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a b s t r a c t

By introducing a weighted networked structure to the classical reaction–diffusion
system, we investigate the Turing bifurcation which changes the trivial equilibrium
to the nontrivial equilibrium. We show the existence of Turing bifurcation if the
diffusion rate is large. By a weakly nonlinear analysis, we induce the amplitude
equation of Turing bifurcation. By analyzing the amplitude equation, we show that
the Turing bifurcation is stable.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Turing bifurcation is one of the central issues in reaction–diffusion systems due to its wide applications to
physics, chemistry, biology and neurophysiology [1]. In recent years the application of big data has introduced
networked structure to reaction–diffusion system, which can help to improve the accuracy of the real-world
model. To be more specific, the direction of Gaussian diffusion for classical reaction–diffusion systems is
isotropic, while the direction of diffusion for data-driven diffusion systems is anisotropy [2]. In order to study
the anisotropy diffusion, we introduce a weighted networked structure to the classical reaction–diffusion
system.

The weighted network can be described by the weighted graph. A graph G = (V, E) includes vertex set
= {1, 2, . . . , n} and edge set E. If vertex y is adjacent to vertex x, we denote y ∼ x. A graph is weighted
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if each adjacent x and y is assigned a weight function ω. Here ω : V × V → [0, ∞) is a positive function
satisfying that ω(x, y) = ω(y, x) and ω(x, y) > 0 if and only if x ∼ y. Based on the weighted function, we
propose out some definitions confined on weighed graph as follows:

dωx :=
∑

y∼x, y∈V

ω(x, y) (1.1)∫
V

fdω(or simply
∫

V

f) :=
∑
x∈V

f(x)dωx (1.2)

Dω,yf(x) := (f(y) − f(x))

√
ω(x, y)

dωx
(1.3)

∇ωf(x) :=
(
Dω,yf(x)

)
y∼x, y∈V

(1.4)

∆ωf(x) :=
∑
y∼x

(f(y) − f(x))ω(x, y)
dωx

(1.5)

where (1.1)–(1.5) are called graph differential, graph integral, graph directional derivative, graph gradient,
and graph Laplacian, respectively.

In this paper we consider a reaction–diffusion system defined on weighted networks:⎧⎪⎨⎪⎩
∂u
∂t = ∆ωu + u − av + buv − u3, (x, t) ∈ V × (0, +∞),
∂v
∂t = d∆ωv + u − cv, (x, t) ∈ V × (0, +∞),
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ V.

(1.6)

ere a, b, c and d are positive constants. The Hopf bifurcation of system (1.6) with a unweighted network
as been shown to exist in [3]. The Turing bifurcation of system (1.6) without a networked structure has
een proved to exist in [4]. The reaction–diffusion systems with graph Laplacian have been considered

n many papers [5–12], where various techniques have been proposed to investigate the existence and
ualitative properties of solutions. Our aim here is to extend the Turing bifurcation result of the classical
eaction–diffusion systems to graph Laplacian diffusion systems. Our main theorem is as follows:

heorem 1.1. Suppose that

c < d, a ≤ (c + d)2

4d
(1.7)

old, then system (1.6) has the following dynamical properties:

(i) System (1.6) undergoes a Turing bifurcation at the trivial equilibrium (0, 0) when a = (d+c)2

4d .
ii) Turing bifurcation is stable, i.e., when the bifurcation parameter a crosses (d+c)2

4d , the stable trivial
equilibrium (0, 0) changes to a stable nontrivial equilibrium.

. Preliminaries

emma 2.1 (Lemma 2.1 of [10]). For any pair of functions f : V → R and g : V → R, the graph Laplacian
∆ω satisfies that

2
∫

V

f(−∆ω)g =
∫

V

∇ωf · ∇ωg = 2
∫

V

g(−∆ω)f. (2.1)

In particular, in the case f = g, we have

2
∫

f(−∆ω)f =
∫

|∇ωf |2. (2.2)

V V

2
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Lemma 2.2. Consider the eigenvalue problem{
−∆ωϕ(x) = λϕ(x), x ∈ V,∫

V
ϕ2(x) = 1,

(2.3)

here exists a series of eigenvalues

{λk}n
k=1 : λ1 < λ2 ≤ · · · ≤ λn,

hose associated eigenfunctions are {ϕk}n
k=1. Moreover,

λ1 = inf
u∈L2(V )

1
2

∫
V

|∇ωu|2 ≡ 0. (2.4)

roof. Let λ be an eigenvalue of (2.3) with corresponding eigenfunction ϕ(x). We multiply the first equation
f (2.3) by ϕ(x) and integrate the product over V . By using Lemma 2.1, we have λ = 1

2
∫

V
|∇ωϕ|2. We

introduce a functional
F (u) = 1

2

∫
V

|∇ωu|2, (2.5)

where the domain D(F ) of F is D(F ) := {u : u ∈ L2(V ), ∥u∥L2(V ) = 1}.

Step 1: Determine λ1. By virtue of the definition of F and (1.4), for any u ∈ D(F ), we have

lim
∥u∥

L2(V )→∞
F (u) = ∞.

ence F is a weakly lower semicontinuous in D(F ), that is, there exists ϕ1 ∈ D(F ) such that

λ1 := F (ϕ1) = inf
u∈D(F )

F (u). (2.6)

ere λ1 and ϕ1 is a solution of the eigenvalue problem (2.3). Moreover, it easy to verify that λ1 = 0 and
1(x) = 1, that is, λ1 is simple.

Step 2: Determine λ2. By using the weakly lower semicontinuous property of F , the second minimization
problem admits a solution, i.e., there is ϕ2(x) ∈ L2(V ) with ∥ϕ2∥L2(V ) = 1 and ϕ2 ⊥ ϕ1 such that

λ2 := F (ϕ2) = inf
u∈L2(V )

{F (u) : ∥u∥L2(V ) = 1, u ⊥ ϕ1}, (2.7)

where u ⊥ ϕ1 means that u and ϕ1 are orthogonal, that is,
∫

V
uϕ1 = 0. By the definition of (2.7), we have

λ2 > λ1.
Repeating the above steps, we can construct a sequence {λk}n

k=1 whose associated eigenfunctions are
{ϕk}n

k=1. Owing to the fact that V is finite, we induce that n is finite. We thus complete the proof. □

3. Proof of the main theorem

Proof of Theorem 1.1. Step (i): By setting U := (u, v)T , we rewrite system (1.6) to the following form:

∂U
∂t

= LU + R(U), (3.1)

here
L =

(
∆ω + 1 −a

)
, and R(U) =

(
buv − u3 )

. (3.2)
1 d∆ω − c 0
3
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In view of Lemma 2.2, we can assume the solution of the linearization of system (3.1) possessing the
following form: (

u
v

)
= eσt

( ∑n
i=1 uiϕi∑n
i=1 viϕi

)
, (3.3)

here ϕi is the eigenfunction of the corresponding eigenvalue λi. Substituting (3.3) into the linearization of
ystem (3.1), we have

σeσt

( ∑n
i=1 uiϕi∑n
i=1 viϕi

)
= −eσt

( ∑n
i=1 uiλiϕi

d
∑n

i=1 viλiϕi

)
+ eσt

(
1 −a
1 −c

)( ∑n
i=1 uiϕi∑n
i=1 viϕi

)
. (3.4)

n terms of the orthogonality of ϕi for i = 1, 2, . . . , n, (3.4) implies to

σeσt

(
uiϕi

viϕi

)
= −eσt

(
uiλiϕi

dviλiϕi

)
+ eσt

(
1 −a
1 −c

)(
uiϕi

viϕi

)
. (3.5)

ince eσt and ϕi are nonzero functions, we then have(
σ + λi − 1 a

−1 σ + dλi + c

)(
ui

vi

)
= 0. (3.6)

ince there exists a nontrivial solution of (3.6), the eigenvalues σ are roots of the characteristic polynomials

σ2 + g(λi)σ + h(λi) = 0, (3.7)

here g(λi) = (1 + d)λi − 1 + c and h(λi) = dλ2
i + (c − d)λi − c + a.

System (3.7) has a zero eigenvalue if and only if h(λi) = 0. Since (1.7) holds, h(λi) has a single minimum
t (λc, ac), where

λc = d − c

2d
, ac = (d + c)2

4d
, (3.8)

uch that h(λi) = 0. Since (3.7) possessing a zero eigenvalue means that Turing bifurcation occurs, system
1.6) undergoes a Turing bifurcation at the trivial equilibrium (0, 0) when a = (d+c)2

4d .
Step (ii): We rewrite the solution of system (3.1) as a weakly nonlinear expansion depending upon ε,

hich is the dimensionless distance from the bifurcation parameter threshold ac. Here we set ε2 = ac−a
ac

.
ince the slow mode of Turing pattern bifurcation is the active mode, we introduce the slow time T = ε2t

and expand both u and v as follows:(
u
v

)
= ε

(
u1
v1

)
+ ε2

(
u2
v2

)
+ ε3

(
u3
v3

)
+ · · · . (3.9)

We rewrite the linear operator L in the following form:

L = Lc + (ac − a)M, (3.10)

where
Lc =

(
∆ω + 1 −ac

1 d∆ω − c

)
, M =

(
0 1
0 0

)
(3.11)

Substituting (3.9) into the system (3.1) and collecting same powers of ε, we obtain at orders εj(j = 1, 2, 3)
the sequences of equations as follows:

O(ε) : Lc

(
u1
v1

)
= 0,

O(ε2) : Lc

(
u2
v2

)
=
(

−bu1v1
0

)
,

O(ε3) : Lc

(
u3
)

= ∂
(

u1
)

+
(

−acv1 − b(u1v2 + u2v1) + u3
1
)

.

(3.12)
v3 ∂T v1 0
4
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According to (3.8), (u1, v1)T is the eigenvector corresponding to system (3.6) with σ = 0. Therefore, at
O(ε) the solution is given in the form

(u1, v1)T = ρA(T )ϕc, with ρ := (ρ1, ρ2)T = (c + d

2 , 1)T ,

where λc is given in (3.8) and ϕc is the associated eigenfunction, A(T ) is the amplitude of the solution and
is still unknown at this level. The form of A(T ) will be determined by the perturbational term of the higher
order.

Next, we turn to O(ε2). The equation is written in the form

Lc

(
u2
v2

)
= −bA2ϕ2

c

(
c+d

2
0

)
. (3.13)

fter some direct computation, the solution of system (3.13) is(
u2
v2

)
= A2

(
ρ1
ρ2

)
+ A2ϕ2

c

(
ρ3
ρ4

)
,

here ρ3 = bc(c+d)
2(ac−c) and ρ4 = b(c+d)

2(ac−c) .
Now O(ε3). The equation is written in the form

Lc

(
u3
v3

)
= dA

dT

(
ρ1
ρ2

)
ϕc +

(
−acρ2A − 2bρ1ρ2A3

0

)
ϕc

+
(

ρ3
1 − bρ1ρ4 − bρ2ρ3

0

)
A3ϕ3

c . (3.14)

e recall the Fredholm solubility condition. The adjoint operator of Lc is denoted by L+
c . The nontrivial

ernel of the operator L+
c is (1, c+d

2d )T ϕc. After multiplying (3.14) by (1, c+d
2d )T ϕc and integrating the product

over V , we obtain
dA

dT
= σA − LA3, (3.15)

where
σ = − c + d

2(1 + d) , and L = 2bd

1 + d
. (3.16)

3.15) is called the amplitude equation of Turing bifurcation. Owing to L > 0, the bifurcation likes a
supercritical Pitchfork bifurcation. Hence we conclude that Turing bifurcation is stable, which completes
the proof.
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