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Abstract—Data quality significantly impacts the results of data
analytics. Researchers have proposed machine learning based
anomaly detection techniques to identify incorrect data. Existing
approaches fail to (1) identify the underlying domain constraints
violated by the anomalous data, and (2) generate explanations of
these violations in a form comprehensible to domain experts.
We propose IDEAL, which is an LSTM-Autoencoder based
approach that detects anomalies in multivariate time-series data,
generates domain constraints, and reports subsequences that
violate the constraints as anomalies. We propose an automated
autocorrelation-based windowing approach to adjust the network
input size, thereby improving the correctness and performance
of constraint discovery over manual and brute-force approaches.
The anomalies are visualized in a manner comprehensible to
domain experts in the form of decision trees extracted from
a random forest classifier. Domain experts can then provide
feedback to retrain the learning model and improve the accuracy
of the process. We evaluate the effectiveness of IDEAL using
datasets from Yahoo servers, NASA Shuttle, and Colorado State
University Energy Institute. We demonstrate that IDEAL can
detect previously known anomalies from these datasets. Using
mutation analysis, we show that IDEAL can detect different
types of injected faults. We also demonstrate that the accuracy
improves after incorporating domain expert feedback.

Index Terms—Anomaly detection, Autocorrelation, Data qual-
ity tests, Explainability, LSTM-Autoencoder, Time series

I. INTRODUCTION

Voluminous time-series data are increasingly collected from
various real-world sources, such as Internet of Things (IoT)
sensors, network servers, and patient medical flow reports [1]–
[3]. Incorrect data collection, data transformation, intrusions
and malicious insider attacks can corrupt a time-series dataset
and result in incorrect analysis. Existing anomaly detection
approaches [4]–[7] for individual data records cannot be used
on time-series data as anomalies involve constraints over
multiple attributes and records in a time series [8].

Existing Machine Learning (ML) based approaches [9], [10]
that discover constraints in time-series data have limitations.
First, the window size used for analysis is typically fixed-
sized [11] or calculated using an exhaustive brute-force ap-
proach [12]. Since the window size can considerably affect the
correctness of the discovered constraints, fixed-sized windows
are not appropriate. Brute-force window-size tuning can be
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expensive. Second, the discovered constraints are in the form
of complex equations incomprehensible to domain experts.

We propose an approach for Interactive Detection and
Explanation of Anomalies using an LSTM-autoencoder
(IDEAL) to address these limitations. IDEAL uses a deep
network called LSTM-Autoencoder [10] that discovers con-
straints involving long-term non-linear associations among
multivariate time-series data records and attributes. Subse-
quences and records that violate the constraints are flagged as
suspicious. Domain experts inspect them and provide feedback
to reduce false alarms [13] and retrain the learning model.
We believe IDEAL is the first approach to find anomalies
in multivariate time-series big data, explain them in terms of
constraints violations using domain concepts, and illustrate the
anomalous records and sequences using decision trees.

We proposed an autocorrelation-based windowing technique
that automatically adjusts the window size based on how far
the records are related to their past values. This process is
faster than brute-force window sizing. It results in a higher
constraint-discovery effectiveness of the LSTM-Autoencoder
model than when manually set fixed sizes are used.

We evaluated the constraint discovery, anomaly detec-
tion, and anomaly explanation effectiveness of IDEAL using
datasets from Yahoo servers [14], NASA Shuttle [15], and
Colorado State University Energy Institute [16]. We compared
the anomaly detection effectiveness with existing stochastic
and ML-based anomaly detection techniques. We also com-
pared the effectiveness and efficiency of autocorrelation-based
windowing with a brute-force windowing approach. We used
mutation analysis to show that the true positive rate and false
negative rate improve after incorporating ground truth knowl-
edge about the injected faults and retraining the interactive-
based LSTM-Autoencoder model. We showed that the gen-
erated visualization plots help domain experts understand the
reason behind the reporting of the suspicious sequences.

The rest of the paper is organized as follows. Section II
summarizes the background on time-series data. Section III
describes the related work. Section IV describes IDEAL and
Section V presents its evaluation. Section VI concludes the
paper and outlines directions for future work.



II. BACKGROUND ON TIME SERIES

A time series T is a sequence of d-dimensional records [1]
described using the vector T =< R0, ..., Rn−1 >, where Ri =
(a0i , ..., a

d−1
i ) is a record at time i, for 0 ≤ i ≤ n− 1 and aji

is the jth attribute of the ith record. Existing data analysis
approaches [1] assume that the time gaps between any pair of
consecutive records differ by less than or equal to an epsilon
value, i.e., the differences between the time stamps of any two
consecutive records are nearly the same.

A time series can be univariate (d=1) or multivariate
(d>1) [2]. A univariate time series has one time-dependent
attribute. For example, a univariate time series can consist of
daily temperatures recorded sequentially over 24-hour incre-
ments. A multivariate time series is used to simultaneously
capture the dynamic nature of multiple attributes. For example,
a multivariate time series from a climate data store can consist
of precipitation, wind speed, snow depth, and temperature data.

Various features [17], [18] are used to describe the relation-
ships among the time-series records and attributes of which
trend and seasonality [19] are the most common. Trend is
defined as the general tendency of a time series to increment,
decrement, or stabilize over time [19]. Seasonality is defined as
the existence of repeating cycles in a time series [19]. A time
series is stationary (non-seasonal) if all its statistical features,
such as mean and variance are constant over time. We use
18 features defined by Talagala et al. [17] to (1) identify
the types of constraint violations reported by IDEAL (see
Section IV-D), and (2) define mutation operators that violate
constraints spanning these features (see Section V-A).

A constraint is defined as a rule over the time-series
features. For example, the mean value of the daily electricity
(deliveredKWH) delivered to a household (data classification
“Residential”) must be in the range 0-20 kWh.

We categorize the data in a time series T that violates these
constraints as anomalous records and anomalous sequences.
An anomalous record Rt is one whose observed value is
significantly different from the expected value of T at t. Given
a set of subsequences T = {T0, ..., Tm−1} in T , an anomalous
sequence Tj ∈ T is one whose behavior is significantly
different from the majority of subsequences in T.

III. RELATED WORK

Machine Learning-based techniques used for outlier detec-
tion in non-sequence data, such as Support Vector Machine
(SVM) [4], Local Outlier Factor (LOF) [5], Isolation Forest
(IF) [6], and Elliptic Envelope (EE) [7] have also been used
to detect anomalous records from time series data [20]. Such
approaches do not consider temporal dependencies between
data records and can only detect trivial out-of-range outliers.

Techniques that detect anomalous records from time-series
data can be categorized as decomposition and modeling tech-
niques. Decomposition techniques, suitable only for univariate
time series, break a time series into level, trend, seasonality,
and noise components and monitor the noise components to
capture the anomalous records [21], [22]. Modeling techniques
represent a time series as a linear/non-linear function that

associates each current value to its past values, predict the
value of a record at a specific time, and report as anomalies
those records whose prediction error falls outside a thresh-
old. Stochastic modeling techniques, such as Moving Aver-
age (MA) [23], Autoregressive Integrated Moving Average
(ARIMA) [24], and Holt-Winters (HW) [25] use statistical
measures to calculate the correlation between the data records.
These techniques assume that the time series is linear and
follows a known statistical distribution, which make them in-
applicable to many practical problems [19]. Machine learning
modeling techniques support non-linear modeling, with no
assumption about the distribution of the data [19]. Examples
are Multi Layer Perceptions (MLPs) [26], Long Short Term
Memory (LSTM) [9], and Hierarchical Temporal Memory
(HTM) [27]. Some of these techniques can model multivariate
time-series. However, they produce complex equations, which
are not human interpretable.

Existing techniques for anomalous sequence detection split
the data into multiple subsequences, typically based on a fix-
sized window [11] or an exhaustive brute-force approach [12].
Clustering-based anomalous sequence detection techniques
extract subsequence features, such as trend and seasonality,
and group the subsequences based on the similarities be-
tween their features. An anomalous subsequence is detected
as the one that is distantly positioned within a cluster or
is positioned in the smallest cluster. These approaches only
detect anomalous sequences without determining the records
and attributes that are the major causes of invalidity in each
subsequence. Autoencoder-based techniques (1) take subse-
quences as input, (2) use an autoencoder network to recon-
struct the subsequences, (3) assign invalidity scores based on
the reconstruction errors to the subsequences, and (4) detect
as anomalous those subsequences whose scores are greater
than a threshold. These techniques can learn complex non-
linear associations among the attributes in the time series
but are not able to model the temporal dependencies among
the records in the input subsequence. An LSTM-Autoencoder
extends an autoencoder for time series data, and captures long-
term temporal associations among data records in the form of
complex equations that are not human interpretable.

IV. PROPOSED APPROACH

We illustrate our approach using the Yahoo server traffic
datasets in the Yahoo Webscore program [14] and the NASA
Shuttle dataset in the UCI ML repository [15]. The Yahoo
server traffic datasets contain real and synthetic univariate time
series, each of which contains 1,420 records with one time-
dependent attribute called traffic value. These datasets contain
time series with random seasonality, trend and noise. The mul-
tivariate NASA Shuttle dataset contains 58,000 time-ordered
records with eight time-dependent numerical attributes.

Figure 1 shows an overview of our approach. The input
is in the form of data records and the output consists of a
report showing suspicious subsequences accompanied with an
explanation of the violated constraints. There are five compo-



Fig. 1: IDEAL Overview

nents, namely, data preparation, constraint discovery, anomaly
detection, anomaly explanation, and anomaly inspection.

A. Data Preparation

IDEAL extracts features as complex dependencies among
the input records and attributes, and discovers constraints as
complex equations over those features [28]. To transform the
input dataset into a form suitable for analysis, we use one-hot
encoding [29] and normalization [30] for preprocessing the
categorical and numeric attributes respectively.

The LSTM-Autoencoder input is a matrix with three di-
mensions, namely, batch size, window size, and attribute size.
Batch size defines the number of subsequences that are utilized
by LSTM-Autoencoder in one epoch (i.e., one iteration of
training). The window size is the number of consecutive
records in each subsequence. The attribute size is the number
of attributes of the records in the subsequence. The number of
units in the hidden layers of the LSTM-Autoencoder network
depends upon these three dimensions. Figure 4 shows the input
to an LSTM-Autoencoder, where the batch size is equal to one,
window size is equal to w, and attribute size is equal to d+1.
To transform the data obtained from the preparation step into
the right shape for input to the LSTM-Autoencoder sequential
model, autocorrelation-based reshaping is proposed.

An LSTM network discovers long-term dependencies be-
tween consecutive records in subsequences of the input se-
quence. The length of the subsequence (window size) deter-
mines how far back the network connects a data record to
its past values, and affects the correctness of the constraints
discovered by the network [12]. For example, the current
temperature value may be related to the previous values during
the day (window size = 24), but is less likely to be related
to the values during the previous week (window size = 168).

Existing reshaping techniques use a fixed window size [11].
A small window size can result in missing constraints in-
volving dependencies among the records, while a large win-
dow size can result in a large increase in the computational
complexity of the network. Increasing the size based on an
exhaustive brute-force approach until the network error is
minimized can be impractical for real-world big datasets [12].

We propose a systematic reshaping approach that uses au-
tocorrelation of the time-series attributes to enable the LSTM-
Autoencoder network discover dependencies between highly
correlated records. Feeding the network highly correlated
records prevents it from incorrectly discovering associations
among non-correlated records. The window size is adjusted
based on how far the records are related to their past values.

Autocorrelation is defined as the correlation of sequence
data records with the records in the previous time steps, called

lags [31]. Given dataset d with R1, R2, ..., RN records at time
t1, t2, ..., tN , the Autocorrelation Function (ACF) at lag k for
an attribute a in this dataset is calculated as follows.

ACF (a, k) =

∑N−k
i=1 (d[a](i)− d[a])(d[a](i+ k)− d[a])∑N

i=1(d[a](i)− d[a])2
(1)

where d(i) is the original dataset, d(i+k) is the same dataset
shifted by k lags, and d[a] is the average value of attribute
a in the original dataset. The numerator is the covariance
between the data and the k-unit lagged data. The denominator
is sum of the squared deviations of the original dataset. An
ACF (a, k) value that rises above or falls below a confidence
interval is said to be significantly autocorrelated. The shaded
area in Figure 2 shows the confidence interval (CI) calculated
by Eq. 2 for attribute A4 in the NASA Shuttle dataset.

CI = ±Z1−α/2

√√√√ 1

N
(1 + 2

k∑
i=1

d[A]
2
) (2)

with lag k, sample size N , cumulative distribution function z
of the standard normal distribution, and significance level α.
The confidence bands increase as the lag increases.

Fig. 2: ACF for A4 Attribute in NASA Shuttle for 20 lags

Fig. 3: Use ACF to Select Window Size
In Figure 2, the height of each spike shows the value of

ACF for the corresponding lag. Autocorrelation with a lag of



Fig. 4: Extending LSTM-Autoencoder by Adding a Label Input

zero (i.e., between each record an itself) is always equal to 1.
A spike being close to zero is evidence against autocorrelation.
In this example, all the spikes are statistically significant for
all the 20 lags, indicating that the values of the A4 attribute
are highly correlated to its 20 past values.

The ACF is calculated for all the attributes. For each
attribute ai, IDEAL selects the lag value li after which
ACF crosses the confidence interval (i.e., boundary of the
shaded area) for the first time. The window size is set to
maximum(li), where 1 ≤ i ≤ size(A). Figure 3 demon-
strates the window size selection based on autocorrelation in
a univariate Yahoo traffic dataset. In this example, l27 is the lag
after which the ACF function crosses the confidence interval
for the first time. Thus, the window size is set to 27.

B. Constraint Discovery

Although the deep architecture of an autoencoder can model
complex constraints involving non-linear dependencies among
multiple data records and attributes, it cannot model the tempo-
ral dependencies. Thus, IDEAL uses an LSTM-Autoencoder,
which is a sequence-to-sequence modeling technique [28] used
to learn time series dependencies.

Figure 4 shows the LSTM-Autoencoder architecture. The
input and output are fixed-size time series matrices. Xj =
[x0j , ..., x

d
j , Lj ] is the jth record with d + 1 attributes, Ti is

the ith time series that contains w records, and w is the
window size. The network is composed of two hidden layers
that are LSTMs with d′ units. The first LSTM layer functions
as an encoder that investigates the dependencies from the
input sequence and produces a complex hidden context (i.e., d′

encoded time series features, where the value of d′ depends
on the underlying encoding used by the autoencoder). The
second LSTM layer functions as a decoder that produces
the output sequence, based on the learned complex context
and the previous output state. The TimeDistributed layer is
used to process the output from the LSTM hidden layer. The
reconstruction error (RE) [32] for this network is:

RE =
1

m

m−1∑
i=0

(T ′i − Ti)
2 (3)

where Ti and T ′i are the ith network input and output and
m is the total number of windows.

The LSTM-Autoencoder is an unsupervised technique that
can potentially learn incorrect constraints from invalid data and
generate false alarms. We use an interactive learning approach
that takes the expert’s feedback to retrain the LSTM-Autoen-
coder model and improve its accuracy. We extend the LSTM-
Autoencoder architecture by adding a label as an additional

input to the network structure. The shaded area in Figure 4
shows the extension. In Section IV-E, we describe how this
label (1: faulty, 0.5: suspicious, 0: unknown, and -1: valid)
is updated using domain expert feedback in every interaction.
We redefine the reconstruction error of LSTM-Autoencoder
based on the labels to minimize false alarms. The network
is trained to minimize both the difference between the time
series and its reconstruction, and the difference between the
record labels in a time series and the labels predicted by the
network. Equation 4 shows the extended reconstruction error.

RE =
1

m

m−1∑
i=0

((T ′i − Ti)
2 + (mean(L′i)−mean(Li))

2) (4)

where mean(Li) is the arithmetic mean of the record
labels in time series Ti and mean(L′i) is the mean of the
reconstructed record labels in the reconstructed time series T ′i .

C. Anomaly Detection

We use suspiciousness scores (s-scores) to identify suspi-
cious subsequences, records, and attributes that violate the
constraints discovered by the LSTM-Autoencoder network.
The scores are based on the reconstruction error and the record
labels. Using labels in the definition of s-scores ensures that
no valid subsequences or records are reported as suspicious in
the retraining phase, thereby minimizing false alarms.

a) s-score per attribute: Assigned to each attribute
(Eq. 5), it indicates the attribute’s contribution to the invalidity
of the subsequence. This value lies between 0 and 1.

s score aji = Normalized(
1

w

w−1∑
k=0

(xj
(i+k)

− x
′j
(i+k)

)2) (5)

where s score aji is the score assigned to the jth attribute
in the ith subsequence and w is the window size.

b) s-score per record: Assigned to each record (Eq. 6),
it indicates the contribution of each record to the invalidity of
the subsequence. This value lies between 0 and 1.

s score ri,q = Normalized(
1

d

d−1∑
k=0

(x
′k
i,q−xki,q)

2+(L′i,q−Li,q)
2) (6)

where d is the number of attributes and s score ri,q is the
score assigned to the qth record in the ith subsequence.

c) s-score per subsequence: This value indicates the
level of invalidity of the subsequence (Eq. 7).

s scorei = (
1

d

d−1∑
j=0

s scoreji ) +max(Li) (7)

where s scorei is the score assigned to the ith subsequence
and s scoreji is the s-score per attribute in that subsequence.
In Eq. 7, ( 1d

∑d−1
j=0 s score

j
i ) is a value between 0 and 1,

and max(Li) ∈ {−1, 0, 0.5, 1} is equal to the maximum



value of the record labels in the subsequence. In the retraining
phase, a subsequence with all valid records (labeled -1) gets an
s score ≤ 0 and is not reported as suspicious. A subsequence
with at least one invalid record (i.e., with label 1) gets an
s score ≥ 1 and is marked as suspicious.

TABLE I: Suspicious Subequence Detected in NASA Dataset

Id A1 A2 A3 A4 A5 A6 A7 A8 s-score
101 0 78 0 24 24 42 55 14 0.031
102 0 100 0 34 -23 64 67 4 0.029
103 0 79 0 28 10 42 50 8 0.005
104 1 83 0 36 0 45 46 2 0.002
105 0 77 0 6 -22 40 72 32 0.0078
106 0 80 5 10 0 43 70 26 0.004
107 0 78 0 2 -10 41 75 34 0.007
108 0 77 0 8 11 40 69 30 0.006
109 0 107 0 30 3 70 76 6 0.045
110 0 77 7 20 -6 41 57 16 0.003

D. Anomaly Explanation

To help domain experts inspect suspicious subsequences, we
generate visualizations. To highlight the contribution of each
record to the invalidity of a suspicious subsequence, we display
a table showing the s-score per record. We generate two types
of visualization plots to describe the constraints violated by the
detected anomalies: (1) s-score per attribute, and (2) decision
trees generated using a random forest classifier [33].

a) s-score per record.: Table I shows the records in
a suspicious subsequence from the NASA Shuttle Dataset.
Columns A1–A8 are the attributes. The last column shows
the s-score per record values. IDEAL highlights the records
(yellow row) that are major causes for invalidity of the
subsequence using a threshold T (Eq. 8).

T =

{
P if P > 0,
p(s-scores, 90) otherwise

(8)

where P is the percentage of previously known anomalies
for the input dataset and p is the percentile function, which
returns the value below which a given percentage of records in
the dataset fall. If there is a set of previously known anomalies
in the dataset, IDEAL detects at least P% of records as
suspicious to ensure that all the previously detected anomalies
are reported by the approach. We set the threshold to 10%
for datasets with no known anomalies because the average
percentage of known anomalies in the datasets used by this
study as well as 26 other datasets [34] from the UCI repository
is equal to 10%. Domain experts can change this value based
on the knowledge of the validity of their datasets.

b) s-scores per attribute plot.: This plot displays the
contribution of each attribute to the invalidity of the sub-
sequence. The horizontal axis indicates the attribute names
and the vertical axis indicates their level of invalidity. Fig-
ure 5 shows an example of the s-score per attribute plot for
the suspicious subsequence from the NASA Shuttle dataset.
Using a threshold value equal to the average value of the
s-score per attribute in the subsequence, the A2 and A6

attributes are determined to be the major causes of invalidity

for this subsequence. This plot is only applicable to the mul-
tivariate time series in which there is more than one attribute
to be compared based on the values of s-score per attribute.

Fig. 5: s-score per Attribute Plot for Suspicious Subsequence
Detected from NASA Shuttle Dataset

c) Decision tree.: This display describes the constraints
violated by each of the suspicious subsequences. Decision
trees were chosen because they are one of the easiest models to
understand [35]. The non-leaf nodes and edges correspond to
the subsequence features and their values respectively. Every
leaf node contains the label of the path described by the feature
values from the root to that leaf node (label 0: valid and
label 1: invalid). A random forest [33] generates a number
of trees on various subsets of a dataset, whereas the basic
decision tree classifier [35] generates only one tree. We use the
random forest classifier because it uses the average prediction
obtained from the trees to improve the predictive accuracy and
to prevent over-fitting [36] to the training dataset.

For each attribute of the subsequence, 18 time series
features are extracted using Tsfeatures [17] CRAN library.
Next, decision trees are generated using a random forest
classifier as a supervised technique, which requires labeled
data. IDEAL labels the suspicious sequences as invalid and
all the non-suspicious sequences as valid and uses this data.
Three decision trees that have the lowest classification error are
displayed via the tool’s web interface. The number of decision
trees displayed is configurable. The default number is three per
subsequence to make manual inspection feasible.

The decision trees represent a set of if-then-else decision
rules, which describe the constraints that identify sequences
as valid or invalid based on their feature values. IDEAL uses
random forest classifier on H2O [37] (i.e., a fully open-source,
distributed in-memory machine learning platform) based on
Classification And Regression Trees (CART) [38] algorithm,
which builds binary trees (i.e., trees with nodes that have
exactly two outgoing edges) for both numeric and categorical
features. A decision tree is built top-down from a root node to
the leaf nodes and involves partitioning the data into subsets
that contain sequences with similar labels (i.e., homogeneous
subsets). The CART algorithm uses an impurity criterion to
calculate the homogeneity of a subset. At each level of the
tree, the algorithm chooses a feature that results in subsets
with the lowest impurity and splits the dataset into subsets
based on the values of that feature. The algorithm repeats the
same process on every branch of the tree until reaching the
homogeneous subsets (i.e., leaf nodes with labels 0.0 or 1.0).



We tuned the maximum depth of the trees generated by the
random forest to the value 5 based on our trial experiments;
it became too hard for the domain experts to understand the
constraints when we used values greater than 5.

(a) DT1 (b) DT2 (c) DT3

Fig. 6: Decision Trees for Suspicious Sequence in NASA
Shuttle Dataset

Figure 6 shows examples of decision trees generated for
a suspicious subsequence in the NASA Shuttle dataset. The
subsequence violates constraints over time series features.
These constraints are specified in the form of “If Pred then
sequence is <valid|invalid>” rules, which determine whether
a subsequence is valid or invalid based on its feature values.
Pred is in form of “(f1(a1) ROP1 v1) LOP1 ... LOPd−1
(fd(ad) ROPd vd)”, where ai is an attribute, fi is a function
that extracts feature fi from the values of ai, vi is the value
of that feature, ROPi is a relational operator (=, ≥, >, <,
≤), and LOPi is a logical operator (and and or). Below we
show the violated constraints shown in Figure 6(a).
• IF lumpiness(A2) < 8.08e−5, THEN sequence is invalid
• IF lumpiness(A2) ≥ 8.08e−5 AND vchange(A2) < 0.03,

THEN sequence is invalid
Decision trees apply to both types of time series. For a uni-

variate time series, decision trees identify violated constraints
using features extracted from the values of only sole attribute
in the dataset. For a multivariate time series, the constraints
are over features extracted from the values of all the time-
dependent attributes.

Domain experts analyze the constraints represented in the
trees and inspect the values of the time series features to deter-
mine whether a suspicious subsequence is actually anomalous.

E. Anomaly Inspection

This component uses a web-based user interface to take a
domain expert’s feedback about the suspicious subsequences.
Check boxes in the interface allow the expert to appropriately
mark the subsequences that are actually anomalous. As de-
scribed previously, the feedback is used to update the labels
of the training data records. The label is initially 0 for every
record. The labels are updated based on the feedback. Records
in a subsequence reported as suspicious by IDEAL are labeled
0.5, out of which those marked as anomalous by the domain
expert are labeled 1 and those not marked are labeled -1.
Labels of records that are not reported suspicious by IDEAL
remain 0. The updated dataset is used to retrain the LSTM-
Autoencoder network and improve its accuracy.

V. EVALUATION

We evaluated the effectiveness of constraint discovery,
anomaly detection, and anomaly explanation of IDEAL using
the Yahoo server traffic datasets, the NASA Shuttle dataset,
and the real-world Energy datasets in the Colorado State
University’s Smart Village Microgrid Lab at the Energy Insti-
tute [16]. The Energy multivariate dataset contains millions of
time-ordered records with one categorical (Classification) and
one numeric (deliveredKWH) attribute. This dataset merges
values of electricity power delivered to different residential,
commercial, and industrial premises in the city of Fort Collins,
Colorado. The classification attribute stores values of premise
type, which are ”Residential”, ”Commercial”, and ”Industrial”.
The deliveredKWH attribute stores values of power for the
premises. We used a set of previously known anomalies in
these datasets to evaluate IDEAL and compare it to existing
anomaly detection approaches. Due to the absence of complex
anomalies that violate constraints over multiple time series fea-
tures in these datasets, we used a mutation analysis technique
to inject a set of complex anomalies into the data. In keeping
with the spirit of traditional mutation analysis used in software
testing [39], we calculate the mutation score, which is the ratio
of the number of injected faults reported as anomalies by our
approach and the total number of injected faults.

A. Mutation Analysis

We defined domain-independent mutation operators, each of
which changes certain records or sequences in different ways
with the goal of violating at least one constraint over the 18
time series features. These operators result in mutants, which
are faulty records or sequences that mimic typical anomalies
in the sequence data resulting from real-world events, such as
sensor malfunctions and malicious insider attacks. A mutant
is defined to be killed when the suspicious subsequences
detected by IDEAL contain the mutant records or sequences.
As a result of using the operators, all the features get invalid
values, which violate constraints over the features. Table II
shows the mutation operators, the fault types, and the features
that must be reported in the constraint violations caused by
the operators for a mutant to be killed. We identified these
features for each operator based on our observations when
the operators were applied to the Yahoo and NASA Shuttle
datasets. We removed previously known anomalies from these
datasets before applying the mutation operators.

Our mutation engine takes each operator Mi, dataset D and
attribute a as input to mutate the attribute value based on that
operator. For the multivariate datasets, we randomly selected
k attributes from the uniformly distributed attribute indexes.
We used the same operator to mutate all of the k selected
attributes. We describe these operators below.

a) M1M1M1–Add noise.: Noise can get added to real-world
datasets because of sudden malfunctions, disconnections in
the sensors or servers, or attackers inserting random values in
sequence data. Noisy data can violate constraints on various
time series features shown in column 3 of Table II. For
example, the mean value of delivered power to households



TABLE II: Injected Faults and Violated Features

Mutation
Operator

Fault
Type

Violated Features

M1: Add
noise

Anomalous
record

Mean, Variance, Lumpiness, Lshift,
Vchange, Linearity, Curvature, Spikiness,
BurstinessFF, Minimum, Maximum,
Rmeaniqmean, Moment3, Highlowmu

M2: Hori-
zontal shift

Anomalous
sequence

Mean, Variance, Lumpiness, Lshift,
Vchange, Linearity, Spikiness,
Seasonality, BurstinessFF, Minimum,
Maximum, Moment3, Highlowmu, Trend

M3: Verti-
cal shift

Anomalous
sequence

Mean, Linearity, Seasonality, Minimum,
Maximum

M4:
Re-scale

Anomalous
sequence

Mean, Linearity, Curvature, Seasonality,
Minimum, Maximum, Moment3

M5: Add
dense
noise

Anomalous
sequence

Mean, Variance, Lumpiness, Lshift,
Vchange, Linearity, Curvature, Spikiness,
Seasonality, Peak, Trough, BurstinessFF,
Minimum, Maximum, Rmeaniqmean,
Moment3, Highlowmu, Trend

during the day is between 0 and 20 kWh. A sudden change in
this value to 100 kWh indicates a violation of this constraint.
Mutation operator M1 adds random noise to the corresponding
attribute of randomly selected records from the entire dataset.

1) Select r ⊂ D as r = {Ri|i = random(1, size(D))},
where |r| = random(1, size(D))

2) For each Ri ∈ r, change Ri[a] to α× ai, where
ai = random(min(D[a]),max(D[a])) and 0 ≤ α ≤ 10

The maximum value of α is set to be 10 because the
attributes of anomalous records in the NASA Shuttle and
Yahoo server datasets contain values that are up to 10 times
that of the valid attribute values.

Operators M2–M5 mutate a randomly selected subset of
consecutive records containing between 5-10% of the records
in the entire dataset, and create faulty subsequences.

Select s ⊂ D as s = {Ri|m ≤ i ≤ m+ r}, where
m = random(1, size(D)− 0.1× size(D)) and
r = random(0.05× size(D), 0.1× size(D)).

b) M2M2M2–Horizontal shift.: A horizontal shift may occur in
real-world datasets due to a temporary change in the regular
process of data collection. For example, consider a constraint
over the trend of the power usage in a school from 8 to
11 AM on weekdays. A shift in the school starting hour or
attacker manipulation can result in violation on this constraint.
Operator M2 shifts attribute values of the records in the
selected subset along the time axis. Empty cells are filled with
a constant value equal to the first shifted value.

1) Shift {Ri[a]|m ≤ i ≤ m+ r} along the time axis.
2) Fill empty attributes with A = Rm[a].

c) M3M3M3–Vertical shift.: A vertical shift can occur in real-
world datasets as a result of a temporary malfunction of the
sensors that capture the data. For example, a manipulation or
malfunction of a temperature sensor may temporarily change
the level of the value captured by the sensor. Operator M3

adds a random value between the min and the max values of
the attribute to all attribute values in the subset of records.

d) M4M4M4–Re-scale.: Rescaling can occur in real-world
datasets as a result of a temporary modification of the sensors
or servers that capture the data. For example, if the unit of a
snow depth detector sensor is temporarily changed from inches

to centimeters, the values stored from the sensor will be 2.54
times greater than the expected values. Operator M4 multiplies
all the attribute values in the subset of records with a random
number between the min and max values of that attribute.

e) M5M5M5–Add dense noise.: Dense noise can get added to
real-world datasets through attacks on the sensors or servers
that capture the data. Operator M5 changes all the attribute
values in the subset of records to randomly selected values.

B. Evaluation Goals

We evaluated three aspects of IDEAL: (1) constraint discov-
ery and anomaly detection effectiveness, (2) anomaly expla-
nation effectiveness, and (3) performance. We calculated F1
scores [40] to demonstrate the effectiveness of different aspects
of our approach. Given the number of positive samples, P , the
number of true positives TP , the number of negative samples
N , and the number of false positives FP , in a dataset, the F1
score is calculated as follows [40].

F1 = 2×
(precision× recall)

(precision+ recall)
(9)

where precision = TP
(TP+FP ) and recall = TPR = TP

P . For
mutation analysis, TPR represents the mutation score. TP is
number of injected faulty subsequences reported as anomalies
and P is the total number of injected faulty subsequences.

1) Goal 1.Goal 1.Goal 1. Constraint discovery and anomaly detection
effectiveness of IDEAL.: We demonstrate this in four parts.

RQ1.a:RQ1.a:RQ1.a: How effective is IDEAL in the constraint discovery
and anomaly detection on real-world Energy datasets when
expert feedback is not used?

Let Pt be the number of actual faulty subsequences (i.e.,
has at least one actual faulty record), TPt be the num-
ber of actual faulty subsequences detected as suspicious by
the tool, Nt be the number of actual valid subsequences
(i.e., does not include any actual faulty record), FPt be
the number of valid subsequences incorrectly detected as
suspicious by the tool. We calculated the F1 score at the
time-series level (F1t) to demonstrate the anomaly detection
effectiveness of our approach. We used three Energy datasets
Premise 41191, Premise 825588, and Premises Combined
with 175,272, 175,296, and 1,048,575 number of records to
evaluate this aspect of IDEAL. The first two datasets store
data of delivered power to two different Fort Collins premises
in two years. The third dataset combines data of 13 residential
and commercial premises from year 2015 to 2019. This dataset
contains a set of previously known anomalies (0.05%) as a
result of malfunctioned or incorrect reading of sensors.

It took IDEAL 187, 245, and 8100 seconds to run once
against each of the three datasets respectively. There were two
suspicious sequences detected for each of the Premise 41191
and Premise 825588 datasets. The results were validated by
a domain expert. All the suspicious sequences for these two
datasets were as a result of unusual but valid data. For exam-
ple, a subsequence with a half an hour peak in the delivered
power at 3 PM was reported as suspicious. The domain expert
had knowledge about an electric car being charged during



that time and thus the subsequence was flagged as valid
even though it was an unusual. All the actual anomalous
subsequences could be detected by IDEAL (TPRt = 1)
from the last dataset. IDEAL detected 24 subsequences as
suspicious, out of which 19 were actual faults and 5 were
valid subsequences (i.e., subsequences that do not contain the
previously known anomalies) incorrectly detected as faulty.
The F1t score for this dataset was equal to 0.88.

RQ1.b:RQ1.b:RQ1.b: How effective is IDEAL in comparison to existing
anomaly detection approaches?

Let Pr be the number of actual faulty records, TPr be the
number of actual faulty records marked as suspicious by the
tool, Nr be the number of actual valid records, and FPr be the
number of valid records incorrectly marked as suspicious by
IDEAL. We calculated the F1 score at the record level (F1r)
to demonstrate the anomalous record detection effectiveness
of our approach in comparison to existing approaches. IDEAL
was executed only once without using expert feedback.

We compared IDEAL’s F1r score with those of ARIMA,
MA, HTM, and HW for univariate time series, which were
evaluated by Hasani et al. [25] using the same univariate
Yahoo synthetic datasets containing known anomalous records.
Table III shows that IDEAL detected all the existing anomalies
and was at least as effective as the existing approaches.

We also compared IDEAL’s F1r score with those of the
OneClass SVM, LOF, IF, EE, and SVM for multivariate time
series, which were evaluated by Shriram and Sivasankar [20]
using the same multivariate NASA Shuttle dataset containing
known anomalous records. The last five columns of Table III
shows the results. With 96% effectiveness in detecting the
anomalous records, IDEAL was more effective than OneClass
SVM, LOF, EE, and SVM. However, IDEAL’s F1r score was
2% less than that of the IF approach. The previously defined
anomalies in this dataset were trivial out-of-range outliers (i.e.,
records whose attributes have extremely large or small values
in comparison with the majority of the records in the dataset).
The IF approach effectively detected these outliers for non-
sequence data. This shows that out-of-range outliers can be
effectively detected from time-series data without considering
the temporal dependencies between data records in the dataset.

RQ1.c:RQ1.c:RQ1.c: How effective is our autocorrelation-based windowing
approach compared to a brute-force windowing approach?

This evaluation was performed using mutated datasets de-
scribed in Table IV. Synthetic 1 and Synthetic 4 are univariate
datasets that are mutated using the operators M1–M5. Column
|M | shows the number of mutants generated from each dataset.
Column |A| shows the number of attributes randomly selected
from the NASA Shuttle dataset to apply the operators M1–M5.

We demonstrate the effectiveness of our windowing ap-
proach by comparing its F1t score with that of a brute force-
based windowing approach. The window size is configurable
in IDEAL. Using the mutated dataset as input, we executed
IDEAL against the dataset multiple times using a range of
window sizes to select the best window size that results in the

(a) F1tGR = 0.001 for Mutation
Operator M1

(b) F1tGR = 0.142 for Mutation
Operator M2

(c) F1tGR = 0.033 for Mutation
Operator M3

(d) F1tGR = 0.041 for Mutation
Operator M4

(e) F1tGR = 0.009 for Mutation
Operator M5

Fig. 7: Average F1t for Mutated Datasets using Two Types
of Windowing

highest F1t score for the brute-force approach. We also ran
IDEAL using the autocorrelation-based windowing approach.

Figure 7 shows a comparison of the results of these two
configurations. F1t scores for autocorrelation-based window-
ing (orange line) and brute-force windowing (blue line) are
shown for 10 runs (i.e., interactions using the feedback loop).
In each run, we used the knowledge about the injected faults
to automatically label the data and retrain the learning model.
This labeling process simulates the help of an expert to inspect
the results of every run and mark the data for the subsequent
runs. The average of F1t scores are for the datasets in Table IV
that are mutated using different operators. For example, each
data point in the first plot (Figure 7 (a)) shows the mean value
of F1t scores for the Synthetic 1, Synthetic 4, and Shuttle
datasets that are mutated using the M1 operator.

In 71% of the cases for all the datasets, the F1t score
using autocorrelation based windowing is close (i.e., within
0.04) to that using the brute force approach. On average,
using autocorrelation-based windowing, the mutation score
(TPRt) for all the datasets is 0.60% and 0.94% for the first
and last runs respectively. Using the brute-force approach, the
corresponding scores are 0.64% and 0.94%.

RQ1.d:RQ1.d:RQ1.d: Does the accuracy of the interactive constraint discov-
ery approach improve after retraining the machine learning
model with the help of feedback from domain expert?



TABLE III: F1r Scores of Different Approaches [20], [25] Using Yahoo Synthetic and NASA Shuttle Datasets

Dataset ID IDEAL ARIMA MA HTM HW OneClass SVM LOF IF EE SVM
Synthetic 1 1.00 0.66 0.73 1.00 1.00 - - - - -
Synthetic 2 1.00 1.00 1.00 0.80 1.00 - - - - -
Synthetic 3 1.00 0.50 0.40 1.00 1.00 - - - - -
Synthetic 4 1.00 0.57 0.50 1.00 1.00 - - - - -
Shuttle 0.96 - - - - 0.87 0.72 0.98 0.85 0.82

TABLE IV: F1 Score Results for one execution of IDEAL

Dataset ID Operator |M ||M ||M | |A||A||A| F1tF1tF1t F1aF1aF1a F1fF1fF1f
Synthetic 1 M1 2 1 1.0 NA 0.6
Synthetic 1 M2 99 1 0.8 NA 0.45
Synthetic 1 M3 179 1 0.6 NA 0.49
Synthetic 1 M4 263 1 0.98 NA 0.62
Synthetic 1 M5 88 1 0.78 NA 0.56
Synthetic 4 M1 2 1 1.0 NA 0.6
Synthetic 4 M2 284 1 0.2 NA 0.45
Synthetic 4 M3 680 1 0.4 NA 0.49
Synthetic 4 M4 193 1 1.0 NA 0.69
Synthetic 4 M5 723 1 1.0 NA 0.57
Shuttle M1 21 4 0.23 0.86 0.45
Shuttle M2 1593 1 0.21 0.67 0.60
Shuttle M3 2123 6 0.88 0.58 0.28
Shuttle M4 1472 6 0.57 1.00 0.58
Shuttle M5 1561 5 0.6 0.57 0.8

Given NR, the total number of times an expert revalidates
the data until the desired F1t is reached, we measured the
growth rate of F1t (F1tGR), defined as the percentage change
of an F1t variable within the interactive learning period.

F1tGR = (
F1tNR

F1t1
)

1
NR − 1 (10)

where F1t1 is the F1t at the first run and F1tNR is the F1t
at the last run. The plots in Figure 7 (a)–(e) show positive
F1tGR scores between 0.001 and 0.142 for all the datasets,
which indicates that IDEAL’s accuracy improves after using
ground truth knowledge to retrain the learning model.

2) Goal 2.Goal 2.Goal 2. Anomaly explanation effectiveness: We demon-
strate explanation effectiveness in two parts.

RQ2.a:RQ2.a:RQ2.a: Are the attributes reported as major causes of inva-
lidity of suspicious subsequences actually invalid?

Let Pa and Na be the numbers of actual invalid and valid
attributes that must and must not be reported for constraint
violations. TPa is the number of invalid attributes reported
as valid by the decision tree report. FPa is the number of
valid attributes incorrectly reported as constraint violations.
We measure the F1 score at the attribute level (F1a).

RQ2.b:RQ2.b:RQ2.b: Are the time series features reported in the constraint
violations represented by the decision trees actually invalid?

Let Pf be the number of actually violated features (i.e.,
features that must be violated using a mutation operator), Nf

be the non-violated features, TPf be the number of actually
violated features the decision trees report as violated, and FPf

be the number of non-violated features that the decision trees
incorrectly report as violated. We calculated the F1 score at
the feature level (F1f ) to answer this question.

Table IV shows the F1 scores for one execution of IDEAL
against the mutated datasets. The F1a and F1f scores were
calculated for the subsequences that were actually faulty (i.e.,
subsequences that included at least one actual faulty record).
The F1a score is not applicable (NA) to univariate datasets

(Synthetic 1 and Synthetic 4). The F1a scores were between
0.57 to 1.0 for the mutated Shuttle datasets. The F1f scores
were between 0.28 to 0.8 for all the mutated datasets. The low
values of F1f scores were as a result of displaying only three
decision trees out of all those generated by the random forest
classifier, which report fewer features in comparison to all the
features identified as “must be reported” in Tables II.

3) Goal 3:Goal 3:Goal 3: Performance of constraint discovery and
anomaly detection.: We answered the following question.
RQ3:RQ3:RQ3: Is our autocorrelation-based windowing more efficient
than the brute force approach?

We measure the Total Time (TT ) it takes to perform
the automated steps of data preparation, constraint discovery,
anomaly detection, and anomaly explanation. The time spent
by domain experts is not included because it may vary.

Fig. 8: TT Box Plots for Datasets Mutated by M1–M5

Figure 8 shows the box plots for TT in seconds using
brute-force and auto-correlation based windowing for all the
datasets based on a given mutation operator for one run of
IDEAL. Mi Datasets in the horizontal axis indicates the
datasets that are mutated using the Mi operator. In four out of
five cases, the medians of the boxes for the autocorrelation-
based approach are lower than the ones for the brute-force
windowing approach. Moreover, the interquartile ranges of
the boxes for the brute-force approach are considerably wider
than the ones for the autocorrelation-based approach, which
shows that TT value of the brute-force approach is affected
more by factors such as the dataset size and its number and
type of the attributes than the autocorreclation-based approach.
On average, it takes 152.90 and 593.53 seconds to run the
autocorrelation based and brute-force windowing approaches
respectively. The autocorrelation-based approach is 3.88 times
faster than the brute-force windowing approach.

C. Threats to Validity
Internal validity. Decision trees express constraint violations
using domain attributes, which may not represent the con-



straints discovered by the LSTM-Autoencoder. We assume that
the mutated datasets have no other faults than the seeded ones,
and that the other datasets only have known anomalies.
External validity. The features selected for reporting constraint
violations during mutation analysis were based on our observa-
tions when the Yahoo and NASA datasets were used. Different
features may be affected in other datasets, which will affect
the calculation of the F1f score.

VI. CONCLUSIONS AND FUTURE WORK

We developed an LSTM-Autoencoder-based approach to
find anomalies in multivariate time-series data. We proposed
autocorrelation-based windowing to automatically identify the
input size of the LSTM-Autoencoder network. Decision trees
are generated to explain the detected suspicious subsequences
and records. Domain expert feedback is used to improve the
accuracy of the approach. We demonstrated that IDEAL can
detect previously known anomalies in the Energy dataset and
also those which we created using mutation analysis injected in
the Yahoo and NASA Shuttle datasets. We demonstrated that
the autocorrelation-based splitting of the input data is almost
as effective but faster than the existing brute force window-size
tuning approaches. In the future, we will evaluate the approach
using other types of real-world time series data. We plan to
extend IDEAL to find anomalies in streaming data.
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