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Abstract

The proportional hazards (PH) model is arguably one of the most popular mod-
els used to analyze time to event data arising from clinical trials and longitudinal
studies. In many such studies, the event time is not directly observed but is known
relative to periodic examination times; i.e., practitioners observe either current status
or interval-censored data. The analysis of data of this structure is often fraught with
many difficulties since the event time of interest is unobserved. Further exacerbat-
ing this issue, in some such studies the observed data also consists of instantaneous
failures; i.e., the event times for several study units coincide exactly with the time
at which the study begins. In light of these difficulties, this work focuses on devel-
oping a mixture model, under the PH assumptions, which can be used to analyze
interval-censored data subject to instantaneous failures. To allow for modeling flex-
ibility, two methods of estimating the unknown cumulative baseline hazard function
are proposed; a fully parametric and a monotone spline representation are considered.
Through a novel data augmentation procedure involving latent Poisson random vari-
ables, an expectation—-maximization (EM) algorithm is developed to complete model
fitting. The resulting EM algorithm is easy to implement and is computationally effi-
cient. Moreover, through extensive simulation studies the proposed approach is shown
to provide both reliable estimation and inference. The motivation for this work arises
from a randomized clinical trial aimed at assessing the effectiveness of a new peanut
allergen treatment in attaining sustained unresponsiveness in children.
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1 Introduction

Interval-censored data commonly arise in many clinical trials and longitudinal studies,
and is characterized by the fact that the event time is not directly observable, but rather
is known relative to observation times. As a special case, current status data (or case-1
interval censoring) arise when there exists exactly one observation time per study unit;
i.e., at the observation time one discovers whether or not the event has occurred. Data
of this structure often occurs in resource limited environments or due to destructive
testing. Alternatively, general interval-censored data (or case-2 interval censoring)
arise when multiple observation times are available for each study unit, and the event
time can be ascertained relative to these observation times; i.e., the event time is
said to be left-censored (right-censored) if it occurred before the first (after the last)
observation time and interval-censored if it occurred between two observation times. It
is well known that ignoring the structure of interval-censored data during an analysis
can lead to biased estimation and inaccurate inference; see Odell et al. (1992) and
Dorey et al. (1993). Further exasperating this issue, some studies are subject to the
occurrence of instantaneous failures; i.e., the event time of interest for a number of
the study units occurs at time zero. This feature can occur as an artifact of the study
design or may arise during an intent-to-treat analysis (Matsuzaki et al. 2005; Lamborn
etal. 2008; Liu et al. 2016). For example, Chen et al. (2015) describes a registry based
study of end-stage renal disease patients, with the time of enrollment corresponding to
the time at which the patient first received dialysis. In this study, several of the patient
expire during the first dialysis treatment, leading to the occurrence of an instantaneous
failure. Similarly, Liem et al. (1997) describes an intent-to-treat clinical trial comparing
conventional anterior surgery and laparoscopic surgery for repairing inguinal hernia. In
this study, various patients not receiving the allocated intervention, were inadequately
excluded from the analysis to overcome issues such as consent withdrawal, procedure
misfit etc. that would rightly attribute to instantaneous failures. Survival data with
instantaneous events is not uncommon in epidemiological and clinical studies, and
for this reason, herein a general methodology under the proportional hazards (PH)
model is developed for the analysis of interval-censored data subject to instantaneous
failures.

Originally proposed by Cox et al. (1972), the PH model has (arguably) become
one of the most popular regression models for analyzing time-to-event data. For ana-
lyzing interval-censored data under the PH model, several notable contributions have
been made in the recent years; e.g., see Finkelstein (1986), Groeneboom and Well-
ner (1992), Satten (1996), Goggins et al. (1998), Pan (1999), Goetghebeur and Ryan
(2000), Pan (2000), Betensky et al. (2002), Cai and Betensky (2003), Sun (2007),
Zhang et al. (2010), Zhang and Sun (2010), and Li and Ma (2013). More recently,
Wang et al. (2016) developed a methodology under the PH model which can be used
to accurately and reliably analyze interval-censored data. In particular, this approach
makes use of a monotone spline representation to approximate the cumulative base-
line hazard function. In doing so, an expectation—-maximization (EM) algorithm is
developed through a data augmentation scheme involving latent Poisson random vari-
ables which can be used to complete model fitting. It is worthwhile to note, that none
of the aforementioned techniques were designed to account for the effects associ-
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ated with instantaneous failures. The phenomenon of instantaneous (or early) failures
occur in many lifetime experiments; to include, but not limited to, reliability studies
and clinical trials. In reliability studies, instantaneous failures may be attributable to
inferior quality or faulty manufacturing, where as in clinical trials these events may
manifest due to adverse reactions to treatments or clinical definitions of outcomes.
When the failure times are exactly observed, as is the case in reliability studies, it is
common to incorporate instantaneous failures through a mixture of parametric mod-
els, with one being degenerate at time zero; e.g., see Muralidharan (1999), Kale and
Muralidharan (2002), Murthy et al. (2004), Muralidharan and Lathika (2006), Pham
and Lai (2007), and Knopik (2011). In the case of interval-censored data, more com-
mon among epidemiological studies and clinical trials, accounting for instantaneous
failures becomes a more tenuous task, with practically no guidance available among
the existing literature. Arguably, in the context of interval-censored data, one could
account for instantaneous failures by introducing an arbitrarily small constant for
each as an observation time, and subsequently treat the instantaneous failures as left-
censored observations. In doing so, methods for interval-censored data, such as those
discussed above, could be employed. While this approach may seem enticing, in the
case of a relatively large number of instantaneous failures it has several pitfalls. In par-
ticular, through numerical studies (results not shown) it has been determined that this
approach when used in conjunction with modeling techniques such as those proposed
in Pan (1999) and Wang et al. (2016) may lead to inaccurate estimation of the survival
curves and/or the covariate effects. Further, after an extensive literature review, it does
not appear that any methodology has previously been developed to specifically address
data of this structure. For these reasons, herein a general methodology under the PH
model is developed for the analysis of interval-censored data subject to instantaneous
failures.

For the analysis of interval-censored data subject to instantaneous failures a new
mixture model is proposed, which is a generalization of the semi-parametric PH model
studied in Wang et al. (2016). The proposed PH model is developed under the standard
PH assumption; i.e., the covariates provide for a multiplicative effect on the baseline
risk of both experiencing a failure at time zero and thereafter. Two separate techniques
are developed for the purposes of estimating the cumulative baseline hazard function.
The first allows a practitioner to specify a parametric form (up to a collection of
unknown coefficients) for the unknown function, while the second provides for more
modeling flexibility through the use of the monotone splines of Ramsay (1988). Under
either formulation, a two-stage data augmentation scheme involving latent Poisson
random variables is used to develop an efficient EM algorithm which can be used
to estimate all of the unknown parameters. Through extensive simulation studies the
proposed methodology is shown to provide reliable estimation and inference with
respect to the covariate effects, cumulative baseline hazard function, and baseline
probability of experiencing an instantaneous failure. This work is primarily motivated
by a randomized clinical trial supported by both the National Institutes of Allergy
and Infectious Diseases (NIAID) and the Wallace Foundation being conducted at the
University of North Carolina at Chapel Hill, and is aimed at developing, assessing,
and validating the proposed approach as a viable tool which can be used to analyze
the data resulting from this trial.
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The remainder of this article is organized as follows. Section 2 presents the devel-
opment of the proposed model, the derivation of the EM algorithm, and outlines
uncertainty quantification. The finite sample performance of the proposed approach
is evaluated through extensive numerical studies, the features and results of which are
provided in Sect. 3. Section 4 presents the analysis of the motivating data. Section 5
concludes with a summary discussion. Further, code which implements the proposed
methodology has been added to the existing R software package ICsurv and is freely
available from the CRAN (i.e., http://cran.us.rproject.org/).

2 Model and methodology

Let T denote the failure time of interest. Under the PH model, the survival function
can be generally written as

S(tx) = So()" )

where x is a (r x 1)-dimensional vector of covariates, 8 is the corresponding vec-
tor of regression coefficients, and So(#) is the baseline survival function. Under the
phenomenon of interest, there is a baseline risk (probability) of experiencing an instan-
taneous failure;i.e., S(0|x = 0,) = So(0) = 1—p, where p € [0, 1]is the baseline risk
and 0, is a (r x 1)-dimensional vector of zeros. Thus, under the PH assumptions, the
probability of experiencing an instantaneous failure, given the covariate information
contained in x, can be ascertained from (1) as

P(T =0fx) = 1 — SO[x)
—1-1-p”

Similarly, given that an instantaneous failure does not occur, it is assumed that the
failure time conditionally follows the standard PH model; i.e.,

P(T >tx, T >0)=1— F(t|x),

where F(¢|x) = 1 — exp{—Ao(r) exp(x’B)}. Given that an instantaneous failure does
not occur, Ag(-) can be viewed as the usual cumulative baseline hazard function and
for the ease of exposition will henceforth be referred to as such. Note, in order for
F(-]x) to be a proper cumulative distribution function, Ag(-) should be a monotone
increasing function with Ag(0) = 0. Thus, through an application of the Law of Total
Probability, one has that

P(T > t|x) = P(T >t|x,T > 0)P(T > 0|x)
= (1- Faxy(1 — p¢”,

for ¢t > 0. Based on these assumptions, the cumulative distribution function of 7' can
be expressed as the following mixture model,
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/
—qeX B

1—e , fort =0,

H(t|x) = B
1—e % {1 — F(t|x)}, fort > 0,

where, for reasons that will shortly become apparent, 1 — p is re-parametrized as
exp(—a), for @ > 0;i.e., « = —log(l — p), where p is the baseline risk of experi-
encing an instantaneous failure. Under this model, the regression coefficients may be
interpreted in the usual manner given the nonoccurrence of an instantaneous failure;
i.e.,itis easy to show that each regression coefficient represents the change in the log of
the hazard ratio relative to a one unit change in the corresponding covariate for ¢ > 0.

2.1 Observed data likelihood

In scenarios where interval-censored data arise, one has that the failure time (7) is not
directly observed, but rather is known relative to two observation times, say L < R;i.e.,
onehasthat L < 7 < R.Ingeneral, the four different outcomes considered here can be
represented through the values of L and R; i.e., an instantaneous failure (L = R = 0),
T is left-censored (0 = L < R < o0), T is interval-censored (0 < L < R < o0),
and T is right-censored (0 < L < R = 00). For notational convenience, let i be
an indicator denoting the event that 7' is not an instantaneous failure, and 81, 8>, and
83 be censoring indicators denoting left-, interval-, and right-censoring, respectively;
ie, v =I(T >0),6=10=L <R <), =100<L <R < o), and
53=0<L <R=0c0).

In order to derive the observed data likelihood, it is assumed throughout that the
individuals are independent, and that conditional on the covariates, the failure time for
an individual is independent of the observational process. This assumption is common
among the survival literature; see, e.g., Liu and Shen (2009), Zhang and Sun (2010),
and the references therein. The observed data collected on 7 individuals is given by
D = {(L;i, R;, x;, Vi, 6i1, 8i2, 8i3); i = 1,2, ..., n}, which constitutes n independent
realization of {(L, R, X, v, 81, &2, 83). Thus, under the aforementioned assumptions,
the observed data likelihood is given by

n

Lovs®) = [T [ FRiIx)™ (F (Rifx)

i=1
ot = F@ixors ] e T e T )

where @ represents the set of unknown parameters which are to be estimated.

2.2 Representations of Ag(-)

The unknown parameters in the observed likelihood involve the regression parame-
ters B, «, and Ag(-). Herein, two techniques for modeling Ag(-) are discussed. The
first approach considers the use of a fully parametric model, which is known up to
a set of unknown coefficients. For example, a linear, quadratic, or logarithmic para-
metric model can be specified by setting Ag(r) = yit, Ag(t) = yit + y»t%, and
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Ap(t) = yrlog(l + 1), respectively. Note, all of these models obey the constraints
placed on Ag(-), as long as the y; > 0, for [ = 1, 2. In general, a parametric form can
be specified as

k
Ao(t) =Y yibi(0), 3)
=1
where b; () is a monotone increasing function, b;(0) = 0,and y; > O,forl =1, ..., k.
Under these mild conditions, it is easily verified that Ag(-) inherits the same properties,
and therefore adheres to the aforementioned constraints.

The second approach, which is inspired by the works Lin and Wang (2010), Cai
et al. (2011), Wang and Dunson (2011), McMabhan et al. (2013), Wang et al. (2015),
and Wang et al. (2016), views Ag(-) as an unknown function and hence an infinite
dimensional parameter. To reduce the dimensionality of the problem, the monotone
splines of Ramsay (1988) are used approximate Ag(-). Structurally, this representation
is identical to that of (3) with the exception that b;(-) is a spline basis function and y;
is an unknown spline coefficient, for [ = 1, ..., k. Again, it is required that y; > 0,
for all /, to ensure that Agp(-) is a monotone increasing function. Briefly, the spline
basis functions are piece-wise polynomial functions and are fully determined once
a knot sequence and the degree are specified. The shape of the basis splines are
predominantly determined by the placement of the knots while the degree controls the
smoothness (Cai et al. 2011). For instance, specifying the degree to take values 1,2 or
3 correspond to the use of linear, quadratic or cubic polynomials respectively. Given
the m knots and degree, the k (k = m+-degree—2) basis functions are fully determined.
In general, both the knot sequence and degree have the potential to impact the shape
and flexibility of the spline model, with the former tending to be more influential. To
make these specifications, one could fit multiple candidate models using different knot
sequences and degrees and then use a model selection criterion (e.g., BIC) to identify
the “best” from among the candidate models; for further discussion see Ramsay (1988),
McMahan et al. (2013), and Wang et al. (2016). This approach is illustrated in the
motivating data application.

In general, choosing the correct parametric form for Ag(-) can be relatively chal-
lenging. Thus, to avoid this challenge and the potential for model misspecification, it
is generally suggested that the second approach be adopted. Of course, an alternate
strategy could involve fitting the spline model and using the results to guide the choice
of the parametric model, if a reasonable parametric model can be identified.

2.3 Data augmentation

Under either of the representations of Ag(-) proposed in Sect. 2.2, the unknown
parameters in the observed data likelihood consist of & = (B, ¥, a)’, where
y = (Y1, ..., yx) . Since the observed data likelihood exists in closed-form, the max-
imum likelihood estimator MLE of @ could be obtained by directly maximizing (2)
with respect to 6; i.e., one could obtain é, the MLE of 6, as 0 = argmaxg L ,ps(6). It
is worthwhile to point out that the numerical process of directly maximizing (2), with
respect to 0, is often unstable and rarely performs well (Wang et al. 2015).
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To circumvent these numerical instabilities, an EM algorithm was derived for the
purposes of identifying the MLE. This algorithm was developed based on a two-stage
data augmentation process, where carefully structured latent Poisson random variables
are introduced as missing data. The first stage relates both the instantaneous failure
indicator and the censoring indicators to latent Poisson random variables; i.e., the Z;,
W;, and Y; are introduced such that

Z; ~ Poisson{Ag(t;1) exp(x; B)},
W; ~ Poisson[{Ao(ti2) — Ao(ti1)} exp(x.8)],
Y; ~ Poisson{a exp(x;B)},

subject to the following constraints: §;1 = I(Z; > 0),6;2 = [(Z; =0, W; > 0),6;3 =
I(Z,' = 0, Wi = 0), and lﬁi = ](Yl = O) where ti1 = R,’I(&'] = 1) + Lil(&-] = O),
and fip = R;I1(8j» = 1) + L;I1(8;3 = 1). At this stage of the data augmentation, the
conditional likelihood is

n

+; Vi , —y
La®) = [T P2z Pw, W =0 Ci ) Pr (v 1 = 001y > )17,

i=1
“)
where C; = §;11(Z; > 0) + 8;21(Z; = 0, W; > 0) + 6;31(Z; = 0, W; = 0) and
P4(-) is the probability mass function of the random variable A. In the second and
final stage, the Z; and W; are separately decomposed into the sum of k independent
latent Poisson random variables; i.e., Z; = ZLI Zipand W; = ZLI Wi, where

Zi ~ Poisson{y;b;(t;1) exp(x; )} and
Wiy ~ Poisson[{y;b; (ti2) — yibi(ti1)} exp(x; B)].

At this stage of the augmented data likelihood is

n k
Vi
Lc®) = [T Pz i1 Zi = Zi)(Puy Wi (Wi = Wi 0 |
i=11=1

Py, (Y)I(Y; = 0)Vi1(Y; > 0)! V), ®)

where Z;. = Zf‘zl Zj and W;. = 25(:1 W;;. Tt is relatively easy to show that by
integrating (5) over the latent random variables one will obtain the observed data
likelihood depicted in (2).

2.4 EM algorithm

In general, the EM algorithm consists of two steps: the expectation step (E-step)
and the maximization step (M-step). The E-step in this algorithm involves taking the
expectation of log{L.(#)} with respect to all latent variables conditional on the current
parameter value 0@ = (,B(d)/, y(d),, @) and the observed data D. This results in
obtaining the Q(0, 8?) function, where (8, 0?) = E[log{L.(0)}|D, 8"]. The
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M-step then finds 0+ — argmaxy 0 (0, 0@). This process is repeated in turn until
convergence of the algorithm is attained. In this particular setting, the E-step yields
o, 0Dy as

n k
00,6)) = 3 i[{EZin) + Gi2 + 8 EWin)Hlog(v) + X, B)

i=11=1
1B {812 + 8;)bi(R) + 5i3bl(Li)}]

n
+ Y E(Y) log(ae®?) — ae®f + H(OWD),

i=1

where H(04) is a function of 8@ but is free of #. Notice thatin Q(0, 8'?) the depen-
dence of the expectations on the observed data and 0D is suppressed for notational
convenience; i.e., from henceforth it should be understood that E(-) = E(:|D, O(d)).

An enticing feature, which makes the proposed approach computationally efficient,
is that all of the expectations in Q(6, 0@y can be expressed in closed-form, and
moreover can be computed via simple matrix and vector operations. In particular,
from (4) it can be ascertained that if §;; = 1 and v; = 1 then Z; conditionally, given
0D and D, follows a zero-truncated Poisson distribution, and it follows a degenerate
distribution at O for any other values of §;; and ;. Thus, the conditional expectation
of Z;, given 0@ and D, can be expressed as

E(Z) = 5103 A5 (i) exp( B [1 — expl—A ) expsi BN

where A(()d) (1) = Zf: 1 yl(d)bl (#). Through a similar set of arguments one can obtain
the necessary conditional expectations of W; and Y; as

E(W;) = 80 A (1) — A5 (ti1)} exp(x; B@)
(1 expl— 148" (1) — A5 (i) exp(B1)
W) = (1 = y)a® exp(x B [1 — expl-a® expx )]

respectively. Further, from (5) it can be ascertained that if §;; = 1 and ¥; = 1 then
Z;; conditionally, given Z;, D and O(d), follows a binomial distribution with Z; being
the number of trials and yl(d)bl (4 1){A(()d) DY being the success probability, and it
follows a degenerate distribution at O for any other values of §;1 and ;. Thus, through
an application of the Law of Iterated Expectations, the conditional expectation of Z;;,
given 0D and D, can be expressed as

E(Zi) = E(Z)y P bt {A® @)y~
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Through a similar set of arguments one can obtain the necessary conditional expecta-
tion of W;; as

E(Wir) = EW)y P bi(1i2) — bt MAY (112) — A (@)}~

Note, in the expressions of the expectations of Z;; and W;; the dependence on §;1,
8i2, and ; are suppressed with the properties associated with these variables being
inherited from the expectations associated with Z; and W;, respectively.

The M-step of the algorithm then finds 9T — argmaxy Q (0, 0@). To this end,
consider the partial derivatives of Q(8, 8‘?) with respect to @ which are given by

90,0 n -
% = Z Vi [yl ]{E(Zil) + (8i2 + 8i3) E(Wip)}
i=1
—iB (81 + 8i1)bi(Ry) + 8i3b (L)} ], ©
() n )
900.97) _ 5~ _Xb 4o B, o
do =
00,0 n |
% =Y [WilEZ) + 82 EWp) — ¥il3i1 + 8:2) Ao(Ry) + 83 Ag(L;)}eNiP

i=1
—aexl{ﬁ + E(Yi)]X,'. (8)

By setting (6) equal to zero and solving for y;, one can obtain

S YHE(Zy) + 8inE(Wip)}

v (B) = e )
iy Vil G2 + 8i)bi(R) + 8i3bi (L)) P
forl =1, ..., k. Similarly, by setting (7) equal to zero and solving for «, one can
obtain \
- EY;
o () = ==L 20D, (10)
Dim €

Notice that both y;*(8) and «*(B) are non-negative since all quantities in these ratios
are greater than or equal to zero for all values of 8, thus the updates for these param-
eters implicitly adhere to the constraints placed on them. Based on these expressions,
one can obtain BTV by setting (8) equal to zero and solving the resulting system
of equations for B, after replacing y; and « by y;*(B) and o*(B), respectively. Note,
the aforementioned system of equations can easily be solved using a standard New-
ton Raphson approach. Finally, one obtains yl(dH) and o@D as 78 (B“*V) and
a* (B, respectively. It can be shown that 0@+ obtained using this process is the
unique maximizer of Q (6, 09)); the Web Appendix provides a proof of this assertion.

The proposed EM algorithm is now succinctly stated. First, initialize ©) and repeat
the following steps until converges.

1. Calculate g+ by solving the following system of equations
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n

Y (W EZ) + 82 E(Wi)} — a* (B)eP + E(Y)]x;

i=1

n k
=Y Uil Gin + 8i)bi(Ro) + 8i3bi (L)} (B)e™ P,

i=11=1

where y,*(B) and a*(B) are defined above.
2. Calculate yl(d“) = yl*(/g(dﬂ)) fori =1,..., kand @¥tD = a*(ﬁ(d+1>) )
3. Updated = d + 1.

At the point of convergence, define 0@ = (ﬁ(d)/, y(d)/, a@)’ to be the proposed
estimator = (ﬁ/, p’.&)’, which is the MLE of 0. As is generally advisable for
numerical optimization algorithms, it is suggested that the proposed EM algorithm be
implemented using multiple points of initialization in an effort to assess whether the
algorithm is converging to the correct value. That said, numerical studies (see Sect. 3)
have been conducted and tend to suggest that the proposed EM algorithm is relatively

robust with respect to initialization.

2.5 Variance estimation

For the purposes of uncertainty quantification, several variance estimators were con-
sidered and evaluated; e.g., the inverse of the observed Fisher information matrix,
the Huber sandwich estimator, and the outer product of gradients (OPG) estimator.
After extensive numerical studies (results not shown), it was determined that the most
reliable variance estimator, among those considered, was that of the OPG estimator.
In general, the OPG estimator is obtained as

n _1
o~ o~ 1 o~ o~
V() = [; ;:1 L;(0); (0)}

where [; (5) = 01;(0)/00|y_g and [;(#) is the log-likelihood contribution of the ith
individual. Using this estimator, one can conduct standard Wald type inference.

3 Simulation study

In order to investigate the finite sample performance of the proposed methodology, the
following simulation study was conducted. The true distribution of the failure times
was specified to be

/
—aqeX B

1—e , fort =0,
H(tx) = s
—e % {1l — F(t|x)}, fort > 0,
where p = 0.3 (ie., a = —10g(0.7)), x = (x1,x2), x; ~ N(@©,1), x, ~

Bernoulli(0.5), and B = (Bi, B2)’, where B; and B, take on values of -0.5 and
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0.5 resulting in four regression parameter configurations. Additionally, these stud-
ies consider two cumulative baseline hazard functions; i.e., a logarithmic Ag(#) =
log(t + 1)/1og(11) and a linear Ag(¢) = 0.1¢. These choices were made so that these
functions have similar scale but different shapes over a majority of the support of the
observational process. In total, these specifications lead to eight separate data gener-
ating models for the failure times. Two generating processes were considered for the
observation times: an exponential distribution with a mean of 10 and a discrete uniform
over the interval [1, 17]. In both cases, a single observation time, O, was generated for
each failure time which was not instantaneous (i.e., 7 > 0), and the intervals were cre-
atedsuch that L = 0 (R = oco)and R = O (L = O)if T was smaller (greater) than O.
A few comments are warranted on the selection of the observation processes. First, the
latter process is actually indicative of the observation process considered in the moti-
vating clinical trial, while the former attempts to match the baseline characteristics of
the failure time distribution. Second, note that the specification of the two observation
processes result in case-1 interval-censored (i.e., current status) data. This was done
because data of this nature is collected as a part of the motivating clinical trial. In total,
these data generating steps lead to sixteen generating mechanisms, and each were used
to create 500 independent data sets consisting of n observations, where n € {50, 100}.

In order to examine the performance of the proposed approach across a broad
spectrum of characteristics, several different models were used to analyze each data
set. First, following the development presented in Sect. 2.2, three different paramet-
ric forms were considered for the cumulative baseline hazard function: A, (t) =
yilog(t + 1), Ao, (t) = yit, and Ao, () = y1t + yztz, which are henceforth referred
to as models M1, M2, and M3, respectively. Note, these specifications allow one to
examine the performance of the proposed approach when the cumulative baseline haz-
ard function is correctly specified (e.g., M2 when Ag(f) = 0.1¢), over specified (e.g.,
M3 when Ap(¢) = 0.1¢), and misspecified (e.g., M1 when Ag(f) = 0.1¢). Further,
for each data set a model (M4) was fit using the monotone spline representation for
the cumulative baseline hazard function developed in Sect. 2.2. In order to specify
the basis functions, the degree was specified to be two, in order to provide adequate
smoothness, and one interior knot was placed at the median of the observed finite
nonzero interval end points, with boundary knots being placed at the minimum and
maximum of the same. The EM algorithm derived in Sect. 2.4 was used to complete
model fitting for M1-M4. The starting value for all implementations was set to be
00 = (ﬂ(o)/, y© 2@y = (0, 1;,0.1), where 0x(1;) is a (k x 1)-dimensional vec-
tor of zeros (ones). Convergence was declared when the maximum absolute differences
between the parameter updates were less than the specified tolerance of 1 x 107> Other
studies (results not shown) suggest that the proposed algorithm is relatively robust to
the point of initialization; i.e., in these studies the same point of convergence was
attained from multiple points of initialization by the proposed algorithm.

Table 1 summarizes the estimates of the regression coefficients and the baseline
instantaneous failure probability for all considered simulation configurations and mod-
els, when the observation times were drawn from a exponential distribution. This
summary includes the empirical bias, the sample standard deviation of the 500 point
estimates, the average of the 500 standard error estimates, and the empirical cover-
age probabilities associated with 95% Wald confidence intervals. Table 2 provides
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the analogous results for the case in which the observation times are sampled from
a discrete uniform distribution. From these results, one will first note that across all
considered simulation settings the proposed approach performs very well for M4 and
the correct parametric model (i.e., M1 when Ag(¢) = log(t + 1)/log(11) and M2
when Ag(¢) = 0.1¢); i.e., the parameter estimates exhibit very little bias, the sample
standard deviation of the 500 point estimates are in agreement with the average of the
standard error estimates, and the empirical coverage probabilities are at their nominal
level. In summary, these findings tend to suggest that the proposed methodology can
be used to reliably estimate the covariate effects, the instantaneous failure probability,
and quantify the uncertainty in the same. Additionally, these findings generally con-
tinue to persist for the case in which the parametric model is over specified (e.g., M3
when Ag(¢) = 0.1¢), with the resulting estimates in some cases exhibiting a slightly
larger bias and a bit more variability, as one would expect. Further, from these results
one will also note that when the parametric model is misspecified (e.g., M2 and M3
when Ag(t) = log(z + 1)/1log(11)) the estimates tend to exhibit more bias and less
reliable inference, which is expected under the misspecification of the cumulative
baseline hazard function. Finally, the estimates obtained under M4 (i.e., the model
which makes use of the monotone splines) exhibit little if any difference when com-
pared to the estimates resulting from the correct parametric model. In summary, based
on these findings it is generally suggested that the approach which makes use of the
spline representation to approximate Ag(¢) should be used, since it avoids the poten-
tial of model misspecification and it obtains estimators of the unknown parameters,
as well as their standard errors, that are equivalent to those estimators obtained under
the true parametric model, the form of which is generally not known.

Figures 1 and 2 summarize the estimates of the baseline survival function (i.e.,
So(t) = S(t|]x = 0,)) obtained from M1-M4 when Ag(t) = log(t + 1)/log(11)
and Ao(r) = 0.1z, respectively. These results were obtained across all considered
regression parameter configurations with the observation times being sampled from the
exponential distribution and are based on a sample of when n = 100 observations. Web
Figures 1-6 provide an analogous summary for the other simulation configurations. In
particular, these figures present the true baseline survival functions, the average of the
point-wise estimates, and the point-wise 2.5th and 97.5th percentiles of the estimates.
These figures reinforce the main findings discussed above; i.e., M4 and the correctly
specified parametric model again provide reliable estimates of the baseline survival
function, and hence the cumulative baseline hazard function, across all simulation
configurations. Similarly the over specified model also provides reliable estimates,
but the same can not be said for the misspecified models. It is worthwhile to point out
that the baseline survival curves do not extend to unity as time goes toward the origin,
this is due to the fact that the baseline instantaneous failure probability is p = 0.3.
Again, these findings support the recommendation that the spline based representation
of the cumulative baseline hazard function should be adopted in lieu of a parametric
model, thus obviating the possible ramifications associated with misspecification.

In summary, this simulation study illustrates that proposed methodology can be used
to analyze current status data which is subject to instantaneous failures, and moreover
that the monotone spline approach discussed in Sect. 2.2 should be adopted for approx-
imating the unknown cumulative baseline hazard function. A few additional details
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Fig. 1 Simulation results summarizing the estimates of the baseline survival function obtained by the
proposed approach under M1 (first row), M2 (second row), M3 (third row), and M4 (fourth row) when
Ag(t) = log(t+1)/log(11),n = 100, and observation times were drawn from an exponential distribution.
The solid line provides the true value, dashed line represents the average estimated value, and the dotted
lines indicate the 2.5% and 97.5% quantiles, of the point-wise estimates. Note, M2 and M3 are misspecified
models in this setting

about the numerical aspects of the approach follow. First, the average time required
to complete model fitting was approximately 0.4, and 0.8 seconds for n = 50 and
100, respectively, supporting the claim that the proposed approach is computationally
efficient. Second, for the reasons of complete transparency, when n = 50 and 100,
there were 41 and 1 data sets, respectively, that experienced numerical issues among
8000. These numerical issues were resolved by simply changing the placement of the
interior knot.

3.1 Simulation study Il

To demonstrate the performance of the proposed methodology with respect to analyz-
ing interval-censored data subject to instantaneous failures, an additional simulation
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Fig. 2 Simulation results summarizing the estimates of the baseline survival function obtained by the
proposed approach under M1 (first row), M2 (second row), M3 (third row), and M4 (fourth row) when
Ag(t) = 0.1z, n = 100, and observation times were drawn from an exponential distribution. The solid line
provides the true value, dashed line represents the average estimated value, and the dotted lines indicate
the 2.5% and 97.5% quantiles, of the point-wise estimates. Note, M1 and M3 are misspecified and over
specified models, respectively, in this setting

study was conducted. This study considers the exact same data generating process
described above with the exception that multiple observation times were generated
through an independent observational process. In particular, the number of obser-
vation times were determined as one plus a Poisson random variable having mean
parameter three, which assured that each individual had at least one observation time
while allowing for a different number of observation times across individuals. The
waiting times between adjacent observation times were generated according to an
exponential distribution having mean of 2.5. For non-instantaneous failure times, the
interval endpoints (i.e., L and R) were determined by examining which of the two
observation times bounded the failure time, with the convention that if 7 was smaller
(greater) than the smallest (largest) observation time then L = 0 (R = 00). Using this
data genrating mechanism, 500 independent data sets were generated and analyzed
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in the exact same fashion as described above. Web Table 1 provides the summary of
the regression parameter estimates and Web Figures 7-10 summarize the estimates
of Ap(?) that were obtained as a part of this study. These results reinforce all the
findings discussed above; i.e., the proposed model can be used to accurately and effi-
ciently analyze interval-censored data subject to instantaneous failures. Moreover, the
average model fitting time per data set was approximately 0.3, and 0.4 seconds for
n = 50 and 100, respectively. Demonstrating that the proposed approach continues to
be computationally efficient even when tasked with the analysis of interval-censored
data.

4 Data application

Supported by both the National Institutes of Allergy and Infectious Diseases and the
Wallace Foundation and conducted at the University of North Carolina at Chapel
Hill, the Sublingual Immunotheray for Peanut Allergy and Induction of Tolerance
(SLIT-TLC) clinical trial (NCT01373242 2017) was initiated in 2011 to assess the
effectiveness of peanut SLIT to induce clinical tolerance. In response to growing evi-
dence that tolerance may not be achievable through SLIT, the protocol was revised
in 2016 with an altered study design to assess time to loss of desensitization among
subjects completing a 48 month course of SLIT for peanut allergy. Participants include
children between 1-11 years of age at the time of enrollment. The revised study con-
sisted of a build-up/maintenance phase (approximately, 48 months), wherein SLIT
therapy was incrementally increased during the initial 6 months and maintained there-
after, and an avoidance phase (17 weeks), wherein the therapy was discontinued.
Throughout the study, Double-Blind Placebo Control Food Challenges (DBPCFC)
were used to assess participants’ reactive thresholds to peanut allergen. For further
study details see Chaudhari et al. (2018).

This study focuses on the avoidance phase beginning from the 48-month challenge
until the administration of the post-avoidance challenge with the primary endpoint
defined as the time to loss of desensitization to a targeted dose of peanut allergen. In
particular, at the time of the 48-month challenge each participant was given a series
of incrementally increasing doses up to 5000mg. Subsequently, any participant safely
ingesting over 2900mg were then reassessed up to this level after avoidance to deter-
mine whether they remained desensitized. To assess time to loss of desensitization,
the time of the final DBPCFC for each participant was randomly (in a uniform fash-
ion) selected during the 17 week avoidance phase. It is important to note that the
endpoint is not observable in this study but rather is known relative to the time of the
final DBPCFC resulting in current status data. Further, some participants failed the
DBPCEFC prior to the avoidance phase (i.e., at the time of the 48-month challenge)
and thus experienced an instantaneous failure at the initiation of the avoidance phase.
The primary focus of this analysis involves assessing the association of risk factors
with the loss of desensitization, as well as estimating the baseline survival function
and baseline probability of an instantaneous event.

Of the fifty-four participants who enrolled in this study, seven withdrew before the
avoidance phase and one did not complete the final DBPCFC. Thus, complete data were
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Table 3 SLIT data analysis:

. . Covariate Targeted threshold 2900 mg
estimated regression -
coefficients, estimated standard Estimate ESE p Value
errors (ESE), and p values
obtained by the proposed Gender —0.2488 0.4019 0.5360
method Age (centered at mean) —0.0060 0.0816 0.9413
IgE 0.2245 0.1189 0.0590

available on n = 46 participants. Among these participants, twenty-four experienced
instantaneous failures, seven were left-censored, and fifteen were right-censored. The
available covariates include gender (1 = male), age (in years, centered), and the log-
arithm of the baseline (i.e., at the initiation of the avoidance phase) Immunoglobulin
E (IgE) levels (kU/L), with each entering the proposed model as a first order term.
The EM algorithm was used to fit the proposed model. To provide for modeling flex-
ibility, the monotone spline representation was used to approximate the cumulative
baseline hazard function. To specify the spline model in a data driven manner several
candidate models which made use of different knot sequences and degree values were
considered; for the specific configurations see Web Table 2. The proposed approach
was then used to fit each of the candidate models with the final model being selected
based on the BIC criterion; Web Table 2 provides the estimated regression coefficients
and BIC values for each of the candidate models. The final model used a degree value
of two and placed a single interior knot at the first quartile of the observation times.

Table 3 presents the estimated regression coefficients along with their estimated
standard errors. These results indicate that only one of the considered covariates is
significantly associated (at the 0.10 level) with the loss of desensitization. In particular,
it appears that elevated baseline IgE (on the log-scale) levels correspond to an increased
hazard of experiencing a loss of desensitization. This finding is reasonable since IgE is
an antibody produced by the immune system when it overreacts to an allergen, which
causes cells to release chemicals that in turn cause an allergic reaction. Thus, it is
reasonable to believe that participants with elevated IgE levels at the initiation of the
study were at a higher risk of experiencing loss of desensitization; i.e., of having an
allergic reaction to the targeted dose. In addition to this finding, the proposed method
also provides an estimate of the baseline survival function (Fig. 3) and the baseline
probability of experiencing an instantaneous failure (0.3879). Note, in Fig. 3, the
magnitude of the drop in the baseline survival function at time zero is expected given
the estimated baseline probability of experiencing an instantaneous failure.

5 Discussion

This work proposed a new PH model which can be used to analyze interval-censored
data subject to instantaneous failures. Through the model development, two techniques
for approximating the unknown cumulative baseline hazard function are illustrated.
To complete model fitting, a novel EM algorithm is developed through a two-stage
data augmentation process. The resulting algorithm is easy to implement and is com-
putationally efficient. These features are likely attributable to the fact that the carefully
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Fig. 3 Estimated baseline survival function for time to loss of SU to a targeted dose level of 2900 mg
obtained using the proposed method

structured data augmentation steps lead to closed-form expressions for all necessary
quantities in the E-step of the algorithm. Moreover, in the M-step the regression coef-
ficients are updated through solving a low-dimensional system of equations, while all
other unknown parameters are updated in closed-form. The finite sample performance
of the proposed approach was exhibited through an extensive numerical study. This
study suggests that the use of the monotone spline representation of the cumulative
baseline hazard function would in general be preferable, in order to circumvent the
possibility of model misspecification. Further, the proposed approach was applied to
current status data collected on children as a part of the Sublingual Immunotheray for
Peanut Allergy and Induction of Tolerance clinical trial. To further disseminate this
work, code, written in R, has been prepared and is available upon request from the
corresponding author.

The large sample properties (i.e., asymptotic normality of the regression coefficient
estimates and consistency of the spline estimator) are expected but are not rigorously
established here. Following the works of Zhang et al. (2010), Lu and Li (2017), and
Lu and McMahan (2018) it should be possible to formally establish these results,
under similar regularity conditions. This conjecture is supported by findings from
Sect. 3. That being said, a topic for future research could be targeted at formally
establishing these results. In so doing, one could also endeavor to develop goodness-
of-fit tests which could be used to assess the reasonableness of the proposed extended
proportional hazards model.

Acknowledgements This research was partially supported by the Wallace Foundation and National Insti-
tutes of Health grants AI121351 and UL1 TROO1111.

@ Springer



An extended proportional hazards model for interval-... 181

References

Betensky RA, Lindsey JC, Ryan LM, Wand M (2002) A local likelihood proportional hazards model for
interval censored data. Stat Med 21(2):263-275. https://doi.org/10.1002/sim.993

Cai B, Lin X, Wang L (2011) Bayesian proportional hazards model for current status data with monotone
splines. Comput Stat Data Anal 55(9):2644-2651. https://doi.org/10.1016/j.csda.2011.03.013

Cai T, Betensky RA (2003) Hazard regression for interval-censored data with penalized spline. Biometrics
59(3):570-579. https://doi.org/10.1111/1541-0420.00067

Chaudhari M, Kim EH, Withana Gamage PW, McMahan CS, Kosorok MR (2018) Study design with stag-
gered sampling times for evaluating sustained unresponsiveness to peanut sublingual immunotherapy.
Stat Med 37:3944-3958

Chen CM, Lai CC, Cheng KC, Weng SF, Liu WL, Shen HN (2015) Effect of end-stage renal disease
on long-term survival after a first-ever mechanical ventilation: a population-based study. Crit Care
19(1):354. https://doi.org/10.1186/513054-015-1071-x

Cox R et al (1972) Regression models and life tables (with discussion). J R Stat Soc 34:187-220

Dorey FJ, Little RJ, Schenker N (1993) Multiple imputation for threshold-crossing data with interval
censoring. Stat Med 12(17):1589-1603

Finkelstein DM (1986) A proportional hazards model for interval-censored failure time data. Biometrics
42:845-854

Goetghebeur E, Ryan L (2000) Semiparametric regression analysis of interval-censored data. Biometrics
56(4):1139-1144. https://doi.org/10.1111/j.0006-341X.2000.01139.x

Goggins WB, Finkelstein DM, Schoenfeld DA, Zaslavsky AM (1998) A markov chain monte carlo em
algorithm for analyzing interval-censored data under the cox proportional hazards model. Biometrics
54:1498-1507

Groeneboom P, Wellner JA (1992) Information bounds and nonparametric maximum likelihood estimation,
vol 19. Springer, Berlin

Kale B, Muralidharan K (2002) Optimal estimating equations in mixture distributions accommodating
instantaneous or early failures. Qual Control Appl Stat 47(6):677-680

Knopik L (2011) Model for instantaneous failures. Sci Probl Mach Oper Maint 46(2):37—45

Lamborn KR, Yung WA, Chang SM, Wen PY, Cloughesy TF, DeAngelis LM, Robins HI, Lieberman FS,
Fine HA, Fink KL et al (2008) Progression-free survival: an important end point in evaluating therapy
for recurrent high-grade gliomas. Neuro-oncology 10(2):162—-170. https://doi.org/10.1215/15228517-
2007-062

LiJ, Ma S (2013) Survival analysis in medicine and genetics. CRC Press, Boca Raton

Liem MS, van der Graaf Y, van Steensel CJ, Boelhouwer RU, Clevers GJ, Meijer WS, Stassen LP, Vente
JP, Weidema WE, Schrijvers AJ et al (1997) Comparison of conventional anterior surgery and laparo-
scopic surgery for inguinal-hernia repair. N Engl J Med 336(22):1541-1547. https://doi.org/10.1056/
NEJM199705293362201

Lin X, Wang L (2010) A semiparametric probit model for case 2 interval-censored failure time data. Stat
Med 29(9):972-981. https://doi.org/10.1002/sim.3832

Liu C, Yang W, Devidas M, Cheng C, Pei D, Smith C, Carroll WL, Raetz EA, Bowman WP, Larsen EC
et al (2016) Clinical and genetic risk factors for acute pancreatitis in patients with acute lymphoblastic
leukemia. J Clin Oncol 34(18):2133-2140. https://doi.org/10.1200/JC0O.2015.64.5812

Liu H, Shen Y (2009) A semiparametric regression cure model for interval-censored data. J Am Stat Assoc
104(487):1168-1178. https://doi.org/10.1198/jasa.2009.tm07494

Lu M, Li CS (2017) Penalized estimation for proportional hazards models with current status data. Stat
Med 36(30):4893-4907

LuM, McMahan CS (2018) A partially linear proportional hazards model for current status data. Biometrics
74:1240-1249

Matsuzaki A, Nagatoshi Y, Inada H, Nakayama H, Yanai F, Ayukawa H, Kawakami K, Moritake H, Suminoe
A, Okamura J (2005) Prognostic factors for relapsed childhood acute lymphoblastic leukemia: impact
of allogeneic stem cell transplantation-a report from the kyushu-yamaguchi children’s cancer study
group. Pediatric Blood Cancer 45(2):111-120. https://doi.org/10.1002/pbc.20363

McMahan CS, Wang L, Tebbs JM (2013) Regression analysis for current status data using the em algorithm.
Stat Med 32(25):4452-4466. https://doi.org/10.1002/sim.5863

Muralidharan K (1999) Tests for the mixing proportion in the mixture of a degene-rate and exponential
distribution. J Ind Stat Assoc 37:105-119

@ Springer


https://doi.org/10.1002/sim.993
https://doi.org/10.1016/j.csda.2011.03.013
https://doi.org/10.1111/1541-0420.00067
https://doi.org/10.1186/s13054-015-1071-x
https://doi.org/10.1111/j.0006-341X.2000.01139.x
https://doi.org/10.1215/15228517-2007-062
https://doi.org/10.1215/15228517-2007-062
https://doi.org/10.1056/NEJM199705293362201
https://doi.org/10.1056/NEJM199705293362201
https://doi.org/10.1002/sim.3832
https://doi.org/10.1200/JCO.2015.64.5812
https://doi.org/10.1198/jasa.2009.tm07494
https://doi.org/10.1002/pbc.20363
https://doi.org/10.1002/sim.5863

182 P.W. Withana Gamage et al.

Muralidharan K, Lathika P (2006) Analysis of instantaneous and early failures in weibull distribution.
Metrika 64(3):305-316. https://doi.org/10.1007/s00184-006-0050-2

Murthy DP, Xie M, Jiang R (2004) Weibull models, vol 505. Wiley, Hoboken

NCT01373242 (2017) Sublingual immunotherapy for peanut allergy and induction of tolerance (slit-tlc):
Nct01373242. http://clinicaltrials.gov/show/NCT01373242NLMIdentifier:NCT01373242

Odell P, Anderson K, Agostino R (1992) Maximum likelihood estimation for interval-censored data using
a weibull-based accelerated failure time model. Biometrics. https://doi.org/10.2307/2532360

Pan W (1999) Extending the iterative convex minorant algorithm to the cox model for interval-censored
data. J Comput Graph Stat 8(1):109-120

Pan W (2000) A multiple imputation approach to cox regression with interval-censored data. Biometrics
56(1):199-203. https://doi.org/10.1111/7.0006-341X.2000.00199.x

Pham H, Lai CD (2007) On recent generalizations of the weibull distribution. IEEE Trans Reliab 56(3):454—
458. https://doi.org/10.1109/TR.2007.903352

Ramsay JO (1988) Monotone regression splines in action. Stat Sci. https://doi.org/10.1214/ss/1177012761

Satten GA (1996) Rank-based inference in the proportional hazards model for interval censored data.
Biometrika 83(2):355-370. https://doi.org/10.1093/biomet/83.2.355

Sun J (2007) The statistical analysis of interval-censored failure time data. Springer, Berlin

Wang L, Dunson DB (2011) Semiparametric bayes’ proportional odds models for current status data with
underreporting. Biometrics 67(3):1111-1118. https://doi.org/10.1111/j.1541-0420.2010.01532.x

Wang L, McMahan CS, Hudgens MG, Qureshi ZP (2016) A flexible, computationally efficient method for
fitting the proportional hazards model to interval-censored data. Biometrics 72(1):222-231. https://
doi.org/10.1111/biom.12389

Wang N, Wang L, McMahan CS (2015) Regression analysis of bivariate current status data under the
gamma-frailty proportional hazards model using the em algorithm. Comput Stat Data Anal 83:140—
150. https://doi.org/10.1016/j.csda.2014.10.013

Zhang Y, Hua L, Huang J (2010) A spline-based semiparametric maximum likelihood estimation method
for the cox model with interval-censored data. Scand J Stat 37(2):338-354. https://doi.org/10.1111/j.
1467-9469.2009.00680.x

Zhang Z, Sun J (2010) Interval censoring. Stat Methods Med Res 19(1):53-70. https://doi.org/10.1177/
0962280209105023

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Prabhashi W. Withana Gamage’ - Monica Chaudari? -
Christopher S. McMahan3® - Edwin H. Kim* - Michael R. Kosorok?

Department of Mathematics & Statistics, James Madison University, Harrisonburg, VA 22807,

USA
2 Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,
USA
3 School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA
4

Division of Rheumatology, Allergy and Immunology, University of North Carolina at Chapel
Hill, Chapel Hill, NC 27599, USA

@ Springer


https://doi.org/10.1007/s00184-006-0050-2
http://clinicaltrials.gov/show/NCT01373242 NLM Identifier: NCT01373242
https://doi.org/10.2307/2532360
https://doi.org/10.1111/j.0006-341X.2000.00199.x
https://doi.org/10.1109/TR.2007.903352
https://doi.org/10.1214/ss/1177012761
https://doi.org/10.1093/biomet/83.2.355
https://doi.org/10.1111/j.1541-0420.2010.01532.x
https://doi.org/10.1111/biom.12389
https://doi.org/10.1111/biom.12389
https://doi.org/10.1016/j.csda.2014.10.013
https://doi.org/10.1111/j.1467-9469.2009.00680.x
https://doi.org/10.1111/j.1467-9469.2009.00680.x
https://doi.org/10.1177/0962280209105023
https://doi.org/10.1177/0962280209105023
http://orcid.org/0000-0001-5056-9615

	An extended proportional hazards model for interval-censored data subject to instantaneous failures
	Abstract
	1 Introduction
	2 Model and methodology
	2.1 Observed data likelihood
	2.2 Representations of Λ0(cdot)
	2.3 Data augmentation
	2.4 EM algorithm
	2.5 Variance estimation

	3 Simulation study
	3.1 Simulation study II

	4 Data application
	5 Discussion
	Acknowledgements
	References




