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1 Introduction

In the design of engineering systems, multiple performance out-
comes are balanced against budgetary constraints. Among the com-
plexities of optimizing over multiple objectives is the effect of
uncertainties in the problem. Design is guided by models known
to be imperfect, systems are built using materials with partially
unknown properties, variations occur in the construction of
designed systems, and so on. These imperfections, uncertainties,
and errors cause uncertainty also in the solution to a design
problem.

In this paper, we cast the engineering design problem in the
framework of computer model calibration under uncertainty. In tra-
ditional calibration, one aligns computer model output to observa-
tions of a real system by estimating unknown parameters in the
model. Here, we instead align the computer model to performance
and cost targets by finding design variables that optimize the model
output with respect to those targets.

Our proposed methodology uses the framework first established
by Kennedy and O’Hagan [1]. This area is furthered by Higdon
et al. [2], who undertake a fully Bayesian approach to model cali-
bration. The approach is refined and exemplified by Williams
et al. [3] for a flyer plate experiment. Loeppky et al. [4] offer a
maximum likelihood-based alternative to the Bayesian approach
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advocated by Kennedy and O’Hagan, intending thereby to
improve the identifiability of the calibration parameters in the
face of model discrepancy. Bayarri et al. [5] extend the approach
of Kennedy and O’Hagan, allowing for simultaneous validation
and calibration of a computer model. Bayarri et al. [6] apply this
methodology to computer models with functional output using a
hierarchical framework for the coefficients of a wavelet representa-
tion. Similarly, Paulo et al. [7] apply the approach of Ref. [5] to
computer models with multivariate output. Brynsjarsdéttir and
O’Hagan [8] demonstrate the importance of strong priors on the
model discrepancy term to improve identifiability and interpretabil-
ity of calibration parameters.

Common to those approaches is a conception of calibration as
using real observations to get a posterior distribution on unknown
parameters so that the posterior predictive distribution of the
model approximates reality. By contrast, using an approach we
call counterfactual Bayes, our methodology uses artificial observa-
tions (representing design targets) to obtain a posterior distribution
on design variables so that the posterior predictive distribution
approaches those targets. In counterfactual Bayes, we apply Baye-
sian reasoning to a hypothetical scenario that bears certain known
relationships to reality. These known relationships allow us to trans-
fer knowledge gained about the hypothetical scenario to reality,
thereby gaining valuable insights into the phenomenon of interest.
We describe how, with little added computational cost, the method-
ology provides an initial rough estimate of the Pareto front for the
system as well as its inverse image in the design space called the
Pareto set. (A design point is Pareto optimal if and only if, in
order to improve any one of its objectives, some other objective
must be made worse off.) This initial rough estimate of the Pareto
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front can be used to select artificial observations closer to the design
space and thereby promote stronger Bayesian learning about the
Pareto set. Repeated applications of the procedure can be used to
produce more thorough “Pareto bands” which estimate the Pareto
front with quantified uncertainties.

A prominent class of algorithms for multi-objective optimization
(MOO) is gradient-based approaches, some of which account for
uncertainty. For instance, Peitz and Dellnitz [9] propose an
approach for finding the Pareto set in which descent directions are
determined while accounting for approximation error in the gradient
information and approximate function evaluations, leading to a col-
lection of subsets of the design space thought to contain the Pareto
set. Vasilopoulos et al. [10] use function gradients to locate an
approximate point along the Pareto front, followed by “tracing”
the Pareto front to efficiently explore it in a bi-objective optimiza-
tion problem. Such approaches exploit information about the gradi-
ent of the objective function to find optimal directions of descent or
exploration. We are concerned here with situations in which the
objective function is a “black box” for which the gradient informa-
tion is unavailable. Peitz and Dellnitz propose a gradient-free
version of their approach in which the subsets are found through
trial and error in a sampling algorithm. By contrast, we avoid the
use of gradients but still inform the direction of exploration by
using prior information about what a “good outcome” looks like
(i.e., target performance).

Our approach is an example of Bayesian MOO under uncertainty.
Concerns about uncertainty in optimization may include uncertainty
in the inputs (as when the inputs are not perfectly known), uncer-
tainty in the outputs (as when the code or process of interest is
not deterministic), and observation error [11-13].

In traditional Bayesian optimization (BO), a Gaussian process
(GP) surrogate model is constructed based on a small set of training
observations, and the resulting updated GP is used to define an
“acquisition function” that is used sequentially to select new obser-
vation locations until a stopping condition is achieved [14]. Acqui-
sition functions are crafted to attempt to balance exploration with
exploitation of the objective function. Examples include efficient
global optimization [15] and stepwise uncertainty reduction [16],
the latter of which is applied to MOO by Picheny [17]. Tuo and
Wang [18] provide uniform error bounds for Bayesian global opti-
mization using GPs. Pandita et al. [19] extend BO to stochastic
MOO.

The methodology we propose here differs from these forms of
BO by its avoidance of sequential sampling, which is desirable in
cases where the computational budget is very small or the data-
gathering process is independent of the optimization. Our method-
ology also can be used to quantify all associated forms of
uncertainty discussed above—uncertainty due to the model
inputs, due to the stochastic nature of the objective function, or
due to observation error of the outputs. Our approach thus has affin-
ities with that of Olalotiti-Lawal and Datta-Gupta [20], whose
approach captures uncertainty remaining in the distribution
designed by the authors. By contrast, under our approach, the dis-
tribution explored via Markov chain Monte Carlo (MCMC [21])
is dictated by the model itself (and by the GP surrogate thereof),
by our prior knowledge about the appropriate design settings, and
by the choice of performance/cost targets. Our approach also may
be used as a form of “goal programming” [22], targeting a particular
region of the Pareto front in accordance with design preferences. As
an application of Bayesian calibration techniques in the design
domain under uncertainty, our approach is in the vein of Refs.
[23] and [24]. However, our approach differs in that it applies to
multi-objective optimization problems, including a procedure for
estimating the Pareto front under uncertainty, and also in that, our
approach does not require the ability to sample sequentially from
the phenomenon of interest. A comparison of Bayesian- and
confidence-based strategies for uncertainty quantification in relia-
bility analysis is given by Ref. [25].

Our approach is motivated by the desire to couple material selec-
tion and engineering system design under the umbrella of MOO
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with uncertainty. Material discovery/selection and engineering
system design are typically done independently of each other. In
particular, we apply our proposed methodology both to a
proof-of-concept example and to finding material design settings
to optimize performance and cost for a wind turbine blade of
fixed outer geometry. The goal is to reduce the twist angle and tip
deflection of the blade under load while keeping unit cost of the
composite material low.

In Sec. 2, we describe the counterfactual Bayes methodology for
learning about a real system by applying Bayesian reasoning in a
hypothetical scenario with known linkages to the real system. In
Sec. 3, we review the calibration framework and how it can be
repurposed for design optimization. In Sec. 4, we apply our meth-
odology to a simulated example with a known truth. We consider
the wind turbine blade design problem in Sec. 5. Section 6 con-
cludes with discussion and thoughts about future directions.

2 Counterfactual Bayes

Counterfactual Bayes relies on reasoning about counterfactual
situations, a cornerstone of causal inference [26]. To elucidate,
we rely on the conception of possible states of a system, each of
which is internally consistent, but may or may not match the
actual system being studied [27,28]. For example, while it is
perhaps true that all dogs weigh under 200 kg, one can conceive
of a world in which some dogs weigh over 200 kg, without contra-
diction, i.e., a 200 kg dog could exist. By contrast, there is no pos-
sible world in which some dogs are reptiles, since dogs are
mammals by definition. To describe any creature simultaneously
as a reptile and as a dog is a contradiction.

We can summarize the methodology of counterfactual Bayes as
follows. Let o denote the true state of a system and f, a function
relating inputs X, @ to some output y, describing some outcome
of interest for which we wish to find optimal settings for 6.
Suppose that f, is such that the optimal outcome can be defined
in terms of some desired outcome y,; i.e., argmingfy(X, 0) =
argming |y, — fu(x, 0)| for some target y, and some norm ||-||.
Then, a distribution 0[x, y, can be constructed on values producing
the optimal achievable output of the system. This notion is similar
to using a so-called Gibbs posterior to minimize a given risk func-
tion [29]. Consider now a possible state o in which the outcomes are
indistinguishable from those of the true state, f, = fy, and in which
we observe y,. Then, we can apply Bayes’ rule to learn a posterior
distribution p(0]x, y,) of 0 values in ®.

While not directly applicable to the true state, we have that 0|x, y,
approximates a distribution on 0 values producing an optimal
achievable outcome from the system f;, and f,, = f,. Thus, a distribu-
tion on @ values optimal for f, is also a distribution on 0 values
optimal for f,. Thus by relying on known connections between ®
and o, we use observations made only assuming state ® to gain
valuable insight into features of the true state a.

In what follows, we apply this counterfactual Bayes approach to
find distributions on optimal design settings. In our approach, we
apply the model calibration framework [1] in a hypothetical sce-
nario involving artificial observations of idealized outcomes Yy,
using our knowledge of the true system to exploit the resulting pos-
terior distribution 0ly,, thereby finding a distribution on optimal
design settings.

3 Calibration for Design

3.1 Gaussian Process Emulators for Calibration. In this
work, we use Gaussian processes (GPs) for emulators of computa-
tionally expensive computer models. As a multivariate Gaussian
random variable is characterized by a mean vector and a covariance
matrix, a GP is characterized by mean and covariance functions
uD— R and C:DXxD — R, where D is the domain of the
process. For points x, y € D, u(x) is the GP mean at x and C(x, y)
is the covariance between the values of the GP at x and y.
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The distribution of the GP at any finite number of points is multivar-
iate normal with mean vector and covariance matrix determined by
u(-) and C(-, -). In principle, model calibration need not rely on emu-
lators; one can complete a Bayesian analysis via MCMC by running
the model at each iteration of the chain [30]. In Sec. 4, we assume
fast-running computer code for the simulated example, but com-
puter models are often too computationally expensive to allow
such expenditure [31,32].

The use of GPs as a computationally efficient predictor of
computer code given observations of code output is advocated by
Sacks et al. [33] and explored at length by Santner et al. [34].
This is due to a GPs flexibility, interpolating property, and closed-
form expressions for uncertainty quantification. Since computer
code is typically deterministic (with some exceptions, [35]), these
applications differ from the focus of Ref. [36]. Reference [1] uses
GPs for computer model calibration. Kennedy et al. [37] showcase
this use of GP emulators for uncertainty and sensitivity analyses.
Bastos and O’Hagan [38] describe numerical and graphical diag-
nostic techniques for assessing when a GP emulator is successful,
as well as likely causes of poor diagnostic results. Though most
work on GP emulation uses stationary covariance functions and
quantitative inputs, Gramacy and Lee [39] use treed partitioning
for a nonstationary computer model, and Qian et al. [40] explore
methods that include both quantitative and qualitative inputs.

‘Whether or not an emulator is used, one may consider a computer
model to be of the form n(x, 0), where (x, ) comprise all model
inputs. The vector @ denotes the inputs to be calibrated, and the
vector x denotes operational domain inputs, variables for different
values of which the design must satisfy the performance expecta-
tions. Thus, the model used for calibration [1] is typically taken
to be

Y(x) =£(x) + e(x) = n(x, 0) + 8(x) + e(x) ey

where y(x) is the observed response at operational domain inputs X,
f(-) is the true system, d(-) is the model discrepancy (the systematic
bias of the model), and €(-) is mean-zero observation error, often
assumed to be i.i.d. Gaussian.

To use an emulator, suppose we have inputs {(x;, t;)}’_, € R” x
R? scaled to the unit hypercube and completed model runs n(x;, t;)
for i=1, ..., n. Define the GP prior for n(-, -) as having mean
function u(x, t), usually taken to be constant, and set the covariance
function in terms of the marginal precision A, and a product power
exponential correlation:

1 P
Cx 0, (<, )= 3 [ T exp(=BLbe — x; 1)
k=1

q
x[Jexp(~pusts =51

=1
+ 0 I o= t) 2)

where B, k=1,...,p+q, describes the strength of the GP’s
dependence (i.e., sensitivity) on input direction k, and {; determines
the smoothness of the GP (i.e., the differentiability of the sample
paths). Independent Gaussian observation error is captured by o>
and the indicator function 1. If n( -, -) is a deterministic computer
model, then we can set 6> = 0. The model is completed by specify-
ing priors for the hyperparameters c, Ay, oy, B, and o forj=1,...,
p + g, though in practice these are often set to predetermined values
or estimated from the data via, e.g., maximum likelihood.

3.2 Design to Target Outcomes. Call design targets treated as
observations in the design procedure we propose below “target out-
comes,” and call that procedure, which pairs a Bayesian model cal-
ibration framework with target outcomes via counterfactual Bayes,
“calibration to target outcomes” (CTO). Thus, target outcomes are a
sort of artificial data, and the calibration procedure is carried out as
if these artificial data had been observed in reality. As in traditional
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calibration, in which the result is a distribution on the calibrated
parameter 0 to approximate the observed data, in CTO, the result
is a distribution on the design parameter @ which induces the
model to approximate the performance and cost targets. Note that
the Bayesian model calibration framework allows for quantification
of all sources of uncertainty, including uncertainty about the values
of model inputs other than the design variables, uncertainty intro-
duced from using a surrogate in place of the actual computer
model, and model form uncertainty (i.e., how closely the code
approximates reality).

In the Kennedy-O’Hagan framework, the goal is computer model
calibration, so that n( -, -)is a computer model representing some
real phenomenon f(-). The framework is naturally suited to com-
puter model calibration because 0 is an input for n(-, -) but not
for the real system of interest f(-). By contrast, in CTO, 0 is an
input for the real system of interest, since 0 is a design setting
for the system. Thus under CTO we may take n(-, -) either to
be a computer model as under KOH, or, alternatively, we may
take n( -, - ) itself to be the real system of interest. In either case,
a set n of observations of n(-, -) can be used to produce a GP
model. When n( -, -) is the real system, there is no discrepancy.
If n(-, -) is a computer model, the process of calibrating that
model takes place separately from CTO, so the known (estimated)
discrepancy term can be absorbed into the n( -, - ) term. Either way,
we can take the discrepancy term in Eq. (1) to be 8(-) =0. As a
result, CTO is not afflicted by the identifiability concerns of the
Kennedy-O’Hagan framework [5,41].

It is common to plug in the maximum likelihood estimates of the
GP covariance hyperparameters A, and p" in Eq. (2) instead of
including them in a full Bayesian analysis [1,7,34,40]. In our pro-
posed methodology, that is not merely a convenience, but rather
is essential to avoid training an emulator using the target outcomes,
which by their nature are extreme outliers. See Ref. [42] on the
dangers that arise here. We use values found by maximizing the
log likelihood of the available simulation runs with respect to A,
and B". We set the GP to have a constant mean, which works
well when (as here) responses are centered and standardized, and
when the GP is not used for extrapolation [5]. We set {, =2, implic-
itly assuming that the model output is infinitely differentiable.

Denote completed runs of the simulator n=n(xy, t;),...,
T](Xm tﬂ))T’ target outcomes Y= (yt(xn+l)’ s yr(xn+m))T7 and
D=m",y!)". Following the counterfactual framework, we take
the distribution of D|0, 62, Ay, PV to be multivariate normal with
mean 0 and covariance Cp = {C((x;, t)), (x;, 1)) + 621,-:]>,,}l'-l;—=”ll
Here, 6 reflects our assumption that in the hypothetical state w,
the performance targets are unattainable, and hence observable
only due to observation error. The observed performances under
the optimal design inputs deviate randomly according to a distribu-
tion with variance 6. This “noise” is introduced by measurement
error and random, uncontrollable factors that affect performance
(e.g., small variations in the manufacturing process or external
factors in the operating environment). We can more generally
refer to this as unstructured variation to distinguish it from
random behavior that has structure, e.g., a smooth sample path real-
ized froma GP. If n( -, -)is astochastic system, then it may be suf-
ficient to set o> =0. However, when the specified targets are
extreme outliers, such as unattainable “utopia points” discussed
below, it is necessary to include o2. This allows for large deviation
between the target and the true optimum without making the state of
the system contradictory. In other words, it is necessary to construct
the model so that the target outcomes are compatible (i.e., that the
hypothetical state is self consistent). Including 6> ensures that this
requirement is satisfied.

When n(-, -) has m>1 outputs, it is standard practice to fit a
separate, independent GP to each output [17]. We take this
approach here, letting 67 be the variance of the unstructured varia-
tion for the ith output. The variance of the unstructured variation can
be set a priori based on knowledge, or it can be assigned a prior dis-
tribution centered at some baseline value. For instance, setting an
exponential prior on each o7 with mean 0.001 corresponds to
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prior knowledge that that the system has little unstructured varia-
tion, whereas 67 ~ gamma(4, 1/8) induces a heavy-tailed predic-
tive distribution that is more robust to uncontrollable variations in
the system performance.

We typically take a uniform prior on the design variables 0 so that
it has density n(0) « 1. We include also a probability density for
operational domain inputs x,  (x) « 1, appropriate for systems for
which we have additional random, observable inputs that affect
the system (e.g., external environmental factors). The joint posterior
density under the model is

n(x, 0, 62|D, &y, p) < (DIx, 8, &y P X 2(6%)  (3)

MCMC methods are used to explore the posterior distribution.

When one has little information about the location and shape of
the system’s Pareto front in a multi-objective design problem, it
may not be obvious what target best accords with one’s goals.
One common choice in such situations is to locate the portion of
the Pareto front closest to the “utopia point,” the global minimum
of each objective function. When one has access to a set of obser-
vations 1, the utopia point can be estimated by taking the minima
of the observations of each objective. However, another option in
such cases is to perform a “preliminary round” of CTO to estimate
the system’s Pareto front. In preliminary CTO, one performs the
usual CTO routine with a target known to dominate the utopia
point and with cs,-2 set to a large constant for each objective. By
allowing for a large amount of unstructured variation relative to
the prior, the prior information dominates the information from
the targets in the posterior. This encourages exploration of broad
regions of the feasible design space near the Pareto front, since
essentially the entire prior support is viewed as compatible with
the targets. When the resulting posterior samples of 0 are filtered
to retain only their approximate Pareto set, we obtain a rough esti-
mate of the Pareto front that can be used to select target outcomes in
an informed way. In addition to being only a rough estimate of the
Pareto front, this preliminary estimate does not include quantifica-
tion of uncertainties regarding its location. Methods for estimating
the system’s entire Pareto front with quantified uncertainties are
explored in Sec. 5.4. The full CTO process, including preliminary
Pareto front estimation, is given in Algorithm 1.

Algorithm 1 Full CTO procedure including preliminary esti-
mation of Pareto front.

1. Set target outcomes y, to dominate a known utopia point and 6> =
s(1,1, ..., l)T for large constant s.

2. Use MCMC to sample 0|y, and thereby the posterior predictive
distribution.

3. Filter the predictions to retain only their Pareto optimal values P.

4. Select new target outcomes y; using P as an estimate of the model’s
Pareto front.

5. Setting 6? ~ gamma(4/1/8) (for example) fori =1, ..., m, use MCMC
to draw from 0[y;.

Figure 1 illustrates the benefits of preliminary CTO. Suppose that,
prior to undertaking CTO, we know only that the model outputs are
positive and the goal is to simultaneously minimize the competing
objectives. Then, (0, 0) is a natural choice as a target outcome,
despite the fact that it is not feasible. The point closest to (0, 0) is
unique in the Pareto front solely in being nearest to the origin and
that choice of target outcome was itself driven merely by our igno-
rance of the feasible design space. By contrast, suppose now that pre-
liminary CTO has supplied us a rough estimate of the Pareto front,
empowering us to choose a different target outcome. For instance,
(1.32, 0.065) targets a point of diminishing returns in allowing y;
to increase further in exchange for a reduced y,. Note also that
when an emulator is used, preliminary CTO can use the same
model observations as the subsequent CTO to train the emulator.

051702-4 / Vol. 143, MAY 2021
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Fig. 1 Two choices of target outcomes for CTO, drawing the
posterior predictive distribution to two different regions of the
feasible design space

So, preliminary CTO does not add to the budget of model runs and
is thus a computationally cheap supplement to CTO.

4 Simulated Example

To illustrate our proposed procedure, we consider a version of the
example problem ZDT1 described by Deb and Sundar [43]. For this
illustration, we have two objectives y;, y,, and five design variables
0=(0,,0,,...,05) with 6; € [0, 1] for all i. We seek optimal set-
tings for ©. Model outputs are y; =0; and y, =g(1 — /0,/g),
where g =1 +%Zf:2 0;. Though in reality each output is in the
range [0, 1], we assume the vague prior knowledge only that the
outputs are each in the range [—6, o0). Figure 2 displays the (nor-
malized) outputs as functions of 6; and 6, at x=2, where 6, =0
for i=3, 4, 5.Assuming an easily evaluated model (so that an emu-
lator is not needed), we have z(x) = n(0) + € for target outcome z, so
that n = (yy, yg)T is the output and €; ~ N(0, cl-z), i=1, 2. For this
example, we set the prior 67 to be exponential distributions with
mean 0.001 for i=1, 2, corresponding to prior information that
there is very little variation in the observed system outputs for a
given design setting.

We initially set the target outcomes to (0.25, —6), representing a
target chosen with very little knowledge of the location of the
system Pareto front. For comparison, we also performed CTO with
target (0.3984, —2.1501), which lies much closer to the feasible
region (two standard deviations away, under a uniform prior on 6,
compared to the original target’s 5.2), on the line connecting the orig-
inal target point to the nearest point in the feasible objective space.
Figure 3 shows the resulting posteriors of 8, and 6,. The marginal
posteriors of the remaining inputs are practically indistinguishable
from those of 0, and thus are not shown. In the top plot, the original
targetis just over 5.2 units away from the objective space, where each
objective is standardized to have variance 1. In the bottom plot,

[%2]
[0)
§
e 2
=}
o
T —T 0
0 05 11 05
0, 0,

Fig. 2 True two-dimensional profile outputs of the five-
dimensional simulated example model
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Posterior 6 samples:
(a) target [0.25, -6]

08 o2 6.25 ﬂJ

5.75

Posterior § samples:
(b) target [-0.40, -2.15]

08 o2 6.25 J

5.75

Fig. 3 Posterior draws from CTO in the simulated example
(@) using an arbitrary (non-feasible) point as a target and
(b) using an updated target designed to lie two standard devia-
tions from the Pareto front, in the direction of the original
target. The contours show, for each point in the design space,
the Euclidean distance of the model output at that point from
the original target point (0.25, —6), when 6; =0 for i=3, 4, 5
(which is the optimal setting for those inputs). The large dot
shows the true optimum.

the Euclidean distance of the target from the objective space is 2. The
posteriors are similar in the two cases, demonstrating that the method
is not sensitive to differences in the distance of the chosen target from
the feasible objective space. The marginals in each case show sub-
stantial Bayesian learning when compared with the prior (uniform)
distribution of the design variables. CTO successfully maps the con-
tours of the optimal region in each case, peaking near the true
optimum. This example demonstrates the robustness of CTO to the
distance between the target outcome and the feasible objective
space. Thus, a target outcome can be selected even when little is
known about the location of the Pareto front.

5 Wind Turbine Material Design Application

In this section, we use CTO to customize a material for use in a
wind turbine blade. The material is to be designed specifically for
the end use of optimizing blade performance.

5.1 Wind Turbine Blade Design. The two blade performance
measures of interest here are tip deflection and twist angle. The
engineering design goal is to keep these measures low while also
minimizing material cost. The blade is a composite of a given
matrix and filler. The material properties (and thus blade perfor-
mance and cost) depend on the thickness of the shear web in the
blade and on the volume fraction or ratio of filler to matrix. Tem-
perature also affects the composite’s properties and hence its perfor-
mance. It is a known operating condition of the blade but of course
is not controllable. Hence, we treat temperature as an operational
domain input but not a design parameter in the computer model.
The model inputs are a triplet (h, v, k), where # is the temperature
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of the turbine (in kelvin), v is the volume fraction, and & is the thick-
ness (in mm). The model output is a triplet (d, r, c¢), where d is tip
deflection (in meters), r is twist angle (in radians), and c is cost
per square meter (USD) of the material. The turbine is deemed to
operate over temperatures 230-330 K.

5.2 Emulation of Finite Element Model. The finite element
model is one developed at Sandia National Laboratory for the
CX-100 blade. We use ansys finite element analysis software
[44], interfaced with MATLAB [45] code and the NuMAD [46] manu-
facturing design tool. The finite element model’s estimations of
material properties are based on the Mori-Tanaka model [47].
Details of the blade and the finite element model may be found in
the Appendix. We assume the finite element model accurately
represents reality [31,32].

The finite element simulator is too computationally expensive to
be suitable for direct use in an MCMC routine. To train the GP emu-
lator, we drew 30 (trivariate) observations from the finite element
simulator according to a Latin hypercube sampling design [48]
based on plausible ranges for the three inputs as identified by
subject matter experts: [230 K, 330 K]x[0.2, 0.6]x[10 mm,
25 mm]. We used a GP with mean 0 and product power exponential
covariance function as given in Eq. (2). The GP emulator was vali-
dated using 10-fold cross-validation and determined to be an ade-
quate surrogate for the FE model with 30 training points. In fact,
there was little difference in predictive ability between 30 and up
to 500 training points. Details of the validation of the emulator
are in the Appendix.

The hyperparameters A,, " are estimated via maximum likeli-
hood using only the finite element model output. We used
fmincon () in MATLAB [45] to maximize (with D =mn) over the
joint (four-dimensional) support of p", A,. The estimated values
are shown in Table 1.

5.3 Design of the Wind Turbine Blade System. All model
inputs were rescaled to [0, 1]. All model outputs were standardized
so that each of the three responses had mean 0O and standard devia-
tion 1. Initial target outcomes were set to the estimated utopia point
(0.6551m, 0.0768rad, $96.8) found by taking the minimum
observed value of each objective from the 30 simulator observa-
tions. The target was replicated to be constant as a function of tem-
perature over an evenly-spaced grid of temperature values between
230 K and 330 K.

We carried out preliminary CTO with 6> =5x 107 - (1,1, 1) to
estimate the Pareto front and locate a region of interest. 6000 itera-
tions were drawn via Metropolis-Hastings-within-Gibbs MCMC
[49-51] in each of three chains (with random starts), of which the
first 3000 were discarded as burn-in. During the burn-in period,
the covariances of the proposal distributions were periodically
adjusted to be the sample covariance of the preceding draws
scaled for an optimal acceptance rate of around 23% for the multi-
variate input space [52,53]. Convergence of the three chains was
verified visually and by the Gelman-Rubin statistic (=1.01 [54]).

As expected for preliminary CTO, the posterior distribution of
0 = (v, k) was quite diffuse. We used the GP emulator to predict

Table 1 Covariance hyperparameter maximum likelihood
estimates for each objective function in the turbine blade
example, obtained from 30 training computer runs

d r c
pi 0.7239 0.7104 1
pn 0.9788 0.9723 0.9988
il 0.9906 0.9882 0.9986
M 0.0177 0.0261 0.0009

Note: For each objective and each input i, p!' = exp (—B! /4). The objectives
are deflection d, rotation r and cost c.
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Fig. 4 Each x is a dominated design drawn from the predictive
distribution through preliminary CTO. The dots indicate the esti-
mated Pareto front. The plus sign is the target selected as the
performance objective in our proposed design approach.

the model output for each realization of 0. Figure 4 displays the esti-
mated Pareto front after filtering the posterior predictions to retain
only non-dominated performance predictions. Though the objective
space is three-dimensional, the Pareto front appears to be a roughly
coplanar curve describing a trade-off between cost and deflection/
twist. A distinct “knee point” of maximum curvature appears in
the Pareto front. This seems to be a point of diminishing returns
in the trade-off between performance and cost, and thus we selected
this point as the target for design.To do so, we set the point
(deflection = 0.743 m, twist=0.089rad, cost=$71.11) as the
target outcome, replicated to be constant as a function of tempera-
ture as in the preliminary round.

In the subsequent CTO, we employed the same MCMC approach
as in the preliminary round, except we now assign each element of
62 an Exp(0.001) prior. The covariances of the proposal distribu-
tions for each 01-2 were periodically adjusted to be the sample covari-
ance of the preceding draws scaled for an optimal acceptance rate of
around 44 % for the scalar ciz [52,53]. The posterior distribution of @
appears in Fig. 5, with a mode near (0.6, 10 mm). Indeed, from the
analysis discussed in Sec. 5.4, we find that the “knee point” in the
Pareto front is precisely the point at which volume fraction has
reached its upper limit at 0.6, with further gains possible only by
raising thickness from its lower limit of 10 mm. The contrast of
the posterior distribution with the prior, which is uniform over
[0.2, 0.6]x[10, 25], indicates that strong Bayesian learning has
occurred.The prior and posterior predictive distributions of the

Posterior distribution of ¢

10

0.56 10.2
054, 5 10.4

Vol. fraction Thickness (mm)

Fig. 5 Histogram showing the posterior distribution from CTO
in the wind turbine blade system. The prior is uniform over
[0.1, 0.6]x[10, 25].
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Fig.6 Approximate prior and posterior marginal predictive den-
sities for each of the three outputs in the turbine blade design
problem

model outputs appear in Fig. 6, where the prior predictive distribu-
tions are based on a uniform sampling of the model inputs. The
mean output under the prior is (0.753 m, 0.091 rads, $206.58/m2),
and under the posterior, it is (0.751 m, 0.090 rad, $139.80/m2).
Though the mean performance outcomes are approximately the
same under the posterior and the prior, mean cost per square
meter and the uncertainty of the outcomes are dramatically lower.
If one prefers to prioritize gains in performance over cost, this
can be accomplished by selecting target outcomes that reflect
those priorities.

5.4 Pareto Front Estimation With  Quantified
Uncertainties. When multiple design outputs are to be minimized,
any point in the Pareto front is optimal relative to some set of prior-
ities. If these priorities have not been explicitly determined prior to
the design process, then no particular outcome can be targeted. For
example, in a system where performance is monotonically increas-
ing in cost, depending on one’s tolerance for high cost, any point
in the design space might be optimal. In low-dimensional cases,
CTO may be used to achieve a holistic picture of the Pareto front
by optimizing to each target outcome on a grid. To do this, where
the model output is b-dimensional, one may draw a grid over the
range of b — 1 of the model outputs and perform CTO to minimize
the remaining output at each point of the grid. The b —1 outputs,
at each grid point, are treated as known up to small error (e.g., one
tenth of one standard deviation from the mean). Allowing some
small observation error is necessary because any set of solutions
having Lebesgue measure zero has probability zero of occurring.
The resulting estimate of the Pareto front differs from the filtering
method employed in preliminary CTO in that it allows for quantify-
ing the uncertainty associated with the Pareto front.

Our proposed procedure is illustrated here using the wind turbine
blade application. For ease of exposition, twist has been removed as
a model output, leaving a system with two-dimensional output of
deflection and cost. The range of observed costs is [$96, $286]. A
20-point grid was drawn over this range of costs. For each point ¢
in the cost grid, we used the point (0 m, $¢) as the target outcome
for calibration (again replicated as constant with respect to tempera-
ture). The result is an estimate of the response surface with quanti-
fied uncertainty describing, for each point in the grid, the minimal
achievable outcome for the output not included in the grid.

The result of applying this strategy to the wind turbine blade
application is shown in Fig. 7. For comparison, we also plot the
results from applying the NSGA-II algorithm [55], a popular
gradient-free genetic algorithm for MOO. It uses the trained GP
emulator as the objective function, with 500 generations and popu-
lation size 50. NSGA-II and our approach give very similar esti-
mates of the Pareto front’s location. On a machine with an Intel
Core i7-9750H CPU and 16 GB of RAM, NSGA-II required
132 s. While our method required more computation time (461 s),
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Fig. 7 The estimated Pareto front of the wind turbine blade
system with quantified uncertainties, along with NSGA-Il estima-
tion of the front. The light gray shows the 90% credible interval
for the front without code uncertainty (i.e., treating the emulator
as perfect); the dark gray extends the credible interval to include
code uncertainty.

it generated far more informative results. In contrast with that of
NSGA-II, our approach can quantify all the sources of uncertainty.
Such uncertainty is important to account for since no emulator is
identical to the computer model output, and because uncontrollable
factors can affect performance (e.g., uncontrollable operating tem-
perature that changes day to day).

Figure 8 shows the application of CTO to three different prob-
lems with a training set of 100 FE model runs each. All three
cases attempt bivariate minimization of both blade deflection and
cost. Subplot (a) searches for optimal design settings for the com-
posite material’s filler modulus and matrix modulus. Subplot (b)
searches for optimal aspect ratio and shear web thickness.
Subplot (c¢) shows the results for a search over three design vari-
ables: aspect ratio, volume fraction and shear web thickness. In
each case, CTO is consistent with the results from NSGA-IL
Notice also in Subplot (b) that CTO, in contrast with NSGA-II, is
informative about the behavior of the system at costs beyond
those in the Pareto front. The use of CTO in this case demonstrates
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Fig. 8 Estimated Pareto front for multiple wind turbine blade

systems with respect to a variety of design spaces, along with

NSGA-II estimation of the fronts. 95% credible intervals are too

small to be visible.
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the value of obtaining a posterior distribution on the design vari-
ables, rather than just a point estimate. For example, Fig. 5 shows
not just that a reasonable point estimate of the optimal 0 is at
(0.6, 10 mm)—respectively, the upper and lower extrema of the
supports for volume fraction and thickness. We also have informa-
tion about the variation in the design space corresponding to varia-
tion in the observed performance from one experiment to the next.
This is potentially useful for studying system tolerances.

The wind turbine case illustrates how our proposed method can
deliver “Pareto bands,” providing not merely an estimate of the
Pareto front (as in preliminary CTO) but also uncertainty associated
with that estimate. Such an estimate can be of use to decision-
makers when deciding on performance goals subject to budgetary
constraints while also accounting for uncontrollable factors in the
manufacturing process or operating environment.

6 Discussion

We have described how the computer model calibration frame-
work of Ref. [1] can be adapted for engineering design. Calibration
to target outcomes undertakes design by “calibrating” a model not
to field observations, but rather to performance and cost targets.
The procedure optionally includes a computationally cheap prelim-
inary step that provides a rough estimate of the Pareto front, which
may be used to select target outcomes that promote strong Bayesian
learning. The resulting posterior predictive distribution approxi-
mates the target outcomes, so that the posterior distribution of 0
constitutes a distribution on optimal design settings. Repeated
applications of this methodology allows one to construct a thorough
estimate of the Pareto front of the system with quantified uncertain-
ties by selecting target outcomes that explore different portions of
the Pareto front.

Unlike other methods of Bayesian optimization (a review of
which is provided by Ref. [56]), CTO does not require the ability
to evaluate model output adaptively. Instead, it can rely on a
batch of observations gathered prior to (and independently of) the
design process. We described the implementation of this approach
in an MCMC routine along with considerations to accommodate
computational instability. The use of this methodology is illustrated
in the case of material design for a wind turbine blade. By expropri-
ating established tools of model calibration, CTO offers a method of
optimization which is sensitive to, and quantifies, all sources of
uncertainty.

The example of Sec. 4 has five design inputs and bivariate objec-
tives, and the applications in Sec. 5 each had either two or three
design inputs and two or three objectives. The number of objectives
is mostly for ease of illustration and visualization, as well as prac-
tical interest in the turbine blade design problem. There exist many
design problems with many more objectives and/or design dimen-
sions than those considered here. In considering the computational
burden associated with a larger number of objectives, we follow
standard practice by assuming independent Gaussian processes
for each output [17], meaning that the computation essentially
scales linearly with the number of outputs. For cases in which inde-
pendent GPs are not appropriate, it is certainly possible to account
for the dependence of the outputs in the surrogate model [57]. The
computational burden of such an approach would be more severe in
such a case. While CTO with a single target can be applied with
larger numbers of objectives, the grid-based Pareto front estimation
can become prohibitive since the required grid grows exponentially
with the dimension of the objective space. With respect to the
dimension of the design space, the limitations of CTO here are
those that arise from the underlying MCMC algorithm. High-
dimensional MCMC is the subject of ongoing research, some of
which is reviewed in Ref. [58]. While an exploration of this issue
is beyond the scope of the current work, we remark that marginal-
ization and Hamiltonian Monte Carlo have been shown to be effec-
tive. Another partial remedy for these difficulties would be to
perform an a priori sensitivity analysis in order to reduce the
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inputs only to those that substantially affect the output. Similarly,
one could use active subspaces [59] to reduce the dimensionality
of the design space.

It is possible for there to be proper subsets of the design space that
are not feasible (e.g., design values that cannot be meshed for shape
optimization), or that are poorly identified by the performance cri-
teria (i.e., an ill-posed inverse problem). The Bayesian approach
that we use here is naturally suited for such situations. For
example, the prior on the design space can place zero probability
on infeasible subsets or otherwise impose regularization to con-
strain the space of possible solutions. This latter feature is one of
the reasons the Bayesian approach to inverse problems has been
gaining popularity over the last few years [60].

The example and applications we describe here correspond to
unconstrained problems. However, methods are available for con-
structing GPs that incorporate known constraints. For example,
Golchi et al. [61] use sequential Monte Carlo to simulate GPs that
are monotone with respect to some or all inputs. Wang and
Berger [62] similarly discuss methods for incorporating shape con-
straints (including monotonicity) into a GP. Maatouk and Bay [63]
use a functional decomposition to create a finite-dimensional
approximation of a GP that allows one to incorporate inequality
constraints. Ding et al. [64] allow for boundary constraints in GP
emulation with a mean function that honors the information along
with covariance functions that go to zero at the known boundaries.
We suspect that it would be straightforward to incorporate such pro-
cedures into our proposed design approach.

The methodology as described here treats the computer model as
universally valid over the domain of the design variables. Future
work in this area will include the use of a discrepancy term captur-
ing model bias. Other possible extensions of our proposed method-
ology include its application to so-called “state-aware calibration”
[65-67], which would allow the optimal region of the design vari-
ables to vary as a function of the operational domain inputs.
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Nomenclature

cost (USD)

tip deflection (m)

function describing a phenomenon of interest
temperature (Kelvin)

thickness (mm)

number of outputs of n

dimension of x

twist angle (radians)

volume fraction of a composite material
function relating inputs X to outputs y

vector of model inputs such that the true/optimal value of t is
0

array of model inputs other than 0
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»
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vector of model outputs
vector of outputs of 1 summed with error €
covariance function of a Gaussian process
concatenated vector of computer model runs and target
values (=", y))")
the domain of a Gaussian process
Pareto set for multiple objectives
function describing a phenomenon of interest in state y
= vector of target model outputs
Cp = covariance matrix formed with covariance function C and
data D
o = the true state of a system
= inverse correlation length for the jth input of the Gaussian
process emulator of y

VY T AN«
1]

=
I

~<
|

8 = systematic model bias

€ = mean-zero noise

€, = smoothness hyperparameter for the Gaussian process

emulator of y

n = computer model simulator of f

A, = marginal precision of Gaussian process emulator of y

4 = mean function of a Gaussian process

7 = a probability density function (pdf)

pz = repgrameten'zation of ﬁ]

¢~ = variance of €

® = a possible system state

0 = optimal inputs to a given model

n = array of outputs from n
Appendix

Turbine Blade Finite Element Model. The wind turbine blade
model used in this paper is based on a 9-m research and develop-
ment blade developed by Sandia National Laboratory known as
the CX-100 [68,69]. The purpose of the CX-100 blade is to
provide an inexpensive test platform for structural modeling and
strength testing and is composed of a unidirectional carbon-fiber
laminate with a fiberglass skin. Using the airfoil geometry and com-
posite layer specifications described in the CX-100 development
reports, the geometry of the blade is created using the NUMAD
(“Numerical Manufacturing and Design”) tool created by Sandia
National Laboratories [46,70]. The NumAD software serves to
create the blade geometry based on input airfoil geometry data.
Components of the blade (edges, root, spar caps, and shear web)
are assigned composite material properties and geometry (layer ori-
entation, quantity, and thickness; see Fig. 9).

The NumAD software is then used to export the created blade
model as an ansys input file to create the geometry, mesh the
body with the appropriate material properties and geometries, and
apply the boundary conditions. The model is composed of 8-node
structural SHELL281 elements in layers to represent the composite
material layers and that support the application anisotropic material
properties. The study uses fixed-free boundary conditions where the
root is simulated to be fixed to the turbine hub and the tip is free to
measure deflection due to loading. Loading is applied to the blade
tip as a 6000 N load in the flapwise direction based on measured
turbine hub moments of the same blade design under high wind
loads of approximately 54,000 N m. The anysys input is modified

Fig. 9 CX-100 blade model created in numap for ansys input file
generation and finite-element analysis
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Fig. 10 Results of 10-fold cross validation of the GP emulator used for the wind turbine application

accordingly to apply the loading, solve the model, and export the
nodal displacements and rotations.

Surrogate Model Validation. The validation of the GP emulator
was performed using 10-fold cross validation. Figure 10 shows the
results. Though we had access to a large set of 500 finite element
model observations, we find that our GP emulator worked well for
much smaller training sizes, as shown here. In each case, the RMSE
for each of the three outputs is included. Error bars for each observa-
tions are also included, but are generally too small to be visible. In each
case, we see excellent agreement between the predicted and observed
outputs. This validation demonstrates the diminishing returns of using
more than 30 finite element model observations to train the emulator.
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