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1. Introduction

Turing bifurcation is one of the central issues in reaction—diffusion systems due to its wide applications to
physics, chemistry, biology and neurophysiology [1]. In recent years the application of big data has introduced
networked structure to reaction—diffusion system, which can help to improve the accuracy of the real-world
model. To be more specific, the direction of Gaussian diffusion for classical reaction—diffusion systems is
isotropic, while the direction of diffusion for data-driven diffusion systems is anisotropy [2]. In order to study
the anisotropy diffusion, we introduce a weighted networked structure to the classical reaction—diffusion
system.

The weighted network can be described by the weighted graph. A graph G = (V, E) includes vertex set
V ={1,2,...,n} and edge set E. If vertex y is adjacent to vertex z, we denote y ~ x. A graph is weighted
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if each adjacent z and y is assigned a weight function w. Here w : V x V — [0,00) is a positive function
satisfying that w(z,y) = w(y,z) and w(x,y) > 0 if and only if © ~ y. Based on the weighted function, we
propose out some definitions confined on weighed graph as follows:

dyx = Z w(z,y) (1.1)

y~zx, yeVv
/Vfdw(or simply /Vf) = g‘:/f(x)dwx (1.2)
Dy (@)= (1) — J(a))y| 202 (1)
Vol@) = (Dyf @)y ey (1)
Buf@) = Y1) - S ) (1)

where (1.1)—(1.5) are called graph differential, graph integral, graph directional derivative, graph gradient,
and graph Laplacian, respectively.
In this paper we consider a reaction—diffusion system defined on weighted networks:

Gu = Aputu—av+buww —ud,  (z,t) €V x (0,+00),
% = dAw’U +u—cv, (SL',t) eV x (Oa +OO)7 (16)
u(z,0) = ug(z), v(z,0) =vo(z), zeV.

Here a, b, ¢ and d are positive constants. The Hopf bifurcation of system (1.6) with a unweighted network
has been shown to exist in [3]. The Turing bifurcation of system (1.6) without a networked structure has
been proved to exist in [4]. The reaction—diffusion systems with graph Laplacian have been considered
in many papers [5—12], where various techniques have been proposed to investigate the existence and
qualitative properties of solutions. Our aim here is to extend the Turing bifurcation result of the classical
reaction—diffusion systems to graph Laplacian diffusion systems. Our main theorem is as follows:

Theorem 1.1. Suppose that
(c+d)?
4d

hold, then system (1.6) has the following dynamical properties:

c<d, a<

. . , , . . G _ (d+0)?
(i) System (1.6) undergoes a Turing bifurcation at the trivial equilibrium (0,0) when a = .

(d+c)?
4d

(ii) Turing bifurcation is stable, i.e., when the bifurcation parameter a crosses , the stable trivial

equilibrium (0,0) changes to a stable nontrivial equilibrium.

2. Preliminaries

Lemma 2.1 (Lemma 2.1 of [10]). For any pair of functions f : V=R andg: V — R, the graph Laplacian
A, satisfies that

2 /V f(=Au)g = /V Vol Vg =2 /V g(-A0)f. (2.1)

In particular, in the case f = g, we have

2 /V F(=Au)f = /V Vo fP. (2.2)
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Lemma 2.2. Consider the eigenvalue problem

_Aw =A ; ;
f\/ 0] (l‘) =1,
there exists a series of eigenvalues
{Methor: AL <A <o < Ay,
whose associated eigenfunctions are {¢x}}_,. Moreover,
. 1 2
A1 = inf 7/ [Vou|” = 0. (2.4)
u€L2(V) 2 v

Proof. Let A be an eigenvalue of (2.3) with corresponding eigenfunction ¢(x). We multiply the first equation
of (2.3) by ¢(x) and integrate the product over V. By using Lemma 2.1, we have A = § [, IV,o|®. We
introduce a functional

Plu)= 1 /V Voul?, (2.5)

where the domain D(F) of F is D(F) == {u: u e L*(V),|lull 2y = 1}.
Step 1: Determine A;. By virtue of the definition of F' and (1.4), for any u € D(F'), we have

F(u) = 0.

”uHLQ(V) —00
Hence F is a weakly lower semicontinuous in D(F'), that is, there exists ¢1 € D(F') such that

A= F(¢1) = ueig{F) F(u). (2.6)

Here A1 and ¢, is a solution of the eigenvalue problem (2.3). Moreover, it easy to verify that Ay = 0 and
¢1(x) =1, that is, A\; is simple.

Step 2: Determine \o. By using the weakly lower semicontinuous property of F', the second minimization
problem admits a solution, i.e., there is ¢o(x) € L*(V) with [[¢2 121y = 1 and ¢o L ¢y such that

)\2 = F((ﬁz) = inf {F(u) . ||u||L2(V) = 1,'& 1L (251}, (27)
u€L2(V)
where u | ¢; means that v and ¢; are orthogonal, that is, fv ugy = 0. By the definition of (2.7), we have
Aoy > A1l

Repeating the above steps, we can construct a sequence {A\,}7_; whose associated eigenfunctions are
{¢x}7_,. Owing to the fact that V is finite, we induce that n is finite. We thus complete the proof. [

3. Proof of the main theorem

Proof of Theorem 1.1. Step (i): By setting U := (u,v)”, we rewrite system (1.6) to the following form:

Y _Lu+RU), (3.1)
ot
where 5
A, +1 —a buv —u
L:< 1 dAw_C>,andR(U):( 0 ) (3.2)

3
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In view of Lemma 2.2, we can assume the solution of the linearization of system (3.1) possessing the

(1) (5) o

where ¢; is the eigenfunction of the corresponding eigenvalue A;. Substituting (3.3) into the linearization of

following form:

system (3.1), we have

ett Do Ui _ ot Doy Uikid; Lot 1 —a PRI . (3.4)
D e Vit dy i vidioi 1 —c Do Vit

In terms of the orthogonality of ¢; for i = 1,2,...,n, (3.4) implies to

oo (i) = () (0 ) (i) .

Since et and ¢; are nonzero functions, we then have

o+ XN —1 a Uy _
( -1 a—l—d)\i—l—c)(vi)o' (3.6)

Since there exists a nontrivial solution of (3.6), the eigenvalues o are roots of the characteristic polynomials
0%+ g(\i)o + h(X;) =0, (3.7)

where g(\;) = (1 +d)\; — 1+ c and h(\;) = d\? + (c — d)\; — ¢+ a.
System (3.7) has a zero eigenvalue if and only if A()\;) = 0. Since (1.7) holds, h();) has a single minimum

at (A, ac), where

d—c (d+ c)?
AC - a7 C = 7 *
2d  “ Ad (3:8)
such that h(\;) = 0. Since (3.7) possessing a zero eigenvalue means that Turing bifurcation occurs, system

2
(1.6) undergoes a Turing bifurcation at the trivial equilibrium (0,0) when a = %.
Step (ii): We rewrite the solution of system (3.1) as a weakly nonlinear expansion depending upon e,

ac—a
ac

Since the slow mode of Turing pattern bifurcation is the active mode, we introduce the slow time T = €2t

which is the dimensionless distance from the bifurcation parameter threshold a.. Here we set €2 =

and expand both u and v as follows:

(v)=e (i) (i) o= (0 )+ 0
v 1 V2 U3
We rewrite the linear operator L in the following form:

L=L;+ (a. —a)M, (3.10)

(A +1 —a. (01
Lc_( 1 dch>’M_(O 0) (3.11)

Substituting (3.9) into the system (3.1) and collecting same powers of &, we obtain at orders £/ (j = 1,2, 3)

where

the sequences of equations as follows:

O(e) : Lc< Zi ):07

0(e?) : LC< Zi ) = ( _b%m ) (3.12)

3\ U3 _i U1 —acv — b(urve + ugvy) + u
0(5>.LC<U3)_8T(01>+< : |

4
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According to (3.8), (ur,v1)T is the eigenvector corresponding to system (3.6) with o = 0. Therefore, at
O(e) the solution is given in the form

c+d
2

(u1,v1)" = pA(T) e, with p = (p1,p2)" = ( D7,

where ). is given in (3.8) and ¢, is the associated eigenfunction, A(T) is the amplitude of the solution and
is still unknown at this level. The form of A(T') will be determined by the perturbational term of the higher
order.

Next, we turn to O(e?). The equation is written in the form

c+d
Lc( Zj ) = —bA2g? ( 2 ) (3.13)

After some direct computation, the solution of system (3.13) is

( : ) 2 ( ; ) 2 z ( ) > ’
V2 P2 P4
be(c+d) b(c+d)

2(ac—c)  2(ac—c)"
Now O(e?). The equation is written in the form

uz \ _dA [ p —acp2A — 2bp1pr A
ne () =G (2 ) et ( . 6

3_ _
N ( P — bp1ps — bpaps )A%Z’. (3.14)

where p3 = and py

0

We recall the Fredholm solubility condition. The adjoint operator of L, is denoted by L. The nontrivial
kernel of the operator L} is (1, $-4)7 ¢... After multiplying (3.14) by (1, 5£¢)7 ¢, and integrating the product

’ 2d ’2d
over V, we obtain
A oA a3 (3.15)
dT =0 s .
h
gt gy 2 3.16)
 2(1+d)’ C1+d '

(3.15) is called the amplitude equation of Turing bifurcation. Owing to L > 0, the bifurcation likes a
supercritical Pitchfork bifurcation. Hence we conclude that Turing bifurcation is stable, which completes
the proof.
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