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Abstract—Popular optimality criteria for phylogenetic trees focus on sequences of characters that are applicable to all the
taxa. As studies grow in breadth, it can be the case that some characters are applicable for a portion of the taxa and
inapplicable for others. Past work has explored the limitations of treating inapplicable characters as missing data, noting
that this strategy may favor trees where internal nodes are assigned impossible states, where the arrangement of taxa
within subclades is unduly influenced by variation in distant parts of the tree, and/or where taxa that otherwise share most
primary characters are grouped distantly. Approaches that avoid the first two problems have recently been proposed. Here,
we propose an alternative approach which avoids all three problems. We focus on data matrices that use reductive coding
of traits, that is, explicitly incorporate the innate hierarchy induced by inapplicability, and as such our approach extend
to hierarchical characters, in general. In the spirit of maximum parsimony, the proposed criterion seeks the phylogenetic
tree with the minimal changes across any tree branch, but where changes are defined in terms of dissimilarity metrics that
weigh the effects of inapplicable characters. The approach can accommodate binary, multistate, ordered, unordered, and
polymorphic characters. We give a polynomial-time algorithm, inspired by Fitch’s algorithm, to score trees under a family
of dissimilarity metrics, and prove its correctness. We show that the resulting optimality criteria is computationally hard, by
reduction to the NP-hardness of the maximum parsimony optimality criteria. We demonstrate our approach using synthetic
and empirical data sets and compare the results with other recently proposed methods for choosing optimal phylogenetic
trees when the data includes hierarchical characters. [Character optimization, dissimilarity metrics, hierarchical characters,

inapplicable data, phylogenetic tree search.]

Phylogenetic inference based on morphology requires
that systematists translate the variation observed across
taxa into semi-quantitative characters. The different
states of a character represent categories of biological
expression of that character, and complex traits are often
translated into multiple characters in order to capture
all of the variation. At broad enough taxonomic scales,
some complex traits may only be observed in a subset of
the taxa, and thus any character describing some aspect
of variation in that trait will not be applicable to all of
the taxa. Characters with this type of dependence have
been referred to as “inapplicable characters” (e.g., Strong
and Lipscomb 1999) or “hierarchical characters” (e.g.,
Simmons 1993).

Several strategies exist for coding and handling such
data in the tree reconstruction process. Some coding
strategies have been proposed that make it possible to
assign character states to all characters in a matrix. For
example, each expression of a character, when present,
can be described as a single character which is either
present or absent (variously referred to as nominal
variable coding (Pimentel and Riggins 1988); “Method
D” of Pleijel (1995); “reductive coding” sensu Wilkinson
(1995); and most recently as nonadditive binary coding
(Strong and Lipscomb 1999)). For example, myriapods
have antennae on the tritocerebral segment while other
arthropods do not (some might have chelicera instead).
These antennae may be filiform (more than twice the
length of the head) or attenuate (less than twice the
length of the head). Following the nonadditive binary
coding approach, one would create two characters,

the first describing the absence or presence of filiform
antennae, and the second describing the absence or
presence of attenuate antennae. For complex traits that
require description of multiple attributes (e.g., color as
well as length; or the presence of additional organs,
like antennal apical cones), such binary characters could
be structured to describe each individual attribute
or each combination of attributes (e.g., the absence
or presence of blue, filiform antennae with apical
codes). One might also add an additional character
describing the absence or presence of antennae, or the
nature of the appendage on the tritocerebral segment
(see Hawkins et al. 1997; Forey and Kitching 2000).
Another strategy is to code all of the variation into
one or more multistate characters, where either all
expressions of an attribute are coded in one character
(“Method B” of Pleijel (1995)), or where each observed
combination of attributes is a state and the absence
of the trait is also a state (referred to as composite
coding (Maddison 1993; Wilkinson 1995), fused coding
(Lee and Bryant 1999) and “Method A” of Pleijel
(1995)). One might also specify that change within
a multistate character must occur in a particular
direction (Simmons 1993). All of these approaches have
been criticized for overweighting absences, creating
logical interdependencies among characters, making
assumptions about the direction of evolution, or
conflating homology statements (Pimentel and Riggins
1988; Maddison 1993; Simmons 1993; Wilkinson 1995;
Lee and Bryant 1999; Strong and Lipscomb 1999;
Fitzhugh 2006; Brazeau 2011).
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2 SYSTEMATIC BIOLOGY

A different strategy is to code the presence of the
trait and the variable expression of that trait into
separate characters (conventional coding (Hawkins et al.
1997), contingent coding (Forey and Kitching 2000), or
reductive coding sensu Strong and Lipscomb (1999)).
For example, one character would code the absence
or presence of antennae on the tritocerebral segment
in arthropods, while three additional characters would
code for the relative length (filiform or attenuate), color,
and presence of apical cones on the antennae when
present. This coding strategy makes explicit homology
statements separating the presence of a trait from
its expression, does not overweight absences, and is
hierarchical when done properly (see Hopkins and
St. John (2018) for some common practices that violate
this). For this coding strategy, we refer hereafter to
characters that are applicable to all taxa as “primary
characters,” and to those that describe variation in
primary characters and may not be applicable to all taxa
as “secondary characters” (Kendrick 1965; McNeill 1972).
Not all primary characters have secondary characters
that are dependent on them. We refer to those that
do as “controlling primaries”; these are usually, but
not always, presence—absence characters. We note that
this coding strategy accommodates “nested” characters
such as tertiary characters (as well as further nesting
such as quaternary and quinary characters) and can be
defined by applying recursively the schema above. For
matrices with tertiary characters describing variation in
secondary characters, we would refer to the latter as
“controlling secondary characters.”

The reductive coding strategy pushes the analytical
problem of having inapplicable cells in the matrix to
the handling of the data during inference. Treating
the inapplicable states as a separate state (absence
coding of Strong and Lipscomb (1999)), not only does
not solve the problem, but re-introduces the issues
of overweighting absences and conflating homology
statements. More commonly, inapplicable characters are
simply treated as missing data during inference. This
practice can skew a maximum parsimony analysis in
several important ways. For example, this approach
may favor phylogenetic trees where internal nodes are
assigned impossible states (e.g., the absence of antennae
but presence of antennal apical cones or antenna color)
(Platnick et al. 1991, p. 342). Further, taxa that otherwise
share most primary characters can nonetheless be
grouped distantly if there are many secondary characters
that they do not share (Fig. 1, right-hand tree; see also
Methods section).

A more subtle problem occurs when a complex
controlling primary character evolves independently in
two clades, because the optimization of secondary traits
describing variation in that character in one clade can
influence the optimization (and therefore the “best” tree)
in the other clade, even if there is no a priori reason
to expect nonindependence in trait evolution across
disparate clades. We refer to this scenario as Maddison’s
“red/blue tail” problem, referencing the example given

by Maddison (1993). Contrary to some examples, Strong
and Lipscomb (1999) posit that composite coding does
not ameliorate this problem if absence of the character is
the result of secondary loss.

Recent work has sought to address issues that arise
when inapplicable characters are treated as missing
data. For example, De Laet (2005) and Brazeau et al.
(2019) propose introducing new characters (“sequence
characters” and “regions,” respectively) into the analysis
to capture where secondary characters are applicable.
The implementation of Brazeau et al. (2019) modifies
the traditional Fitch parsimony scoring algorithm
(Fitch 1971) for phylogenetic trees. Their aim was to
prevent the assignment of impossible states (Platnick
et al. 1991) and the influence of secondary character
distribution across phylogenetically distant clades
(Maddison 1993). Their approach also seeks to account
for character contingency by penalizing trees by the
number of “regions” where each secondary character is
applicable. The choice was made to implicitly “simulate”
a primary controlling character independently for each
secondary character (Brazeau et al. 2019). If the
secondary character is distributed homoplastically,
the tree length is increased by 1 for any intervening
regions where the character is inapplicable (Fig. S1
of the Supplementary material available on Dryad
at http:/ /dx.doi.org/10.5061 /dryad. m37pvmd06).
However, by ignoring the relationships between
controlling primary characters and the secondary
characters, this approach effectively overweights
absences, more so for controlling primary characters
with more secondary characters, and can still favor trees
that group otherwise disparate clades. In this respect,
it retains some of the same drawbacks to treating
inapplicable characters as missing using the Fitch
approach (Fig. 1; see also Fig. S1 and Table S1 of the
Supplementary material available on Dryad). Another
recent approach to the problem uses Markov models
within a Bayesian framework to model inapplicable
characters as hidden states (Tarasov 2019). This approach
encourages the use of ontology languages. However,
it requires a fundamentally different way of coding
characters and, as such, is not included in our study,
since it includes the co-option of polymorphic coding
to represent variable potential expression as hidden
states when the controlling primary character is absent,
and states that represent combinations of secondary
characters (similar to composite coding) when the
controlling primary character is present.

In order to address inapplicable characters and, more
generally, hierarchical characters, we propose to use the
ubiquitous approach of Fitch (1971) to score candidate
phylogenetic trees within a framework of parsimony,
with a simple, but powerful, change. The parsimony
score of a phylogenetic tree, where all nodes are labeled,
is the sum of the changes across the branches (Farris
1970; Fitch 1971). Our proposed scoring criteria also
seeks the phylogenetic tree that minimizes the changes
across the branches, but where changes are counted via
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FIGURE 1. The influence of hierarchical characters on inferred phylogenetic relationships. Example matrix has four taxa (t1 and t4 represent
Symphyla myriapods and t2 and t3 represent Chilopoda myriapods), four primary characters (character 1, 6-8), and four secondary characters
(2-5, gray italics) that describe variation in the first character (here, variation in the antennae on the tritocerebral segment). These would be
inapplicable for any taxa where the first primary character was absent (coded as “0,” none shown here). If there were no secondary characters
included in the matrix (“Prim. only”), the right-hand tree would be favored since the minimum number of character state transitions is smaller.
Both the Fitch (Fitch 1971) and Morphy (Brazeau et al. 2019) algorithms consider secondary characters independently of the other characters (the
Morphy algorithm uses the inapplicable coding symbol to recognize secondary characters independent of the other coded characters). In this
example, the number of secondary characters describing the antennae is greater than the number of additional primary characters shared by
the Symphyla or Chilopoda, respectively, and Fitch and Morphy will favor trees where the number of character state changes in the secondary
characters are minimized relative to the additional primary characters (left-hand tree). The approach proposed in this study (“HSJ”) uses a family
of dissimilarity metrics to weight the influence of the secondary characters, and would still favor the right-hand tree. Silhouettes modified from
images sourced from phylopic.org (Scutigerella immaculata by Ralf Janssen, Nikola-Michael Prpic, Wim G. M. Damen, and T. Michael Keesey;

Lithobius forficatus by Birgit Lang).

a dissimilarity metric that explicitly handles hierarchical
characters. Following the approach of Fitch (1971), for a
fixed phylogenetic tree, we extend the character labelings
of the leaves to the internal nodes of the tree and compute
the minimal score.

Several dissimilarity metrics and semi-metrics have
been proposed as concise quantitative descriptions of
both morphological and ecological relative differences
(Legendre and Legendre 2012; Lloyd 2016; Hopkins and
St. John 2018; Wills 2001). Similarly to phylogenetic
analysis, inapplicable characters have almost always
been treated as missing in disparity analyses. Noting
that this can lead to situations where taxa that share
more primary character states are assigned larger
dissimilarity values than taxa that share fewer, Kendrick
and Proctor (Kendrick and Proctor 1964; Kendrick
1965), Gower (1971), and more recently Hopkins and
St. John (2018) proposed methods that weight controlling
primary characters according to the (dis)similarity
among the secondary characters that describe them.
These approaches were described and formalized in the
context of Gower’s coefficient (Hopkins and St. John
2018), but it is possible to count per-character differences
using the same approach within the context of other
common dissimilarity metrics as well (e.g., Wills” GED,
see implementation in the R package Claddis v. 0.3.4,
(Lloyd 2016, 2018)).

We provide a proof-of-concept of our tree scoring
function through comparisons with traditional
maximum parsimony and the more recent approach of
Brazeau et al. (2019) (hereafter referred to as “Morphy”)
for both synthetic and empirical data sets. We show

that our Fitch-style approach for computing scores for
candidate trees can be computed in linear time in the
number of taxa and characters in the analysis (see the
Appendix for the proof of correctness). This modified
approach for computing scores for candidate trees can
then be used in any search strategy for finding the
optimal tree in the space of possible trees. Further, any
dissimilarity metric that equally weights characters
when no inapplicable characters are present (i.e.,
performs identically to the regular “changes across
the branches” used in parsimony when all characters
are applicable) yields an optimality criterion that is
computationally hard to compute (this NP-hardness
result follows almost immediately from the classic proof
of Foulds and Graham (1982) and is outlined in the
Appendix). An implementation of the algorithm we
propose (hereafter referred to as “HSJ”) is provided
in the statistical computing language R (R Core Team
2020).

We analyze a selection of synthetic and empirical
data sets under the proposed and existing methods.
The underlying design of the experiments is to
test how the inclusion of secondary characters into
phylogenetic studies affects which trees are considered
most parsimonious. For the synthetic data sets, we look
at character matrices for eight taxa, since the size allows
all possible rooted trees (135,135 trees in all) to be scored.
We examine the effects of increasing the number of
secondary characters under the Fitch algorithm, with
inapplicable characters treated as both missing and as
an additional state, the Morphy algorithm, and the
HS]J approach proposed herein. We also examine these
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four scoring methods on two empirical data sets: a
moderately sized study of fossil brachiopod species
(Cusack et al. 1999) and a large study of living and fossil
myriapods (Ferndndez et al. 2016). Since the number of
possible trees grows exponentially in the number of taxa,
it is not possible to score every possible tree for each
of the empirical data sets. Instead, we find the most
parsimonious trees using only the primary characters
(using PAUP; Swofford 2002, 2020), and then score these
trees with the secondary characters included under the
four methods above.

MATERIALS

We created two synthetic data sets with only one
controlling primary character but different numbers of
secondary characters relative to the total number of
primary characters. Each has eight taxa, a size we chose
deliberately because it is computationally tractable to
apply the Fitch, Morphy, and HSJ approaches to the full
set of rooted trees with eight tips (N = 135,135, generated
using the allTrees () function in the phangorn R
package (Schliep 2010)). The matrices have 10 primary
characters, where the distribution of variation in the
first 10 characters is structured so that there are two
unrooted most parsimonious trees (MPTs) under the
Fitch approach (Chai and Housworth 2011; Radel et al.
2013). For all the examples and data sets, we assume that
controlling primaries are binary characters where the
“0” token represents the state for which all contingent
secondary characters are inapplicable (typically, this is
the character state “absent” for a trait). The tenth primary
is the controlling primary character, is described by
either three or ten secondary characters, and is present
in half of the taxa but absent in the other half, in a way
that is inconsistent with the other characters (Fig. 2).
The character matrices are available in nexus format and
the character types in text files (see the Implementation
section).

We also selected two empirical data sets which were
different from one another in size but which met the
following criteria: 1) the character matrix included a
large proportion of secondary characters that were
broadly applicable across taxa; 2) the documentation
was sufficient for reconstructing the character hierarchy;
and 3) the documentation was sufficient for recoding
characters to meet the assumptions of reductive coding
and our approach. The first data set comes from a
moderately sized study of fossil brachiopod species
(Cusack et al. 1999). In the original matrix, characters
were coded using a mixture of nonadditive binary
coding and composite coding, and we recoded them
using redundant coding; the new matrix has 23 taxa and
49 characters, 39% of which are secondary characters.
The second data set comes from a large study of
living and fossil myriapods (Fernandez et al. 2016). The
original matrix was previously modified for use as a case
study for managing inapplicable characters for disparity
analyses (Hopkins and St. John 2018). We have modified

it further for this study by removing tertiary characters
(N = 5) and editing the coding so that for all controlling
primaries, the state that elicits inapplicable tokens in
secondary characters is coded as “0.” The matrix has 47
taxa representing three classes of myriapods (Symphyla,
centipedes, and millipedes) and 200 characters, 35% of
which are secondary characters. The character matrices
are available in nexus format and the character types in
text files (see the Implementation section).

METHODS

We consider four methods for computing the score
of a phylogenetic tree given a character matrix: 1) the
standard Fitch algorithm (Fitch 1971) where inapplicable
tokens are treated as missing data; 2) the standard Fitch
algorithm where inapplicable tokens are treated as an
additional character state; 3) the Morphy approach of
Brazeau et al. (2019); and 4) the HSJ approach proposed
herein.

To compute Fitch scores, we used the fitch()
function from the R package phangorn v. 2.5.5 (Schliep
2010). The fitch() function treats all tokens other
than “?” as unique characters states (method 2 above),
so the token “-” typically used to identify gaps or
inapplicable characters, was replaced with “?” in the
character matrices before computing Fitch scores for
method 1. Hereafter, we refer to the first method as
“FitchM” and the second method as “FitchS.”

The Morphy approach is implemented in the R
package TreeSearchv.0.4.0 (Smith 2018), whichin turn
is dependent on a the C implementation MorphyLib
(Brazeau et al. 2017). The R function that returns Morphy
scores is called Fitch (), for which we use the default
parameters and character matrices with the “-” token for
all inapplicable characters. To avoid any confusion that
might stem from similarity in the function names, we
refer to the algorithms of Fitch (1971) as the FitchM and
FitchS approaches and that of Brazeau et al. (2019) as the
Morphy approach throughout.

New Method for Scoring Phylogenetic Trees (HS])

The HS] approach proposed herein extends the
maximum parsimony criteria in a natural way by
measuring the change across the branches in terms of
a dissimilarity metric. In traditional parsimony, we seek
the tree that minimizes the sum of the changes across
branches. That is, given an assignment of values to
the internal nodes, we sum the changes, or pairwise
mismatches, witnessed across each branch. For example,
in Figure 2, the characters for taxa 1 and 2 are:

t1 1000010001 1111111111
t2 1000001001 0000000011

with the pairwise differences in bold. The first 10
characters are primary, and the last 10 are secondary
characters dependent on the tenth primary character.
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FIGURE 2. Synthetic trees with 8 taxa and 10 primary characters. The first nine characters prescribe one most parsimonious tree under Fitch
(“MPT 1”) with a tree score of 13 (Chai and Housworth, 2011; Radel et al., 2013). Adding the tenth character results in two most parsimonious
trees under Fitch (“MPT 1” and “MPT 2”) with tree scores of 15. The tenth character is inconsistent with the other characters, and requires
additional character changes to be accommodated. Each tree can be rooted 13 ways, so in the set of all rooted trees, analysis of this matrix would
identify 26 MPTs. Also shown are the additional secondary characters (+3 and +10) analyzed, which describe the tenth character (bolded) in the

synthetic datasets.

If the characters are considered independently of one
another, the dissimilarity between them is the sum
of the pairwise differences: 2 changes on the first 10
primary characters plus 8 on the additional 10 secondary
characters. For the taxon t3, the tenth primary is coded
as absent and all of the secondary characters are
inapplicable. The pairwise differences between t1 and
t3 are bolded:

1 1000010001 1111111111
t3 0100000100 ----------

If the inapplicable character states are treated as
missing data and not included, the dissimilarity is
5 between t1 and t3. Thus, the variation in the
secondary characters describing the controlling primary
has significantly increased the estimated dissimilarity
between t1 and {2, which otherwise agree on most of the
primary characters. Because the secondary characters
are inapplicable to 3, they have no influence on the
estimated dissimilarity, and the dissimilarity between
t1 and t3 is estimated to be smaller than that of t1 and
12, even though t1 shares fewer primary characters with
t3 than with £2. Since the tree score is the sum of these
differences (Farris 1970; Fitch 1971), treating inapplicable
characters as missing data can skew the analysis to
favor trees that would place taxa with similar primary
characters distant from each other. Treating inapplicable
characters as a new, separate state, will also similarly
skew the analysis, because having a new separate state
increases the dissimilarity of all pairwise comparisons
like that of t1 and 3, by 10. This results in overweighting
the tenth primary character and favors trees with clades
that separate taxa with secondary characters from those
without.

To explicitly account for hierarchical characters in the
analysis, we estimate the contribution of each character
to the tree score using a new family of dissimilarity
metrics (“HSJ” of Hopkins and St. John (2018), see
Appendix for detailed definition). The possible per-
branch change of noncontrolling primary characters is
the same as that obtained using traditional parsimony

(Farris 1970; Fitch 1971). The possible per-branch change
of controlling primaries, however, is weighted by the
differences among the secondaries (when applicable)
and scaled using a parameter « that ranges from 0 to 1.
Specifically, the contribution of a controlling primary to

the tree score is calculated as a - %, where d is the number
of nonmatching secondary characters dependent on
that primary, and m is the total number of secondary
characters dependent on that primary character. Thus, a
single controlling primary and its associated secondary
characters can contribute at most 1 per branch (the same
as any noncontrolling primary) to the tree score.

As an example, consider again the first three taxa from
Fig.2.The contribution to the tree score of noncontrolling
primary characters is the same as that for traditional
parsimony (Farris 1970; Fitch 1971), so along the branches
connecting ¢1 and #2, the noncontrolling primaries differ
at the sixth and seventh characters and contribute 2 to
the tree score. The tenth character is present in both
t1 and #2 and has ten additional secondary characters
describing it. t1 and 2 disagree on eight of them, so
the contribution would be a- % As a result, when a=
0, the secondaries do not contribute at all, but when
a>0, the secondaries contribute a fractional amount
associated with the number of differences among the
secondary characters. For t1 and 2, the largest the
contribution of the controlling primary could be is
0.8, when a=1 (in comparison to 8 if the secondary
characters had been considered independently, see
above). For comparison, the noncontrolling primaries
along the branches connecting t1 and t3 contribute 4
to the tree score. However, since the tenth primary
character is coded as present in t1 and as absent in 3,
the secondary characters are only applicable to t1. In this
case, for all values of «, 1 is added to the overall score
to represent the difference in the controlling primary.
Using this approach, the contribution of this character
due to variation between #1 and f3 is greater than the
contribution due to variation between t1 and {2 for
any value of a. Thus, the ranking of the contributions
from the two pairs of taxa reflects the shared primary
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6 SYSTEMATIC BIOLOGY

characters and is not unduly modified by the differences
in secondary characters that describe an otherwise
shared controlling primary.

To assign a score to a tree, we follow the basic
framework of the classic algorithm of Fitch (1971). We
sketch the ideas behind the algorithm here and provide
a precise definition and proof of correctness in the
Appendix. If a tree already has labelings on all the leaves
and the internal nodes, then the score of the tree is the
sum of the HSJ dissimilarities across all the branches.
However, most trees have only the leaves labeled by
the characters and the internal nodes unlabeled and as
such, we must first assign labelings to the internal nodes.
If a primary character has no secondary characters
describing it, then the labeling that the Fitch algorithm
produces will also be optimal for these characters. For
controlling primary characters, we augment the Fitch
algorithm, due to the asymmetry of the contributions
of choices: agreeing on a primary character can add 0
to the overall score (in the case where both are coded
as absent) or can add some positive difference (where
both are present, differ on some secondary traits, and
have the scaling parameter, a > 0). As such, for each set
of secondary characters and their controlling primary
character, we keep track of both the possible score when
the controlling primary character is present and when
it is absent. First, we give a preliminary labeling to
all internal nodes, using the Fitch approach. We then,
starting at the leaves, compute the possible score for
when the controlling primary character is absent and
whenitis present at the parent node. Moving up the tree,
we use the already computed numbers for the children
nodes and use the best possible scoring of the possible
combinations and update the labels to reflect the choices
that optimized the score. We continue until we reach the
root of the tree and return the minimal score.

Asanexample, consider t1 and {2 which have the same
parent in Figure 2; call it p. We make a first pass and give
p the tentative label of:

10 Primary Characters: ‘ Secondary Characters:
100000/10/100 CP[O/l 0/1 0/1 0/1 0/1 0/1 0/1 0/1 11

where the bolded CP is a placeholder for the primary
associated with the secondary characters. We compute
and store two scores for the parent node, p: if CP is
coded as absent, and if CP is coded as present. If CP is 0
(absent), then the distance to the two leaves, both which
have that character present, is 14+1=2 plus the change
in the remaining characters (also 2, for a total of 4). If
CP is 1 (present), then the total distance from p to the
two leaves is a- % +2, as described above. At this point,
labeling CP as present at node p yields the minimum
score. For nodes whose children are internal nodes, we
store the minimum values for all possible labels (absence
and presence for each child for each possibility for the
parent) as we work through the tree in postorder.

Comparison of Methods

Our strategy for comparing the HSJ] approach with
the FitchM, FitchS, and Morphy approaches depended
on the size of the character matrix. For the 8-tip synthetic
data sets, we scored the entire space of trees using
all four approaches and then compared the subsets of
trees with optimal scores. For the empirical data sets,
computational limitations prevented us from scoring the
entire tree space for any approach. Instead, we compared
the performance of each approach within a subset of the
tree space. The subset was defined as the set of optimal
trees if only the primary characters are known, because
if there are no inapplicable characters in the matrix,
then the Morphy and HSJ approaches are equivalent
to the Fitch approaches. Similarly, the HSJ approach is
equivalent to the Fitch approaches when a=0.0, as the
contributions of the secondary characters are ignored
in this situation. To efficiently identify the subset of
optimal trees based on just primary characters, heuristic
searches were conducted in PAUP*4.0a167 (Swofford
2002, 2020); taxa were added by random sequence
addition with 1000 replicates and branch swapping was
performed using the tree bisection reconstruction option
(TBR). These sets of noncollapsed trees were then scored
for the full set of characters (i.e., including secondary
characters) using FitchM, FitchS, Morphy, and HS] with
a=0.1,0.2,0.3,...1.0. Thus, for the empirical data sets,
we compared the different approaches in the context of
the question: which trees are considered optimal when
secondary characters are added to the analysis?

Because the number of trees within the subsets of
optimal trees is still quite large, we employed Landmark
Multi-Dimensional Scaling (LMDS) in order to visualize
the tree space. LMDS is a computationally efficient
approximation of classical multi-dimensional scaling.
The first step is to run a classical MDS on a matrix of
pairwise RF distances for a random subset of trees; these
data are referred to as the “landmarks.” The second step
is to place each remaining tree within the resulting lower-
dimensional space based on its RF distances from the
“landmark” trees that define the space (de Silva and
Tenenbaum 2004).

REsuULTS

Synthetic Data Sets with Eight Taxa and Balanced
Variation in Characters

Two unrooted (26 rooted) optimal trees are supported
when the 8 taxa are coded for just 10 primary characters
(Fig. 2). When secondary characters are added but
remain low in number relative to the total number of
primary characters (Fig. 2, “+3”), the FitchM, Morphy,
and HSJ approaches all identify the same two optimal
unrooted trees (26 rooted trees), and all trees comprise
the same sister taxon pairs (Fig. 3). The FitchS approach
identifies one of the unrooted trees as optimal (“MPT 2”
of Fig. 2).
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FIGURE 3.  Best-scoring trees found by each algorithm using the synthetic data set matrix with 13 characters and fewer secondary characters
than primary characters. Left panel: LMDS (de Silva and Tenenbaum 2004) of all trees with eight tips with the best-scoring trees for each
treatment color-coded. The same two trees were assigned optimal scores using the HSJ approach for all values of a. Right panels: 50% majority
rule consensus trees for the best-scoring trees for each approach. LMDS based on 500 randomly selected trees; implemented using the R package
1mds (Cannoodt and Saelens 2019). See Figure S2 of the Supplementary material available on Dryad for the histograms of scores.

However, when the number of secondaries is high
(Fig. 2, “+10”), the HSJ algorithm identifies the same
set of optimal trees as with the smaller matrix, but the
FitchM and Morphy approaches identify a different,
larger set of trees (273 rooted/21 unrooted; Fig. 4,
left panel), of which the FitchS approach identifies a
subset as optimal (65 rooted/5 rooted). As expected,
the primary difference between the trees that the HS]
approach identifies compared with the trees that the
FitchM, FitchS, and Morphy approaches identify is the
grouping of taxa 1, 2, 7, and 8 (Fig. 4, right panels).
Moreover, since none of the trees that HSJ identifies are
the same as any of the trees that FitchM, FitchS, and
Morphy identify, we can infer that none of the latter
comprise (t1, t2) and (t7, t8) as sister taxa, even though
these groupings are supported by the variation in the
primary characters (and identified by all approaches
when the number of secondary characters is low).
The subset of trees identified as optimal by the FitchS
approach comprise the sister taxa (t1, t7) and (f2, 8),
which together make up one of two subclades.

Note also that for both matrices, the HS] approach
identifies the same trees regardless of the value of scaling
parameter o, even when a=0, which disregards the
secondary characters entirely (this set of trees is the same

as what would be identified using the Fitch approach on
a matrix comprised of only the primary characters).

Empirical Data Set 1: Fossil Brachiopods

The PAUP* heuristic search on the brachiopod data
set restricted to primary characters yielded 54,524
noncollapsed MPTs with a score of 78. We scored these
candidate trees using the complete data set, including
secondaries, under the FitchM, FitchS, Morphy, and HS]
approaches, with the scaling parameter ranging from
=0.1,0.2,0.3,...1.0 for the latter. Sorting the trees by
the HSJ tree score when a=1.0 results in a curve that
reflects a complex distribution of tree scores (Fig. 5a). As
o decreases, the rank order amongst a small number of
similarly scoring trees shifts, but the same basic ranking
of the trees is retained (Fig. 5b, c). Regardless of the o
value, the HSJ approach found the same 68 best-scoring
trees (Fig. 5g), at least within the subset of 54,524 trees
examined herein. The distribution of Morphy scores for
the set of 54,524 trees is asymmetrically skewed towards
smaller values, and the scores are not correlated with the
HS]J scores (Fig. 5d). FitchM scores for the set of 54,524
trees are asymmetrically skewed towards larger values
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FIGURE4. Best-scoring trees found by each approach using the synthetic data set matrix with 20 characters and as many secondary characters
as primary characters. Left panel: LMDS (de Silva and Tenenbaum 2004) of all trees with eight tips and the best-scoring tree for treatment
color-coded. The same two trees were assigned optimal scores using the HSJ approach for all values of a; the same two trees are found as for
the other synthetic matrix (see Fig. 3). Right panels: 50% majority rule consensus trees for the best-scoring trees for each approach. Note that
the sister taxon arrangements for taxa 1, 2, 7, and 8 vary across the consensus trees. LMDS is the same as that shown in Figure 3. See Figure S2
of the Supplementary material available on Dryad for histogram of scores.

and are also not correlated with the HSJ scores (Fig. 5e).
FitchS scores are the most normally distributed and tend
to correlate with HSJ scores although there is a large
variance (Fig. 5f). FitchM and Morphy yield more similar
rankings of scores to each other than either to FitchS or
HSJ (Fig. S5 of the Supplementary material available on
Dryad). In contrast to the other approaches, the FitchS
approach identified a single tree of the set of 54,524 trees
as optimal.

Although all four approaches identify a small number
of optimal trees within the set of 54,524 trees, each set
is distinct from the other (Fig. 5h,i and Fig. 54 of the
Supplementary material available on Dryad). This is
true even for the FitchS tree, which shares tree space
with the subset of trees found optimal by the HSJ
approach (Fig. 5g), but is not one of the latter set.
Amongst the best-scoring trees, shared features, such
as the subclade (Aulanotreta, (Bicarinata, Pseudolingula),
(Glottidia, Lingula)) and the sister group (Lingulasma,
Pseudolingula q), are present in the entire set of 54,524
trees (Fig. S4c of the Supplementary material available
on Dryad). The HS] and Morphy approaches both
identify a subclade (Broeggeria, Zhanatella, O. eichwaldi,
Lingulella, Oepikites, Experilingula, Eoobolus, Ungula, O.
apollonis, Lingulellotreta, Lingulasma, Pseudolingula q) that

is not resolved in the consensus of the best-scoring
trees using either FitchM or FitchS (Fig. S4a of the
Supplementary material available on Dryad). Only the
FitchS and HS] best-scoring trees place the original
outgroup, Acrothele and Acrotreta, sister to the rest of
the taxa (Fig. 5h and Fig. S4b of the Supplementary
material available on Dryad). In summary, although the
different approaches select similar optimal trees, the
variation between them could be enough to differentially
influence any systematic taxonomy and evolutionary
inferences based on them. Comparisons between these
results and the original tree figured in Cusack et al. (1999)
are limited by the fact that the character matrix was
recoded using a different coding strategy and that we
had difficulties replicating the original results (Fig. S3 of
the Supplementary material available on Dryad).

Empirical Data Set 2: Myriapods

The PAUP* heuristic search on the myriapods
data set restricted to primary characters resulted in
34,560 noncollapsed MPT trees with a score of 215.
We scored these candidate trees using the complete
data set, including secondaries, under the FitchM,
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FIGURE 6. The 34,560 best scoring trees returned by PAUP on the Myriapod data set restricted to primary characters. a) HS] scores (entire

data set, o =1.0) for the 34,560 MPTs returned by PAUP for the data set re
the scores. b) HSJ scores for a =0.5 for the 34,560 MPTs, ordered as in a),

stricted to primary characters. The marginal plot shows a histogram of
with histogram of scores on the right margin. c) HS]J scores for a=0.1

for the 34,560 MPTs, ordered as in a), with histogram of scores on the right margin. d) Morphy scores for the 34,560 MPTs, ordered as in a),
with histogram of scores on the right margin. The FitchM approach yielded identical scores. e) Scores under the FitchS approach for the 34,560
MPTs, ordered as in a), with histogram of scores on the right margin. f) The strict consensus of the 1464 best scoring trees for HSJ with a=0.5.
g) The strict consensus tree of the 2700 best scoring trees for Morphy, FitchM, and FitchS (all approaches yielded the same set of optimal trees).
The consensus was identical to the majority rule consensus of all 34,560 trees.

FitchS, Morphy, and HSJ approaches, with the scaling
parameter ranging from «=0.1,0.2,0.3,...1.0 for the
latter. Sorting the trees by the HSJ tree score when
a=1.0 results in a nearly uniform distribution of
the trees (Fig. 6a). As o decreases, the rank order
amongst similarly scoring trees shifts but the same basic
ranking of the trees is retained (Fig. 6b,c). However,

the magnitude of the shift is greater for the myriapod
data set compared to the brachiopods. The other notable
difference between the results for each empirical data
set is that for the myriapods, the number of best
scoring trees for the HS] approach varied for values of
a, ranging from 1414 trees (a=1.0) to 1464 trees (a=
0.5), totaling 2700 unique trees. Figure 5e shows the
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strict consensus tree of the 1464 best scoring trees for
a=0.5.

The Fitch and Morphy approaches identified the
same 2700 optimal trees, but with a score of 343. The
FitchM/Morphy trees in Figure 6d are ordered the same
as the previous panels Fig. 6a-c but see only five possible
scores of 343 (2700 trees), 344 (9720 trees), 345 (8640
trees), 346 (9180 trees), and 347 (4320 trees). Although the
FitchS approach identified the same optimal trees, the
remaining trees were distributed across six additional
distinct scores.

The strict consensus trees for the best-scoring trees
under any approach were similar in overall structure
(Fig. 6e,f), most notably monophyly among major
subclades, because this structure is shared across the
subset of 34,560 trees. In this example, then, the addition
of the secondary characters served only to increase
resolution within subclades; this service was slightly
enhanced using the HSJ approach for any given value
of a compared to the Morphy or Fitch approaches.

DiscussioNn

The inclusion of secondary characters into
phylogenetic studies have the potential to provide
deeper insight into the relationship between the taxa.
Our focus is on data matrices that use reductive coding
(Strong and Lipscomb 1999), where the assumptions
of the hierarchical organization of the characters is
incorporated via explicitly denoting which secondary
characters are dependent on which primary characters.
We explored three approaches to scoring phylogenetic
trees: the ubiquitous approach of Fitch (1971), the
recent approach of Brazeau et al. (2019), and a new
HS] approach described herein. The Fitch approach
computes the sum of the changes across the branches
of the tree. Missing characters are not included in the
total, and inapplicable characters are treated as missing
or a separate, new character state. The scoring of a
single tree takes linear time in the number of taxa,
while finding the optimal tree among all possible trees
is computationally hard (Foulds and Graham 1982).
The Morphy approach of Brazeau et al. (2019) seeks to
include inapplicable characters in a more informative
way by grouping secondary characters that are present
into “regions” where similaries can be explained by
homologies (De Laet 2015), and each new region adds
to the overall score of the tree. While the computational
complexity is not explicitly stated in Brazeau et al. (2019),
analysis of their tree scoring algorithm yields an upper
bound of linear time in the number of taxa and finding
the optimal tree is computationally hard by reduction
to the optimal parsimony problem (Foulds and Graham
1982). Our proposed approach follows the original
spirit of the maximum parsimony criteria that seeks
to minimize the number of changes across branches.
Secondary characters contribute, not independently,
but as a fraction of the primary character they describe.
Building on the canonical approach allows us to extend

existing algorithms and proofs to give correctness and
complexity results yielding linear time algorithms
for scoring individual trees and the computational
hardness (NP-completeness) of finding the optimal tree
(see Appendix).

These four different approaches to scoring
phylogenetic trees behave in disparate ways when
the proportion of secondary characters is increased.
Due to the size of the synthetic data sets examined, we
were able to generate all 135,135 possible rooted trees
on those eight taxa and exhaustively find the optimal
trees for each method. While it has been suggested
that secondary characters do not affect the phylogeny
(Lockhart and Koenig 1965; Caira et al. 1999), we note a
more nuanced situation, where, not surprisingly, both
the approach used for the inclusion of the secondary
characters and the phylogenetic informativeness of
the secondary characters, play significant roles in
the analysis. The approach used for the inclusion of
secondary characters in the analysis can affect the clades
supported in trees with optimal scores, but this depends
on the relative proportion of secondary characters as
well as the character consistency among both primary
and secondary characters. For the synthetic data
sets where all primaries were consistent except for the
controlling primary, increasing the amount of secondary
data from 23% (3 secondaries of 13 total characters)
to 50% (10 secondaries of 20 characters) resulted in a
different set of optima using the Morphy and Fitch
approaches (though the same as, or subsets of, each
other), while the HSJ approach continued to favor the
same two trees, for all values of the scaling parameter
(¢=0,0.1,0.2,...,1.0). Further, the number of optimal
unrooted trees increased using the Fitch and Morphy
approaches and the resulting consensus tree retained
unresolved clades where the secondary characters are
applicable.

While the results of applying the Fitch and Morphy
approaches to the synthetic data sets are the same,
the reasons are different. For the FitchM approach, the
inapplicable characters are coded as missing data, and,
as a result, the differences in the secondary characters
dominate the overall scores of the trees. For the FitchS
approach, the inapplicable characters are treated as the
same additional character state for all taxa where the
controlling primary character is coded as absent, and
as a result, the weight of that absence is increased
as the number of secondary characters contingent
on that primary character increases. In contrast, the
Morphy approach is designed to increase the scores
of topologies where primary characters described by
secondary characters are homoplastic, by adding a
point to the total tree score for each “region” where
a subset of taxa for which the character in question is
inapplicable separates two subsets of taxa for which the
character is applicable (see the mapping of “R” in Fig. S1
of the Supplementary material available on Dryad).
Because character contingency is ignored, this penalty
is assessed separately for each secondary character,
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FIGURE7. Map of secondary characters in brachiopod data set. The tree is the majority rule consensus of 54,524 MPTs found by PAUP based
only on primary characters. Elements are shaded on a red scale by the state of the secondary character. Characters coded as missing (i.e., "?’) are
light gray; those coded as inapplicable (i.e., "-’) are dark gray; all others are red scale (see legend).

quickly increasing the length of the tree when many
secondary characters associated with a homoplastic
primary character are included in the matrix.

Favoring trees that group characters into regions
of homology (De Laet 2015; Brazeau et al. 2019) is
intuitive and appealing but hard to capture in practice.
As noted above, for the synthetic data set, secondary
characters that are homoplastic across the tree unduly
influenced the results. A more subtle issue is identifying
the regions of homoplasy, and for this, comparison of
the two empirical data sets is illuminating. Both data
sets have moderately large percentages of secondary
characters (35% and 39%). For the brachiopods, primary
and secondary characters are inconsistently distributed
among the taxa. Further, almost all combinations of
controlling primary characters are expressed across the
set of taxa, making secondary characters homoplastic
across many trees (Fig. 7) and prompting additional
penalties for “regions” using the Morphy approach. This
leads to differences in the Fitch and Morphy scores, with
the Morphy score higher on average than the FitchM
scores, and the FitchS scores higher on average than
the Morphy scores (Fig. 5d—f). The correlation between

scores for the methods was low (|r| < %, see Fig. S5 of

the Supplementary material available on Dryad) but
was the strongest between the Morphy and FitchM

approaches. Thus across all approaches, the inclusion of
the secondary characters adds significant phylogenetic
information (Fig. 7), but because of the wide distribution
of the secondary characters, the treatment of the
secondary characters yields different trees favored by
the different methods. In such situations, the approach
employed for handling inapplicable characters can have
a substantial impact on the results of the analysis.

For the myriapods data set, in contrast, the Fitch
and Morphy approaches gave the same score(s) to

all 34,560 trees comprising the subset produced by

the PAUP search based on just primary characters
(Fig. 6d). Closer examination of the distribution of
secondary characters across the consensus tree shows
that each can be mapped in a homologous fashion
to the tree (Fig. 8), and as such, does not incur
a penalty for having multiple regions of homology
under the Morphy approach. With no penalties for
multiple regions, the Morphy score is identical to
that computed by the FitchM approach, neither of
which provide more resolution than the analysis on
the primary characters alone. Further, the states of
the secondary characters are nearly constant in the
subclades and, as such, add little additional information
over that provided by the primary characters. Under
the HS] approach, only two more polytomies are
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FIGURE 8. Map of secondary characters in myriapod data set. The tree is the strict consensus of 34,560 MPTs found by PAUP based on just
primary characters. The tree is colored by subclade: Blue = Diplopoda (millipedes); orange = Symphyla; lime green = Chilopeda (centipedes)
subclades Scutigeromorpha, Craterstigmomorpha, and Lithobiomorpha; grass green = Chilopoda (centipedes) subclade Geophilomorpha;
yellow = Chilopoda (centipedes) subclade Scolopendromorpha. Elements are shaded on a red scale by the state of the secondary character.
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Secondary characters with minor homoplasy are not sufficient to prompt “region” penalties when applying the Morphy approach, which is why

the tree scores are the same for those two approaches.

resolved, seen in the Geophilomorpha (Chilopeda)
(Fig. 6e). To summarize, adding secondary characters
to the empirical data sets can reduce the number
of optimal trees (and thus increase resolution in the
consensus tree), because including secondary characters
includes potential synapomorphies for subclades; this is
analogous to the observation that excluding characters
with a high proportion of missing data can still
contribute to low resolution (Kearney and Clark 2003).
However, if the variation in secondary characters is low
or highly consistent with the phylogenetic information
contained within the primary characters, the consensus
tree will not be greatly affected.

Reductive coding sensu Strong and Lipscomb (1999)
allows the “nested” relationship among hierarchical
characters to be described. In addition to the primary
and secondary characters that are the focus on this
study, further nesting, such as tertiary, quaternary, and
quinary characters, can be defined as those describing
the variation within the level above. While theoretically
possible, this further nesting of characters is relative rare
in coded matrices. For example the myriapod data set
of Fernandez et al. (2016), we analyze contained 2.4%
tertiary characters overall and no quaternary or quinary
characters. Due to their rarity and the fact that other

methods do not consider nested characters explicitly
(the Morphy algorithm, e.g., recognizes hierarchical
characters based on the presence of at least three
inapplicable tokens, but not whether those characters
are secondary, tertiary, etc), we focused our analysis on
the comparison of results for matrices that have only
primary and secondary characters. We note, however,
that the scoring of tertiary characters follows the similar
nesting that we applied to give scores to a controlling
primary by their associated secondary characters (see
Hopkins and St. John (2018) for details), and thus our
approach can be extended to accommodate any number
of hierarchical levels. The proof of correctness can be
similarly extended and the running time of computing
the tree score would remain the same.

The inclusion of inapplicable characters into a
phylogenetic analysis is an intriguing challenge from
the choice and coding of characters in the matrix to the
methods used to score the candidate phylogenetic trees.
The reductive coding sensu Strong and Lipscomb (1999)
yields a hierarchical structure allowing the analysis
of the relative contributions of the primary characters
that apply to all taxa and the secondary characters
that describe variation in primary characters in some
taxa. However, treating secondary characters as missing
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data when they are inapplicable has limitations: it may
favor trees where internal nodes are assigned impossible
states, where the arrangement of taxa within subclades
is unduly influenced by variation in distant parts of the
tree, or where taxa that otherwise share most primary
characters are grouped distantly. The first two problems
have been addressed by recent work of Brazeau et al.
(2019). Of those examined herein, only the HS] approach
consistently gave a feasible solution to the problem of
including inapplicable characters in a way that resolves
subclades without biasing the overall tree favored by the
search. This suggests that optimality criteria based on a
parsimony framework, albeit with a more refined way to
compute change across branches, provides a discerning
approach to including inapplicable characters into
broader phylogenetic analysis.

Implementation and Data

All methods have been implemented in R. Data and
code are available on github (stjohn/hsj). Data is
available on Dryad and Morphobank. Our code builds
on the framework set up in TreeSearch (Smith 2018)
and TreeTools (Smith 2019) that rely on phangorn
(Schliep 2010) for additional phylogenetic analysis.
The TreeSearch package includes two methods,
TreeSearch () and Ratchet () that allow the tree
scoring function to be specified as a parameter for
which we implemented our tree scoring function,
hsjTS (). It relies on the HSJ dissimilarity R functions
(Hopkins and St. John 2018) that are included, which
in turn rely on the Claddis (Lloyd 2016, 2018)
R package.
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APPENDIX

We prove that our scoring algorithm computes the
optimality criteria and further show that finding the
optimal tree under this criteria is computationally hard.

Definitions and Notations

A phylogenetic tree 7 consists of vertices or nodes,
V(T), connected by branches or edges E(T). The vertices
consist of nodes of degree 1 or leaves, L(T), and internal
nodes. A two-state or binary character x_ for L(T) is a
function x:L(7)— {0,1}. We say that the function x':
V(T)— {0,1} extends the character yx if x’ is identical
to x on L(7). For a set of characters, S={x1,..., Xk}
and node x, we call (x1(x),...,Xx(x)) the label of x. We
will call a function, s(7, S) that assigns nonnegative real
numbers to input tree, 7 and set of characters, S, a
(tree) scoring function. We assume a hierarchical coding
of characters where primary characters describe traits.
We say a character is controlling if its value indicates
the presence or absence of additional characters states.
Secondary characters describe variation within such traits.
A tertiary character is similarly defined, referring back to
a secondary character.

Dissimilarity Metrics
Hopkins and St. John (2018) introduced a family of
metrics that extend Gower’s weighting solution (Gower
1971) and allow the contribution of the primary character

to be scaled, via a parameter a that can range from 0 to
1. We define:

(1—0)1+a —+k
m

if the primary character

n+1
is present for both
k
So(i,f)= o if the primary character

is present for only one

1+k

s otherwise (neither has

n+1

the primary character)

(A1)
where m is the number of secondary characters, s
is the number of secondary characters that agree
between the ith and jth taxa, and k be the number of
primary characters that agree out of the remaining n
primary characters. The dissimilarity metric is defined
as dy(i,j)=1—5q(i,)).

120Z Ael || uo Jasn AIo)sIH [ednmeN Jo wnasnjy uesuswy Aq £691€19/S009BAS/010SAS/S601 "0 L /I0p/3]o1IB-00UBAPER/0IgSAS/WOo dNo-olWapeoe.//:sdiy Woll papeojumoq


http://dx.doi.org/10.5061/dryad.m37pvmd06

2021 HOPKINS AND ST. JOHN—INCORPORATING HIERARCHICAL CHARACTERS 15

Optimal Internal Labelings

Given a tree and sequence of characters, we present
an algorithm that extends the characters to the internal
nodes and yields an optimal score where the change
across branches is computed by the HS] measure in
Equation A.l. Our approach follows Fitch (1971): we
make a postorder traversal of the tree to assign initial
internal node labelings and then make a second pass to
score the tree. We divide the characters into “blocks.”
We set the first block to be all of the noncontrolling
primary characters. Each subsequent blocks consists
of a controlling primary character and its associated
secondary characters. For the algorithm of Fitch (1971),
the score of each character can be computed first and
then added to the overall score. Similarly, we compute
the score for each of the blocks of characters, and then
added to the overall score.

When there are no controlling primary characters,

Equation A.1 becomes: S4(i,j) = — where k is the number

of (primary) characters that agree out of the n characters.

d
The resulting dissimilarity metric, dy(i,j)=1- =
where d is the number of differences between ith and jth
taxa. When scaled by the total number of characters, this
is exactly the measure used for traditional parsimony.
More formally:

Lemma1. Letsp(7,S) be the tree scoring function associated
with Fitch's parsimony and sps; (7 ,5) be the tree scoring

function that assigns the minimal score to T if change across
branches is computed with dy. If a set of characters, S, is
applicable to all taxa (i.e., there are no secondary characters),
then for all o and for all T, sp(T, S) =5psj (T, S)-

For the remaining blocks that consist of a controlling
primary character and the associated secondary
characters, we apply Algorithm 1. In lines 1 and 2,
we initialize the scores for the leaves and make a
preprocessing step of labeling the secondary characters
at each node by that computed in the first pass of Fitch’s
algorithm (Fitch, 1971), treating the inapplicable states
(often coded as “-” in the matrix) as a separate character
state. After the initialization is done, we traverse the tree
in postorder (lines 3-8), and compute the score for each
nonleaf node, #, for the controlling character state being
absent (stored in a(n)) and for it being present (stored in
p(n)). To simplify the computation, we multiply scores
by the length of the sequence. We use the scores of the
children nodes to compute the minimum possible score
for the parent node when its primary character is absent
and the minimum possible score for when its primary
character is present. When the character state for a node
and for a child are both absent, there is no mismatch,
and the contribution is the score of the child node. If
the character states disagree, then we are in the second
clause of Equation A.1 and the mismatch contributes 1. If
the primary character is present for both, the mismatch
contributes the distance between the two sequences,
computed by the dissimilarity metric, multiplied by the

Algorithm 1: Optimal tree score using dissimilarity
metrics
Input: Tree, T, with root r, character sequence, S,
and metric, m.
Output: Optimal score for the T and S.
1 Initialization: For each leaf, 1, set L. (1) to its
character sequence in S,
a(l) := 0,andp(l) := 0.
2 Let L (n) be the first-pass Fitch labeling for node n.
3 for n in a post-order traversal of T:

4 if n is not a leaf:

5 Let c¢1 and c2 be the children of n.

6 Leta(n) := min( a(cl)+a(c2),
a(cl)+p(c2)+1,
p(cl)+a(c2)+1,
p(cl)+p(c2)+2 )

7 Letp(n) := min( a(cl)+a(c2)+2,
m(L(n),L(c2))
+a(cl)+p(c2)+1,
m(L(n),L(cl))
+p (cl)+a(c2)+1,
m(L(n),L(cl))
+(m(L(n),L(c2))
+p (cl) +p(c2) )

8 Update L (n) to L (c1) or L (c2) if it yielded

c
the minimal score for p (n) .

9 Returnmin (a(r) ,p(xr)).

length. We use the first clause of Equation A.l, the
dissimilarity metric, since there is only one primary
and m secondaries, da(i,j):(l—Sa(i,j))za%, where m
is the number of secondary characters, s is the number
of matches of the secondary characters, and d=m—s is
the number of secondary characters that do not match.
After the postorder traversal is complete, we return the
minimum of the scores of the root, r (i.e., min(a(r), p(r)).
We now prove that our algorithm returns the minimal
score on a block of a controlling primary and associated
secondary characters:

Theorem 2. Given a fixed tree, T, with character sequence
S consisting of a single primary character and a sequence of
secondary characters that only apply if the primary character
is present, our algorithm returns the minimal score for T .

Proof: Towards a contradiction, assume that SL is a
minimal scoring labeling that gives a strictly lower score
than our algorithm and that SC is the numerical score
assigned to each node under that labeling. Let a(n) and
p(n) be the scores assigned and L(n) be the label to each
node by Algorithm 1. Let n be a node with the fewest
descendants that has a lower score under SC than that
computed by our algorithm. We have:

SC(n) <min(a(n), p(n)).

Since the labels of leaves are given as input, n# must be
an internal node with children nodes, say c; and ¢;. By
the hypothesis that n has this property and no node with
fewer descendants does, we have that ¢; and ¢ under the
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SL algorithm have labels and scores computed by our
algorithm. The score for the SL algorithm is:

SC(n)=du(SL(n),SL(c1))+SC(c1)
+da(SL(n), SL(c2))+5C(c2)

Case 1: Assume a(n) <p(n). Then, SC(n) <a(n). If SL(n)
assigns the primary character state to be absent, then
SC(n) is one of the following:

® 5C(c1)+5SC(cp) if the primary character state is
absent for both ¢1 and ¢y,

® 5C(c1)+5SC(cp)+1 if the primary character state is
absent for ¢ and present for cp,

® S5C(c1)+5SC(cp)+1 if the primary character state is
present for ¢1 and absent for ¢y, or

® 5C(c1)+5C(cp)+2 if both the primary character
state is present for both c; and c;.

Since, by hypothesis, the nodes ¢; and ¢, under the
SL algorithm have labels (and scores) computed by our
algorithm, SC(n) takes one of the following values:

{a(c1)+a(c),a(c1) +p(c2) +1,p(cr) +a(c2) +1,
plc1)+p(c2)+2}

By definition, a(n) computes the minimal score when the
primary character is absent:

a(n) =min(a(c1)+a(c2),1+a(c1)+p(c2), 1+p(c1) +a(c2),
2+p(c1)+p(c2))
s0, a(n) is less than or equal to all the possible values of
S5C(n) which contradicts the assumption SC(n) <a(n).
We assumed that SL(n) has assigned the primary
character state to be absent. Instead, assume that it is

present and a(n) < p(n). SC(n) takes one of the following
values:

® 5C(c1)+SC(cp)+2=a(cq)+a(cp)+2>a(n) if the
primary character state is absent for both ¢; and
€2,

® SC(c1)+SC(co)+1+dy(SL(n),SL(cp))=a(c1)+
p(c2)+1+dy(SL(n),L(cp)) =a(n) if the primary
character state is absent for ¢; and present for cp,

* 5C(c1)+5C(c2) +1+da(SL(n),SL(c1)) =p(c1)+
a(cp)+do(SL(n),L(c1))+1>a(n) if the primary
character state is present for ¢; and absent for cp,
or

* 5C(c1)+5C(c2)+da(SL(n), SL(c1)) +
da(SL(n), SL(c2)) =p(c1) +p(c2) +da(SL(n), L(c1)) +
do(SL(n),L(cp)) if both the primary character state
is present for both ¢1 and c;.

In the first three cases, SC(n) >a(n) which contradicts
the hypothesis.

If SC(n) takes the fourth value, then, unlike the
previous cases, more work is needed since a(n) <a(c1)+

p(c2)+2 which does not necessarily imply a(n) <SC(n).
But, by definition, p(n) <p(c1)+p(c2)+da(SL(n),L(c1))+
dy(SL(n),L(c)). This implies p(n)<SC(n)<a(n) which
contradicts the assumption that a(n) <p(n).

Case 2: Consider the second case: SC(n) <p(n) <a(n).
If scoring labeling function, SL(n), assigns the primary
character state to be absent, SC(n) is one of the following;:

{a(c1)+a(c2),a(c1) +p(c2) +1,p(c1) +alc2) +1,
p(c1)+p(c2)+2}.

As in the case above, a(1) < SC(n). But, SC(n) <p(n) <a(n)
yields a contradiction.

So, assume that that SL(n) assigns the primary
character state to be present. SC(n) takes one of the
following values:

® 5C(c1)+5C(cp)+2=a(c1)+a(cp)+2 if the primary
character state is absent for both ¢1 and ¢,

® SC(c1)+S5C(cp)+1+dy(SL(n),SL(c2))=alc1)+
p(c2)+1+dy(SL(1n),L(cy)) if the primary character
state is absent for ¢y and present for cp,

® 5C(c1)+SC(c2)+1+du(SL(n),SL(cy))=p(c1)+
a(cp)+1+4dy(SL(n),L(c1)) if the primary character
state is present for ¢; and absent for ¢y, or

* 5C(c1)+SC(c2)+du(SL(n), SL(c1)) +
do(SL(n), SL(c2)) =p(c1) +p(c2) +da(SL(n), L(c1)) +
do(SL(n),L(cp)) if both the primary character state
is present for both ¢ and ¢;.

If SC(n) takes the first value, a(c1)+a(cp)+2, then,
by definition, p(n) <a(n) <a(c1)+a(cp) <a(c1)+a(cr)+2=
SC(n) which contradicts the hypothesis.

If SC(n) takes the second value, a(c1)+p(c2)+1+
dy(SL(n),SL(c)), then to show SC(n) < p(n) it suffices to
show that

a(c1)+p(c2)+1+da(SL(n), SL(c2)) <alcr) +p(c2) +1+
do(L(n), L(c2))

which simplifies to do(SL(n), SL(c2)) <dw(L(1),L(c2)). Or
equivalently,

/ /"

1—[(1—0()'1+0L-s—]<1—[(1—0L)~1+0L'S—],
m m

where s’ is the number of characters in agreement
between SL(n) and SL(c;) and s” is the number of
characters in agreement between L(n) and L(cp). This
simplifies to: s” <s’. By hypothesis, SL(cp)=L(cp). If
SL(n)=S(n), then s'=s" which is a contradiction. So,
assume that the labels SL(n) and L(n) differ. Since we
are in the second case where the primary character is
absent for c1, the algorithm sets L(n) to be exactly the
label, L(c»). So, s” =0, since 0 <s’ <s” this contradicts the
hypothesis.

The case where SC(n) takes the third values follows
similarly to the case above.

That leaves the case where primary character state is
present for both ¢; and ¢, and SC(n) takes the fourth
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value: p(c1)+p(c2) +do(SL(n), L(c1)) +da(SL(n), L(c2)). Tf
SL(n) assigns the same label to n as our algorithm, then
they would return equal values. So, assume that the
SL(n) assigns a difference label than our algorithm L(n)
does for node n. As in the second case, the different in
score reduces to the number of characters in agreement
between the label assigned to the n and the children
nodes. The label L(1) is computed by the Fitch parsimony
algorithm if both are present, so, if L(c;) and L(cp)
agree at the ith position, then L(n) takes that value and
contributes 0 to the sum. Otherwise, the value of L(n)
agrees with one of L(c1) or L(cp) and disagrees with the
other at position i and contributes 1 to the sum. If at
some position, i, SL(n) yields a lower score than L(n),
then it must agree with both SL(c1) and SL(cp) at the
ith position while L(n) disagrees with L(c1) and L(cp)
at the ith position. Since SL(c1)=L(c1) and SL(cp) =L(cp)
this is not possible, and the scores must be equal which
contradicts the hypothesis. O

The correctness follows immediately as a corollary to
Theorem 2 and Lemma 1:

Corollary 3. Given a fixed tree, T, with character sequence
S, our algorithm returns the minimal score for T.

We note that the optimal score using dissimilarity
metrics can be computed in polynomial time in the
number of nodes of the tree:

Theorem 4. Given a fixed tree, T, on n leaves with character
sequence S of length k, the algorithm computes the minimal
score in O(nk) time.

Proof: This follows by analyzing the algorithm in terms
of the number of computations done for each branch in
the tree and the number of characters. The initialization
steps take O(nk) time where 7 is the number of taxa and
k is the number of characters. Step 2 labels the tree via
Fitch’s algorithm and is also O(nk) time. The algorithm
then loops through each branch in the tree. Since there
are O(n) branches and the computations in Steps 5-8
take O(k) time, these contribute O(kn) time. Overall, the
running time is O(kn). O

Computational Hardness of Finding the Optimal Tree

The computational hardness of finding the optimal
tree for a set of data follows almost directly from
the original proof of Foulds and Graham (1982) for
maximum parsimony. Towards a contradiction, assume
that finding the optimal tree for our revised parsimony
criteria could be done in polynomial time. For any
instance of the traditional parsimony problem, we can
embed that instance in one for our problem with all
characters set to primary. Since, when working with
only primary characters, the branch distances for our
approach is the same as traditional parsimony, we could
run the polynomial approach for ours, which, would
yield a solution to traditional parsimony in polynomial
time, contradicting the results of Foulds and Graham
(1982).
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