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In this paper, we study a class of two sample test statistics based on inter-point distances in the high dimensional
and low/medium sample size setting. Our test statistics include the well-known energy distance and maximum
mean discrepancy with Gaussian and Laplacian kernels, and the critical values are obtained via permutations.
We show that all these tests are inconsistent when the two high dimensional distributions correspond to the same
marginal distributions but differ in other aspects of the distributions. The tests based on energy distance and
maximum mean discrepancy mainly target the differences between marginal means and variances, whereas the
test based on L1-distance can capture the difference in marginal distributions. Our theory sheds new light on
the limitation of inter-point distance based tests, the impact of different distance metrics, and the behavior of
permutation tests in high dimension. Some simulation results and a real data illustration are also presented to
corroborate our theoretical findings.
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1. Introduction

In many statistical and machine learning applications, we need inference about the two populations or
distributions based on the data samples collected. For example, we need to compare the effectiveness
of two newly developed drugs in clinical research, the higher educational level between two countries
in a social study and the global warming effects on two regions in environmental science. Two sample
hypothesis testing is a statistical procedure to deal with such problems. Formally speaking, having
i.i.d. p-dimensional samples X1, . . . ,Xn =d X ∼ F and Y1, . . . , Ym =d Y ∼ G, we are interested in
knowing whether the underlining distributions F and G which generate the two samples are the same,
that is, to test the following hypothesis,

H0 : F = G versus HA : F �= G.

The study of two-sample testing has a long history and dates back to Kolmogorov-Smirnov’s test
[19,26], where the empirical CDFs are compared using the sup-norm. Related work for univariate
two-sample tests includes Cramer von-Mises test [9,28] and Anderson-Darling test [3]. Extensions to
comparison of multivariate distributions and also the k-sample problem can be found in [5,6,12,17,25]
among others. Some other interesting work focusing on the “trimmed” comparison of distributions can
be found in [1,2,11,23].

However, all the afore-mentioned work focuses on the fixed dimensional case. If the dimension
exceeds the sample size or is allowed to grow, some of the above methods are expected to fail. For
example, the density-based methods suffer from the curse of high dimensionality in particular. In this
paper, we study the two sample tests based on certain dissimilarity metrics that can be expressed as
functions of the interpoint distances. Two of the most popular high dimensional two-sample tests that
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fall into this category are based on the Energy Distance (ED) [27] and the Maximum Mean Discrepancy
(MMD) [13]. The former is based on the Euclidean distance between sample elements; while the latter
is a kernel based method and is basically a variant of ED with a user-specified kernel as distance metric.
To be more specific, both ED and MMD take the following form

EDk(F,G) = 2E
[
k(X,Y )

]− E
[
k
(
X,X′)]− E

[
k
(
Y,Y ′)], (1)

where k is a user-specified kernel, X′, Y ′ are i.i.d. copies of X, Y , respectively. For instance, k can be
chosen as

L2-norm (Euclidean distance) : k(X,Y ) = ‖X − Y‖2 =
√√√√ p∑

u=1

(xu − yu)2,

Gaussian kernel : k(X,Y ) = exp

(
−‖X − Y‖2

2

2γ 2
p

)
,

Laplacian kernel : k(X,Y ) = exp

(
−‖X − Y‖2

γp

)
,

L1-norm : k(X,Y ) = ‖X − Y‖1 =
p∑

u=1

|xu − yu|,

where X = (x1, . . . , xp)T , Y = (y1, . . . , yp)T and γp is a user-specified bandwidth parameter. Then,
the population version of ED is given by Equation (1) with k being the L2-norm and the population
version of MMD multiplied by −1 is given by Equation (1) with k being Gaussian or Laplacian kernel.
When k is L2-norm, Gaussian or Laplacian kernel, EDk(F,G) enjoys the property that EDk(F,G) =
0 ⇔ F = G. In fact, EDk(F,G) = 0 ⇔ F = G holds as long as k is a strongly negative definite kernel
[18]. ED and MMD based tests are both nonparametric without any assumption on the underlying
distributions and can be implemented conveniently in practice using permutations. In this work, we
aim to address the following questions:

1. Can EDk based permutation test maintain its power against all kinds of alternatives in the high
dimensional setting?

2. What are the impact of different distance metrics?

To answer the above questions, we conduct rigorous theoretical analysis on the power of EDk(F,G)

based permutation test in the high dimensional low sample setting (HDLSS) [16] as well as high
dimensional medium sample size setting (HDMSS) [4]. Naturally, we say a test is consistent if its
power goes to 1 under either HDLSS or HDMSS regime. Here, we study the power property of the
permutation based tests because they are frequently implemented for Energy Distance and its variants
in real life applications.

Let X = (X1,X2, . . . ,Xn)
T , Y = (Y1, Y2, . . . , Ym)T , Z = (XT ,YT )T denote the sample matrices

and EDk
n(Z) be a U-statistic based unbiased estimator of EDk(F,G). Our main results include: (i)

Derivation of the limiting distribution of EDk
n(�Z) under both low and medium sample size setting,

where � ∼ Uniform(Pn+m) and Pn+m is the set of permutation matrices of dimension (n + m) × (n +
m). (ii) Based on the asymptotic results, we formulate different local alternatives, under which the
power behavior of EDk

n based permutation tests are discussed in detail. (iii) Our theories are applied to
existing kernels and statistics, for example,
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1. Under both HDLSS and HDMSS, EDk based permutation test w.r.t. L2-norm, Gaussian and
Laplacian kernel are consistent if the sum of component-wise mean or variance differences
are not so small, that is, limp→∞

∑p

u=1(E(xu) − E(yu))
2/p �= 0 or limp→∞ |∑p

u=1(var(xu) −
var(yu))/p| �= 0. In addition, if the sum of component-wise mean and variance differences are
both of order o(

√
p/

√
nm), that is,

p∑
u=1

(
E(xu) − E(yu)

)2 = o

( √
p√

nm

)
and

∣∣∣∣∣
p∑

u=1

(
var(xu) − var(yu)

)∣∣∣∣∣= o

( √
p√

nm

)
,

these tests suffer substantial power loss (the limits of their power are derived) under HDLSS
and have trivial power (power no larger than the significance level) under HDMSS. Further-
more, under HDLSS, the afore-mentioned tests have trivial power if additionally we have∑p

u,v=1(cov(xu, xv) − cov(yu, yv))
2 = o(p).

2. When k is chosen as L1-norm, EDk based permutation test experiences a power drop under
HDLSS and trivial power under HDMSS if X, Y have the same univariate marginal distribution,
that is, xu =d yu for u = 1,2, . . . , p. This phenomenon is consistent with the fact that EDk with
L1-norm can characterise the discrepancies between the marginal univariate distributions. In ad-
dition, Under HDLSS, we show that the L1-norm based test has trivial power when X and Y have
the same bivariate marginal distribution, that is, (xu, xv) =d (yu, yv), u,v = 1, . . . , p.

These findings are further corroborated in our simulation study. It is worth mentioning that Chakraborty
and Zhang [8] investigate the energy distance, maximum mean discrepancy, distance covariance and
Hilbert-Schmidt Independence Criterion in the high dimensional setting. They propose a new class of
metrics which can detect/measure the equality of low-dimensional marginal distributions and a com-
putational efficient t -test is further proposed based on the new metric. By contrast, our focus is on
kernel-based permutation test and their asymptotic power properties in the high dimensional setting. In
the following, we introduce some notation and define some frequently used operators for later conve-
nience.

1.1. Notation

Here, random data samples are denoted as, for each i = 1,2, . . . , n, Xi =d X = (x1, . . . , xp)T ∈ R
p

and for each j = 1,2, . . . ,m, Yj =d Y = (y1, . . . , yp)T ∈ R
p . Next, let X = (X1,X2, . . . ,Xn)

T , Y =
(Y1, Y2, . . . , Ym)T and Z = (XT ,YT )T = (Z1,Z2, . . . ,Zn+m)T denote the random sample matrices.
Furthermore, let Pn+m = {�1,�2, . . . ,�(n+m)!} be the group containing all permutation matrices of
dimension (n + m) × (n + m) and for each i, let πi be the permutation that corresponds to �i via

�iZ= (Z(πi(1)),Z(πi(2)), . . . ,Z(πi(n+m)))
T ,

where (πi(1)) < · · · < (πi(n + m)) is the ranked sequence of {πi(1),πi(2), . . . , πi(n + m)}. For a
random permutation matrix � ∼ uniform(Pn+m), we use π to represent its corresponding permutation.
Next, given any function ϕ, ϕ(i) is used to denote its i-th order derivative. Finally, calligraphic letters
(K, L, R, W , G) are used to denote self-defined operators that act on random variables to produce
random variables.
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2. Interpoint distance based two sample tests

In this paper, we limit our attention to EDk(F,G), where k is a user specified dissimilarity metric [24]
of the following form

k(X,Y ) = ϕ

{
1

p

p∑
u=1

ψ(xu, yu)

}
, (2)

where ψ ≥ 0 and ϕ has continuous second order derivative on (0,+∞). The reason we focus on
EDk(F,G) of the above form is that the metric k encompasses many well-known distance metrics
such as L2-norm, L1-norm, Gaussian and Laplacian kernel. Consequently, Energy Distance (ED) and
Maximum Mean Discrepancy (MMD) are just special cases of EDk(F,G). We summarize the com-
monly used distance metrics in Table 1. Following the literatures [13,14], we consider the bandwidth
parameter γ in Gaussian and Laplacian kernel as a fixed constant. Notice that if k is some well-known
distance metrics such as L2-norm, Gaussian kernel (multiplied by −1) and Laplacian kernel (multiplied
by −1), a nice property for EDk is that

EDk(F,G) ≥ 0 and EDk(F,G) = 0 ⇔ F = G. (3)

Here, it is just for the ease of presentation and notational simplicity that k is set to be Gaussian or
Laplacian kernel multiplied by −1. In fact, if k is a universal kernel (see Theorem 5 and Lemma 1
of [13]) or k is a strongly negative definite kernel (see Theorem 1.9 [18]), Property (3) still holds. On
the other hand, using ED1(F,G) to denote EDk(F,G) when k is the L1-distance, we observe that
ED1(F,G) =∑p

u=1 ED(Fu,Gu), from which it easily follows that

ED1(F,G) ≥ 0 and ED1(F,G) = 0 ⇔ Fu = Gu for all u = 1,2, . . . , p.

Notice that it is possible to have Fu = Gu for all u = 1,2, . . . , p but F �= G, under which we have
ED1(F,G) = 0 while EDk > 0 if k is L2-norm, Gaussian kernel (multiplied by −1) or Laplacian
kernel (multiplied by −1). Thus, L2-norm, Gaussian kernel or Laplacian kernel based test statistics
have advantage over L1-norm based test statistic in the low dimensional setting, but we will see later
that the story is in a sense reversed under the high dimensional setting. Next, an unbiased estimator of

Table 1. Correspondence between different choices of ψ , ϕ and existing distance metrics as well as two sample
test statistics in the literature

ψ(x, y) ϕ(x) k EDk(F,G)

(x − y)2 √
x L2-norm Energy distance (ED)

Székely and Rizzo [27]

(x − y)2 −e
− x

2γ 2 Gaussian kernel Maximum Mean Discrepancy (MMD)
(multiplied by −1) Gretton et al. [13]

(x − y)2 −e
−

√
x

γ Laplacian kernel Maximum Mean Discrepancy (MMD)
(multiplied by −1) Gretton et al. [13]

|x − y| x L1-norm Used for some graph-based tests
Sarkar et al. [24]
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EDk is given as

EDk
n(Z) = 2

mn

n∑
i=1

m∑
j=1

k(Xi,Yj )

− 2

n(n − 1)

∑
1≤i<j≤n

k(Xi,Xj ) − 2

m(m − 1)

∑
1≤i<j≤m

k(Yi, Yj ).

3. Power analysis for permutation test

As permutation tests are commonly used for Energy Distance and kernel variants in practice due to
their implementational convenience and accurate size, we study their asymptotic behavior under the
high dimensional setting in this subsection. Since we have i.i.d. samples, after we permute the data, that
is, shuffle the rows of Z as �iZ by some permutation matrix �i , what really matters to the distribution
of EDk

n(�iZ) is how many X samples stay in the first n rows. Formally, let |A| be the cardinality of the
set A and given a permutation matrix �i with the corresponding permutation πi , set

N(�i) = ∣∣{j ∈ {1,2, . . . , n} : 1 ≤ j ≤ n,n + 1 ≤ πi(j) ≤ n + m
}∣∣.

The integer n−N(�i) actually counts the number of samples which belong to the first n rows of Z both
before and after the permutation �i . Notice that it is possible that N(�i) = N(�j ) for different permu-
tations �i and �j . The set Sw collects all the permutations �i such that N(�i) = w. Mathematically,
fix 0 ≤ w ≤ min{n,m}, set Sw = {�i : N(�i) = w, i = 1,2, . . . , (n + m)!}, then

|Sw| =
(

m

w

)(
n

n − w

)
n!m!.

To differentiate from �i , we use italic symbol Γw to represent an element in Sw . Intuitively, |Sw| is the
number of permutations that would have n − w samples stay in the first n rows of Z after we apply the
corresponding permutation. The above process is further illustrated in Figure 1.

For the inter-point distance based two sample tests, we can equivalently permute the weights on the
pair-wise distances instead of permuting data points, that is, for a fixed permutation matrix �s ∈ Pn+m

Figure 1. Illustration of applying a permutation matrix � ∈ Sw on data matrix Z.
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that corresponds to πs , we can write EDk
n(�sZ) as

EDk
n(�sZ) =

n+m∑
i=2

i−1∑
j=1

�s,ij k(Zi,Zj ), (4)

where �s,ij is defined as

�s,ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2

n(n − 1)
, 1 ≤ πs(i),πs(j) ≤ n,

− 2

m(m − 1)
, n + 1 ≤ πs(i),πs(j) ≤ n + m,

2

mn
, 1 ≤ πs(i) ≤ n,n + 1 ≤ πs(j) ≤ n + m,

2

mn
, n + 1 ≤ πs(i) ≤ n + m,1 ≤ πs(j) ≤ m.

To formally define the permutation test for EDk
n(Z), let R̂ denote the randomization distribution of

EDk
n(Z), which is defined by

R̂(t) = 1

(n + m)!
(n+m)!∑

i=1

I{EDk
n(�iZ)≤t} = 1

(m + n)!
min{n,m}∑

w=0

∑
�∈Sw

I{EDk
n(�Z)≤t}.

For any distribution F , let the (1 − α)-th quantile of F be denoted by QF,1−α . In particular, the
(1 − α)th quantile of R̂ is QR̂,1−α , i.e.

QR̂,1−α = R̂−1(1 − α) = inf
{
t : R̂(t) ≥ 1 − α

}
. (5)

Then, the level-α permutation test w.r.t. EDk
n(Z) is defined as

Reject H0 if EDk
n(Z) > QR̂,1−α.

In real life applications, (n + m)! might be large, we thus resort to an approximation of QR̂,1−α .
Let �1, . . . ,�S be i.i.d. and uniformly sampled from Pn+m and we approximate the critical value by
QR̃,1−α , where

R̃(t) := 1

S

(
I{EDk

n(Z)≤t} +
S−1∑
i=1

I{EDk
n(�iZ)≤t}

)
.

3.1. Local alternatives

In this subsection, we define different local alternatives, under which the EDk
n(Z) based permutation

test will be consistent, have a nontrivial power limit and exhibit trivial power (power no larger than the
significance level α) in the limit. To formally define the local alternative hypothesis, let the operator K
be defined as

K(Zi,Zj ) = 1√
p

p∑
u=1

{
ψ(ziu, zju) − E

[
ψ(ziu, zju)|ziu

]
− E

[
ψ(ziu, zju)|zju

]+ E
[
ψ(ziu, zju)

]}
, (6)
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It follows from Proposition 2.2.1 of [30] that E[K(Zi,Zj )K(Zi′ ,Zj ′)] = 0 if {i, j} �= {i′, j ′}. Next,
denote the average distance over components as

ψ(Zi,Zj ) = 1

p

p∑
u=1

ψ(ziu, zju).

In addition, we need to assume the existence of some constants to properly define the local alternatives.
These constants will also appear in the limiting distribution of our test statistics.

Assumption 1. As p → ∞, assume the existence of the limiting mean

ex = lim
p→∞E

[
ψ
(
X,X′)], ey = lim

p→∞E
[
ψ
(
Y,Y ′)] and exy = lim

p→∞E
[
ψ(X,Y )

]
and also the limiting variances

vx = lim
p→∞ var

[
K
(
X,X′)], vy = lim

p→∞ var
[
K
(
Y,Y ′)] and vxy = lim

p→∞ var
[
K(X,Y )

]
.

Then, we are ready to define the consistency space HAc , under which the EDk
n(Z) implemented as

permutation test can be shown to be consistent under both HDLSS and HDMSS settings.

HAc := {
(F,G) | 2ϕ(exy) �= ϕ(ex) + ϕ(ey)

}
.

We use A
c to denote the complement of any given set A and denote F = (F1,F2, . . . ,Fp) and

G = (G1,G2, . . . ,Gp), where Fu,Gu,u = 1,2, . . . , p are the marginal univariate distributions. For
commonly used kernels, we have Table 2 characterizing HAc and the proof is postponed to the supple-
mental article [29]. Then, we present the space HAl

, under which the normal limit of EDk
n(Z) can be

derived under both HDLSS and HDMSS.

HAl
:=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(F,G)

∣∣∣∣∣∣∣∣∣∣∣

exy = ex = ey,

|2E[ψ(X,Y )] − E[ψ(X,X′)] − E[ψ(Y,Y ′)]| = o(
√

1
nmp

),

E[|E[ψ(X,Y )|X] − E[ψ(X,X′)|X]|] = o(
√

1
nmp

) and

E[|E[ψ(X,Y )|Y ] − E[ψ(Y,Y ′)|Y ]|] = o(
√

1
nmp

).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

Under HAl
, a limit for the power of EDk

n(Z) (implemented as permutation test) is derived under
HDLSS. On the other hand, its power is shown to be trivial (no larger than the significance level
α) under HDMSS and HAl

. Next, we provide sufficient conditions for (F,G) ∈ HAl
with respect to the

Table 2. Characterization of HAc
for some well known distance metrics

k HAc
characterization

L2-norm
HAc

=
{
(F,G)

∣∣∣∣∑p
u=1(E(xu) − E(yu))2 = o(p) and

|∑p
u=1(var(xu) − var(yu))| = o(p)

}c

Gaussian kernel
Laplacian kernel

L1-norm HAc
=
{
(F,G)|∑p

u=1 ED(Fu,Gu) = o(p)
}c
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Table 3. Sufficient conditions of (F,G) ∈ HAl

k Sufficient conditions for being in HAl

L2-norm
⎧⎨⎩(F,G)

∣∣∣∣∣∣
∑p

u=1(E(xu) − E(yu))2 = o(

√
p

nm) and

|∑p
u=1(var(xu) − var(yu))| = o(

√
p

nm)

⎫⎬⎭⊆ HAl
Gaussian kernel
Laplacian kernel

L1-norm {(F,G)|Fu = Gu,u = 1,2, . . . , p } ⊆ HAl

well known kernels (see Table 3). Then, the set of distributions HAt is defined as

HAt := {
(F,G)|(F,G) ∈ HAl

, vxy = vx = vy

}
.

It can be shown that under HAt , the EDk
n(Z) based permutation test has power no larger than the

significance level α for both HDLSS and HDMSS settings. Sufficient conditions of being in HAt are
provided in Table 4. Comparing the three local alternatives, it follows from the definition of HAc , HAl

,
HAt that Hc

Ac
⊇ HAl

⊇ HAt . We also want to remark that it holds for arbitrary function ϕ and ψ that{
(F,G)|Fu = Gu,u = 1,2, . . . , p

}⊆ HAl
,{

(F,G)|(xu, xv) =d (yu, yv), u, v = 1, . . . , p
}⊆ HAt .

3.2. High Dimensional Low Sample Size (HDLSS)

The analysis in this subsection is conducted under the high dimensional low sample size setting
(HDLSS), that is, n, m are fixed constants and we let p → ∞. Our final goal is to study the power
of EDk

n(Z) based permutation test under various local alternatives. To this end, we need the following
assumption. Recall the operator K is defined in (6).

Assumption 2. For fixed n, m, as p → ∞,⎛⎝ K(Xi, Yj )

K(Xi1,Xi2)

K(Yj1 , Yj2)

⎞⎠
i,j,i1<i2,j1<j2

d→
⎛⎝ bij

ci1i2

dj1j2

⎞⎠
i,j,i1<i2,j1<j2

,

where {bij , ci1i2, dj1j2}i,j,i1<i2,j1<j2 are uncorrelated and jointly Gaussian with mean 0 and variances
var(bij ) = vxy , var(ci1i2) = vx , var(dj1j2) = vy .

Table 4. Sufficient conditions of (F,G) ∈ HAt

k Sufficient conditions for being in HAt

L2-norm
⎧⎪⎪⎨⎪⎪⎩(F,G)

∣∣∣∣∣∣∣∣
∑p

u=1(E(xu) − E(yu))2 = o(

√
p

nm),

|∑p
u=1(var(xu) − var(yu))| = o(

√
p

nm) and∑p
u,v=1(cov(xu, xv) − cov(yu, yv))2 = o(p)

⎫⎪⎪⎬⎪⎪⎭⊆ HAt

Gaussian kernel
Laplacian kernel

L1-norm {(F,G)|(xu, xv) =d (yu, yv), u, v = 1, . . . , p} ⊆ HAt
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Remark 3.1. The above multi-dimensional CLT result is classical and can be derived under suitable
moment and weak dependence assumptions on the components of X and Y .

In the above assumption, it is due to the use of double centered distance K(Zi,Zj ) that the asymp-
totic covariance matrix is diagonal. Then, to provide some insights, the first step of our power analysis
is the Taylor expansion w.r.t ϕ up to the second order, that is, for i �= j

k(Zi,Zj ) = ϕ(eij ) + ϕ(1)(eij )L(Zi,Zj ) +R2(Zi,Zj ),

where L(Zi,Zj ) := ψ(Zi,Zj ) − eij is an operator that acts on random variables, R2(Zi,Zj ) is the
remainder and

eij =

⎧⎪⎨⎪⎩
ex, if 1 ≤ i, j ≤ n,

ey, if n + 1 ≤ i, j ≤ n + m,

exy, otherwise.

In order to control the remainder term, we need assumptions about the decay rate of E[L2(Zi,Zj )].
Thus, we set

α2
x = E

[
L2(X,X′)], α2

y = E
[
L2(Y,Y ′)] and α2

xy = E
[
L2(X,Y )

]
.

It then follows from Markov’s inequality that L(X,Y ) = Op(αxy), L(X,X′) = Op(αx) and L(Y,Y ′) =
Op(αy). Then, our next two assumptions are used to control the remainder terms induced by taking the
Taylor expansion.

Assumption 3. α2
xy = o(1), α2

x = o(1) and α2
y = o(1).

Assumption 4.
√

pα2
xy = o(1),

√
pα2

x = o(1) and
√

pα2
y = o(1).

Remark 3.2. To gain some insights into the above assumptions, a straightforward calculation yields

α2
xy = 1

p2

p∑
u,v=1

cov
(
ψ(xu, yu),ψ(xv, yv)

)+
(∑p

u=1 E[ψ(xu, yu)]
p

− exy

)2

.

Therefore, we have
√

pα2
xy = o(1) if the component-wise dependencies of both X and Y are not

so strong. For illustration purpose, suppose X and Y are κ-dependent weak stationary time series,
that is, xu ⊥ xv and yu ⊥ yv if |u − v| > κ . Then, if maxu E[ψ2(xu, yu)] < ∞, it is easy to see that
α2

xy = O(κ/p) and as a consequence, Assumption 4 is satisfied as long as κ/
√

p = o(1). In addition, it
is indeed fairly straightforward to verify the above result when the sequence {(xu, yu)}pu=1 is α-mixing
with geometrically decaying coefficients.

Remark 3.3. When ψ(x, y) = (x − y)2, some algebra shows that

p∑
u,v=1

cov
(
ψ(xu, yu),ψ(xv, yv)

)
= var

(
XT X

)+ var
(
YT Y

)+ 4 var
(
XT Y

)− 4 cov
(
XT X,XT E[Y ])− 4 cov

(
YT Y,Y T E[X]).
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Thus, suppose
∑p

u=1 E[ψ(xu, yu)]/p − exy = o(p−1/4) and if var(XT X), var(Y T Y ), var(XT Y ),
var(XT E[Y ]), var(E[X]T Y ) all have order o(p1.5), we have

√
pα2

xy = o(1).

In the next theorem, we state the asymptotic behavior of EDk
n(ΓwZ) for each fixed permutation

matrix Γw ∈ Sw . Here, we use the italic gamma Γw ∈ Sw to differentiate from �i ∈ Pn+m.

Theorem 3.1. For fixed Γw ∈ Sw ,

(i) Under Assumptions 1 and 3,

EDk
n(ΓwZ)

p→ μn,w,

where μn,w is defined as

μn,w := μn(ΓwZ)

= (
2ϕ(exy) − ϕ(ex) − ϕ(ey)

)
×
{

1 −
(

2m − 1

m(m − 1)
+ 2n − 1

n(n − 1)

)
w +

(
2

mn
+ 1

n(n − 1)
+ 1

m(m − 1)

)
w2

}
.

(ii) Under Assumptions 1, 2, 4 and local alternative HAl
,

√
p
(
EDk

n(ΓwZ) − μn(ΓwZ)
) d→ N

(
0, σ 2

n,w

)
.

where σ 2
n,w is given as

σ 2
n,w := σn(ΓwZ)

=
{

4

nm
− 4

(
n + m

n2m2
− n

n2(n − 1)2
− m

m2(m − 1)2

)
w

+ 4

(
2

n2m2
− 1

n2(n − 1)2
− 1

m2(m − 1)2

)
w2

}
vxy

[
ϕ(1)(exy)

]2

+
{

2

n(n − 1)
+ 2

(
2n

n2m2
− 2n − 1

n2(n − 1)2
− 1

m2(m − 1)2

)
w

− 2

(
2

m2n2
− 1

n2(n − 1)2
− 1

m2(m − 1)2

)
w2

}
vx

[
ϕ(1)(ex)

]2

+
{

2

m(m − 1)
+ 2

(
2m

n2m2
− 1

n2(n − 1)2
− 2m − 1

m2(m − 1)2

)
w

− 2

(
2

n2m2
− 1

m2(m − 1)2
− 1

n2(n − 1)2

)
w2

}
vy

[
ϕ(1)(ey)

]2
.

We use W ∼ Hypergeometric(n+m,m,n) to denote that W follows the hypergeometric distribution,
which describes the probability of n draws from a union of two groups (one group has m elements, the
other has n elements) such that w of them are chosen from the group of size m. To be precise, W has
probability mass function

P(W = w) =
(
m
w

)(
n

m−w

)(
n+m

n

) for w ∈ {
0,1, . . . ,min{n,m}}.
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Then, the limiting distribution of EDk
n(�Z) is derived in the following proposition.

Proposition 3.1. For � ∼ Uniform(Pn+m), which is independent of the data, let

W := N(�) ∼ Hypergeometric(n + m,m,n).

(i) Under Assumptions 1 and 3,

EDk
n(�Z)

p→ μn,W .

(ii) Under Assumptions 1, 2, 4 and local alternative HAl
,

√
p
(
EDk

n(�Z) − μn,W

) d→ N
(
0, σ 2

n,W

)
.

In the above proposition, N(0, σ 2
n,W ) should be understood as a mixture of Gaussian with probability

distribution

P
(
N
(
0, σ 2

n,W

)≤ a
)=

min{n,m}∑
w=1

P(W = w)P
(
N
(
0, σ 2

n,w

)≤ a
)
.

Next, let �0 corresponds to the identity permutation map, we present the power behavior of EDk(Z)

when the critical values are obtained via permutations.

Theorem 3.2. Assume that 2ϕ(exy) ≥ ϕ(ex) + ϕ(ey).

1. [Consistency] Suppose Assumptions 1 and 3 hold.
(i) If the critical value is chosen as QR̂,1−α . Let n, m be large enough such that n!m!/(n+m)! <

1 − α if m �= n and 2(n!)2/(2n)! < 1 − α if m = n. Then, we have

lim
p→∞PHAc

(
EDk

n(Z) > QR̂,1−α

)= 1,

which means that the asymptotic power of EDk based permutation test is 1 as p goes to
infinity.

(ii) If the critical value is chosen as QR̃,1−α .Then, we have

lim
p→∞PHAc

(
EDk

n(Z) > QR̃,1−α

)≥

⎧⎪⎪⎨⎪⎪⎩
1 − S − 1

�αS�
n!m!

(n + m)! , if n �= m,

1 − S − 1

�αS�
2(n!)2

(n + m)! , if n = m.

2. [Power Limit] Suppose Assumptions 1, 2, 4 hold.
(i) If the critical value is chosen as QR̂,1−α . Then, we have

lim
p→∞PHAl

(
EDk

n(Z) > QR̂,1−α

)= P
(
V (�0) > QT̂ ,1−α

)
,
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where

T̂ (t) := 1

(n + m)!
(n+m)!∑

i=1

I{V (�i)≤t}

and

V (�s) =
n∑

i=1

m∑
j=1

�s,ij bij −
∑

1≤i<j≤n

�s,ij cij −
∑

1≤i<j≤m

�s,ij dij .

(ii) If the critical value is chosen as QR̃,1−α .

lim
p→∞PHAl

(
EDk

n(Z) > QR̃,1−α

)= P
(
V (�0) > QT̃ ,1−α

)
,

where

T̃ := 1

S

(
I{V (�0)≤t} +

S−1∑
i=1

I{V (�i )≤t}

)
.

3. [Trivial Power] Suppose Assumptions 1, 2, 4 hold. Then, we have

lim
p→∞PHAt

(
EDk

n(Z) > c
)≤ α where c = QR̂,1−α or c = QR̃,1−α,

which means that the asymptotic power of EDk based permutation test is no more than the level
α when p goes to infinity.

Remark 3.4. The above theorem and discussions in Section 3.1 indicate that

1. L1-norm can be more advantageous than L2-norm, Gaussian kernel and Laplacian kernel when
the dimension is high, since L1-distance leads to high power provided that the summation of
discrepancies between marginal univariate distributions is not so small, while L2-norm, Gaussian
kernel and Laplacian kernel would result in power loss when the total of marginal univariate mean
and variance differences between X and Y is of order o(

√
p). Notice that the distributions of X

and Y can differ in other aspects of the marginal distribution even if they have the same marginal
univariate mean and variance.

2. All the tests under examination are only capable of detecting the discrepancies of marginal distri-
butions. If the two high dimensional distributions F �= G, but Fu = Gu for u = 1,2, . . . , p, then
none of them have consistent power.

3.3. High Dimensional Medium Sample Size (HDMSS)

In this subsection, the theories are developed under the high dimensional medium sample size setting
(HDMSS), that is, as p → ∞, n := n(p) → ∞ at a slower rate compared to p and n/m = ρ, where
ρ ∈ (0,∞) is a fixed constant. Though the proofs are quite different, most results and phenomena under
the HDLSS setting have their similar counterparts under the HDMSS setting. Now that we have n, m

growing to infinity, we need a stronger version of Assumptions 3 and 4.

Assumption 5. nmα2
xy = o(1), n2α2

x = o(1) and m2α2
y = o(1).
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Assumption 6.
√

nmpα2
xy = o(1), n

√
pα2

x = o(1) and m
√

pα2
y = o(1).

Remark 3.5. Following Remark 3.2, for κ-dependent stationary time series, α2
xy = O(κ/p). Thus,

Assumptions 5 and 6 both require that nmκ = o(p).

To derive the asymptotic distribution under the HDMSS, we note that the leading term of EDk
n(Z) is

a martingale, the following assumption is used to ensure the conditional Lindeberg condition and the
requirements on the conditional variance in classic martingale central limit theorem [15].

Assumption 7. For any 
1,
2,
3,
4 ∈ {X,Y }, suppose

E
[
K4(
1,


′
2

)]= o
(
n2),

E
[
K2(
1,


′′
3

)
K2(
′

2,

′′
3

)]= o(n),

E
[
K
(

1,


′′
3

)
K
(

1,


′′′
4

)
K
(

′

2,

′′′
4

)
K
(

′

2,

′′
3

)]= o(1),

where (
′
1,


′
2,


′
3,


′
4), (
′′

1,

′′
2,


′′
3,


′′
4) and (
′′′

1 ,
′′′
2 ,
′′′

3 ,
′′′
4 ) are independent copies of

(
1,
2,
3,
4).

Remark 3.6. For any function ϕ and ψ , suppose X and Y are κ dependent sequences, i.e., xu ⊥ xv

and yu ⊥ yv if |u − v| > κ . If there exists some constant C > 0 such that

max
{

sup
u

E
[
ψ4(xu, yu)

]
, sup

u
E
[
ψ4(xu, x

′
u

)]
, sup

u
E
[
ψ4(yu, y

′
u

)]}≤ C.

Then, for notational convenience, let

φxy,u = ψ(xu, yu) − E
[
ψ(xu, yju)|xu

]− E
[
ψ(xu, yu)|yu

]+ E
[
ψ(xu, yu)

]
,

we see that supu E[φ4
xy,u] ≤ 44C and thus E[K4(X,Y )] can be bounded as following

E
[
K4(X,Y )

]= 1

p2

p∑
s=1

s+3κ∑
t,u,v=s−3κ

E[φxy,sφxy,tφxy,uφxy,v] = O

(
κ3

p

)
.

and similar results can be shown for E[K4(X,X′)] and E[K4(Y,Y ′)]. Thus, Assumption 7 is satisfied
if κ3/p = o(1).

Let � denote the cdf of N(0,1). We shall show that EDk(ΓwZ) converges uniformly with respect to
w under the HDMSS setting.

Theorem 3.3. For w = 0,1,2, . . . ,min{n,m}, fix Γw ∈ Sw ,

(i) Under Assumptions 1 and 5,

sup
w

∣∣EDk
n(ΓwZ) − μn,w

∣∣= op(1).

where μn,w is the same as that in Theorem 3.1.
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(ii) Under Assumptions 1, 5, 6, 7 and local alternative HAl
,

sup
w

∣∣∣∣P (√
nmp

(
EDk

n(ΓwZ) − μn,w

)≤ a
)− �

(
a√

nmσ 2
n,w

)∣∣∣∣= o(1),

where a is a fixed constant and σ 2
n,w is the same as in Theorem 3.1.

Then, the following theorem states the asymptotic distribution of EDk
n(�Z) and is based on the

normal limit of hypergeometric random variable [20].

Theorem 3.4. For � ∼ Uniform(Pn+m), which is independent of the data,

(i) Under Assumptions 1 and 5,

EDk
n(�Z)

p→ 0.

(ii) Under Assumptions 1, 5, 6, 7 and local alternative HAl
,

√
nmp

(
EDk

n(�Z)

EDk
n

(
�′Z

)) d→ N

(
0,

(
σ 2 0
0 σ 2

))
where �′ is an independent copy of � and σ 2 is the asymptotic variance defined as

σ 2 := 4vxy

[
ϕ(1)(exy)

]2 + 2ρvx

[
ϕ(1)(ex)

]2 + 2

ρ
vy

[
ϕ(1)(ey)

]2
.

We need the limiting distribution of (EDk
n(�Z),EDk

n(�
′Z)) to show that the variance of random-

ization distribution goes to 0, from which it follows that the randomization distribution converges in
probability to the limit of its mean. Furthermore, we can show that the critical values are concentrating
on some constants.

Corollary 3.1. Let �1, . . . ,�S be i.i.d. and uniformly sampled from Pn+m.

(i) Under Assumptions 1 and 5, as n ∧ m ∧ p ∧ S → ∞,

R̂(t)
p→ I{t≥0} and R̃(t)

p→ I{t≥0}.

Consequently, we have QR̂,1−α

p→ 0 and QR̃,1−α

p→ 0.
(ii) Under Assumptions 1, 5, 6, 7 and local alternative HAl

, as n ∧ m ∧ p ∧ S → ∞,

1

(n + m)!
(n+m)!∑

i=1

I{√nmpEDk
n(�iZ)≤t}

p→ �(t/σ ),

1

S

S∑
i=1

I{√nmpEDk
n(�iZ)≤t}

p→ �(t/σ ).

Consequently, we have
√

nmpQR̂,1−α

p→ σQ�,1−α and
√

nmpQR̃,1−α

p→ σQ�,1−α , where σ 2

is defined in Theorem 3.4.



Two sample tests in high dimension 1203

The power behavior of EDk
n(Z) w.r.t. permutation test under the HDMSS is stated in the following

theorem.

Theorem 3.5. Assume that 2ϕ(exy) ≥ ϕ(ex) + ϕ(ey). For any c ∈ {QR̂,1−α,QR̃,1−α}, the following
holds.

1. [Consistency] Under Assumptions 1, 5. Then, we have

lim
p→∞PHAc

(
EDk

n(Z) > c
)= 1,

which means that the asymptotic power of EDk based permutation test is 1 as p ∧ n ∧ m → ∞.
2. [Trivial Power] Under Assumptions 1, 5, 6, 7. Then, we have

lim
p→∞PHAl

(
EDk

n(Z) > c
)≤ α.

Thus, we have the asymptotic power of EDk based permutation test is no more than the level α

when p ∧ n ∧ m → ∞.

Comparing with Theorem 3.2, the EDk
n(Z) based permutation test has trivial power under HAl

and
the HDMSS setting. This is due to the interesting facts that nmσ 2

n,W converges in probability to σ 2,

which is also the limit of nmσ 2
n,0 as n → ∞ and

cov
(
EDk

n(�Z),EDk
n

(
�′Z

))→ 0 as n → ∞,

which ensures that the randomization distribution converges in probability to its mean limit [21].

4. Numerical studies

In this section, we consider several examples to demonstrate the finite sample performance of EDk

based permutation test for different distance metrics. In our numerical comparison, we include the
tests of Li [22] (denoted as JL) and Biswas and Ghosh [7] (denoted as BG) as these two were shown to
have higher power over others in Li [22]. The critical values of JL test are determined by its asymptotic
distribution, whereas BG test is also implemented as a permutation test.

4.1. Performance on simulated data

In all our simulations, we set α = 0.05 and perform 1000 Monte Carlo replications with 300 permu-
tations for each test. The first example is adopted from the simulation setting of [22] to study the size
accuracy.

Example 4.1. Generate samples as

X = (
V 1/2RV 1/2)1/2

Z1,

Y = (
V 1/2RV 1/2)1/2

Z2,
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Table 5. Size comparison from Example 4.1 for p = 500

ρ V
1/2
ii

n m EDL2-norm EDGaussian EDLaplacian EDL1-norm BG JL

Normal 0.5 1 50 50 0.06 0.06 0.058 0.059 0.053 0.053
0.5 1 70 30 0.07 0.07 0.068 0.073 0.047 0.057
0.5 Un(1,5) 50 50 0.052 0.052 0.05 0.051 0.056 0.057
0.5 Un(1,5) 70 30 0.059 0.059 0.061 0.05 0.049 0.045
0.8 1 50 50 0.053 0.053 0.052 0.059 0.054 0.055
0.8 1 70 30 0.045 0.046 0.046 0.05 0.052 0.055
0.8 Un(1,5) 50 50 0.045 0.045 0.049 0.048 0.054 0.054
0.8 Un(1,5) 70 30 0.05 0.05 0.049 0.046 0.051 0.051

Exponential 0.5 1 50 50 0.06 0.06 0.058 0.059 0.053 0.053
0.5 1 70 30 0.063 0.063 0.063 0.058 0.048 0.053
0.5 Un(1,5) 50 50 0.057 0.057 0.058 0.055 0.049 0.06
0.5 Un(1,5) 70 30 0.056 0.056 0.06 0.058 0.059 0.058
0.8 1 50 50 0.054 0.054 0.051 0.047 0.065 0.062
0.8 1 70 30 0.061 0.061 0.062 0.065 0.057 0.06
0.8 Un(1,5) 50 50 0.051 0.05 0.052 0.046 0.045 0.057
0.8 Un(1,5) 70 30 0.062 0.062 0.062 0.062 0.06 0.064

where R = (rij )
p

i,j=1, rij = ρ|i−j | and ρ = 0.5 or 0.8; V is a diagonal matrix with V
1/2
ii = 1 or uni-

formly drawn from (1,5). Z1, Z2 are i.i.d. copies of Z with

Z = (z1, z2, . . . , zp︸ ︷︷ ︸
iid∼N(0,1)

) or Z = (z1, z2, . . . , zp︸ ︷︷ ︸
iid∼Exponential(1)

) − 1p.

In Example 4.1, X and Y follow the same distribution and we consider cases that n = m = 50 or
n = 70, m = 30. From Table 5, we can see that all the tests have quite accurate size. To compare the
power, we first use an example from [22], which include the situation when X and Y only differ in their
means or only differ in their covariance matrices or differ in both, where β ∈ [0,1] is the percentage of
the p components that differ in their distributions.

Example 4.2. Let R, V , Z1, Z2 be defined the same as in Example 4.1 and we choose ρ = 0.5 here.
Generate samples as

(i)

X = (
V 1/2RV 1/2)1/2

Z1,

Y = (0.125 × 1βp,0(1−β)p) + (
V 1/2RV 1/2)1/2

Z2.

(ii) Let V ∗ be a diagonal matrix with V
∗1/2
ii = 1.05 for i = 1,2, . . . , βp and V

∗1/2
ii = 1 for i =

βp + 1, . . . , βp.

X = (
V 1/2RV 1/2)1/2

Z1,

Y = (
V ∗1/2RV ∗1/2)1/2

Z2.
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Figure 2. Power comparison for Example 4.2 and n = 70, m = 30, p = 500, where in the top 3 figures Z1,
Z2 are generated from normal distribution and in the bottom 3 figures, Z1, Z2 are generated from exponential
distribution.

(iii) Let V
∗1/2
ii = 1.04 for i = 1,2, . . . , βp and V

∗1/2
ii = 1 for i = βp + 1, . . . , βp.

X = (
V 1/2RV 1/2)1/2

Z1,

Y = (0.1 × 1βp,0(1−β)p) + (
V ∗1/2RV ∗1/2)1/2

Z2.

From Figure 2, we can see that (1) when there is a small difference in the means, EDk-based tests
and JL perform similarly, while BG barely show any power. (2) when there is a small difference in the
scales, JL and BG are consistent and EDk-based tests have very little power. Similar phenomenon by Li
[22] were also observed, that is, EDk based permutation test is not sensitive to small scale differences
and the method proposed by Li [22] and Biswas and Ghosh [7] have dominant power in this case. Note
that there is a tuning parameter involved in JL test and its choice could have a big impact on the size
and power; results not shown. (3) when there are differences for both the means and scales, all the tests
performs comparably.

Next, Example 4.3 examines the situation when X and Y have the same marginal univariate mean
and variance, but different marginal univariate distributions.

Example 4.3. Generate samples as
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(i) Let Rademacher(0.5) be the Rademacher distribution with success probability 0.5, for example,
P(yiu = −1) = P(yiu = 1) = 0.5.

X = (x1, . . . , xp)
iid∼ N(0,1),

Y = (y1, y2, . . . , yβp︸ ︷︷ ︸
iid∼Rademacher(0.5)

, yβp+1, yβp+2 · · · , yp︸ ︷︷ ︸
iid∼N(0,1)

).

(ii)

X = (x1, . . . , xp)
iid∼ N(0,1),

Y = ( y1, y2, . . . , yβp︸ ︷︷ ︸
iid∼Uniform(−√

3,
√

3)

, yβp+1, yβp+2 · · · , yp︸ ︷︷ ︸
iid∼N(0,1)

).

From Figure 3, we see that only EDL1-norm based permutation test has power growing as β elevates
(p fixed) or p increases (β fixed). This phenomenon matches with our theories, which indicate that
L2-norm, Gaussian and Laplacian kernel can detect only marginal mean and variance differences. For
EDL1-norm based permutation test, the power is growing more rapidly for Example 4.3 (i) than Example

Figure 3. Power comparison for Example 4.3 and n = 70, m = 30. For the top two figures, the dimension p is
equal to 500 and we plot the power as β ranges from 0 to 1. For the bottom two figures, β is fixed to be 0.5 and
the power is plotted with respect to p.
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4.3 (ii), which might suggest that L1-distance is more sensitive for the difference between continuous
and discrete distributions. It is also apparent that the JL and BG tests show little power in this example.
The next example examines the case where X and Y have the same marginal univariate distributions.

Example 4.4. Generate samples as

(i) Let (y′
1, y

′
2, . . . , y

′
βp/2)

iid∼ Bernoulli(0.5)

X = (x1, . . . , xp)
iid∼ Bernoulli(0.5),

Y = (
y′

1, I{y′
1=1}, y′

2, I{y′
2=1} · · · , y′

βp/2, I{y′
βp/2=1}, y1, y2, . . . , y(1−β)p︸ ︷︷ ︸

iid∼Bernoulli(0.5)

)
.

(ii) Let (y′
1, y

′
2, . . . , y

′
βp/3)

iid∼ Bernoulli(0.5) and (y′′
1 , y′′

2 , . . . , y′′
βp/3)

iid∼ Bernoulli(0.5)

X = (x1, . . . , xp)
iid∼ Bernoulli(0.5),

Y = (
y′

1, y
′′
1 , I{y′

1=y′′
1 }, . . . , y′

βp/3, y
′′
βp/3, I{y′

βp/3=y′′
βp/3}, y1, y2, . . . , y(1−β)p︸ ︷︷ ︸

iid∼Bernoulli(0.5)

)
.

Notice that in Example 4.4 (i) X, Y have the same marginal univariate distribution, but different
marginal bivariate distributions and in Example 4.4 (ii) X, Y have the same marginal bivariate distri-
bution, but different joint distribution. Theorem 3.2 (ii) and Theorem 3.5 (ii) both provide insights that
L2-norm, L1-norm, Gaussian or Laplacian kernel based tests all suffer substantial power loss under
Example 4.4 (i). On the other hand, Theorem 3.2 (iii) suggests us that since Example 4.4 (ii) belong to
class HAt , all these tests have trivial power. The simulation results of Example 4.4 are in Figure 4 and
they again corroborate our theoretical findings.

4.2. Performance on real data

We also compare the power of the above tests on the following real data sets.

• Strawberry data: this data set contains the spectrographs of fruit purees. There are totally two
classes: one is strawberry purees (authentic samples) and the other one is non-strawberry purees
(adulterated strawberries and other fruits). Each data point is of length 235.

• SmallKitchenAppliances data: this data sets contains records of the electricity usage of some
kitchen appliances. We only use classes Kettle and Microwave. Each data point has readings
taken every 2 minutes over 24 hours.

• Earthquakes data: this data set is from Northern California Earthquake Data Center and has classes
of positive and negative major earthquake events. There are 368 negative and 93 positive cases
and each data point is of length 512.

All the above data sets are downloaded from UCR Time Series Classification Archive [10] (https:
//www.cs.ucr.edu/~eamonn/time_series_data_2018/) and a glance of these data sets is provided in Fig-
ure 5. For each of the three data sets, the data points have two classes and we want to compare
the underlining distributions of the two classes. Following the procedures of [7] and [24], for each
m = n ∈ {10,20,30,40,50,60}, we randomly sample n points from each class and test whether the

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
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Figure 4. Power comparison for Example 4.4 and n = 70, m = 30. For the top two figures, the dimension p is
equal to 500 and we plot the power as β ranges from 0 to 1. For the bottom two figures, β is fixed to be 1 and the
power is plotted with respect to p.

two distributions are the same using the afore-mentioned tests. The same procedure is repeated 1000
times to calculate the power.

The experimental results for these data sets are shown in Figure 6, from which we see that all
the tests have very high power for the Strawberry data with relatively low sample size. As for the
SmallKitchenAppliances and Earthquakes data sets, the L1-norm based test demonstrates superior
power compared to other tests. It is also worth noting that BG and JL barely exhibit any power for the
Earthquakes data.

5. Discussions and conclusion

In this paper, we study the two-sample hypothesis testing problem in a high dimension and low/medium
sample size setting. Our focus is on the interpoint distance based permutation tests, such as those based
on Energy Distance (ED) and Maximum Mean Discrepancy (MMD). Our theory demonstrates that
all these tests under examination are unable to detect the difference between two high dimensional
distributions beyond univariate marginal distributions. In particular, the ED test with L2-norm and
MMD with Gaussian or Laplacian kernels suffer substantial power loss under the HDLSS and have
trivial power under the HDMSS when the average of component-wise mean and variance discrepancies
between two distributions are both asymptotically zero at the rate of o(1/

√
nmp). Thus these tests

mainly target mean and variance differences in marginal distributions. By contrast, if we use L1-norm
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Figure 5. A glance of the data in Section 4.2, where we plot one point from each of the two classes for each data
set.

in ED test, then the non-negligible difference in marginal univariate distributions, as quantified by
cumulative energy distance of marginal distributions, can be detected with high power. Thus the theory
suggests that

(1) The ED with L2-norm, and MMD with Gaussian and Laplacian kernels are of the same category,
as they all depend on the interpoint distance as measured by Euclidean distance, which leads to
undesirable power limitation.

(2) Although in a low dimensional setting the use of L1-norm in ED is not preferred due to the
fact that it does not completely characterize the difference between two distributions since
ED1(F,G) = 0 does not necessarily imply F = G, it seems to have some advantage over the ED

Figure 6. Power comparison for real data examples in Section 4.2.
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with L2-norm and MMD with Gaussian and Laplacian kernels in the high dimensional setting,
as shown in both theory and numerical studies.

(3) As shown in our simulations and data illustration, the existing interpoint distance test by [22]
and [7] also suffer from low power when the two distributions have the same marginal mean and
variances but different marginal distributions. So in this sense, they are also inferior to the ED
test with L1-norm.

(4) The difference in marginal distributions of two high dimensional distributions can be interpreted
as the main effect of the distribution differences. It is a standard statistical practice to test for
the nullity of main effects first, before proceeding to the higher-order interactions. Thus we
advocate the use of L1-norm based test to test for the presence of main differences in two high
dimensional distributions.

To conclude the paper, we shall mention a few future directions. First, we are holding the band-
width parameter in Gaussian and Laplacian kernels fixed for theoretical convenience, and it would be
interesting to relax this restriction by allowing it to be data-dependent. Second, there might be some in-
trinsic difficulty of capturing all kinds of differences in two high dimensional distributions with limited
sample sizes, so it seems natural to ask whether it is possible to detect any difference beyond marginal
univariate distributions. If possible, what would be the form of the new tests? We leave these topics for
future investigation.
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