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Almost four decades ago, Bergman and Milton independently showed that the isotropic effective elec-
tric permittivity of a two-phase composite material with a given volume fraction is constrained to lie
within lens-shaped regions in the complex plane that are bounded by two circular arcs. An implication of
particular significance is a set of limits to the maximum and minimum absorption of an isotropic com-
posite material at a given frequency. Here, after giving a short summary of the underlying theory, we
show that the bound corresponding to one of the circular arcs is at least almost optimal by introducing
a certain class of hierarchical laminates. Tn regard to the second arc, we show that a tighter bound can
be derived using variational methods. This tighter bound is optimal as it corresponds to assemblages of
doubly coated spheres, which can be easily approximated by more realistic microstructures. We briefly
discuss the implications for related problems, including bounds on the complex polarizability,

DO 100103/ PhysRevApplicd. 14.054068

L INTRODUCTION

Composite materials can exhibit effective “metamate-
rial” properties that are quite different from those of their
underlying constituents [1—3] but the range of such emer-
gent properties is not limitless. The effective permittivity
of a two-phase isotropic composite with fixed volume frac-
tion is constrained by the “Bergman-Milton™ (BM) bounds
[4] to lie within two circular ares in the complex plane,
yet the feasibility of approaching the extreme permittiv-
ity values—or, conversely, finding tighter bounds—has
remained largely an open question. In this paper, we
resolve this question: we show that one of the arcs is
nearly attainable via hierarchical laminates, we show that
the other arc can be replaced by a tighter bound that
can be derived by variational methods, and we identify
assemblages of doubly coated spheres as structures that
can achieve the extreme permittivity values at the new
boundary. To design the hierarchical laminates that reach

or approach the first arc, we start with five classes of

microstructures that have previously been identified as
optimal over narrow regions of BM bounds. Forming
laminates from these microstructures leads to the identifi-
cation of additional optimal microstructures and to broad
coverage near the entirety of the first arc. To replace
the second arc, we embed a rank-2 transformed permit-
tivity tensor into a rank-4 effective tensor and use the
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“Cherkaev-Gibiansky transtormation™ [9] together with
the “translation method™ [10-14] to maximally constrain
the tensor values, adapting techniques used for related
questions on the effective complex bulk modulus [15].
These results provide a comprehensive understanding of
possible effective metamaterial permittivities. For applica-
tions targeting extreme response, such as maximal absorp-
tion, these results refine the global bounds on what is pos-
sible and offer powerful microstructure design principles
toward achieving them.

In the following, we study the effective-permittivity
problem in the quasistatic regime for isotropic microstruc-
tures that are made from two isolropic materials (phases).
We assume that the volume fractions f) and f; = | — f} of
the two phases are given, which is typically the problem of
interest in applications in which the weight, or cost, of one
of the phases is an issue. However, our results are not lim-
ited to fixed volume fractions, as the corresponding results
for arbitrary volume fractions follow as a simple corollary.

The quasistatic regime corresponds to the assumption
that the structures are periodic and that the wavelength
and attenuation lengths in the phases and the composite
are much longer than the unit cell of periodicity. In this
case, one can use the quasistatic equations (see Sec. 111
in Ref. [1])

d==ce, Vxe=0, V-d=0, 6= x5 +(1 — y)ez,

(1)
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where d(x) and e(x) are complex periodic vector fields,
with the real parts of d(x)e™" and e(x)e™" representing
the electric displacement field and the electric field, respec-
tively, x(x) is the periodic characteristic function, that
takes the value 1 in phase | and O in phase 2, and &; and
&7 are the (frequency-dependent) complex electric permit-
tivities of the two materials. Letting (-} denote a volume
average over the unit cell of periodicity, we may solve
these equations for any value of (e} (provided that & /&5 is
finite, nonzero, and non-negative). Then, since {d} depends
linearly on {e), we may write

{d) = £.(e). (2)

which defines the effective complex electric permit-
tivity, £4.

The goal is then to find the range that &, takes as the
geomelry, i.e., ¥ (x), varies over all periodic configurations
with an isotropic effective permittivity that have the pre-
scribed volume fraction f of phase 1. The geometries that
realize (or almost realize) the maximum and minimum val-
ues of the imaginary part of £, are those that show (close
to) the maximum and minimum amount of absorption of an
incoming plane wave or a constant static applied field. It is
not only the imaginary part of &, that is of interest, as both
the real and imaginary parts are of importance in deter-
mining the effective refractive index and the transmission
and reflection at an interface. If there is a slow variation
(relative to the local periodicity) in the microstructure, the
resulting variations in £,(x) can be used to guide waves.

Substantial progress on this problem was made about
tour decades ago when bounds on the effective com-
plex electric permittivity were derived [4-#] (see also
Chaps. 18, 27, and 28 in Ref. [1]), which have become
known as the “Bergman-Milton™ (BM) bounds. The BM
bounds comprise bounds for several different restrictions
on the geometry of the structure, including the problem
that we are studying here, i.e., bounds for structures with
isotropic effective permittivity (which includes, for exam-
ple, all geometries with cubic symmetry) and fixed volume
fractions.

Originally, the BM bounds were derived on the basis
of the analytic properties of &, as a function of £; and
£7. Bergman, in his pioneering work [16], had recognized
the analytic properties but erroneously assumed that the
function would be rational for any periodic geometry (a
checkerboard is a counterexample [17,18]; see also Chap.
3 in Ref. [1]) and that if the equations did not have a solu-
tion for a prescribed average electric field, then they would
have a solution for a prescribed average displacement field
(a square array of circular disks having £) = —1 inside
the disks and 22 = 1 outside the disks is a counterexams-
ple in which neither has a solution) [18]. An argument
that avoided these difficulties by approximating the com-
posite by a discrete network of two electric impedances

has been put forward [6] and, later, the analytic prop-
erties have been rigorously established by Golden and
Papanicolaou [19].

The BM bounds can alse be used in an inverse fashion,
ie., to obtain information about the composition of a
material from a measurement of its effective properties.
If we know that a composite material is made from two
phases with known permittivities, we can use the BM
bounds to obtain bounds on the volume fraction from
a measurement of its effective permittivity [20,21]. In
essence, one has to find the range of values of the vol-
ume fraction for which the measured value of the effective
permittivity lies in the lens-shaped region.

We remark, in passing, that the analvtic method is also
useful for bounding the response in the time domain for
a given time-dependent applied field (that is not at con-
stant frequency) [22]. This approach is more useful for the
equivalent antiplane elasticity problem, since the typical
relaxation times are much longer.

Furthermore, the analytic properties extend to the
Dirichlet-to-Neumann map governing the response of bod-
ies containing two or more phases, not just in quasistatics
but also for wave equations (at constant frequency) (see
Chaps. 3 and 4 in Ref. [23]).

Before discussing the BM bounds in more detail, we
briefly consider the analytic properties of the electric per-
mittivity as a function of frequency [24.25], which are a
result of the fundamental restrictions imposed by causal-
ity and passivity. Causality, i.e., the fact that the electric
displacement field at a certain point in time depends on the
electric field at prior times only, implies that the frequency-
dependent permittivity, £(w), is an analytic function in the
upper halfplane. If, additionally, the material is passive,
ie., if it does not produce energy, the imaginary part of
the permittivity is non-negative for positive real frequen-
cies. These properties, which in mathematical terms mean
that the permittivity can be expressed via a Stieltjes or a
Mevanlinna-Herglotz function [26—29], have far-reaching
and not immediately infuitive consequences. The Kramers-
Kronig relations, which express the real (dispersive) part of
the permittivity in terms of its imaginary {absorptive) part
and vice versa, constitute a well-known example. More-
over, the analytic properties lead to sum rules, i.e., relations
connecting integral quantities involving the permittivity
with ils static and high-frequency behavior, which prove
useful in a variety of applications. For example, sum rules
have been used to derive bounds on broadband cloaking
in the quasistatic regime [29] and on dispersion in meta-
materials [30]. As one may expect, such considerations
are not limited to electromagnetics but apply to transfer
functions of passive linear time-invariant (LTI) systems in
general [28].

In order to derive the BM bounds, one uses the fact
that the analytic properties extend to the permittivity as
a function of the constituent phases [19]. More precisely,
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one uses the fact that £,(g1., £2) is a homogeneous function
of 21 and £; (so it suffices to consider the function with

g1 = 1) and f (z) = &4(1/z,1) 15 a Stieltjes function of z,
thus having the integral representation

dy(t)
t+z’

for all z not on the negative real axis of the complex
plane, where @« and § are non-negative real constants and
dp is a non-negative measure on ({0, o0). Depending on
the assumptions about the geometry of the composite,
the Stieltjes function satisfies different constraints [16,19]:
First, for an arbitrary, potentially anisotropic composite
material, the Stieltjes function satisfies

f)y=1 (4)

Second, if the volume fraction of phase 1 in the composite,
1. is prescribed, the Stieltjes function additionally satisfies

df (z)
dz

= —h. (3)
z=1

Third, if the composite is assumed to be isotropic, the
Stieltjes function additionally satisfies

d&f (2)
dzﬂ

=2f - % (6)

=1

The goal is then to determine the sets of values that the
function f (z) and, hence, the effective permittivity (or
any diagonal element of the effective permittivity tensor)
attains as the geometry, ie., the measure du, is varied
while being subject to the first constraint (anisotropic com-
posites), the first and the second constraint (anisotropic
composites with fixed volume fraction), and all of the con-
straints (isotropic composites with fixed volume fraction).

It can be shown that mappings between these sets are
realized by linear fractional transformations [19.31] (see
also Chap. 28 in Ref [1]). As these transformations map
generalized circles (circles or straight lines) onto gener-
alized circles, one obtains a set of nested bounds, the
BM bounds, that confine the effective permittivity to lens-
shaped regions bounded by circular arcs. It should be
pointed out that in the larger arena of Stieltjes functions,
lens-shaped bounds corresponding to the BM bounds and
their generalizations have a long history (see, e.g., Refs.
[32-35]).

The BM bounds for an isotropic composite material with
fixed volume fraction confine £, to lie within the following
lens-shaped region in the complex plane. One side is the

circular arc traced by

fifie) — &)

. (M
3(urer + uzer) '

g () = fie) + foea —

as wy is varied so that ) = /3 and wz = fi /3 while keep-
ing t; 4wz = 1 [6]. The essential feature of this formula
is that it has only one pole (resonance) at finite negative
values of the ratio £) /2;. On the other side is the circular
arc traced by

I G R T R V2 AN
e*(u1}—(a+a 3{H|;’E|+uz,"ﬁz}) . (8

as wy 1s varied so that wy = 2f2/3 and wy = 2f1/3 while
keeping wy + uz = 1 [6]. The two circular arcs meet at the

points

Jfiexley —e1)
3z + fale) — £2)
eX(1— fij3) = ex(1 — 2fi/3) = & + —L2E2 —€v)

3g1 + filer — £1)
(9}

ef(f2/3) =€, (22/3) =2+

When &) and £ are real, the lens-shaped region collapses to
an interval between these two points, thus giving the well-
known Hashin-Shtrikman bounds [36]. For this reason,
the BM bounds have sometimes been called the complex
Hashin-Shtrikman bounds, which might be considered an
occurrence of Stigler’s law [37], as Hashin and Shirik-
man had nothing to do with their derivation. The two
points given in Eq. (9) correspond to the Hashin-Shtrikman
assemblages of coated spheres that fill all space, each being
identical to one another, apart from a scale factor [36].
Hustrations of such a coated-sphere assemblage and its
columnar counterpart, the coated-cylinder assemblage, are
shown in Fig. 1.

In Ref. [6], Milton identified microstructures that attain
three additional points on the arc £} (u;). His key idea was
to look for microstructures that have only one pole, as this
is the characteristic feature of the bound (7). If one finds
such a microstructure with a diagonal anisotropic effec-
tive tensor &4, then, by forming a so-called Schulgasser
laminate [38], one can obtain a composite with isotropic
effective permittivity Tr(e,)/3. As described in detail in
Sec. 22.2 of Ref. [1]. the corresponding lamination scheme
is based on the following observation. Consider two mate-
rials with diagonal permittivity tensors and the same prin-
cipal permiftivity in one direction, such as when one is a
00" rotation of the other about this direction. If these two
materials are laminated along this direction, then the effec-
tive permittivity tensor of the laminate is just an arithmetic
mean of the permiltivity tensors of the two materials. By
successively applying this idea on widely separated length
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(b)

FIG. 1. Schematic illustrations of the Hashin-Shtrikman
assemblages of coated spheres (a) and coated cylinders (b). The
spheres {cylinders) are identical except for a scaling factor and
fill all space.

scales, starting from the anisotropic material with diago-
nal effective tensor £,, one obtains a hierarchical laminate
with isotropic effective permittivity Trie,) /3. If one takes
&4 to be the effective permittivity of a simple laminate, an
assemblage of coated cylinders with a core of phase 1 and
a coating of phase 2, and an assemblage of coated cylin-
ders with a core of phase 2 and a coating of phase 1, this
results in the effective permittivities £ (f2), £/ (f2/2), and
g7 (1 — f1/2), respectively, which, as illustrated in Fig. 2,
all lie on the arc £} ().

These three microstructures, as  well as  the
Hashin-Shirikman coated-sphere assemblage, can be seen
as special cases of Schulgasser laminates formed from
assemblages of coaled ellipsoids (those having only one
pole). The effective permittivity tensor, &4, of such assem-
blages can be obtained from the following formula [1]:

fier(es — ) = ea(er —e2) T+ LM, (10)
where T is the identity matrix and M is a matrix that
depends on the depolarization tensors of the ellipsoids.
As the shape and orientation of the ellipsoids is varied,
M ranges over all positive-semidefinite symmetric matri-
ces with Tr(M) =1 (see Sec. 7.8 in Ref. [1]). If one
chooses the coordinate system such that its axes coin-
cide with the principal axes of the ellipsoids, M is a
diagonal matrix. The range of effective permittivities of
Schulgasser laminates formed from such assemblages is
illustrated in Fig. 2. It is bounded by Schulgasser laminates
formed from assemblages of coated elliptical cylinders,
M= (w,1 —a.0)withae € [1/2, 1], and coated spheroids,
M= (o, .| — 20r) witho = [0, 1/2].

The first main thrust of this paper is to show that there
are hierarchical laminate geometries that attain, depending
on the volume fraction, two or three more points on the
arc £F (i) and other hierarchical laminates, which typi-
cally come extremely close to attaining the entire arc. This

14
1.3 4
3
E 1.2 1
1,11
1.0 - - - .
1.6 1.7 1.8 1.9 2.0 2.1
Re(g)
FIG. 2. An illustration of the Bergman-Milton bounds for an

isotropic composite material with fixed volume fraction. The
effective complex permittivity is constrained to a lens-shaped
region bounded by the two circular arcs £ (1) and &, (1), The
five points on the arc sj‘{u.} correspond to the two Hashin-
Shtrikman assemblages of coated spheres with phase | and phase
2 as the core material, CS81 and CS2, respectively, Schulgasser
laminates of the two Hashin-Shirikman assemblages of coated
eylinders, CC1 and CC2, and a Schulgasser laminate formed
from a simple rank-1 laminate, L. The gray-shaded region cor-
responds to Schulgasser laminates formed from assemblages of
coated ellipsoids. [t is bounded by Schulgasser laminates of
coated elliptical cylinders and coated spheroids, corresponding
to the green and red curves, respectively. The parameters are
g1 =02+ 1.5{, 82 =3+ 04i,and fj = 0.4

result shows that any improved bound, if it exists, typi-
cally can only be marginally better than Eq. (7). Note that
while we are focussing on bounds on the complex per-
mittivity, similar conclusions almost certainly apply to the
attainability of four related bounds: those coupling the two
effective permittivities e, = £,(g1,&2) and &, = &,(€1.52)
for given real positive values of &), £2, %), and & [16];
those associated bounds of Beran [3Y] in the form simpli-
fied by Milton [40] and Torquato and Stell [41,42] (that can
be obtained by taking the limit as 2] — &; — 1: see Ref.
[43]) that correlate, at fixed volume fraction, &, with a geo-
metric parameter £, or {2 = 1 — £1, that can be calculated
from the three-point correlation function giving the prob-
ability that a triangle positioned and oriented randomly in
the composite has all three vertices in phase | or, respec-
tively, phase 2; those bounds on the complex effective bulk
modulus [15] of an isotropic composite of two isotropic
elastic phases; and those bounds that couple the effective
conductivity with the effective bulk modulus [44] when the
conductivities and elastic moduli of the phases are real. For
all of these problems, the same five microstructures attain-

ing the points ) (f2/3), e} (f2), 7 (f2/2), eH (1 — f1/2) and
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gl (1 —£1/3) have also been shown to attain the relevant
bounds [7,15,43,44].
It was noted in Ref. [6] that the formula given in Eq. (8)
does not satisty the phase interchange inequality
evl£1, £2)8:(82,81) = €182 (11)
of Schulgasser [45], which holds when £, and &3 are real
and non-negative. Consequently, it has been suggested that
the bound (8) is nonoptimal [6]. In fact, using this inequal-
ity, an improved bound has been obtained by Bergman [8].
However, the inequality is itself nonoptimal and a tighter
inequality,

eslE1.82) + EulE2,81)
E] + &2

E;(E|1EE}ER{EE'|E1J
E182

=12,

(12)

has been proposed [6] and partially proved [43]. with an
error in the proof corrected in Refs. [46,47]. As remarked
in Ref. [6], this inequality holds as an equality for any
assemblage of multicoated spheres where all multicoated
spheres in the assemblage are identical apart from a scale
factor. In two dimensions, the Schulgasser inequality,
Eq. (11), holds as an equality not just for coated-disk
assemblages but for any geometry in which the (two-
dimensional ) effective permittivity is isotropic [48]. The
identity can be used to improve the bounds on the com-
plex permittivity for isotropic two-dimensional composites
of two isotropic phases or, equivalently, the transverse
conductivity of a three-dimensional geometry where the
conductivity does not vary in the axial direction and the
resulting bounds [5,6] are attained by assemblages of dou-
bly coated disks. (The claim in Ref. [4] that these bounds
are wrong was unfounded.) This suggests that the doubly-
coated-sphere assemblage (with the appropriate phase at
the central core) may in fact correspond to an optimal
bound on the effective complex permittivity, replacing the
bound (&). Additional evidence is that for the four related
bounding problems mentioned above, the doubly-coated-
sphere assemblages make their appearance in attaining a
bounding curve.

The second main thrust of this paper is to derive this
improved bound, replacing Eq. (8), utilizing minimization
variational principles for the complex effective permittivity
derived by Gibiansky and Cherkaev [9] (that also apply to
other problems with complex moduli, such as viscoelas-
ticity [9], and which have later been extended to other
non-self-adjoint problems [49], to wave equations in lossy
media [50,51], and to scattering problems [52]). These
variational principles allow one to use powerful techniques
for deriving bounds, namely the variational approach of
Hashin and Shirikman [36] and the translation method,
also known as the method of compensated compactness,
of Tartar and Murat [10,13,14] and Lurie and Cherkaev
[11,12] (see also Refs. [1,53-55]). One advantage of the

variational approach, as opposed to the analytic approach
of Bergman and Milton, is that it easily extends to multi-
phase media and to media with anisotropic phases (includ-
ing polyerystalline media) that have complex permittivity
tensors or complex elasticity tensors. Some elementary
bounds on the effective complex permittivity tensor and
the effective complex elasticity tensor are given in Refl
[49] (see also Sec. 22.6 in Ref. [1]). Some of these bounds
have also been conjectured or derived using the analytic
approach [36—62] but generally with much greater diffi-
culty. Our analysis is close to that used in Ref. [15] to
derive bounds on the effective complex bulk modulus,
which has later been extended to bounds on the effective
complex shear modulus [63,64] (see also Refs. [65,66]).

The BM bound and our improved bound, like many
bounds on effective moduli that involve the volume frac-
tions of the phases (as well as possibly other information),
simplify when expressed in terms of their y transforms (see
Chaps. 19 and 26 and Secs. 23.6 and 24.10 in Ref. [1] and
references therein). Rather than working with bounds on
£,, one works with bounds on its y transform

fifaler — £2)*
y = —fre) — ELE 13
S ey
in terms of which
Y-
£, = f1€ ~lrﬁ.*::a—JIF‘LJIE{EI—E?J (14}

her+ gty

The BM bounds confine y. to a volume-fraction-
independent lens-shaped region bounded by the straight
line joining 2¢; and 2e;, corresponding to the bound (7),
and a segment of a circular arc joining 2&) and 2&; that,
when extended, passes through the origin, corresponding
to the bound (8), Our improved bound, which replaces this
circular arc, is the outermost of two circular arcs joining
2ey and 2e,: one arc when extended passes through —gy,
while the other arc when extended passes through —es.

Mote that while we obtain an improved bound for
isotropic composites, our bound also applies to anisotropic
composites if we replace the scalar effective permittivity,
£s, with Tr(e,)/3 or any other effective permittivity of
isotropic polyerystals.

II. ON THE OPTIMALITY OF THE
SINGLE-RESONANCE BOUND

In the following, we show that the bound (7) is at
least almost optimal. First, we derive expressions for the
y-transformed effective permittivities of the five known
optimal microstructures and discuss corresponding hierar-
chical laminates. We then show that there are, depending
on the volume fraction, at least two or three additional
optimal laminates. In the last part of this section, using
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numerical calculations, we consider related laminates that
come very close to attaining the bound.

The first two of the five microstructures that are known
to attain the bound (7) are the two Hashin-Shirikman
coated-sphere assemblages (CS). For phase 1 as the core
material, the y-transformed effective permittivity of the
assemblage is given by 3! = 2¢,. For phase 2 as the core
material, one obtains _Vf‘§2 = 2&). The third and the fourth
optimal microstructure are Schulgasser laminates formed
from assemblages of coated cylinders (CC). The effec-
tive permittivity of such an assemblage in the directions
perpendicular to the cylinder axes is given by

£CCLL 2fiea(e) — £2)

. =g + . {15
R Py pa—— 1)

while parallel to the cylinder axes, one obtains
EECI'I = fie1 + fre2. (16)
The corresponding Schulgasser laminate has effective per-

mittivity

o i .
CC CCl CCl,
£ IZE(ZE* "L-I-E‘t I"] {17y

®

and its y-transformed effective permittivity is given by

v =y 4 Gy?] + %}:532) . (18)

Analogously, one obtains for the phase-interchanged
microstructure, ie., for phase 2 as the core material,

3 1
=i (P4 pS). )
The fifth optimal microstructure, the Schulgasser lami-

nate formed from a rank-1 laminate (L), has effective
permittivity

-1
E;LZ% (Qt’flﬂ +f2£-‘1}+(ﬁ +f—2) ) (20)

£] &7

and, therefore,
ye =fyS A =fix 2+ fix e (20)

This last relation implies that every point on the y-
transformed version of the bound (7} is attained by a rank-1
laminate with some volume fraction fj € [0, 1]. Hence,
there can be no tighter bound that is volume fraction inde-
pendent when expressed in terms of the y-transformed
complex permittivity.

It is well known that for each assemblage of coated
ellipsoids, there is a hierarchical laminate with the same
effective permittivity (see Ref. [14] and Chap. 9 in Ref
[1]). Hierarchical laminates are laminates that are formed
in more than one lamination step, i.e., they are laminates
of laminates. It is assumed that the length scales of sub-
sequent lamination steps, the number of which is referred
to as the rank of the laminate, are sufficiently separated.
More precisely, the coated-ellipsoid assemblages corre-
spond to a specific type of hierarchical laminates, so-called
coated laminates—first studied by Maxwell [67]—that are
formed as follows. In the first lamination step, a laminate
is formed from the two pure phases. One of these phases
is referred to as the core phase, while the other phase is
the so-called coating phase. In all subsequent lamination
steps, the laminate obtained in the previous lamination
step is laminated with the coating phase. For mutually
orthogonal lamination directions and a particular choice
of the volume fractions (see Chap. 9 in Ref. [1]), one
obtains rank-2 and rank-3 coated laminates equivalent to
the Hashin-Shtrikman assemblages of coated cylinders and
spheres, respectively. Thus, the five microstructures that
are known to attain the bound (7) can equivalently be seen
as hierarchical laminates.

Hierarchical laminates are conveniently described using
tree structures (see, e.g., Chap. 9 in Ref. [1]). More pre-
cisely, every hierarchical laminate can be represented by a
tree in which every node has either zero or two children.
MNodes of the tree that have zero children, which are com-
monly referred to as leaves, correspond to one of the pure
phases. Each node that is not a leaf, on the other hand,
refers to a laminate that is formed from its children and,
thus, has a certain lamination direction assigned to it. In
the case of three-dimensional orthogonal laminates, there
are only three possible lamination directions (X, ¥, and
£). Furthermore, we have to specify the volume fractions
used in each lamination step. In our tree representation, we
assign these volume fractions to the edges that connect the
corresponding node to its children, i.e., the edges of the
tree have certain weights. As an example, the tree struc-
tures of the laminates corresponding to the coated-cylinder
assemblage and the coated-sphere assemblage are shown
in Figs. 3(a) and 3(h), respectively.

In order to identify additional microstructures attaining
the bound ({7}, we now consider the class of hierarchical
laminates that contains the five known optimal microstruc-
tures, i.e., the class of Schulgasser laminates formed from
orthogonal laminates that have only one pole. More pre-
cisely, we form hierarchical laminates from laminates that
are known to attain the bound (or one of the pure phases)
in such a way that no additional poles are introduced. The
first such hierarchical laminate (LA 1) is formed from phase
| and the laminate corresponding to the coated-cylinder
assemblage (with phase 1 as the core phase and phase 2 as
the coating phase). It is closely related to the rank-3 coated
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(b)

FIG. 3. Tree structures corresponding to hierarchical lami-
nates that have the same effective permittivity as the Hashin-
Shirikman coated-cylinder assemblage (a) and coated-sphere
assemblage (b). The blue nodes, i.e., the leaves of the tree, cor-
respond to one of the two pure phases, phase 1 or phase 2, while
the red nodes describe a lamination step along one of the three
orthogonal lamination directions, ¥, ¥, or 2. The volume fractions
used in the different lamination steps are assigned to the edges of
the tree, where fj is the volume fraction of phase 1 in the final
material. Thus, the volume fractions on the two edges entering
each node sum to one.

laminate that corresponds to the coated-sphere assemblage.
However, instead of laminating with phase 2, i.e., the coat-
ing phase, in the third and last lamination step, we laminate
with phase 1. Illustrations of this hierarchical laminate
as well as the corresponding free structure are shown in
Fig. 4. As indicated there, we denote the volume fractions
used in the different lamination steps by . These vol-
ume fractions are uniquely determined by the requirement
that the pole that is formed in the last lamination step is
identical to the pole of the laminate corresponding to the
coated-cylinder assemblage, i.e.,

o (e
S—I=JG[2)_2= {] —fﬂ}}.ﬁ{z}

. (22)

where £, = 1 — f M7 @ s the volume fraction of phase
2 in the laminate corresponding to the coated-cylinder
assemblage. As the volume fraction of phase 1 in the final
laminate is given by

fi=1-fO5%, (23)

and as all volume fractions have to lie in the range [0, 1],
we can construct this laminate if only if f; € [1/2,1].
Analogously, we can construct the corresponding phase-
interchanged hierarchical laminate (LA2) if and only if
J1 € [0, 1/2]. In the final step, in order to obtain isotropic
optimal composites, we form Schulgasser laminates from
the anisotropic hierarchical laminates LA1 and LA2. The
y-transformed effective permittivities of these Schulgasser

FIG. 4. A schematic illustration (a) and the tree structure (h)
of the optimal laminate (LA1) that is formed by laminating the
rank-2 laminate corresponding to the coated-cylinder assemblage
with phase 1. The volume fractions used in the different lami-
nation steps, /', are uniguely determined by the requirement
that the structure has only one pole. The Schulgasser laminate
formed from the anisotropic material obtained via this lamina-
tion scheme, 1.e., from the material at the root of the tree, 1s an
optimal isotropic material attaining the bound (7). In (a), phases
1 and 2 are shown in gray and blue, respectively.

laminates are identical and given by the arithmetic mean
of the y-transformed permittivities of the two Hashin-
Shitrikman coated-sphere assemblages,

1
M=t =S 0 ) =a e, (24

which implies that they attain the bound (7).

In a similar fashion, we can obtain an additional opfi-
mal microstructure (LB1) by laminating the hierarchical
laminate corresponding to the coated-cylinder assemblage
with a rank-1 laminate, The corresponding tree structure is
shown in Fig. 5. Again, let f ' denote the volume fractions
used in the different lamination steps. We first require that
the pole of the rank-1 laminate is identical to the pole of the
laminate corresponding to the coated-cylinder assemblage.
With /;% = £ 0 @ being the volume fraction of phase 2
in the latter laminate, this condition reads

2
E—z_fﬁ}_]_fl'[}_l
e [ @y

(25)
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FIG. 5. The tree structure of the optimal laminate {LB1) that is
formed by laminating the rank-2 laminate corresponding to the
coated-cylinder assemblage with a rank-1 laminate. The Schul-
gasser laminate made from this material attains the bound (7). As
in the case of the laminate shown in Fig. 4, the volume fractions
1 follow uniquely by requiring that the laminations do not lead
to additional poles.

We then require that the pole created in the last lamination
step is identical to the pole of the two laminates from which
it is formed,

g [
e [0

(P -)+s
- (1=f@) (D =1)+f® -1

The volume fraction of phase | in the final laminate is
given by

(26)

f=F902 + (1= O) @7

which, in combination with the conditions (25) and (26),
uniquely determines the volume fractions . As these
volume fractions have to lie in the range [0, 1], the laminate
LB1 can be constructed if and only if fi € [0, 2/3]. The
y-transformed effective permittivity of the corresponding
Schulgasser laminate is given by

vt = Oy (1 W)y (28)

Similarly, we can find a corresponding laminate with
interchanged phases (LB2), with

yl,lﬂ =f(d}.}';:m + {l —fM]],V:"» (29)

if and only if f; € [1/3,0]. As these points, y.®! and y[P2,
lic on the straight line joining 22 and 2e7, the Schul-
gasser laminates formed from these laminates attain the
bound (7).

Hence, in summary, we obtain three additional
microstructures attaining the bound if /i € (1/3,2/3) with
N #£1/2 and two additional microstructures otherwise.
While it remains presently unclear whether this strategy
succeeds for every permittivity on the bound, using numer-

ical calculations, one can interpolate between the known

optimal laminates in such a way that the resulting lami-
nates, which in general have more than a single pole, come
very close to the bound. In order to do so, we choose two
of the known optimal laminates (CS1, C52, CCI, CC2,
and L), which we refer to as laminates A and B, and lami-
nate them along one of the three axes in proportions f and
I —f. Iff;* and f;® are the volume fractions of phase 1 in
the laminates A and B, respectively, the volume fraction of
phase 1 in the resulting material is given by

fi=fi*+a-Rk (30)

As, in general, this laminate is not isotropic, we form a
Schulgasser laminate in the final step. We then repeat this
process for all three axes and for all possible pairwise com-
binations of the laminates C81, C82, CC1, CC2, and L
and a large number of combinations of f* and fIE while
varying {* such that fi is kept fixed. We calculate the corre-
sponding effective complex permittivities numerically. The
results for different sets of parameters are shown in Fig. 6.
Both close to and far off resonance, the laminates closely
approach the bound (7), which demonstrates that, for all
practical purposes, it can be considered to be optimal.
Moreover, the laminates fill the region between the bounds
almost completely except for a gap close to the doubly-
coated-sphere assemblage, which is especially pronounced
in Fig. 6(d). This gap can be readily filled by, e.g., forming
a laminate with the doubly-coated-sphere assemblage.

III. AN OPTIMAL BOUND ON THE EFFECTIVE
PERMITTIVITY

We now derive our improved bound on the isotropic
effective electric permittivity that corresponds to the
doubly-coated-sphere assemblage. In the first step, follow-
ing Cherkaev and Gibiansky [9] (see also Sec. 11.5 in Ref.
[11}, we rewrite the constitutive relation in terms of the real
(primed) and imaginary (double-primed) parts of the fields,

e’ —d’
(dr.r)=l-l(':a)1 {3]}

ey —1 wy | ¢
with L = (;fg?,}_l e (!E%_}1E,E + e”) being symmetric

and positive definite. Now, we can recast the problem of
finding the effective permittivity tensor as the following
minimization variational principle (see also Ref. [9]):

_d' _da
( caﬂ) ' ""( c.,';,ﬂ) (32)
= min l((_‘;‘r) L (—éf)) (dy=dy, V-d'=0 ]

(e)=ep Ve =0
Using a constant trial field, one immediately obtains the
arithmetic mean bound L. < (L}, while the correspond-

ing dual variational principle leads to the harmonic mean
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FIG. 6. Numerical calculations of the effective complex permittivities (small squares) of Schulgasser laminates of microstruc-
tures formed by pairwise laminating the previously identified optimal laminates, CS1, CS2, CC1, CC2, and L. The different colors

correspond to the different combinations of optimal laminates. The laminates formed in this way closely approach the BM bound
corresponding to single-resonance structures, which is attained by the Hashin-Shtrikman coated-sphere assemblages (black dots), the
optimal microstructures previously identified by Milton (blue dots), and the hierarchical laminates described above (red dots). The
boundary of the region attained by Schulgasser laminates of assemblages of coated ellipsoids is shown for reference (dashed curve).
The two red curves correspond to assemblages of doubly coated spheres. In Sec. 111 of this paper, we show that the outermost of these
two curves is actually a bound. Note that the density of points in these plots in no way signifies the probability of obtaining such
permittivities in experiments. The parameters are chosen as follows. In (a) and (b), corresponding to the situation far off resonance, the
constituent permittivities are &) = 0.2 + 1.76i and £; = 3 4+ .14, respectively. While in (a) a moderate volume fraction of fj = (0.4 is
chosen, (b) corresponds to the dilute limit, f; = 0.05. In both cases, for these specific choices of parameters, one of the hierarchical
laminates identified here attains the largest possible imaginary part, i.e., it shows the strongest possible absorption. The parameters in
(cland(d)are gy = —46 +2.4i,g; =25+ 00i,and f; =0.5and &) = —4.6 + 2.4i, g; = 2.5 4+ 0.1i, and f; = 0.4, respectively.

bound L' < (L~!). Note that these two bounds are equiv-  thereby introducing the rank-2 tensor fields E(x) and D(x),

alent in the sense that they lead to the same bounds on the ~ Which, as opposed to a single solution of the quasistatic Eq.

effective permittivity tensor [9]. (1), fully characterize the composite material. The corre-
Before applying the translation method, we first embed ~ sponding microscopic version of the constitutive law takes

the variational problem (32) in a variational problem  the form

involving a tensor of higher rank [14,43,68] (see also Sec.

24.8 in Ref. [1]). Instead of working with the rank-2 ten- D=E&:E, (34)

sor L, we consider a corresponding rank-4 tensor, £, that

comprises several copies of L. Intuitively speaking, this ~ where . denotes a contraction with respect to two indices,

approach allows us to simultaneously probe the composite  i.e.,

material along different directions.

As the microscopic electric field, e(x), and the micro- Dy = EgiEy, (35)
scopic electric displacement field, d(x), depend linearly on
the macroscopic electric field, (e}, we can write and £ is a rank-4 tensor with components
e(x) = E(x){e) and d(x)=Dix){e}, (33) Egwr = egdy withij k. Te {1,2.3} (36)
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The macroscopic version of the constitutive law, which
defines the corresponding effective tensor, is given by

(D) =&, : (E). (37)

Using (E} = I and considering an isotropic composite, Eq.
(37) reduces to {I)} = &1, where &, is the scalar effective
permittivity. As the fields e and d are curl and divergence

free, respectively, we can find corresponding differential
constraints on E and D:
et Ey =0 and Dy =0. (38)

As in the rank-2 case, cf. Eq. (31), we can rewrite the
constitutive law in terms of the real and imaginary parts:

E" (=D .
(D,,)zs.(E,), (39)

with

{ rr}_1£r

B (Eﬂ]_l
f- = ( EJ(EIJ}_|£J +E” L] {4[”

fi(EHJ_I

where we have introduced the rank-4 tensor £. The com-
ponents of this tensor are related to the components of the
corresponding rank-2 tensor as follows:

Lyy = Lady withj,le {1,2,3}, i,ke(l,...,6).
(41)

We now consider a material with translated properties,
L) =L(x)-T, (42)

satisfying the following two conditions (see, e.g., Ref. [68,
69] and Chap. 24 in Ref. [1]):

(i) The translated tensor is positive semidefinite, i.e.,
Lix)—T= 0, {43)

which, as we are considering a two-phase medium, simpli-
fies to

L£,—-T=0 and L£5,-T= 0. (44)
(ii) The translation, T, is quasiconvex, i.e.,
(F:T:F)—{(F}:T:{(F)= 0 (45)

forall F = (=D, E)7, with the periodic fields I) and E
subject to the usual differential constraints.

Mote that if Eq. (45) holds as an equality, T is said to be
a null Lagrangian or, more precisely, the quadratic form
associated with T is a null Lagrangian.

Condition (i) allows us to apply the hanmonic mean
bound to the translated material,

L' <L, (46)
and condition (ii) implies that

E,<L,-T. (47)
In combination, we obtain the so-called translation bound;

(Ly=T ' = (L-17"
=AL - +4(L-T) " (48)

Analogous to the y transform of the scalar effective param-

eters given in Eq. (13), we can introduce the ¥ transform
of the effective tensor L.,

Y=L — L+ 0L — L)
ALy + Ly — L) (L — L), (49)

in terms of which the bound takes the particularly simple
form

Y+T=0 (50)

While in principle, we could consider any arbitrary trans-
lation satisfying the aforementioned conditions, it has been
shown that isotropic translations, reflecting the symme-
try of the problem, are most well suited [68]. We start by
noting that any arbitrary isotropic rank-four tensor can be
written as

Al
Agrt(A1,22.43) = Y i Okt

A2 2 A3
+ 5 (3&5;1' + 8y — Eﬁyaﬂ) + £l (5:k5ﬂ - aif’£jﬁ:}1
(51)

where the three terms correspond to projections of an arbi-
trary rank-2 tensor onto the subspaces of tensors propor-
tional to the indentity tensor, trace-free symmetric tensors,
and antisymmetric tensors. We refer to these three terms as
the bulk-modulus, shear-modulus, and antisymmetrization
terms, since in elasticity the coefficients &y and Az corre-
spond to the bulk and shear modulus, respectively, while
A1 has no counterpart as the elasticity tensor is symmetric
with respect to permutations of the first two (as well as the
last two) indices. In the following, we encounter tensors of
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the form

(A{'}"ll '1'211-3J ""{:&41 J-_'hj'rﬁj) {52]
Alhg, hs, hs)  Ald7,hg. ko) )

We use the fact that such a tensor is positive semidefinite

if and only if the three matrices
Al Ag A1 A5 Az s
(M 1?) ' (15 13) Lo (16 19) &)
are positive semidefinite. We now choose the translation as

Al—1,24,,0)

Tit, . t3) = (f‘\{—:‘g ) -’\(—531—13?—1'3]) )

Al—2h,t2, —12)
(34)

for t; = 0 and ; and #; arbitrary.

In order to show that such a translation is quasiconvex,
as shown by Tartar [14,70] and Murat and Tartar [13] (see
also Sec. 243 in Ref. [1]), and following the analogous
discussion in Ref. [15], it turns out to be useful to consider
the Fourier series of the real parts of the fields,

E'=(E)+) e ™™ E, (55)
k20
and
D = (D) + ) e Dy, (56)
k0

Since E and D are curl and divergence free, respec-
tively, we obtain the following constraints on the Fourier
coefficients:
kxEg=0 and k-Dy=10 (57)
Using Plancherel’s identity, one finds that, in order to

prove the quasiconvexity of the translation, it suffices to
show that

> D A(—1,26,0) : Dy > 0, (58)
k=0
Y Ep:A(-20.0.-n) By =0, (59)
k0
Z Dy Al—fy, —t3,—f) - Ep =10, (60)
k0

where Ej, denotes the complex conjugate of Ey. Note that
we choose A(—2iz, 1z, —t2) and A{—t;3, —t3, —13) to be null
Lagrangians (with respect to the appropriate subspaces)
rather than merely satisfying the condition of quasiconvex-
ity. As we are considering isotropic tensors, it is sufficient

to consider a single choice of k. For example, for k=
(10,7, the constraints (57) imply that the fields have the
form

0 0 0 En Epp En
D=1 Dy D] and Ep=| 0 0 0
D3y Dy Dy o 0o 0

(61}

and it becomes straightforward to show that the inequali-
ties (58 60) hold.

Having established that a translation of the form given
in Eq. (54) is quasiconvex, we can now return to the trans-
lation bound. Introducing the y transform of the effective
tensor £,

Y = —fif2 - L&

+ARE - &) - (NE 1 +LE.—E)7 - (E1- &),
(62)

we can write (see, e.g., Refl [15])

—yty
y(y”)-'y+y’)‘ ©3)

Restricting ourselves to isotropic effective permittivities,

oy
v=(ym

Y = pA(L L), (64)
we then obtain

,,,z( )AL LD ~ 'Y AL LD )
— WAL LD (N0 + DAL L D)
(65)

Using the decomposition into the bulk-modulus, shear-
modulus, and antisymmetrization terms, it becomes
clear that the translation bound reduces to the three
conditions

=l _ ¢ —(y"~y — ¢
(_ ::.r}—] ¥ _] o _'|(ys.?2 . 1_.-;1 ) = ﬂe {66}
{-}5} Ye i {}'Ej U;s} +.}’5 212
ey —1 fy—1, .
E + 2 =y )y, — 1
(_ u}_l a_l " _(]y::z ,,3 )E[L (67)
U’sj Y f 5} {}"5] +J«} + 1z
ry—1 v
(_ J?}i:l} r_ o —(:-IPE]; 2-}2 .1.13_ ) = [L {ﬁH}
U’e ) Ye—1 £ ) {yej +y. — I

which imply that the corresponding determinants are non-
negative. Thus, we obtain from the first of these conditions,
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Eq' {ﬁﬁ:L
II‘ ’ () 1 [ .
(0 =y + 0 =y —R) < 0, (69)
¥e

where we have introduced the parameters

' f "o |—|—2.|!'1I2—I§

Jfrg:_r_ls }’f —Ts
| =206+ £
R=‘$ ) (70)
2h

Hence, the y-transformed effective permittivity has to lie
inside of or on a circle with center (y), ) and radius R.
Choosing different translations, i.e., different values of 7,
tz, and f3, corresponds to moving and scaling the circle in
the complex plane. In contrast to the complex bulk modu-
lus case [13], the circle may or may not contain the origin,
as
2y "2 f2
AN ) —RI:IH (71)
is not necessarily non-negative. As shown below, the first
condition leads to bounds that constrain the y-transformed
effective permittivity to a region in the complex plane that
is bounded by a circular arc and a straight line. As the
circular arc turns out to correspond to the doubly-coated-
sphere assemblage and the straight line corresponds to the
bound (7), which is the tightest possible bound that is vol-
ume fraction independent in the y plane, the second and
third conditions cannot provide any additional information
and may be disregarded.

We now identify the restrictions on the parameters y/,
¥, and R, ie., on the choice of circles bounding the
y-transtformed effective permittivity, imposed by the condi-
tion that the translated tensor is positive semidefinite, i.e.,
by Eq. (43). Using the fact that the permittivity tensors of
the two phases are isotropic,

E,=gA(L11) forie{l,2}, (72)

we find that

ﬁ__({s;*n-'ﬁu,l,l} )" eAL, 1, 1) )
TAEDTEAML LD ()7 ED DA LD )
(73)

Again using the decomposition into the bulk-modulus,
shear-modulus, and antisymmetrization terms, we find that
the positive semidefiniteness of the translated tensor is
equivalent to the three constraints

( )" +n (e)ef + 13

0, (74
(el + 1 {s;“y-'(a;}2+s;’+zxz)3 » 3)

()" =24 (N6l + 13
(fs;'r's: +h () ED e — 1
( (ef)! () 'e] +13
(N e+ (ENTHED 45 + 0

) >0, (75)
) >0, (76)

which imply that the corresponding determinants are non-
negative. Evaluating the first two determinants gives

Ve’ + 0 ) 2 R (77)
and
Wl =26 + (0 = 260) < R, (78)

By considering the remaining principal minors, ie., the
diagonal elements, it can be shown that Egs. (77) and (78)
are not only necessary but also sufficient for the first two
constraints, Eqs. (74) and (75). Furthermore, the third con-
straint, Eq. (76), can be discarded, as it can be written as a
weighted arithmetic mean of the other two constraints.

Hence, the restriction to positive-semidefinite translated
tensors corresponds to choosing the parameters of the
translation such that 2&) and 2&; do not lie outside of the
circle and —&) and —e; do not lie inside of the circle. The
extremal franslations consistent with this restriction cor-
respond to a generalized circle, the halfspace bounded by
the straight line between 2y and 2e; that does not contain
—&) and —&;3, and one of the two circles passing through
2e1, 2e2, and —gq or —ea.

Thus, we find that, as illustrated in Fig. 7, the yp-
transformed effective complex electric permittivity is
bounded by the straight line joining 2& and 2&; on one side
and the outermost of the two circular arcs passing through
2e|, 25 and —e) or —e3 on the other side. While the former
bound, which is the one given in Eq. (7), has been previ-
ously derived using the analytic method, the latter bound
is tighter than any previously identified bound and even
turns out to be optimal, as it corresponds to assemblages of
doubly coated spheres. The effective permittivity of such
an assemblage (see, e.g., Sec. 7.2 in Ref. [1] for a detailed
discussion), with phase 1 in the core and the outer shell and
phase 2 in the inner shell, is given by

] 3per + (1 —pie + 2e3)
3pe + (1 —p)ie) + 2ep)’

yost = (79)

where the volume fractions of the core, the inner shell, and
the outer shell are pfi, 1 —fi1, and (1 — p)fi, respectively.
Clearly, this equation corresponds to a circular arc pass-
ing through 2, 2&;, and —g;. For the phase-interchanged
case, i.e., phase 2 in the core and the outer shell and phase
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FIG. 7. An illustration of the bounds on the y-transformed
effective electric permittivity. The analytic bounds by Bergman
and Milton correspond to the straight black line joining 2#) and
2g5 and the blue circular arc passing through 2, 2s5, and the
origin. Using variational methods, we find that y-transformed
effective electric permittivity is confined to the gray-shaded
region, i.e., the region that is additionally bounded by the out-
ermost of the two red circular arcs passing through 2e, 2e7, and
—&1 or —g3, which correspond to Hashin-Shtrikman assemblages
of doubly coated spheres. The parameters are gy = 0.2 + 1.5iand
gy = 3 4044

1 in the inner shell, one obtains

Ipe1 4+ (1 —plie2 + 2&1)

J’Dcm = LE3
e 3per + (1 —p)(ea + 2&1)

(80)

which corresponds to a circular are passing through 2e,
2e5, and —e3. Here, the volume fractions of the core, the
inner shell, and the outer shell are p(1 — fi). f1. and (1 —
Pl — fi), respectively.

IV. RELATION TO BOUNDS ON THE COMPLEX
POLARIZABILITY

As shown in Ref [71], bounds on the effective com-
plex permittivity for small values of fj directly lead to
bounds on the orientation averaged complex polarizability
of an inclusion (or set of inclusions) having permittivity
g1 embedded in a medium with permittivity ;. Indepen-
dently, Miller ef al. [72] have derived explicit bounds on
the imaginary part of the polarizability (which describes
the absorption of electromagnetic radiation by a cloud of

small particles, each much smaller than the wavelength)
and subsequently, in Ref. [52], explicit bounds have been
obtained on the complex polarizabilty (not just its imag-
inary part) by taking the dilute limit fj — 0 in the BM
bounds, keeping the leading term in fi. It is important to
remark that the elementary arguments of Ref. [73] and its
recent generalizations incorporating size-dependent radia-
tion effects [74-76] lead to useful bounds that are valid
at any wavelength and are not necessarily large compared
to the particle size. Our improved bound naturally also
applies when the volume fraction f; is small and thus
produces a tighter and optimal bound on the complex
polarizability.

Consider, in the quasistatic regime, a dilute suspen-
sion of randomly oriented identical particles in vacuum or
air. The effective relative permittivity of such a cloud of
particles is given by

£, 7 1 +ﬁ¥,

(81)
where Tr{e)/3 and F are the angle-averaged polarizabil-
ity tensor and the volume of each of the particles. Then, it
follows from the bound (7) and our improved bound cor-
responding to the doubly-coated-sphere assemblage that

the orientation-averaged polarizability per unit volume,
Triee)/(3¥), is bounded by the circular arc

2
BM X1
o) = ¥ — (82)
( T x 260+ 1
and the outermost of the straight line-segment
3 Quy;
&P gy — L1 + Uy (83)
x1+3 300+ D0 +3)
and the circular arc
In3+2
@S2y — xi(3+2x) (84)

T 900 4 1)+ 2uxi’

where y; is the electric susceptibility of the constituent
material of the particles and we [, 1]. This result
improves on the bounds derived in Ref. [52] that follow
from the BM bounds.

We immediately obtain a corresponding bound on the
angle-averaged extinction cross section per unit volume of
a quasistatic particle [77],

Oext 27 Im Trie)

Voo 3w )7
which is a measure of the efficiency at which a particle
scatters and absorbs light, This bound reads as

(85)

Taxt 2T .
— = 5 max {Im (@™ @), Im (@)}, (@6)
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and improves on the bounds by Miller ef al. [72], which
follow from the BM bounds. The (albeit typically small)
improvement over these previously derived bounds is
obtained if the maximum corresponds to a point on the
arc &P (y) with u € (0, 1). For example, this is the case
for materials with a large negative real part of the suscep-
tibility, i.e., metals, which give the largest values of the
extinction cross section per unit volume. Ideally, to max-
imize the absorption, one chooses a metal with a small
imaginary part of the susceptibility.

V. SUMMARY AND CONCLUSIONS

We study the range of effective complex permittivi-
ties of a three-dimensional isotropic composite material
made from two isotropic phases. We start from the well-
known Bergman-Milton bounds, which bound the effective
complex permittivity by two circular arcs in the complex
plane. In the first step, we show that several points on
one of these arcs are attained by a specific class of hier-
archical laminates, Furthermore, on the basis of numerical
calculations, we show that there is a natural way of interpo-
lating between these laminates, which results in laminates
approaching the arc in the gaps between these points. We
then show, using established variational methods, that the
second arc can be replaced by an optimal bound that cor-
responds to assemblages of doubly coated spheres. Using
this result, we derive corresponding bounds on the angle-
averaged polarizability and the extinction cross section
of small particles. While we focus on bounds using the
quasistatic approximation, our results should be a useful
benchmark for future bounds that might be more generally
valid. For example, bounds on the absorption and scatter-
ing of radiation by particles of general shape and valid at
any frequency have been derived in Ref. [73]. While these
bounds are quite tight, they are not as tight as our bounds
in the quasistatic limit. This shows that there is room for
improvement, perhaps using some sort of hybrid bounding
method.
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