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ABSTRACT

Recent effort to test deep learning systems has produced an intuitive

and compelling test criterion called neuron coverage (NC), which

resembles the notion of traditional code coverage. NC measures the

proportion of neurons activated in a neural network and it is implic-

itly assumed that increasing NC improves the quality of a test suite.

In an attempt to automatically generate a test suite that increases

NC, we design a novel diversity promoting regularizer that can be

plugged into existing adversarial attack algorithms. We then assess

whether such attempts to increase NC could generate a test suite

that (1) detects adversarial attacks successfully, (2) produces natural

inputs, and (3) is unbiased to particular class predictions. Contrary

to expectation, our extensive evaluation finds that increasing NC

actually makes it harder to generate an effective test suite: higher

neuron coverage leads to fewer defects detected, less natural inputs,

and more biased prediction preferences. Our results invoke skep-

ticism that increasing neuron coverage may not be a meaningful

objective for generating tests for deep neural networks and call for

a new test generation technique that considers defect detection,

naturalness, and output impartiality in tandem.
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• Software and its engineering → Software testing and de-
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Neural networks.
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1 INTRODUCTION

Extensive progress in machine learning has enabled computers

to model expected behavior with minimal human guidance and

has led to its integration into many safety-critical systems [5, 24].

Since all software is prone to unanticipated and undesirable defects,

creating test suites and assessing their quality is an important part

of building confidence during the software lifecycle.

To assess the test adequacy of neural networks, prior work pro-

posed neuron coverage (NC) [47] and its variants [37, 58]. This

notion of NC builds on the intuition of code coverage, whilst rec-

ognizing the unique challenges and structures of neural networks.

NC describes the proportion of neurons activated beyond a given

threshold. The intuition here is that NC captures the magnitude

of individual neuron activations independently and thus serves as

a proxy for observing model behavior. Based on the implicit as-

sumption that increasing NC can improve test suite quality, NC was

used to guide test generation [47, 58]. Prior work found preliminary

evidence that NC is correlated with defect detection capability [58].

To systematically increase NC during test generation, we de-

velop a novel diversity-promoting regularizer that can be plugged

into existing adversarial attack algorithms such as PGD [39] and

CW [8]. This regularizer penalizes skewed layer-wise activations to

promote more diverse neuron activation distributions. As a result,

our regularizer can be added to augment existing adversarial at-

tack methods so that these methods can induce previously inactive

neurons to fire and thereby increase NC. While prior work [47, 58]

has attempted to improve a few neurons’ activation magnitudes at

each optimization step, our diversity-promoting regularizer makes

this process more systematic by incorporating NC increase and

diversification into the optimization objective.

We then assess the generated test suites using three criteria. The

first is defect detection capability, i.e., the ability to detect adver-

sarial attacks. The second is the naturalness of the generated test

inputs and we use the Inception Score (IS) [4, 51] and the Frèchet

Inception Distance (FID) [17, 42] to assess how realistic the gener-

ated test inputs are. The third criterion is output impartiality, the

degree to which model predictions are biased (or unbiased) towards

particular class labels. Assessing impartiality is inspired by the

output-uniqueness test selection criteria [2], as the test suite must

exercise diverse output behavior and should not prefer only a few

output values. We quantify output impartiality via Pielou’s even-

ness [49], an entropy-based measure [54] from the field of ecology.

* This research was done while the third author was a graduate student at UCLA.
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Equipped with the above evaluation metrics and the novel di-

versity promoting input generation method, we investigate the

trade-offs between neuron coverage, defect detection, naturalness

and output impartiality. We study two image classification datasets

(MNIST and CIFAR10), one autonomous vehicle dataset (Udac-

ity Self-Driving Car), six classification-based DNN models, two

regression-based DNN models, and two attack algorithms (CW and

PGD). In total, 2095 test suites, over 200,000 images, are gener-

ated. Each test suite represents a different configuration of models,

datasets, attack algorithms, and hyperparameter combinations used

for targeting certain layers and promoting diversity in neuron acti-

vations. This extensive analysis finds that increasing NC actually

makes it harder to generate an effective test suite.

(1) Defect Detection: Only 2 out of 64 experimental results

supported the hypothesis that NC is both strongly and posi-

tively correlated with defect detection (i.e., adversarial attack

success), whereas 33 were negatively correlated, implying

that increasing NC is likely to harm defect detection.

(2) Naturalness: Only 1 out of 64 results supported the hypoth-

esis that NC is both strongly and positively correlated with

the realism and naturalness of the inputs, whereas 44 were

negatively correlated, implying that increasing NC is likely

to make the generated inputs more unnatural.

(3) Output Impartiality: Only 3 out of 64 results supported the

hypothesis that NC is both strongly and positively correlated

with impartiality in output predictions, whereas 21 were

negatively correlated. Certain class labels have higher NC

by default and the process of increasing NC in fact biases

perturbations towards those output class labels.

Our key contributions are summarized as follows:

• We develop a novel regularization technique that can be

seamlessly integrated into existing adversarial attack meth-

ods to promote neural activation diversity and increase neu-

ron coverage during test suite generation.

• We adopt the Inception Score (IS) [51] and Frèchet Inception

Distance (FID) [17] as generic, scalable, and automatic means

of evaluating naturalness. We are the first to apply Pielou’s

evenness [49] to examine the previously under-investigated

issue of output impartiality in test suites.

• We conduct extensive evaluations to show that NC is nei-

ther positively nor strongly correlated with attack success,

input realism, and output impartiality, which we argue are

important properties to consider when testing DL systems.

• We put forward the complete code and artifacts to automati-

cally generate test suites and replicate our empirical analysis

at https://doi.org/10.5281/zenodo.4021473

Overall, our findings invoke skepticism that neuron coverage

may not be a meaningful measure for testing deep neural networks.

This result is aligned with recent skepticism that, while code cov-

erage remains a widely used test adequacy criterion [6, 23], code

coverage may not be correlated with defect detection [22] and thus

may not be a meaningful metric by itself. Similar to how Inozem-

seva et al. [22] highlight an empirical lack of correlation between

traditional code coverage and defect defection, our result is about

a lack of correlation, not causation. We do not claim that NC is

useless; rather, we warn researchers about the potential misuse of

NC as the objective for test generation because a naive attempt to

increase NC could sacrifice other desired properties.

These findings call for a new test generation method that not

only improves defect detection, but also promotes naturalness and

output impartiality to create realistic inputs and to exercise diverse

output behavior. This argument to incorporate additional objectives

is aligned with a recent survey of testing ML-based systems [62]

that lists multiple desired testing properties, including correctness,

model relevance, robustness, security, efficiency, fairness, inter-

pretability, privacy, and surprise adequacy. Satisfying such multiple

objectives may necessitate the use of multi-objective search tech-

niques [31] or enable users to easily add domain-specific constraints

to guide meaningful input transformation and oracle checking in

metamorphic testing [52].

2 RELATEDWORK

This section reviews related work on DL systems, DNN testing, and

adversarial attacks. Work relevant to our methodology is described

in greater detail in Section 3.

DeepLearning Systems.DNNs have achievedmany breakthroughs

in the field of artificial intelligence, such as speech recognition [18],

image processing [28], statistical machine translation [3], and game

playing [55]. Each DNN contains basic computational units called

neurons, which are connected with one another via edges of vary-

ing importance or weight. Neurons apply a nonlinear activation

function to the inner product of their inputs and weights to output

a value, which becomes the input to a subsequent neuron. Layers

are used to organize the directed connections between neurons and

there is always one or more hidden layers between one input and

one output layer. Overall, a DNN can be viewed as a meta-function

that aggregates the weighted contributions from its neural sub-

functions to map some input into some target output. Suboptimally

set weights make the DL system vulnerable to erroneous behav-

iors and the opacity of these numerically-derived rules make them

difficult to understand and debug.

DNN Testing. With the success of deep learning, there emerged

a line of research into testing DNNs by leveraging the ideas in

traditional software testing methods [15, 40]. We discuss several of

the most relevant DNN testing methods that utilize the NC-based

criteria as follows.

DeepXplore [47] is a white-box differential testing algorithm that

leverages NC to guide systematic exploration of DNN’s internal

logic. Input images are modified by several domain-specific trans-

formations, and a transformed image is selected for inclusion into

a test suite if it fools at least one of several similarly trained DNNs.

Their study finds that NC is a better metric than code coverage and

increasing NC tends to increase �1-distance among inputs.

DeepTest [58] is a gray-box, NC-guided test suite generation ap-

proach using metamorphic relations. This effort introduced a wider

range of affine transformations to predict the steering angle of an

autonomous vehicle. DeepRoad [63] is a GAN-based metamorphic

testing approach that utilizes a shared latent space representation

to perform a sophisticated style transfer of some target road condi-

tion, i.e., rain, snow, etc., to a given source image. DeepRoad makes

no attempt to systematically explore the possible input space via

a metric like NC but finds that GAN-based transformations could

expose new faulty behaviors.
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DeepGauge expands on the idea of NC [37] by introducing three

new neuron-level coverage criteria and two layer-level coverage

criteria to produce a multi-granular set of DNN coverage metrics.

To argue for the utility of these metrics, DeepGauge uses standard

adversarial attack techniques [8, 14, 30, 46] to generate test suites.

It then compares the NC of the original test suite against that of the

new, augmented test suite, boosted by the generated adversarial

examples. By doing so, it finds some evidence that adding adversar-

ial examples tends to increase NC in terms of most of the proposed

criteria. In Section 5, we report our results that explicit effort to

increase NC actually does not improve defect detection and is often

harmful in terms of naturalness and output impartiality.

Recent on-going work [11, 33, 53] found preliminary evidence

that the correlation between NC and DNN robustness is rather

limited and that similar structural coverage metrics for DNNs could

be misleading. Specifically, their test suites are generated using the

standard adversarial attack methods, and their evaluation is limited

to defect detection only. Our study scope is more comprehensive:

we use automated, quantitative measures of naturalness and out-

put impartiality in addition to defect detection and systematically

investigate the trade-offs; we design a novel diversity promoting

regularizer to extend existing adversarial attack algorithms; and we

include both classification models and regression models (8 models

in total), as opposed to classification models only.

While our evaluation focuses on generating test suites, others

focus on selecting existing tests based on model uncertainty [38] or

surprise adequacy (i.e., significantly different and adversarial) [25].

Finally, it is worth noting that our proposed output impartiality

criteria discussed in Section 4.3 is different from the concept of

fairness in machine learning [9]. Fairness in ML is concerned with

the bias of an ML model with respect to sensitive attributes, such

as gender or race. Along a similar vein, Themis, a software fairness

testing tool by Galhotra et al. [12], automatically detects causal

discrimination between input-output pairs for user-specified at-

tributes. In sharp contrast with these notions of fairness, our output

impartiality is a measure of the bias on how a test suite exercises

diverse output behaviors in an ML model.

Adversarial Attacks. Recent studies show that DNNs are vulner-

able to adversarial examples [14, 57], i.e., by adding a very small, of-

ten visually imperceptible, perturbation to an input, a well-trained

DNN may produce misclassifications. While adversarial attacks

employ a variety of methods to induce erroneous behavior, their

effectiveness is largely measured by the attack success rate of the

perturbed inputs and its distortion from the original inputs. Most

optimization-based adversarial attacks [8, 39] are based on �2 or

�∞ norm-based perturbation. Some work [47, 58] has attempted

to improve or side step the norm constraint with domain specific

transformations. In our evaluation of neuron coverage, we use the

standard attack methods with �∞ norm constraint, because these

methods are efficient and can generate natural examples.

Adversarial attack algorithms offer both targeted and untargeted

attacks for perturbing inputs to be predicted as some other class.

Untargeted attacks aim to turn the prediction into any incorrect

class, while targeted attacks aim to turn the prediction into a specific

class. We use untargeted attacks to give them more freedom to

perturb the input in whichever way NC maximization incentivizes.

Table 1: DNN Architectural Details

DNNs Dataset
Primary

Layer Type
# Layers # Neurons

FCNet5 MNIST Fully Connected 5 478

FCNet10 MNIST Fully Connected 10 3,206

Conv1DNet MNIST Conv1D 4 35,410

Conv2DNet MNIST Conv2D 4 15,230

ResNet56 [16] CIFAR10 Conv2D 56 532,490

DenseNet121 [19] CIFAR10 Conv2D 121 563,210

DAVE2 [5] Driving Conv2D 10 82,669

DAVE2-N [47] ‘ Driving Conv2D 10 82,669

3 STUDY METHODS

This section describes the datasets, DNN models, and adversarial

attack algorithms used for our empirical study and describes our

diversity promoting regularizer to increase neuron coverage.

3.1 Datasets and DNNs

Table 1 summarizes architectural details of all the DNNs under test.

CIFAR10 [27] is a dataset containing 32x32x3 RGB pixel images

representing ten mutually exclusive classes of naturally occurring

entities that are suitable for IS and FID realismmeasurement.We use

two well-known pre-trained DNNs: a 56-layer ResNet [16, 20] and

a 121-layer DenseNet [19, 48], both of which achieve competitive

performance on this dataset.

MNIST [32] is a large, well-studied dataset containing 28x28x1

gray-scale pixel images representing handwritten digits from 0 to

9. For this dataset, we consider two fully connected neural net-

works: FCNet5 with 5 hidden layers and FCNet10 with 10 hidden

layers, and two convolutional neural networks: Conv1DNet and

Conv2DNet. Both convolutional neural networks have 2 convo-

lutional layers followed by 2 fully connected layers, but vary the

primary convolutional layer type from 1D to 2D. All MNIST DNNs

were trained for 10 epochs using an Adam optimizer [26].

The two realism metrics we employ—IS [51] and FID [17]—are

tuned on the internal structures of natural images which generally

have both foregrounds and backgrounds. Because such naturalism

is not applicable to a digit recognition task, we exclude MNIST

when studying the relationship between NC and naturalness.

Udacity Self-Driving Car [1] is a dataset containing 480×640×

3 RGB pixel images extracted from video footage shot by a camera

mounted to the front of a moving vehicle and the corresponding

angle of the steering wheel (±25◦) for each frame. We use two pre-

trained DNNs: DAVE2 and DAVE2-Norminit (abbreviated DAVE2-

N), used by DeepXplore [47] and originally from NVIDIA [5].

3.2 Measuring Neuron Coverage

Pei et al. [47] formally define neuron coverage by the following:

neuron_cov(T , x, t) =
|{n |∀x ∈ T ,out(n, x) > t}|

|N |

where N = {n1,n2, ...} represents all the neurons in the DNN; T =

{x1, x2, ...} represents all test inputs (i.e., those to be perturbed);

out(n, x) is a function that returns the output value of neuron n

for a given test input x scaled to be between 0 and 1 based on

the minimum and maximum neuron activations for the layer; and
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Figure 1: Single Layer DNN. � represents inputs (i.e., pix-

els, features, etc.). � represents a hidden layer of 5 neurons,

where parentheses denote activations scaled between 0 and

1 for comparison against a NC threshold. � represents an

output layer of 1 neuron (i.e., class logits, probabilities, etc.).

t is the user-set threshold for determining whether a neuron is

sufficiently activated.

Figure 1 depicts an example neural network with a single hid-

den layer. Each circular node corresponds to a neuron organized

and color-coded by layer. The hidden layer neurons also contain

their layer-wise scaled activations in parentheses for comparison

against a chosen threshold t . If t = 0, then NCt=0 = 4/6 = 0.67,

or if t = 0.75, then NCt=0.75 = 1/6 = 0.17. Selecting an appro-

priate threshold t was an open issue in early NC research. When

measuring NC, we vary a threshold t for the range used by prior

work [37, 47, 58], t ∈ { 0, 0.2, 0.5, 0.75 }.

3.3 Adversarial Attack Algorithms

Using adversarial attacks for test generation is analogous to fuzzing

in software testing and acts as a means of introducing targeted

perturbations. We select the following two adversarial attack algo-

rithms [8, 39] due to their widespread usage in the ML literature.

Carlini-Wagner (CW) [8] constructs the adversarial example

x + δ , where x is the original input to attack, δ is the adversarial

perturbation, by solving the following optimization problem:

min
δ

α · L
(
h(x + δ),y

)
+ ‖δ ‖p subject to x + δ ∈ [0, 1]n,

where y is the label of x, L is a suitable loss function, h is the target

model, ‖ · ‖p denotes the �p -norm such as �∞, �0, �2 norms, and α

is a scaling constant to balance the the loss L and the �p -norm. The

intuition behind the CW attack is to find some small perturbation

δ that we can add to the original input x such that it will lead the

target model to change its classification. To achieve this, the CW

attack exploits the loss function L to guide the generation of δ

that will make the target model’s classification on x + δ different

from x. By minimizing the �p -norm of δ , the CW attack can ensure

that such perturbation is small. In this effort, we use the �∞ norm,

where distance is measured by the pixel with the greatest magni-

tude change from its original value. As for the loss function L, we

use the loss function provided by Carlini and Wagner [8] for our

classification tasks. For our regression models, we substitute the

standard CW loss function for a custom loss designed for regression

tasks by Meng et al. [41].

Figure 2: Neural activation before and after regularization:

our regularization significantly promotes NC at t = 0.2.

Projected Gradient Descent (PGD) [39] finds the adversarial

example x + δ by solving the following maximization problem:

max
δ

L
(
h(x + δ),y

)
subject to ‖δ ‖p ≤ ϵ,

where y is the label of x, h represents the target model, L is the

loss function for training h, ϵ is the perturbation limit. The max-

imization step will guide us to find the adversarial example and

the �p norm constraint will make the perturbation small. For the

PGD attack, projected gradient descent is performed to solve the

above constrained optimization problem. We consider the �∞ norm

constraint as in the CW attack, and use the sign of the gradient

[14] to efficiently solve the maximization problem. For the loss

function L, we choose the cross-entropy loss for classification tasks

and mean square error for regression tasks. We vary a different

perturbation limit ϵ ∈ {0.1, 0.2, 0.3} for the norm bounds to explore

its possible effects on NC.

3.4 Extending Attacks to Increase NC

Adversarial attacks aim at creating perturbed inputs to achieve

two primary objectives—maximizing loss while keeping �p -norm

distance from the original inputs small. Previous research [37, 47]

found that these algorithms do not produce any significant varia-

tion in NC. To increase NC while leveraging the skeleton of existing

adversarial attacks, we design a novel adversarial attack regularizer

to incorporate the maximization of NC as an additional objective.

Our regularizer works by penalizing skewed layer-wise activations

and thus promotes more diverse neural activation distributions. Di-

versity promotion has the effect gravitating all neurons toward the

average magnitude of activation. Here we show the extended CW

attack, augmented with our new diversity-promoting regularizer:

min
δ

α · L
(
h(x + δ),y

)
+ ‖δ ‖p + λ ·

∑

l

div(outl (x + δ),U )

subject to x + δ ∈ [0, 1]n,

where λ > 0 is a user-set diversity weight to control how strongly

we wish to induce higher NC; div(·) is a divergence function; outl (·)

is a function that returns the neural activations from the lth layer

of the DNN for the perturbed inputs x + δ ; U represents a uniform

distribution; and we consider �∞ norm in our method (i.e., choosing

p = ∞). We use the Kullback-Leibler (KL) divergence [29] to im-

plement our div(·) function, but any other measure of the distance

between two probability distributions could be suitable. KL diver-

gence measures how much information is lost by approximating

the neural activations as if they were perfectly uniform—the higher

the loss, the less diverse the activations. With a sufficiently high
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Table 2: Original NC, Average % Increase from Original NC, and Maximum % Increase from Original NC

NCt=0 (%) NCt=0.2 (%) NCt=0.5 (%) NCt=0.75 (%)

DNNs Orig Avg ↑ Max ↑ Orig Avg ↑ Max ↑ Orig Avg ↑ Max ↑ Orig Avg ↑ Max ↑

FCNet5 96.09 0.56 0.66 61.21 22.59 61.72 15.01 45.75 173.98 4.33 38.72 171.88

FCNet10 78.52 7.65 18.63 16.79 54.68 98.90 3.70 38.27 71.63 0.89 63.77 123.91

Conv1DNet 68.08 4.82 14.50 12.67 8.77 45.33 1.26 12.85 139.58 0.48 15.16 63.38

Conv2DNet 94.96 1.77 4.18 23.89 9.11 36.47 6.66 25.48 55.69 1.23 67.88 122.04

ResNet56 95.07 0.22 0.40 26.87 4.31 11.77 5.42 6.17 21.76 1.29 6.20 15.71

DenseNet121 96.46 0.04 0.06 12.88 7.00 14.49 1.20 6.59 15.85 0.16 11.77 31.87

DAVE2 78.11 9.99 15.09 13.32 4.39 30.62 2.45 -5.78 9.28 0.72 -16.17 29.23

DAVE2-N 77.57 11.90 17.26 14.69 26.77 59.26 2.54 2.63 28.91 0.46 -1.26 37.14

Average 85.61 4.62 8.85 22.79 17.20 44.82 4.78 16.50 64.59 1.20 23.26 74.40

Table 3: Experimental Variables

Variable Values

Adversarial Attacks CW, PGD

DNNs FCNet5, FCNet10, Conv1DNet

Conv2DNet, ResNet56, DenseNet121

Datasets MNIST, CIFAR10

Target Layers Varies

λ Diversity Weights 0, 100, 101, 102, 103, 104, 105

c Confidence (CW)1 0, 20, 40

ϵ Limit (PGD) 0.1, 0.2, 0.3

regularization weight placed on this objective, diversity promotion

can induce previously inactive neurons to fire and increase NC. It is

important to note that adding the regularizer does not necessarily

harm the attack success rate as approximately 23% of our generated

suites have 100% attack success. However, there tends to be an

inverse relationship between the regularization weight (λ) and the

attack success rate. For example, the average attack success rate is

65% when λ is 0, and with increasing λ to 1, 101, 102, 103, 104, and

105, the average attack success rate is 53%, 51%, 48%, 43%, 38%, and

35%, demonstrating some decrease. Figure 2 shows how our regu-

larization promotes higher NC by having more neurons activated

by visualizing neuron activation at a given layer in Conv2DNet.

Table 2 shows our regularizer’s effectiveness in terms of the

average and maximum percent increases in NC over the baseline

NC of the original test suite images for all models. Naturally, already

highly activated DNNs are more difficult to activate further, making

NCt=0 undesirable for comparison purposes. On the other hand,

NCt=0.5 and NCt=0.75 activate significantly smaller portions of the

network. We report primarily on NCt=0.2 for visual figures.

As an implementation note, our diversity-promoting regularizer

can target a specific layer, contiguous and non-contiguous layer

subsets, or all layers simultaneously. In our experiments, we vary

the target layer one at a time, primarily to evaluate the sensitivity

of NC to this regularization. For the MNIST models, we target each

layer in turn. However, for larger models, we target k layers (default

k = 6) evenly spaced in the model, starting from the first hidden

layer and ending at the output layer.

Figure 3: NCt=0.2 vs ASR: the results show that NC does not

consistently correlate with defect detection.

4 FINDINGS

For each configuration, we construct a test suite of 100 randomly

selected images such that each class is equally represented. This

is to ensure that the suite has complete output impartiality before

perturbation. We then use the NC-augmented adversarial attack

algorithm to perturb the original tests before computing NC at

threshold t ∈ {0, 0.2, 0.5, 0.75}, defect detection, IS, FID, and output

impartiality. Finally, we perform an analysis of 2,095 test suites to

measure the strength, direction, and significance of correlation. The

experimental conditions are listed in Table 3.

1The parameter c encourages the solver to find an adversarial instance that is classified
as a specific class with high confidence, see Carlini and Wagner [8] for detail.
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Table 4: Correlation between NC & ASR: Gray indicates a p-value > 0.05

CW - ASR Correlations PGD - ASR Correlations

DNNs NCt=0 NCt=0.2 NCt=0.5 NCt=0.75 NCt=0 NCt=0.2 NCt=0.5 NCt=0.75

FCNet5 -0.20 -0.23 -0.18 0.07 -0.10 -0.52 -0.52 -0.32

FCNet10 -0.67 0.76 0.75 0.04 -0.18 -0.16 -0.10 0.14

Conv1DNet NA NA NA NA 0.58 -0.37 0.10 0.05

Conv2DNet -0.16 -0.20 -0.29 -0.23 0.08 -0.04 -0.16 -0.36

ResNet56 -0.46 0.59 0.58 0.57 -0.11 0.52 0.53 0.21

DenseNet121 -0.83 -0.21 -0.06 0.13 0.19 0.18 0.20 0.11

Dave2 0.02 -0.17 -0.27 -0.21 0.30 -0.16 -0.45 -0.34

Dave2-N NA NA NA NA 0.00 -0.10 0.00 -0.08

Average -0.38 0.09 0.09 0.06 0.10 -0.08 -0.05 -0.07

All correlations are presented in a tabular form and we visualize

a sample of the NCt=0.2 results for PGD for presentation purposes.

We adopt a standardized delineation of correlative significance

laid out by Ratner [50] to characterize values between 0 and ±0.3

as weak, ±0.3 to ±0.7 as moderate, and ±0.7 to ±1.0 as strong.

Correlation coefficients are also color-coded according to whether

or not they are statistically significant. Gray indicates a p-value

> 0.05 and such values are discounted in our subsequent analysis.

Emboldened values indicate that the results support the associated

hypothesis and all others do not.

4.1 Defect Detection

4.1.1 Study Method. Since our approach relies on adversarial at-

tacks to generate test suites, we equate the attack success rate

(ASR) with defect detection rate (DDR) and use both measures in-

terchangeably. Let pert_acc represent the classification accuracy

on the adversarially perturbed suite of test inputs (T ), then DDR

is simply ASR(T ) = 1 − pert_acc . In order to use the same metric

for the regression driving models, we discretize their continuous

outputs into 25 equal-width intervals [59], each representing a 2◦

difference in steering angle.

4.1.2 Results. Figure 3 visualizes the relationship between NC and

ASR, broken down by DNN for the PGD attack, which shows that

NC is volatile and NC does not consistently correlate with defect

detection. Even for models that share a large degree of architectural

similarity, like the FCNet5 and FCNet10 models, the correlations dif-

fer in both strength and direction, reinforcing the unpredictability

of NC.

Table 4 shows the results of all configurations broken down by

an attack algorithm, network, and t threshold. Only 2 out of 64

correlations satisfy the hypothesis that NC is both positively and

strongly correlated with defect detection. Independent of direction,

58% of experimental configurations show a weak correlation, while

25% are merely moderate. The correlation is positive in only 36% of

configurations, negative in 52%, and non-existent in 12%.

Defect Detection. Our findings reject the hypothesis that

NC is strongly and positively correlated with defect detec-

tion. Only 3% of the configurations supported this.

4.2 Naturalness

DL systems are designed to solve real-world problems and there-

fore a test suite must have realistic and natural inputs. In fact,

several prior techniques are motivated by this naturalness goal

and state this requirement. For example, DeepXplore [47] uses

domain-specific constraints to generate test images that are valid

and realistic. DeepTest also states that it seeks to apply well-behaved

transformations to preserve realism [58, 63]. We explicitly inves-

tigate whether maximizing NC can generate test suites reflecting

the naturalness of the expected input space.

4.2.1 Study Method. Appraising the visual quality of an image can

be highly subjective and there is still no definitive solution on how

to formalize its naturalness. Fortunately, research into generative

adversarial networks (GANs) [13] has produced several popular

metrics for this purpose.We select the twomost highly citedmetrics

from the GAN literature to objectively measure naturalness.

The Inception Score (IS) [4, 51] formalizes the concept of nat-

uralness by decomposing it into the following two sub-concepts:

• Salience. Of the possible class labels that could be applied

to an individual image, only one has a high probability and

the others are very low. This corresponds to the image being

highly recognizable.

• Diversity. There are many different kinds of classes present

across all images in the set.

The Frèchet Inception Distance (FID) [17, 42] is a measure

of similarity between two datasets of images. It is calculated by

computing the Frèchet distance between two Gaussians fitted to

feature representations of the final average pooling layer within

the InceptionV3 network [56]. The inventors, Heusel et al., find

evidence that FID captures the similarities of generated images

better than IS and that FID correlates well with human judgement

of visual quality. Unlike IS, the lower the FID value, the more real-

istic the images are, since the distance from the original images is

smaller. Therefore, we investigate whether NC has a strong negative

correlation with FID.

In the ML community, ImageNet [10] is considered as a com-

prehensive data set for image classifications. Thus, the authors of

IS and FID derived these metrics based on the models trained on

ImageNet and demonstrated generalizability to other datasets such

as SVHN [43], CelebA [35], CIFAR10 [27], and LSUN Bedrooms [60].
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Table 5: Correlation between NC & Naturalness: Gray indicates a p-value > 0.05

CW - IS / FID Correlations PGD - IS / FID Correlations

DNNs NCt=0 NCt=0.2 NCt=0.5 NCt=0.75 NCt=0 NCt=0.2 NCt=0.5 NCt=0.75

ResNet56 0.09 / 0.27 -0.87 / 0.76 -0.81 / 0.75 -0.59 / 0.59 0.34 / -0.03 -0.38 / 0.42 -0.52 / 0.46 0.06 / -0.14

DenseNet121 0.57 / -0.23 0.73 / 0.13 0.63 / 0.24 0.46 / 0.35 -0.15 / 0.26 0.16 / -0.06 -0.08 / 0.16 0.19 / -0.12

Dave2 -0.62 / 0.61 -0.32 / -0.22 0.02 / -0.31 0.21 / -0.18 -0.55 / 0.49 -0.89 / 0.97 -0.53 / 0.60 -0.29 / 0.29

Dave2-N 0.56 / 0.88 -0.48 / 0.50 -0.53 / 0.41 -0.50 / 0.49 -0.94 / 0.96 -0.67 / 0.78 -0.28 / 0.38 -0.23 / 0.32

Average 0.15 / 0.38 -0.23 / 0.29 -0.17 / 0.27 -0.10 / 0.31 -0.33 / 0.42 -0.45 / 0.53 -0.35 / 0.40 -0.07 / 0.08

Figure 4: NCt=0.2 vs Naturalness (IS / FID): the results show

both strongly negative and strongly positive correlations.

Therefore, we use the same method that the authors of FID and IS

used. In our experiments, we exclude MNIST from the measure-

ment of IS and FID, since it is inapplicable to discuss naturalness of

highly, pre-processed MNIST digit recognition. Therefore, we use

only CIFAR10 and driving datasets for examining the relationship

between NC and naturalness.

4.2.2 Results. Figure 4 depicts the relationship between NC and IS

and FID, broken down by metric, model for the PGD attack. Once

again, the wide fluctuation of strongly negative and strongly posi-

tive correlations underscore the volatility of NC. Table 5 shows the

results for each attack algorithm, model, and t threshold. Only 1 out

of 64 correlations satisfy the hypothesis that NC is both positively

and strongly correlated with improving input naturalness. Indepen-

dent of direction, 38% of configurations show a weak correlation

while another 45% are merely moderate. Independent of strength,

the correlation is positive in only 31% of cases.

Unlike the mixed results for IS, increasing NC invariably in-

creases FID, making the inputs less natural. In fact, not a single

configuration in the FID experiment supports the hypothesis.

More than half of the PGD results across both IS and FID are sta-

tistically insignificant. This is because PGD attacks enforce a more

strict ϵ perturbation limit, while the perturbations of CW attacks

are theoretically unbounded and thus minimize the distortion as

much as possible. Since this limit tightly constrains the range of

measurements, it is difficult to assess the correlation with NC.

Figure 5: Test Suite #33. NCt=0.2: 0.29 - IS: 1.97 - FID: 0.10

Figure 6: Test Suite #140. NCt=0.2: 0.33 - IS: 1.48 - FID: 2.96

Figures 5 and 6 show a sample of two test suites with a 14%

NC difference. While both sets of images are noticeably distorted,

test suite # 140 is clearly more unnatural. Test suite # 33 has an IS

about 33% higher and an FID about 29x smaller, both confirming

the intuition that Figure 5 with NC = 0.29 is more natural than

Figure 6 with NC = 0.33. Here, increasing NC makes noisier and

more noticeably perturbed inputs, thus a less valuable test suite.

Naturalness. Only 1.5% of all experimental results sup-

ported the hypothesis that NC is strongly and positively

correlated with naturalness. 69% of the test suites are ac-

tually negatively correlated, implying that maximizing

neuron coverage is likely to undermine naturalness.

4.3 Output Impartiality

The final dimension of our investigation probes the relationship

between NC and the bias in model predictions. This idea of mea-

suring the impartiality of model predictions is motivated by the
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Table 6: Correlation between NC & Output Impartiality: Gray indicates a p-value > 0.05

CW - OI Correlations PGD - OI Correlations

DNNs NCt=0 NCt=0.2 NCt=0.5 NCt=0.75 NCt=0 NCt=0.2 NCt=0.5 NCt=0.75

FCNet5 0.33 0.43 0.36 0.11 0.37 0.74 0.52 0.26

FCNet10 0.77 -0.70 -0.76 -0.02 0.42 0.34 0.25 0.02

Conv1DNet 0.39 0.08 0.10 0.15 -0.57 0.18 -0.28 -0.15

Conv2DNet -0.22 -0.02 0.29 0.34 0.34 0.11 -0.04 -0.08

ResNet56 -0.27 0.45 0.43 0.43 -0.02 0.07 0.09 0.08

DenseNet121 0.79 0.11 -0.04 -0.18 -0.09 -0.18 -0.06 0.08

Dave2 NA NA NA NA -0.36 0.13 0.41 0.34

Dave2-N 0.66 0.01 -0.04 0.00 -0.05 0.19 0.26 0.22

Average 0.35 0.05 0.05 0.12 0.01 0.20 0.14 0.09

Figure 7: NCt=0.2 vs Output Impartiality: the results show

that increasing NC creates bias in output behavior.

output-uniqueness test selection criteria [2] in traditional software

testing, which argues that a test suite must exercise diverse output

behavior and should not prefer only a few output values. Investi-

gating the relationship between NC and output impartiality is also

motivated by several observations about DNN behavior by prior

work. Ilyas et al. [21] found that adversarial examples can be created

by incorporating unnoticeable features of other classes to confuse

the DL model. Similarly, Pei et al. found that different classes are

associated with distinctive neuron activation patterns [47].

Consider a balanced test suite comprised of inputs evenly drawn

from multiple classes. Suppose that the test suite is fed to a model

and the model predicts always the same class label. This indicates

output skew. Since one important aspect of testing is to exercise as

much diverse output behavior as possible, we investigate the rela-

tionship between NC and the impartiality of predicted outcomes.

4.3.1 Study Method. We take inspiration for measuring impartial-

ity from adjacent work on ecological biodiversity [34]. Instead of

considering a distribution of species, we recast impartiality as a

measure of the distribution of class predictions under a uniform

input distribution (i.e. the initial test suite contains an equal number

of inputs from each class). We use Pielou’s evenness score [49], a the-

oretically grounded measure of biodiversity [36] to assess the skew

of the output class distribution. It uses a normalized Shannon’s

entropy [54] scaled to a range of 0 and 1 by dividing the entropy of

each test suite’s output distribution by the maximum entropy given

the total number of classes. A high evenness score entails high

impartiality (low bias). We define an output impartiality metric for

a test suite T with |C | possible classes, indexed by k :

output_impartiality(T ) =

∑
t ∈Ck Pt=Ck log Pt=Ck

log |C |
,

where |C | is the cardinality of classes and Pt=Ck represents the

percentage of the test cases t predicted to belong to class Ck . For

the regression models, we use the same discretization method as

before to enable the use of this metric.

4.3.2 Results. Figure 7 visualizes the relationship between NC and

output impartiality by DNN for CW. The results show that increas-

ing NC creates bias in output behavior. Table 6 shows the results of

all configurations by an attack algorithm and t threshold. Only 3 out

of 64 configurations show that NC is both positively and strongly

correlated with output impartiality. Independent of strength, the

correlation is negative in 33% of correlations. Independent of direc-

tion, 62% of experimental configurations show a weak correlation

while 32% are moderate.

4.3.3 Investigating Output Bias Caused by NC. In addition to the

previous section’s correlation analysis, we design another experi-

ment to investigate which classes are likely to be over-represented

in the outputs after a test suite has been perturbed to maximize NC.

The idea of maximizing NC during test suite generation does

not take into account that different classes of inputs can already

have different baseline NC levels. For example, it may be the case

that a set of inputs containing only the “dog” class in CIFAR10

has NCt=0 = 0.9 while another set of inputs containing the same

number of “cars” has NCt=0 = 0.6. Increasing NC may then bias

the perturbations—and therefore the output predictions—towards
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Figure 8: Output Prediction Distribution Histogram (left)

and Cross-Class Prediction Heatmap (right)

the class “car” with the higher NC baseline instead of “dog”. Below

we describe an experiment conducted with the MNIST dataset to

investigate this further.

We generate 10 partitions of the test data—one partition for each

class—by randomly selecting 100 instances of that class from the

test set. These partitions are then used to calculate a class-specific

NC baseline. Since NC depends on the choice of t , we repeat NC

baseline calculation for each class label, while varying t from 0 to

0.9 in an increment of 0.1. This process reveals which class label

has the highest NC baseline, the second highest NC baseline, and

so on. In other words, we rank class labels from the highest NC

(Rank 1) to the lowest NC (Rank 10).

Suppose that class label 8 has a rank {1, 3, 3} and class label 1 has

a rank {8, 9, 10}, respectively for t ∈ {0, 0.5, 0.9}. A low average rank

for class 8 (2.3) indicates that class 8 tends to have a highNC baseline

regardless of t . On the other hand, a high average rank for class 1

(9) indicates that class 1 tends to have a low NC baseline. Therefore,

during NC maximization, the perturbation process may favor over-

representing class 8 in the output predictions. However, suppose

that class 3 has an average ranking closer to 5—the midpoint of

10 possible labels. That implies that class 3 may have a high NC

baseline under a certain threshold, but may have a low NC baseline

under another threshold, or places the fifth for all t , etc. Thus,

it would be unlikely for NC maximization to consistently prefer

over-representation of outputs associated with class label 3 in the

resulting test suite.

Table 7: MNIST Class and Average Rank of NC Baseline

Class 8 5 2 0 7 3 4 9 1 6

Average

Rank
2.1 2.9 3.1 4.1 5.0 6.2 7.0 7.4 8.2 8.6

Concretely, an average rank closer to 1 indicates a greater likeli-

hood of being over-represented in the output distribution through

NC-maximization. Table 7 reports the average class ranks for the

10 class labels of MNIST. Here, we can see that class label 8 tends

to have a high NC baseline and that class label 6 tends to have a

low NC baseline across different thresholds. Therefore in the NC-

maximized test suite, class 8 is likely to be over-represented and

class 6 is likely to be under-represented in the output distribution.

We first construct a group of inputs with an output impartial-

ity 1 by drawing 30 inputs per class label—every class is equally

represented in the output distribution, because all are correctly

predicted by the Conv2DNet trained for MNIST. We then use our

test generation algorithm with a diversity-promoting regularizer

to perturb the input set to increase its NC. The histogram on the

left in Figure 8 shows the percentage of model predictions for each

class. The heatmap on the right details how many of the inputs

belonging to each class in the original group were perturbed into

to predicting another class label. This perturbed test suite had a

NCt=0.2 of 0.34—about 40% higher than the original images, but

45% of all predictions are now for class 8, demonstrating output

skew (a low impartiality score of 0.26). As expected, the classes

with the low NC baselines (e.g., 6, 1, and 9) are among the most

under-represented. This shows that, when NCmaximization is used

as a guidance criterion, a test generation technique can easily sat-

isfy this criterion by simply perturbing inputs towards the class

label with the highest NC baseline.

Output Impartiality. Only 5% of all experimental results

support the hypothesis that NC is both strongly and pos-

itively correlated with output impartiality. When a few

class labels have higher NC baselines than the other class

labels, increasing NC biases the test suite to predominantly

incorporate the features of this preferred subset.

5 DISCUSSION

This section includes additional evidence and rationale that ques-

tions the meaningfulness of neuron coverage.

5.1 DeepXplore & DeepTest Comparison

It is certainly possible that another method may create a natural

test suite with high NC. Therefore we perform similar analysis on

the test suites generated by DeepXplore [47] and DeepTest [58] to

see whether similar trade-offs exist. We utilize the authors’ pub-

licly available implementations to generate tests for the MNIST

and Driving datasets. For DeepXplore, not a single correlation is

sufficiently strong enough to support the three hypotheses that NC

is positively related with defect detection, naturalness, and output

impartiality. For DeepTest, only one correlation for output impar-

tiality at NCt=0.5 is strongly positive. In fact, our investigation

finds that many images generated by DeepXplore and DeepTest

turn rich driving scenes into completely white images, yet retain

their original labels. No human or program can predict a steering

angle from such an unnatural input.

While the results from DeepXplore and DeepTest may have been

sufficient to warrant skepticism about NC, our NC-maximizing

approach is easily applicable and systematic. First, it can probe the

behavior of a single model, while DeepXplore’s differential testing

requires multiple models. As DNNs become large and costly to

train [7], differential testing may become less practical. Second, by

directly extending adversarial attacks that maximize defective be-

havior and minimize the norm-distance from their original sources,

the generated test suite is orders of magnitude more natural. For

instance, our test suites have average FID scores 458× and 3, 887×

higher than those created by DeepXplore and DeepTest respectively.

While it is certainly possible that yet another method may create
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a natural test suite with high NC, our comprehensive experimen-

tation of 2095 test configurations suggests that increasing NC is

unlikely to correlate with defect detection, naturalness, and out-

put impartiality. Triangulation between these approaches increases

confidence about the external validity of our findings.

5.2 How Meaningful Is a Neuron?

The viability of NC as a DNN testing metric is underpinned by

the idea that “each neuron independently extracts a specific input

feature" [47] rather than collaboratingwith other neurons. However,

recent research into DNN visualization techniques [44, 45, 61] has

demonstrated that this is not so—neuron independence and local

feature extraction do not accurately characterize DNN behavior.

Instead, the neurons in a layer interact with one another to pass

information to subsequent layers and NC does not capture the

richness of such neuron interactions. While the probability that a

neuron distinctly encodes a specific feature increases the deeper it

is situated in the DNN, many of the neurons represent an amalgam

of very different abstract concepts, like the visualization of pixels

leading to high activations of certain neurons in Figure 9 [45]. This

observation raises serious doubts about whether neurons are even

the right semantic units for understanding DNN behavior, further

questioning the viability of NC as a meaningful test metric.

Figure 9: Visualization of neuron activations shows mixed

concepts—cats, foxes, and cars [45]

5.3 Does NC Maximization Make Sense for
Testing DNNs?

Assuming the best case scenario of neurons independently encoding

specific features, is maximization of NC even desirable? Consider

each neuron in a DNN as a binary classifier checking for the pres-

ence or absence of a specific feature within the input. For n neurons

in a DNN, there are 2n possible activation patterns. In general,

establishing a single objective to maximize NC could easily tar-

get having one possible pattern, where all neurons are activated.

As a simplified example, consider two neurons in a DNN trained

for autonomous driving. Suppose that one detects the presence of

vehicles and the other detects stop signs. NC maximization as a

single objective in test generation can be easily satisfied with a

single image containing both a vehicle and a stop sign together.

Subsequently, such limited focus on NC could easily produce a test

suite that does not cover other interesting portions of the potential

input space.

6 CONCLUSION

Recent effort to test deep learning systems has produced an intu-

itive testing adequacy metric, called neuron coverage (NC) and its

several variants. Prior work has also produced several test genera-

tion techniques that use NC as a guidance criterion and some has

found evidence that adding adversarial inputs to an existing test

suite tends to increase NC.

To systematically incorporate NCmaximization to existing adver-

sarial attack algorithms, we designed a novel diversity promoting

regularizer that can be plugged into existing attack algorithms to

increase NC.We then assessed the quality of the resulting test suites

in terms of defect detection, naturalness, and output impartiality.

From our evaluation of 2,095 experimental configurations involving

8 DNNs, 2 datasets, and 2 adversarial attack algorithms, we con-

clude that NC should not be blindly trusted as a guidance metric for

DNN testing. While we do not claim that NC is useless, increasing

NC actually has a harmful effect by producing less natural inputs

and by creating a skew in output distribution. This result is aligned

with recent skepticism that code coverage in traditional software

testing is not strongly correlated with test suite effectiveness and

thus may not be a meaningful metric by itself [22].

We therefore advocate incorporating other test objectives such as

naturalness and output impartiality and use multi-objective search

techniques for testing DL systems. Our experience of adapting exist-

ing adversarial attack algorithms for test generation has shown that

it is fairly easy to create inputs that lead to misprediction by sacrific-

ing naturalness, and that it is also fairly easy to perturb a test suite

to produce a high NC score by skewing the output distribution. Our

results call for more systematic research on how to generate realis-

tic inputs that revealmeaningful, undesired behavior in DL systems.

Such a research direction may require new methods to empower

users to easily specify domain specific constraints expressively and

to leverage those constraints to guide test generation.

Per open science policy, the code and data is available at https:

//doi.org/10.5281/zenodo.4021473.
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