, and
even though many thousands of binaries will occupy a given
frequency band of the transform, their unique encodings
allow the individual signals to be extracted, much like a
television cable box decodes the multiplexed signals
carried on a single coaxial cable. The transform used
N; =N, =2048, and the data had a sample cadence of
At =15 s and a total duration of roughly two years. The
wavelet pixels have duration AT = 30720 s and bandwidth
AF = 1.627604 x 10> mHz. Generating both channels
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FIG. 21. The WDM wavelet transform of the LISA response to

a galactic binary in the TDI A and E channels. The color scale is
in units of 1072,

took a total of 1.3 ms, which is slightly faster than the fast
frequency domain transform [62] that is currently used in
LISA data analysis studies [63]. The mismatch between the
fast and full transforms was MM = 4.6 x 1077 for the A
channel and MM = 1.1 x 107° for the E channel.

The UCB transform can be extended to include stellar
origin black holes (SOBHs) by using a high order post-
Newtonian inspiral model, and by including frequency
derivatives in the lookup table. Using the PhenomD wave-
form model, and considering the same SOBH system as
before, but starting three years before merger, yields the
LISA signal shown in Fig. 22. To make the signal track
more visible, only the final four months of the full two
years of simulated LISA data are shown. The fast WDM
waveform generation took 4.6 ms. This is a significant
saving compared to the 6.8 seconds it takes to compute the
waveform in the frequency domain. The mismatch between
the fast and full transforms was MM = 8.1 x 107° for the A
channel and MM = 1.6 x 107> for the E channel. Here only
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FIG. 22. The WDM wavelet transform of the LISA response to
a stellar origin black hole binary in the TDI A and E channels.
The color scale is in units of 10722,

the time domain Taylor expansion was used. To achieve
higher accuracy, and to cover systems with larger chirp
masses and/or shorter times until merger, it is necessary to
switch to the sparse frequency domain response once the
frequency evolution is much larger than AF/T,,, as was done
for the BH mergers described in § V D.

VI. SUMMARY

A time-frequency approach to gravitational wave data
analysis using discrete wavelet transforms offers many
advantages over the traditional time or frequency domain
approaches. Wavelet based analyses are well suited for
modeling nonstationary instrument noise. Wavelet domain
models of binary merger signals are often significantly
faster to compute than time or frequency domain models.
Together these advantages make a strong case for moving
gravitational wave data analysis to the wavelet domain.

To facilitate the transition, a simple translator is being
developed for converting existing waveforms to the wavelet
domain. Ready to use algorithms for estimating the evolu-
tionary power spectra are also being developed. The
translator takes as input the amplitude and phase of each
harmonic, either in the time domain or the frequency
domain, then based on the frequency evolution, determines
which fast transform to apply. The transform returns the
nonzero wavelet coefficients as a sparse array with an
indexing table to facilitate fast likelihood calculations. A
range of tools for estimating the evolutionary power
spectrum are also being developed, including simple
smoothed median estimators like the ones described here,
in addition to more sophisticated adaptive (transdimen-
sional) Bayesian methods.

Codes for computing the WDM transform, with examples
of the fast signal transform methods can be found at https://
github.com/eXtremeGravityInstitute/ WDM_ Transform.
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