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LOG BPS NUMBERS OF LOG CALABI-YAU SURFACES

JINWON CHOI, MICHEL VAN GARREL, SHELDON KATZ,
AND NOBUYOSHI TAKAHASHI

Abstract. Let (S,E) be a log Calabi-Yau surface pair with E a smooth divi-
sor. We define new conjecturally integer-valued counts of A1-curves in (S,E).
These log BPS numbers are derived from genus 0 log Gromov-Witten invari-
ants of maximal tangency along E via a formula analogous to the multiple
cover formula for disk counts. A conjectural relationship to genus 0 local
BPS numbers is described and verified for del Pezzo surfaces and curve classes
of arithmetic genus up to 2. We state a number of conjectures and provide
computational evidence.
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1. Introduction

Let (S,E) be a log Calabi-Yau surface with a smooth divisor, by which we shall
mean that S is a smooth projective surface and E is a smooth effective anticanonical
divisor on it. By the adjunction formula, each connected component of E has
genus 1. It is expected that S \ E admits a Strominger-Yau-Zaslow (SYZ) special
Lagrangian torus fibration [79], with singular fibers away from E. When S is del
Pezzo, this is shown in [21]. We are interested in counts of holomorphic disks in
S\E with boundary ending on a SYZ fiber near E. In analogy to [43, Theorem 3.4]
and [63, 64], these are in turn predicted to correspond to counts of tropical disks
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in the relevant scattering diagrams of [16]. The latter describe the wall-crossing
automorphisms, cf. [16, Proposition 5.4].

The SYZ mirror conjecture is successfully implemented in algebraic geometry
in the Gross-Siebert program [16, 45], see also [31, 39–41, 44, 47]. Assume that S
is del Pezzo. The construction of the mirror for (S,E) proceeds via the relevant
scattering diagram as detailed in [16]. In particular, the superpotential on the
mirror is constructed via summing the monomials attached to broken lines. In
[16, §5.4] the wall-crossing functions are expressed as generating functions of Maslov
index 0 tropical disks. They in turn are expected to be expressible as counts
of A1-curves on (S,E), which are rational curves in S meeting E in one point
of maximal tangency. Their virtual definition is as the (Q-valued) genus 0 log
or relative Gromov-Witten invariants [1, 17, 33, 46, 61, 62] of maximal tangency.
When S = P2, the correspondence between genus 0 log GW invariants of maximal
tangency and tropical curves in the scattering diagram is established in [38].

In this paper, we explore how to obtain N-valued invariants out of these log
Gromov-Witten (GW) invariants, which should be the underlying counts of (im-
mersed) A1-curves. In accordance with standard definitions, we call them log BPS
numbers. The relationship between the log Gromov-Witten invariants of maximal
tangency and the log BPS numbers is the formula of Definition 1.1. It is analogous
to the multiple cover formula for genus 0 open Gromov-Witten invariants [27] and
generalized DT invariants [50]. In [43, Proposition 6.1] (see (6.1)), the authors
compute the contribution of multiple covers over rigid relative maps to the relative
GW invariants. This leads them to define relative BPS state counts, which are
shown to be integers for toric del Pezzo surfaces in [32]. One motivation for this
work is that the enumerative meaning of relative BPS state counts are not clear in
the context of a smooth divisor. We make the connection of log BPS numbers with
relative BPS state counts and loop quiver DT invariants in §6.

Apart from the connection to the Gross-Siebert program, the advantages of log
BPS state counts are twofold. Firstly, generically they are weighted counts of
curves (Proposition 1.8). Secondly, they are conjecturally independent of the point
of contact (Conjecture 1.3).

In this paper, we set up the theory of log BPS state counts. We state a number
of conjectures, some of which we prove for arithmetic genus up to 2 in the case of
del Pezzo surfaces. This paper is a continuation of [19] and uses results from [20].

1.1. Summary of results and conjectures. We will always denote by S a
smooth projective surface and by E a smooth divisor on S, and require additional
conditions on (S,E) as needed. Let β ∈ H2(S,Z) be a curve class, by which we
shall mean that β can be represented by a nonempty one-dimensional subscheme.
Assume also that w := β.E > 0. If the triple (S,E, β) satisfies (KS + E).β = 0,
following [43] we will say that (S,E) is log Calabi-Yau with respect to β.

Denote by Mβ(S,E) the moduli space of maximally tangent genus 0 basic stable
log maps to (S,E) of class β [1, 17, 46]. Typically we will require that E is an
elliptic curve, in which case the elements of Mβ(S,E) are described in Corollary

2.10. Mβ(S,E) admits a perfect obstruction theory, which is of virtual dimension
vdim = −(KS + E).β, and yields a virtual fundamental class

[Mβ(S,E)]vir ∈ H2 vdim(Mβ(S,E)),
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as well as corresponding genus 0 log Gromov-Witten invariants of maximal tangency

Nβ(S,E) :=

∫
[Mβ(S,E)]vir

1 ∈ Q.

Because of the virtual dimension of Mβ(S,E), Nβ(S,E) can be non-zero only if
(KS + E).β = 0. We define the total log BPS numbers for any such (S,E, β).

Let Hilbβ(S) be the Hilbert scheme of effective divisors on S of class β and

let Picβ(S) be the Picard variety of isomorphism classes of line bundles L on S

with c1(L) Poincaré dual to β. Picβ(S) is a complex torus of dimension h0,1(S).

Consider the Abel-Jacobi map Hilbβ(S) → Picβ(S). Then the fiber over L is the
linear system |L|.

Consider the set

E(L) :=
{
P ∈ E

∣∣ L|E ∼ wP
}

of possible points of contact of maximally tangent curves in |L| with E. Often we
will assume that E is an elliptic curve. Then E(L) is a torsor for Pic0(E)[w] ∼=
Z/w × Z/w, so that by choosing 0E ∈ E(L), E(L) is identified with the w-torsion
points of E. This is proven in Lemma 2.14 under the additional assumption that S
is a regular surface, i.e. a surface with irregularity h1(OS) = 0, so that β determines
a unique Chow class. This assumption is not necessary, but we will often require it
for a simpler exposition and then write E(β) = E(L).

When E(β) is finite, the log BPS numbers are obtained by fixing the point of
contact P ∈ E(β) and applying a suitable multiple cover type formula. And the
main conjecture (Conjecture 1.3) states that the definition is independent of the
choice of P ∈ E(β).

The different P ∈ E(β) are classified according to their order with respect to a
minimal 0E ∈ E(β) (Lemma 4.10). As a rule of thumb, the lower the order, the
more degenerate the stable log maps can be. On one extreme are points of order
1. Over such points, multiple covers of maximal degree may occur and the image
cycle may decompose into a large number of irreducible components (see Corollary
2.10(3)).

On the opposite end are points P ∈ E(β) of maximal order with respect to 0E ,
which we call β-primitive (Definition 4.6). At these points, the image cycles are
irreducible and the log BPS numbers are a weighted count of a finite number of
maximally tangent rational curves (Propositions 1.8 and 2.12).

If S is regular and E is an elliptic curve, Proposition 2.18 states that under certain
conditions S has to be rational for log BPS numbers to be non-zero. Accordingly,
in this introduction we mostly assume S is rational hereafter. Note that if S is
rational and E smooth anticanonical, then E is necessarily an elliptic curve (after
choosing a zero element).

Whenever E(β) is finite,

Mβ(S,E) =
⊔

P∈E(β)

M
P

β (S,E)

and Nβ(S,E) decomposes as a finite sum

Nβ(S,E) =
∑

P∈E(β)

NP
β (S,E)
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according to the contributions from each M
P

β (S,E). As is described in Corollary
2.10, see also Figure 2.1 and Section 6.1, the relevant moduli space may contain
both multiple covers and reducible image curves. Typically, this happens when

β = dβ̄ and P ∈ E(β̄), for a homology class β̄ and d > 1. In this case, M
P

β (S,E),

and hence also NP
β (S,E), depends on the divisibility properties of P (when one

chooses the zero element 0E ∈ E from E(β̄)) as illustrated in Section 6.1. The
motivation behind Definition 1.1 of log BPS numbers is to remove the dependence
on P .

The next definition and conjecture constitute the principal novelty to curve
counts of the present paper. They are motivated from discussions with Pierrick
Bousseau, through considerations of open Gromov-Witten invariants. In the case
of S = P2, they were already formulated in [81, Remark 4.11].

Definition 1.1 (See Definition 3.3). Let (S,E) be a log Calabi-Yau surface with
respect to β ∈ H2(S,Z). The total log BPS number mtot

β is defined implicitly via

Nβ(S,E) =
∑
k|β

(−1)(k−1)w/k

k2
mtot

β/k.

Assume that S is rational, E anticanonical and let P ∈ E(β). The log BPS
number at P , mP

β , is defined implicitly via

NP
β (S,E) =

∑
k|β

(−1)(k−1)w/k

k2
mP

β/k,

where we set mP
β′ = 0 if P �∈ E(β′). We note that there is an inclusion E(β/k) ⊆

E(β), so that mtot
β =

∑
P∈E(β) m

P
β holds.

Note that the number of nontrivial terms in the above formula for NP
β (S,E)

depends on the arithmetic properties of P when β = dβ̄, d > 1 . At β-primitive
points, which are roughly points of the maximal order, there will only be one term,
whereas at points of lower order there will be many: see Section 6.1 for examples.

Writing μ for the Möbius function, notice also that by Möbius inversion

mP
β =

∑
k|β

(−1)(k−1)w/k

k2
μ(k)NP

β/k(S,E),

hence the mP
β are uniquely determined and similarly for the mtot

β .

Conjecture 1.2. Let (S,E) be a log Calabi-Yau surface with respect to β∈H2(S,Z).
Then mtot

β ∈ N. Additionally, if S is rational and E is elliptic, then mP
β ∈ N for

P ∈ E(β).

For a del Pezzo surface and an anticanonical divisor, the above conjecture is a
consequence of Conjecture 1.3, Proposition 1.8 (1), Proposition 4.11 and deforma-
tion invariance of NP

β (S,E). Note that in general, for P �= P ′ ∈ E(β), NP
β (S,E) �=

NP ′

β (S,E).

Conjecture 1.3 (See Conjecture 3.4). Let (S,E) be a rational log Calabi-Yau
surface with smooth divisor and let β ∈ H2(S,Z). For all P, P ′ ∈ E(β),

mP
β = mP ′

β .
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Equivalently, for all P ∈ E(β),

mtot
β = w2 mP

β .

Recall that for a del Pezzo surface S other than P2, its effective cone is generated
by the line and conic classes (Definition 1.10). If S �= P1 × P1, denote by h the
pullback of the hyperplane class. Our first main result, proven in Section 6, is:

Theorem 1.4. Let S be a Pezzo surface and let E be a smooth anticanonical
divisor. Let β be a curve class, which is either a multiple of a line class, a multiple
of a conic class, or, when S �= P1 × P1, dh, for 1 ≤ d ≤ 4. Then Conjecture 1.3
holds for β. In particular, the corresponding log BPS numbers at each point are
calculated in Propositions 6.6 and 6.7.

After initial submission of this manuscript, a proof of Conjecture 1.3 for P2 in all
degrees appeared in [8,11]. The proof of [8,11] proceeds via the scattering diagram
of [16] and uses [38]. Our proof on the other hand proceeds by direct analysis
of the moduli space. We use the calculation of contributions of maps with image
consisting of 2 components of [20, 81] and find a relationship with multiple cover
contributions to log BPS numbers with quiver DT invariants (Proposition 6.4).

These new invariants exhibit a surprising connection to the local BPS invariants
nβ [15, 35, 36, 51, 72, 73]. For the definition in general, see (3.1). In the case of del
Pezzo surfaces, there is the following equivalent definition from [51].

Definition 1.5. Assume that S is a del Pezzo surface. Denote by Mβ the mod-
uli space of one-dimensional stable (with respect to −KS) sheaves F on S with
holomorphic Euler characteristic χ(F ) = 1 and [F ] = β. The genus 0 local BPS
invariant nβ = n0

β ∈ Z of class β is

nβ := (−1)w−1e(Mβ),

where e(·) denotes the (topological) Euler characteristic.1

Remarkably, see (3.6), if S is rational and E is anticanonical and nef, Conjecture
1.3 has the equivalent characterization that for all P ∈ E(β),

(1.1) nβ = (−1)w−1wmP
β .

We introduce in Definition 4.6 the notion of β-primitive points for del Pezzo
surfaces. At such a point P , mP

β = NP
β (S,E) is an N-weighted count of maximally

tangent rational curves and thus mP
β ∈ N is automatic (Proposition 1.8(5)). There

are no multiple covers or reducible image curves and the moduli space consists of a
finite number of points. There is thus no need to consider the perfect obstruction
theory. Instead, the contribution of each point to mP

β is simply given by its length,

which is calculated in Proposition 1.8(3).
Stating equation (1.1) only for β-primitive points leads to the following conjec-

ture. It is a BPS version of the log-local principle put forward and proved in some
cases in [30], and further developed in [13, 14, 71], as well as in [25, 84] in relation
to orbifold Gromov-Witten theory.

Conjecture 1.6 (Log-local principle for BPS invariants). Assume that S is del
Pezzo and E anticanonical, and let P ∈ E(β) be β-primitive. Then

nβ = (−1)w−1wmP
β .

1The sign is usually given as (−1)β.β+1, which equals (−1)w−1 by the adjuction formula.
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Viewing mP
β as counts of disks in S \ E bounding a SYZ fiber near E and

viewing nβ as counts of rational curves in a (hypothetic) deformation of Tot(KS),
Conjecture 1.6 can be seen as an instance of open-closed duality, see §1.2.

Remark 1.7. While we restrict to del Pezzo surfaces, the definition of primitive
points makes sense for more general surfaces. Moreover, nβ is can be defined when
w > 0. Consequently Conjecture 1.6 is expected to hold in greater generality for
curve classes with w > 0. As an illustration of this, let X be a generalized del Pezzo
surface of degree d for 1 ≤ d ≤ 9, i.e. X is a smooth projective surface with −KX

big and nef and with K2
X = d. For example, if d = 8, X could be the Hirzebruch

surface F2. Other examples include the blowups of P2 in 9− d points with at most
3 on a line and at most 6 on a conic.

Then X can be deformed to a degree d del Pezzo surface S. Denote by Γ the
cone spanned by the set of (−2)-curves on X. Then the effective cone of X is the
sum of the effective cone of S and Γ, see e.g. [22, Corollary 3.12]. Consequently a β-
primitive point on X deforms to a β-primitive point on S, and whenever Conjecture
1.6 holds for S, it also holds for X with the appropriate identifications of curve
classes. (If β is not effective on S, the BPS numbers are 0 anyway.)

That being said, we note that β-primitivity takes a particularly simple form for
del Pezzo surfaces (Lemma 4.9). We leave a careful analysis of β-primitivity for
other surfaces to future work.

If S is del Pezzo, E is anticanonical and P ∈ E(β) is β-primitive, then by
definition, each curve of class β (and of any genus) which meets E only at P is
integral. Among those, we denote by Mβ,P the curves that can arise as images
of maximally tangent genus 0 stable log maps (Definition 2.15). It is a finite set
(Proposition 2.12) consisting of integral rational curves of class β maximally tangent
to E at P . For us, this includes the requirement that C ∈ Mβ,P has only 1 analytic
branch on E (otherwise the normalization map n : P1 → C could not be lifted to a
maximally tangent stable log map).

At a β-primitive point P ∈ E(β), M
P

β (S,E) is zero-dimensional (and not just of
virtual dimension zero). By [7, Proposition 4.9] its virtual fundamental class equals
the fundamental class

[M
P

β (S,E)]vir = [M
P

β (S,E)].

As a consequence ([7, Corollary 4.10]) the calculation of mP
β = NP

β (S,E) is reduced
to finding Mβ,P and to computing the lengths of the log maps induced by n :
P1 → C for C ∈ Mβ,P . The contribution of such curves is the content of the
next Proposition. For an (integral) rational curve C, recall that the compactified

Jacobian Pic
0
(C) of C is the scheme parametrizing torsion free, rank 1, degree 0

sheaves on C.

Proposition 1.8 (See Proposition 4.21). Let (S,E) be a regular log Calabi-Yau
surface with smooth divisor and let β ∈ H2(S,Z) be a curve class. Let C be an
(integral) rational curve of class β maximally tangent to E at P , and denote the
normalization map by n : P1 → C. Then:

(1) The map n gives an isolated point of M
P

β (S,E), and contributes a positive

integer to NP
β (S,E).

(2) If C is immersed outside P , [n] contributes 1 to NP
β (S,E).
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(3) If C is smooth at P , then it contributes e(Pic
0
(C)) to NP

β (S,E).

(4) If C is smooth at P and has arithmetic genus 1, then its contribution

e(Pic
0
(C)) equals e(C) and can be recovered from the associated elliptic

fibration.

Assume that S is del Pezzo.

(5) Let P ∈ E(β) be β-primitive. Assume that all C ∈ Mβ,P are smooth at P .
Then

mP
β =

∑
C∈Mβ,P

e(Pic
0
(C)).

In the case of P2, Conjecture 1.6 was originally stated for P2 in [82, Remark 2.2].
Using calculations from [80], it was verified that it holds for P2 and degree ≤ 6, as
well as for degree 7 and 8 under certain technical hypotheses. The combination of
Conjecture 1.6 and Proposition 1.8 yields an enumerative interpretation of the nβ.
For an explanation of the factor w, see §1.2.

Recall that pa(β) :=
1
2β(β +KS) + 1 is the arithmetic genus of β.

Remark 1.9. Some comments on the assumptions in Proposition 1.8 are in order.
Let L ∈ Picβ(S). Recall that L is said to be δ-very ample if H0(L) → H0(L

∣∣
Z
) is

onto for all length-(δ+1) subschemes Z ⊂ S. It is known [57, Proposition 2.1] that
if L is pa(β)-very ample then a general pa(β)-dimensional linear system P ⊂ |L|
contains a finite number of rational curves and they all are pa(β)-nodal. Hence any

such curve C is immersed and e(Pic
0
(C)) = 1.

By Proposition 4.15, being maximally tangent at P ∈ E(β) picks out a pa(β)-
dimensional linear system |OS(β, P )| ⊂ |L|. We however do not know whether
pa(β)-very ampleness combined with E general would guarantee that the finite
number of rational curves in |OS(β, P )| are immersed away from P . As an illustra-
tion, assume E ⊂ P2 is given by Y 2Z−X3−Z3. Then the cuspidal cubic Y 2Z−X3

is maximally tangent to E at P = [0 : 1 : 0] and contributes 2 to NP
β (P2, E). If

however E is given by Y 2Z−X3−aXZ2−bZ3, for a �= 0, then there are two nodal
cubics meeting E at P each contributing 1 to NP

β (P2, E). This is one of the cases
of Proposition 6.8.

As for the requirement that each C ∈ Mβ,P is smooth at P , we expect this to be
true for general (S,E), but currently do not know of a proof. In the case of cubics
in P2, this is ruled out in Remark 5.4.

It is known that every rational curve in a primitive class on a general K3 surface
is nodal ([18]), and it may be reasonable to expect that any C ∈ Mβ,P is nodal,
and hence smooth at P , for a general (S,E) and β-primitive P .

Definition 1.10. Recall that line classes on S are the classes l ∈ Pic(S) such
that l2 = −1 and −KS .l = 1. Conic classes are the classes D ∈ Pic(S) such that
pa(D) = 0 and −KS .D = 2. Our main result is as follows:

Theorem 1.11. Let S be a del Pezzo surface, E a smooth anticanonical divisor
and β a curve class on S. Assume that β is a line class, a conic class or a nef and
big class. Then Conjecture 1.6 holds if pa(β) = 0 or 1. Assuming that (S,E) is
general, it holds for classes β of arithmetic genus 2 as well.

The proof of Theorem 1.11 proceeds by calculation of both of the relevant log
and local BPS numbers. On the log side we find in Section 5 all rational curves
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of a given class in S that are maximally tangent to E at a primitive point. Using
Proposition 1.8, we calculate the corresponding log BPS numbers. Our calculations
are summarized in Theorem 5.2. On the local side, we carried out the calculation
in [19] via wall-crossing with stable pairs:

Theorem 1.12 (Theorem 1.1 in [19]). Assume that S is a del Pezzo surface, that
E is a smooth anticanonical divisor and that β is a line class, a conic class or a
nef and big curve class. Let η be the number of line classes l such that β.l = 0. We
denote by S8 the del Pezzo surface obtained by blowing up P2 in 8 general points.

(1) If pa(β) = 0, then nβ = (−1)w−1w.
(2) If pa(β) = 1 and β �= −KS8

, then nβ = (−1)w−1w(e(S)− η).
(3) If β = −KS8

, then nβ = 12.

(4) If pa(β) = 2 and β �= −2KS8
, then nβ = (−1)w−1w

((
e(S)−η

2

)
+ 5

)
.

Remark 1.13. Note that for β = −2KS8
, the log BPS number is calculated to be 66

in [80] as reviewed in Section 5.4. This matches with the corresponding (physics)
computation carried out in [49]. Note that in [49, Section 5.1], the refined BPS
index is calculated for the combined classes with w = 2, which suffices for the
verification since we know the local and log BPS numbers for all the other w = 2
classes.

Remark 1.14. Note that in the situation of Theorem 1.12, the numbers (−1)w−1nβ/w
only depend on the arithmetic genus of β and on topological numbers of S. This
structure bears similarities to the works [37,57,58,65,85,86] on Severi degrees and
extensions thereof. One might expect there to be some universal polynomials that
calculate the (−1)w−1nβ/w.

Assuming Conjecture 1.6, we have w|nβ . This is also a consequence of the
following conjecture on the cohomology of Mβ . For line, conic or nef and big classes
of arithmetic genus up to 2 it is proven in [19] except in the case β = −2KS8

.

Conjecture 1.15 (Conjecture 1.2 in [19]). The Poincaré polynomial Pt(Mβ) has
a factor of Pt(P

w−1). Consequently, nβ is divisible by w.

In a somewhat orthogonal direction, note Conjecture 44 of [10], which stipulates
a relationship, after a change of variable, of Pt(Mβ) with a generating function of
certain higher genus log Gromov-Witten invariants. Combining the two suggests
a reconstruction result of higher genus log GW invariants in terms of genus 0
invariants.

There is a further unexpected connection that arises from of our calculations.
We believe that this is a manifestation of a more general phenomenon:

Proposition 1.16 (See Proposition 6.4). Let (S,E) be a log Calabi-Yau surface
pair. Let C be an integral nodal rational curve in S that meets E with maximal
tangency at P . Let l ∈ N. Denote by ContrBPS(l, C) the contribution of multiple
covers over C to the log BPS invariant mP

l[C] (Definition 6.1). Then

ContrBPS(l, C) = DT
(C.E−1)
l ,

the lth generalized Donaldson-Thomas invariant of the (C.E − 1)-loop quiver.
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1.2. Open-closed duality. We describe a heuristic that views Conjecture 1.6 as
an instance of open-closed duality [3,59,60], i.e. a correspondence between disk and
curve counts. Note that this correspondence is expected to hold as the BPS version
of the (algebro-geometric) proof of the main result of [30].

Assume that S is del Pezzo and E anticanonical. Let P ∈ E(β) be β-primitive
and let C ∈ Mβ,P . We first explain how C should be viewed as a holomorphic
disk Σ → S \ E with boundary mapping to a special Lagrangian L near E. After
that, we describe a procedure that associates to this disk (modulo multiplicity) a
rational curve in Tot(KS).

The complement S \ E is symplectomorphic to V \ ∂V , where V is a Liouville
manifold with boundary ∂V a circle bundle in NE/S . Moreover, a symplectic tubu-
lar neighborhood U of E in S is an open disk bundle in NE/S . In particular,

∂U → E is a circle bundle. Gluing V and U along their boundaries yields the
symplectic sum M .

According to [23, Lemma 2.7], C corresponds to a holomorphic map from an
open disk to V \ ∂V with boundary converging to a w-multiple orbit of the fiber
of ∂V over P .2 According to [4, Conjecture 7.3], special Lagrangian SYZ-fibers L
of U ∩ (S \ E) are (a perturbation of) circle bundles L → LE , with fibers in NS/E

and where LE is a special Lagrangian in E.
Combining this, one expects there to be a special Lagrangian S \ E ⊃ ∂U ⊃

L → LE ⊂ E such that C correspond to a closed disk Σ → S \ E with boundary
∂Σ mapping (in degree w) to a vanishing cycle of L. Note that after perturbation,
it is expected that the same L works for all C ∈ Mβ,P .

Next, we join the image of Σ with a w-multiple of the fiber of U → E over P
to obtain a holomorphic map P1 → M . The choice of multiple cover introduces a
factor of (−1)w−1/w2, cf. [30]. We add a suitable line bundle on M (see [30] for
details) such that (1) it does not affect the count of disks in S \E and (2) the total
space of the line bundle deforms to Tot(KS).

In this deformation, P1 → M deforms to a rational curve C̃ in Tot(KS) which
is counted (−1)w−1/w2 times. Furthermore, the deformation formula, cf. [30],
introduces a factor w in that w local curves are expected to degenerate to the same
log curve. Finally we need to take into account that |E(β)| = w2 (assuming as in
Conjecture 1.3 that each point contributes the same). Putting this together yields
the expectation that

nβ = |E(β)| · w · (−1)w−1

w2
mtot

β ,

which simplifies to Conjecture 1.6. Finally, note that the contribution of C to mP
[C]

and that of C̃ to n[ ˜C] are both expected to be given by the Euler characteristic of

the compactified Jacobian.

1.3. Pairs of maximal boundary. Starting with a smooth rational surface S,
there are two fundamentally different ways of obtaining a log Calabi-Yau surface.
In the present paper, we proceed by choosing a smooth anticanonical divisor. This
can be viewed as the tail of a type II semistable degeneration of a K3 surface. We

2Note that [23] imposes restrictive conditions on the pairs considered, in order to guarantee
transversality of the relevant moduli spaces. In our case, the log BPS invariants are weighted
counts of curves, so no virtual techniques are required and the proof of [23, Lemma 2.7] carries
through.
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conjecture that the resulting invariants are related to the local geometry of S, the
total space Tot(KS) of the canonical bundle on S.

The other way proceeds by choosing a singular normal crossings divisor. This
means that the divisor is either a nodal genus 1 curve or a cycle of rational curves.
This case is usually referred to as being of maximal boundary, which means that
there is a toroidal structure near the divisor, and is treated in [9, 40, 43]. One ex-
ample thereof concerns components of maximally unipotent type III degenerations
of K3 surfaces. This is described in the introduction of [44] and the full mirror
symmetry picture will be detailed in the upcoming work [42].

Considering refined contributions in the maximal boundary toric case lead
Bousseau in [12] to a remarkable result stating that generating series of higher
genus log GW invariants of toric surfaces are, after a suitable change of variables,
refined Block-Göttsche counts of tropical curves. The result of [12] and our conjec-
tures have the same origin. Namely, that the log GW/log BPS numbers very much
behave like an algebraic version of open GW invariants, see [47].

1.4. Analogies with K3 surfaces. Log BPS numbers feature some striking par-
allels with counts of rational curves in K3 surfaces. On the one hand, denote by
(S,E) a log Calabi-Yau surface pair with S del Pezzo. Let β ∈ H2(S,Z) be a
curve class and let P ∈ E(β) be β-primitive. Consider the pa(β)-dimensional linear
system |OS(β, P )| (Definition 4.16) of curves of class β with maximal intersection
multiplicity with E at P . On the other hand, denote by X a K3 surface, let g ≥ 0
and consider a g-dimensional complete linear system L of curves of genus g on X.

Firstly, by Proposition 1.8, a rational curve C ∈ |OS(β, P )|, smooth at P , con-

tributes e(Pic
0
(C)) to mP

β . In parallel, the contribution of a rational curve C ∈ L

to the BPS count of the Yau-Zaslow formula [89] is given (see [6,26]) by e(Pic
0
(C)).

Secondly, choosing P to be β-primitive amounts to choosing a point on E of
maximal order (for a suitable choice of zero element, see Lemma 4.10). This is
analogous to taking the reduced class for K3 surfaces. The moduli space of stable
maps (of genus 0 and given class) in X is of virtual dimension −1 and hence
all Gromov-Witten invariants are zero. This is because there is a non-algebraic
deformation of X in which there are no rational curves. This issue is resolved by
restricting the deformation space to algebraic deformations (the Noether-Lefschetz
locus). Similarly, assume that (S,E) occurs as the tail of a type II (algebraic)
degeneration of X. To simplify, assume that the degeneration consists of another
component (S′, E′) and that S and S′ are glued together along E � E′. Denote
by N and N ′ the respective normal bundles of the components of the central fiber.
For the deformation to be algebraic, N |E = N ′|E must hold. Consider a maximally
tangent rational curve C in (S,E), resp. C ′ in (S′, E), each meeting E in P in
tangency w = [C].E = [C ′].E. In order to algebraically deform C ∪P C ′ to a
rational curve in X, P should have the same order with respect to [C] and [C ′], for
example by requiring P to be both [C]- and [C ′]-primitive.

The third analogy is that mP
β also seems to depend on intersection numbers

only. The BPS number of rational curves in |L| depends only on the intersection
number 2g − 2 (conjectured in [52, 68], proven in [54] in genus 0, in [69] in all
genus and primitive classes and in [74] without the primitivity assumption). In our
calculations (for pa(β) ≤ 2), mP

β depends only on e(S)− η, where η is the number
of line classes l such that β.l = 0.
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For K3 surfaces, [63, 64] prove an equivalence between counts of Maslov index
0 disks with boundary on a SYZ-fiber and tropical curves in the base. In the log
setting of this paper, the analogous correspondence is expected to hold between the
log BPS numbers and tropical curves in the scattering diagrams of [16].

We end this introduction by mentioning that (combinations of) the log BPS
numbers introduced here are numbers that occur in other contexts such as in [78].
Throughout this paper, we work over C.

2. Maximally tangent stable log maps

Let (S,E) be a log Calabi-Yau surface with a smooth divisor, i.e. S is a smooth
projective surface and E a smooth anticanonical divisor, in this case an elliptic curve
or a disjoint union of elliptic curves. Log BPS numbers are derived from counting
rational curves in S with a single point of maximal tangency along E. This can be
done in several ways. One may consider relative Gromov-Witten invariants which
are defined for smooth very ample divisors in [33] and for any smooth divisors in
[61, 62]. In our setting this approach is taken in [81]. For our purpose, cf. the
proof of Proposition 1.8, the appropriate setting is the further generalization to log
Gromov-Witten invariants [46], where instead of a divisor only a log structure on
the target is prescribed. Note also the analogous construction [1, 17], as well as,
for smooth divisors, the treatment in [53]. All these invariants agree in the case at
hand, cf. [2].

We describe the moduli space of basic stable log maps of [46], in the setting of
importance to us, namely in genus 0 with one condition of maximal tangency along
E. Note that by Proposition 2.12 below, the virtual dimension is zero and hence
we need not consider insertions.

2.1. Genus 0 stable log maps of maximal tangency. The schemes in this
section will be endowed with a log structure. We do not distinguish notationally
when we consider their underlying schemes as it will be clear from the context. We
write x to denote the marked point or a node. When we wish to emphasize that x
is the marked point, resp. a node, we sometimes write x1, resp. q.

Let X be a smooth variety and D a smooth divisor on X. We view X as the
log scheme (X,MX) given by the divisorial log structure MX = M(X,D). Let
β ∈ H2(X,Z) be a curve class.

Definition 2.1. Let (C/W, {x1}) be a 1-marked pre-stable log curve ([46, Def.
1.3]) over a log point W = (Specκ,Q) where κ is an algebraically closed field over
C, and (C/W, {x1}, f) a stable log map (i.e., f : C → X is a log morphism over
SpecC and f is a stable map, see [46, Def. 1.6]).

It is called a stable log map of maximal tangency of genus 0 and class β if the
following hold:

(i) C is of arithmetic genus 0, f∗[C] = β.
(ii) the natural map

Γ(X,MX) ∼= N −→ MC,x1
∼= Q⊕ N

pr2−−−→ N

is given by 1 �→ D.β.
We will later see (Proposition 2.9) that (ii) follows from other conditions.
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In the language of [46, Def. 3.1], this is the case g = 0, k = 1, the condition A

provided by β, Z1 = D and s1 ∈ Γ(D, (Mgp

D )∗) given by Mgp

D � ZD → ZD, 1 �→
D.β.

By [46, Prop. 1.24], a stable log map f as above is induced from a basic stable
log map over (Specκ,Qbasic). Since Qbasic is a toric monoid, we can take a local
homomorphism Qbasic → N and consider the induced stable log map over the stan-
dard log point (Specκ,N). Hence, to study the underlying morphism of schemes,
we may consider stable log maps over the standard log point.

To a stable log map, one can associate its graph, type, “tropical data” and “τ -
rays”. We explain this in the case of a 1-marked genus 0 stable log map f over
(Specκ,N) to (X,D). See [46, §§1.4] for details. Let us write β = f∗[C]. Note that
we do not assume the maximal tangency condition (ii) here.

Notation. If η is the generic point of an irreducible component of C, then Cη denotes
this irreducible component, the closure η̄ of η.

Definition 2.2 (Graph). The dual graph Γ of C consists of the following data. The
vertex set V (Γ) is the set of irreducible components of C. The edge set E(Γ) consists
of one unbounded edge in addition to a number of bounded edges. The unbounded
edge is attached to the vertex corresponding to the irreducible component of C
containing the marked point. There is a bounded edge for each node, connecting the
vertices (possibly the same) corresponding to the irreducible components containing
each of the two local analytic branches at the node.

The following lemma gives some clue about how f meets D.

Lemma 2.3. For any generic point η of C, f−1(D) ∩ Cη is either Cη or consists
of nodes and marked points.

Proof. This follows from [46, Remark 1.9], which says that the stalk of f−1MX

jumps (i.e. the generization map is not an isomorphism) only at nodes and marked
points. �

Definition 2.4 (Tropical data). Since the genus is 0, a node q is the intersection
of two components Cη1

and Cη2
. We denote by eq ∈ N>0 the positive integer such

that the following holds: MC,q is embedded as 〈(eq, 0), (1, 1), (0, eq)〉 ⊆ N ⊕ N,

where (1, 1) corresponds to the image of 1 ∈ N ∼= M(Specκ,N) and the projections

are identified with the generization maps to MC,ηi
∼= N.

Let ϕ : f−1MX → MC be the morphism induced from f . We define

Vη := ϕη(1) ∈ N>0

if f(η) ∈ D, where (f−1MX)η is identified with N; otherwise Vη := 0.
The tuple ((Vη)η, (eq)q) is called the tropical data.

Definition 2.5 (Type). For a node as above, write {i, j} = {1, 2} and let

uηi,q :=
Vηj

− Vηi

eq
∈ Z,

which is 0 unless f(q) ∈ D. (Note that this notation avoids the issue of ordering
as in [46]. This is possible because a node is the intersection of two components in
this case.)
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For the marked point x1, we define

uη,x1
:= (ϕx1

(1) mod M(Specκ,N)) ∈ N

if f(x1) ∈ D, where (f−1MX)x1
is identified with N and MC,x1

/M(Specκ,N) is
identified with Nx1

; otherwise uη,x1
:= 0.

The data ((uη,q), uη,x1
) is called the type.

As is seen from the definition, the type is determined by the tropical data, except
for uη,x1

. We will see in Proposition 2.9 that uη,x1
must be D.β.

To define the τ -rays, we first describe Nη := Γ(Cη, f
−1Mgp

X )∗. If f(η) �∈ D, then
Nη consists of one copy of Z for each element of (f |Cη

)−1(D), which necessarily is
either a node or the marked point.

If f(η) ∈ D, then Nη consists of one copy of Z. To state the balancing condition
in convenient form, we will describe Nη as the direct sum

⊕
Z with one component

for each node and marked point in Cη, quotiented out by the kernel of the map
to Z given by (ai) �→

∑
ai. Choosing the basis given by basic vectors (δij)j , the

kernel is generated by the differences of basic vectors.

Definition 2.6 (τ -rays). For each η, consider Nη = Γ(Cη, f
−1Mgp

X )∗. Let Ση

denote the set of nodes and marked points of Cη, so that

Nη
∼=

⊕
x∈Ση∩f−1(D) Z if f(η) �∈ D,

Nη
∼=

(⊕
x∈Ση

Z

)
/H ∼= Z if f(η) ∈ D,

where H is the subgroup generated by the differences of basic vectors and the
isomorphism to Z is given by (ax) �→

∑
ax. Write the class of (ax) by [(ax)].

Then, if f(η) �∈ D, τη = (τx) is given by τx := −μx((f |Cη
)∗D), the multiplicity

at x; if f(η) ∈ D, τη := − deg(f |Cη
)∗D. (These are the τXη of [46, §§1.4].)

Now these data satisfy the balancing condition:

Proposition 2.7 ([46, Prop. 1.15]). For each η,

τη + [(uη,x)] = 0

holds in Nη.

In Proposition 2.9 we will give a description of 1-marked genus 0 stable log maps
to (X,D). In the proof, the following ordering on the components of C will be
useful.

Definition 2.8.
(1) Let η0 ∈ V (Γ) correspond to the component on which the marked point lies.

For η1, η2 ∈ V (Γ), we write η1 � η2 if η2 is on the unique simple path connecting
η1 and η0.

Note that this is a partial ordering since Γ is a tree, and that η0 is the largest
element.

(2) We write η1 � η2 if η1 and η2 are adjacent and η1 ≺ η2. (Then � is the
partial ordering generated by �.) In this case, if q is the edge connecting η1 and
η2, we write η1 � q and q � η2. We also write η0 � x1.

(3) For any η, there is a unique edge q with η � q. We denote this by q(η).
(4) For η ∈ V (Γ), let C�η =

⋃
η′�η Cη′ .
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Proposition 2.9. Assume that D.f∗[Cη] ≥ 0 holds for any η.
(1) For each η, the inverse image f−1(D) ∩ C�η of D on C�η is either empty,

{q(η)}, or
⋃

η′∈V (Γ′) Cη′ for a subtree Γ′ containing η.

Thus, if f−1(D) ∩ Cη �= ∅, we can identify Nη with Z and τη with −D.f∗[Cη].
(2) For each η, we have uη,q(η) = D.f∗[C�η].
In particular, f is of maximal tangency.

Note that, if f(C) �⊆ D, we can write Vη in terms of eq and D.f∗[Cη], which also
leads to relations between these data.

Proof. We prove the assertions by induction on the maximum length of simple
paths from η to minimal vertices.

Note that, if the first half of (1) is proven for η, the second half is easy to see
from the description of Nη and τη in Definition 2.6.

If η is itself minimal, it has exactly one special point, q(η). By Lemma 2.3,
f−1(D) is either empty, {q(η)} or Cη, so (1) holds. Thus Nη can be identified with
Z or {0}, and by Proposition 2.7, we have uη,q(η) = −τη = D.f∗[Cη], so (2) holds.

Now assume that the assertions hold for each η′ with η′ � η. If f−1(D) ∩C�η′

is empty for all such η′, then f−1(D) ∩ C�η is empty or {q(η)} by Lemma 2.3.
If f−1(D)∩C�η′ is nonempty for some η′, then it contains q := q(η′) = Cη′ ∩Cη

and we have
Vη = Vη′ + uη′,qeq.

If f−1(D) ∩ C�η′ consists of q, then uη′,q ≥ D.f∗[Cη′ ] > 0. Otherwise, it contains
Cη′ and Vη′ > 0 holds. In either case, we have Vη > 0 and Cη is contained in the
inverse image of D, and the assertion (1) follows.

Then we have

uη,q(η) = −τη −
∑
η′�η

uη,q(η′)

= D.f∗[Cη] +
∑
η′�η

uη′,q(η′)

= D.f∗[Cη] +
∑
η′�η

D.f∗[C�η′ ],

so (2) follows. �
Corollary 2.10. Let X be a divisorial log scheme given by a smooth variety X and
a smooth divisor D.

For a genus 0 stable log map f : (C, x1) → X, assume the following:

• w := D.f∗[C] > 0 and wi := D.f∗[Ci] ≥ 0 for any irreducible component
Ci of C.

• If Ci is an irreducible component of C that is not collapsed by f , then
f(Ci) �⊆ D.

Then it is of maximal tangency, and the following holds.

(1) f(C) ∩D consists of one point P .
(2) If there is only 1 non-collapsed component, then C ∼= P1 and f∗(D) = wx1.
(3) If there are at least 2 non-collapsed components, and D.f∗[Ci] > 0 holds for

non-collapsed components, then C is given by adding Ci = P1 as leaves to
a tree C ′ of P1 collapsed to P , with maps fi : Ci → S satisfying f∗

i (D) =
wi(Ci ∩ C ′).
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Figure 2.1

Proof.
(1) By the assumption, f(C) meets D. Applying Proposition 2.9, the inverse

image of D is the marked point or a tree of irreducible components, which are
collapsed by the assumption. Hence its image consists of one point.

(2) A minimal vertex η has only 1 special point (a node or the marked point), so
it is non-collapsed by stability. By assumption we have only one minimal vertex, so
the graph is a chain. By stability it has only one vertex and the assertion follows.

(3) Again each minimal vertex η is non-collapsed, and it meets f−1(D) by as-
sumption. Then we see from Proposition 2.9 that f−1(D) is the union of all non-
minimal components. By (1) they are mapped to a point. �

We return to the setting of a log Calabi-Yau surface (S,E). Let β ∈ H2(S,Z) be
a curve class. Denote by Mβ(S,E) the moduli space of maximally tangent genus 0
basic stable log maps to (S,E) of degree β. Cf. Corollary 2.10, generic elements of
the various strata of Mβ(S,E) are as in Figure 2.1, where components C6, C7 and
C8 are collapsed. We state a result of [88] in this setting.

Proposition 2.11 (Corollary 1.2 in [88]). The forgetful morphism from Mβ(S,E)

to the moduli space of 1-marked genus 0 stable maps M0,1(S, β) is finite.

The conditions of genus 0, degree β and one marked point mapping in maximal
tangency result in a finite number of types and hence make up a combinatorially
finite class, cf. [46, Definition 3.3]. Hence Mβ(S,E) admits a perfect obstruction
theory, which is of virtual dimension 0, and yields a virtual fundamental class, as
well as corresponding log Gromov-Witten invariants

Nβ(S,E) :=

∫
[Mβ(S,E)]vir

1 ∈ Q.

We remark that much of this section could have been conveniently expressed
in the language of tropical curves. (For example, under the assumption of the
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preceding corollary, the ordering of vertices is compatible with the ordering given
by Vη.)

2.2. Rational curves of maximal tangency. We state a proposition from [80]
and provide a proof for convenience.

Proposition 2.12 (Proposition 1.1 in [80]). Let D ⊂ X be a smooth hypersurface
of a smooth n-dimensional projective variety X. Assume that |KX +D| �= ∅. Let
β ∈ H2(X,Z) be a curve class. Consider the set U consisting of the union of all
rational curves C ⊂ X of degree β having only one point of intersection with D.
Then U is contained in a proper Zariski-closed subset of X.

Proof. Assume that U is not contained in a proper Zariski-closed subset ofX. Then
we can find a diagram

Y := M × P1 f
��

p

��

X

M,

Mi

��

such that

• M is a smooth variety of dimension n− 1,
• f is dominant,
• Mi are disjoint sections of the projection map p,
• f∗(D) =

∑
aiMi for ai positive integers.

Indeed, start with the (noncompact) moduli space of morphisms g : P1 → X
which are birational onto its image g(P1) and such that the image curve meets D
in one point and consider a (n − 1)-dimensional subspace whose universal curve
maps dominantly to X. Note that f−1(D) is not necessarily a section of p: We
just assume that f

(
f−1(D) ∩ ({Q} × P1)

)
is one point for any Q ∈ M , not that

f−1(D) ∩ ({Q} × P1) is one point, although the latter is sufficient in what follows.
After possibly taking a quasi-finite cover, this is the space M with f∗D =

∑
aiMi,

for ai positive integers and Mi � M disjoint sections of p.
By assumption, there is a non-zero n-form ω on X, which is regular away from

D and has at most logarithmic poles along D. The pullback f∗ω is a non-zero n-
form on M ×P1 and has at most a logarithmic pole along ∪Mi. Hence resMi

f∗ω =
ai(f |Mi

)∗ resD ω. After possibly shrinking M , we take a non-vanishing holomorphic
(n− 1)-form ω′ on M and write

f∗ω = ω′′ ∧ p∗ω′,

for some relative 1-form ω′′. Over a general fiber of p, ω′′ restricts to a non-zero 1-
form on P1 with at most logarithmic poles along which residues are positive integers
times a certain complex number, which is a contradiction. �
2.3. Point-dependence. Assume in this section that S is a regular surface (which

we defined to mean h1(OS) = 0) and E is an elliptic curve on S. Let β ∈ H2(S,Z)
be a curve class and recall that w = β.E, and assume that w > 0. Then there is
a unique L ∈ Pic(S) such that c1(L) is Poincaré dual to β. We use the notation
β|E := L|E ∈ Picw(E) for the induced class. Denote by Pic0(E)[w] the w-torsion
points of Pic0(E). For P ∈ E, we write β|E ∼ wP to indicate that β|E = [wP ] in
Picw(E).
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Definition 2.13.

E(β) :=
{
P ∈ E

∣∣ β|E ∼ wP
}
.

Lemma 2.14. E(β) is a torsor for Pic0(E)[w] � Z/w × Z/w.

Proof. Since E � Pic1(E) is a torsor for Pic0(E), E admits an effective action of
Pic0(E)[w]. In addition, the latter acts on E(β) transitively, since for P1, P2 ∈ E(β),
wP1−wP2 ∼ 0 so P1−P2 ∈ Pic0(E)[w]. Hence E(β) is a torsor for Pic0(E)[w]. �

We consider the images of log stable maps.

Definition 2.15. Let Mβ be the set of image cycles of genus 0 stable log maps to
(S,E) of class β of maximal tangency.

For P ∈ E, let Mβ,P := {D ∈ Mβ | Supp(D) ∩ E = P}.

We also define a notion of maximal tangency for curves.

Definition 2.16. If (S,E) is a pair consisting of a variety and a divisor, a curve
D on S is said to be maximally tangent to E if D meets E at only 1 point and has
only 1 branch there; or equivalently, if the inverse image of E on the normalization
of D consists of 1 point.

An irreducible proper rational curve D maximally tangent to E can also be
considered as an A1-curve on S \E. The following proposition shows how elements
of Mβ are related to such curves.

Proposition 2.17. Let S be a smooth surface, E an elliptic curve on S and β ∈
H2(S,Z) a curve class. Assume that w := E.β > 0.

Consider a 1-marked genus 0 stable log map to (S,E) of class β. Then it is
of maximal tangency, and the underlying stable map f : (C, x) → S satisfies the
following.

(1) f(C) ∩ E consists of one point P . If S is regular then P ∈ E(β) and
consequently Mβ =

∐
P∈E(β) Mβ,P .

(2) If the image cycle is integral, then C ∼= P1 and f∗(E) = wx. In this
case, C ′ := f(C) is a rational curve maximally tangent to E, and f is the
normalization map. Conversely, if C ′ is a rational curve maximally tangent
to E, then the normalization map of C ′ lifts to a (unique) genus 0 stable
log map of maximal tangency with image cycle C ′.

(3) If E is ample, any element of Mβ is a sum of rational curves maximally
tangent to E, meeting E at the same point.

Proof. Since E is an elliptic curve and any component of C is rational, Corollary
2.10 applies. Thus it is of maximal tangency, and the image meets E at one point,
which necessarily belongs to E(β) if S is regular. This proves (1).

(2) If the image cycle is integral, then C has only 1 non-collapsed component
mapped birationally. Thus the first half follows from Corollary 2.10 (2).

The latter half can be easily checked.
(3) follows from Corollary 2.10 (3). �

Because E(β) is finite, we have the decomposition

Mβ(S,E) =
⊔

P∈E(β)

M
P

β (S,E).
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Moreover, as the obstruction theory of a disjoint union is the sum of the obstruction
theories of each component, we obtain the finite decomposition

(2.1) Nβ(S,E) =
∑

P∈E(β)

NP
β (S,E),

where

NP
β (S,E) :=

∫
[M

P
β (S,E)]vir

1 ∈ Q

are the genus 0 log GW invariants of (S,E) of degree β maximally tangent to E at
P .

So far we have worked mainly with regular surfaces and elliptic curves on it.
In the following proposition we illustrate what our surfaces are like. It appears
that interesting things happen mostly on rational surfaces in the context of log
Gromov-Witten theory of genus 0 maximally tangent curves.

Proposition 2.18. Let S be a regular surface.
(1) If there exists a non-zero effective divisor E such that KS + E ∼ 0, then S

is rational.
(2) Let E be a curve on S and β a curve class with E.β > 0 and vdimMβ(S,E) ≥

0.

(a) If β is nef, then S is rational,
(b) If S is not rational and β contains an irreducible (not necessarily reduced)

member, then |β| = {mC} where C is a (−1)-curve with E.C = 1.

(3) If β is an ample class of arithmetic genus 1 on S containing an integral
member, then β = −KS and hence S is del Pezzo.

In particular, if S contains an ample elliptic curve E, then S is del Pezzo and
E is anticanonical.

Proof.
(1) Since |mKS | = ∅ for any m > 0, S is birationally ruled. From regularity it

follows that S is rational.
(2) The virtual dimension of the moduli space of stable maps M0,0(S, β) (i.e.

before imposing the tangency condition) is −KS .β − 1. Imposing the condition of
maximal tangency with E cuts down the dimension by E.β − 1. Therefore

vdimMβ(S,E) = (−KS − E).β.

Thus −KS .β ≥ E.β > 0 holds.
If S is regular but not rational, by the Enriques-Kodaira classification, S is

birationally non-ruled. Let π : S → S′ be the minimal model of S. Then KS′ is
nef and KS = π∗KS′ +

∑
aiFi, where the Fi are the exceptional curves and ai > 0.

Since KS′ is nef, (
∑

aiFi).β ≤ KS .β < 0 and β is not nef. If β has an irreducible
member, it is a multiple of one of Fi. From KS .β < 0 it follows that KS .Fi < 0,
and Fi is a (−1)-curve. Then 0 < E.β ≤ −KS .β implies E.Fi = 1.

(3) Let C be an integral member of |β|. By regularity we have h1(OS(KS)) =
h1(OS) = 0, so there is an exact sequence

0 → H0(OS(KS)) → H0(OS(KS + β)) → H0(O(KS + β)|C) → 0.

Since O(KS+β)|C ∼= ωC
∼= OC , it follows that there exists an element D ∈ |KS+β|

such that D ∩ C = ∅. Since C is ample, D must be 0, hence β ∼ −KS . �
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3. Local and log BPS numbers

Let (S,E) be a log Calabi-Yau surface with smooth divisor. Whenever we talk
about local GW invariants of S, we assume that −KS is ample. We start by
reviewing the (original) definition of local BPS invariants obtained by removing
multiple cover contributions from the genus 0 local Gromov-Witten invariants of
S and yielding integer invariants. The genus 0 local Gromov-Witten invariants of
S are the ordinary GW invariants of the noncompact Calabi-Yau threefold X =
Tot(KS). Whenever −KS is ample, these invariants can be defined via intersection
theory on the compact moduli space of stable maps to S as follows. Because −KS is
ample, H0(C, f∗KS) = 0 for a non-constant stable map [f : C → S]. Therefore the
line bundle O(KS) introduces no new deformations, just additional obstructions
which we describe now.

For m ≥ 0, denote by M0,m(S, β) the Deligne-Mumford moduli stacks of (iso-
morphism classes of) stable maps [f : C → S] of genus 0, with m marked points
and such that f∗([C]) = β. There is a forgetful morphism

π : M0,1(S, β) → M0,0(S, β),

which is the universal curve over M0,0(S, β). The latter carries a virtual fundamen-
tal class [

M0,0(S, β)
]vir ∈ H2 vdim(M0,0(S, β),Z)

of virtual dimension vdim = −KS .β + (dimS − 3) = w − 1. The evaluation map

ev : M0,1(S, β) → S

determines the obstruction bundle

Ob := R1π∗ev
∗KS ,

which is of rank vdim and has fiber H1(C, f∗KS) over a stable map [f : C → S].

Definition 3.1. The genus 0 degree β local Gromov-Witten invariant GWβ(X) of
S is defined as

GWβ(X) :=

∫
[M0,0(S,β)]vir

cvdim (Ob) ∈ Q.

We will make use of the following correspondence theorem. Its initial form for
P2 was conjectured in [82] and proven in [34]. Then it was generalized in [30] to
any smooth projective variety of any dimension with maximal tangency condition
along a smooth nef divisor (the most general statement is at the level of virtual
fundamental classes). We state it in the generality needed for us.

Theorem 3.2 (See [30, 34, 82]). Assume that E is ample. Then

(−1)w−1w GWβ(X) = Nβ(S,E).

The relation between the nβ and the GWβ(X) is given by the multiple cover
formula (Aspinwall-Morrison formula):

(3.1) GWβ(X) =
∑
k|β

1

k3
nβ/k.

The Aspinwall-Morrison formula was proven for rigid rational curves in [67, 87].
Note that for S del Pezzo, (3.1) is equivalent to Definition 1.5 as explained in
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Section 3.3 of [19]. Inverting this formula yields that

nβ =
∑
k|β

1

k3
μ(k) GWβ/k(X),

where μ is the Möbius function. Under the assumption that E is ample, combining
with Theorem 3.2, we obtain that

(3.2) (−1)w−1wnβ =
∑
k|β

1

k3
μ(k) (−1)w−1w (−1)

w
k −1 1

w/k
Nβ/k(S,E).

Noting that w + w/k and (k − 1)w/k have the same parity, we rewrite (3.2) as
follows.

(3.3) (−1)w−1wnβ =
∑
k|β

(−1)(k−1)w/k

k2
μ(k)Nβ/k(S,E).

By the decomposition (2.1), this turns into

(3.4) (−1)w−1wnβ =
∑
k|β

(−1)(k−1)w/k

k2
μ(k)

∑
P∈E(β/k)

NP
β/k(S,E).

This suggests that we define the log BPS numbers at P as

(3.5) mP
β :=

∑
{k|β :P∈E(β/k)}

(−1)(k−1)w/k

k2
μ(k)NP

β/k(S,E).

Note that NP
β′(S,E) = 0 if P �∈ E(β′). Setting mP

β′ = 0 if P �∈ E(β′) and inverting

equation (3.4) yields the following definition.

Definition 3.3 (See Definition 1.1). Let (S,E) be a log Calabi-Yau surface with
respect to β ∈ H2(S,Z) and assume that S is regular and E elliptic. We define mP

β ,
the log BPS number at P , via

NP
β (S,E) =

∑
k|β

(−1)(k−1)w/k

k2
mP

β/k.

Note that in the above sum, the number of terms varies with the arithmetic
properties of P , as is illustrated by the examples of §6.1. Note also that [81,
Remark 4.11] contains an equivalent description of this formula for P2. By the
above calculation,

(3.6)
∑

P∈E(β)

mP
β = (−1)w−1wnβ.

Conjecture 3.4 (See Conjecture 1.3). Let (S,E) be a log Calabi-Yau surface with
respect to β ∈ H2(S,Z) and assume that S is regular and E elliptic. For all P, P ′ ∈
E(β),

mP
β = mP ′

β .

If in addition E is ample, this is equivalent to the assertion that for all P ∈ E(β),

nβ = (−1)w−1wmP
β .
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In §4.2, we elaborate on Conjecture 3.4 in the case of some special points P ∈
E(β) which we call β-primitive (Definition 4.6). For such P , mP

β is a weighted
count of rational curves, see Proposition 4.21. In that setting, the conjecture hence
gives an enumerative interpretation of nβ.

4. Primitive points of contact

For this section and next, we assume that S is a del Pezzo surface and consider

certain points P ∈ E(β) such that M
P

β (S,E) is zero-dimensional.

4.1. Preliminaries on del Pezzo surfaces. In this section, we collect basic facts
about curve classes on del Pezzo surfaces. Let S be a del Pezzo surface. Denote
by Sr the blowup of P2 along r general points. Then S is either Sr for 0 ≤ r ≤ 8
or P1 × P1. We will mainly consider the case S = Sr and will make remarks for
P1 × P1 separately whenever needed. The results of this paper hold for P1 × P1 as
well.

Definition 4.1. A class β ∈ H2(S,Z) is a curve class if it can be represented by a
nonempty subscheme of dimension one. We often consider β as a divisor on S.

Recall that pa(β) := 1
2β(β + KS) + 1 is the arithmetic genus of β. Since del

Pezzo surfaces are rational, by Poincaré duality, Pic(S) � H2(S,Z). So when we
write |OS(β)| or simply |β|, we mean the complete linear system |L| for the unique
L ∈ Pic(S) such that c1(L) = β.

For Sr, let h be the pullback of OP2(1) and let ei for 1 ≤ i ≤ r be the exceptional
divisors. The Picard group Pic(Sr) is generated by h and the ei’s. The anticanonical
divisor is −KSr

= 3h−
∑r

i=1 ei. For P
1 ×P1, we denote by h1 and h2 the pullback

of OP1(1) from each factor. The anticanonical divisor is −KP1×P1 = 2h1 + 2h2.

Definition 4.2. A line class on S is a class l ∈ Pic(S) such that l2 = −1 and
(−KS).l = 1.

It is well-known that each line class contains a unique integral line and there are
only finitely many lines on S.

Example 4.3. By numerical calculation, we list all line classes up to permutation
of the ei’s:

ei, (1; 1
2), (2; 15), (3; 2, 16), (4; 23, 15), (5; 26, 12), (6; 3, 27).

Here, we used the notation (d; a1, · · · , ar) for the divisor dh −
∑

aiei. The super-
scripts indicate the number of repetitions.

Definition 4.4. In the case of Sr, a point P ∈ E is said to be a flex point if there
is a curve C of class h such that C meets E only at P (of tangency h.E = 3).

Lemma 4.5 (See [24]). Let β ∈ H2(S,Z) be a curve class containing an integral
curve and with pa(β) ≥ 1. Assume that β is not −KS7

, −KS8
or − 2KS8

(neither
of which are very ample). Then β is very ample if and only if there are no line
classes l such that β.l = 0.

Proof. We first note that β is nef and big. In fact, let C be an integral member of
β. Since S is del Pezzo, KS .C < 0 holds, so C2 > 0 follows from pa(C) ≥ 1 and
adjunction. Since C is irreducible, it is nef.
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Now we apply the criterion of [24]. When S = P2, the assertion holds. When
S = P1 × P1, the criterion is that β.hi ≥ 1 for i = 1, 2. By our assumptions, this is
satisfied.

For S = S1, the criterion is that β.e1 ≥ 1 and that β.(h − e1) ≥ 1. The first
condition follows from the assumption that there are no line classes l with β.l = 0
(and nefness). If we assume that the second condition does not hold, then by nefness
of β we have β.(h − e1) = 0. If we write β = dh − ae1, this translates into d = a.
This contradicts the bigness of β. Finally, when S = Sr for r ≥ 2, the criterion is
that β.l ≥ 1 for any line class l, which is satisfied by our assumptions. �

4.2. β-primitive points.

Definition 4.6. A point P ∈ E is said to be β-primitive if β|E ∼ wP , but there is
no decomposition into non-zero pseudo-effective classes β = β′ + β′′, with β′|E ∼
w′P , where w′ = β′.(−KS) > 0.

This definition guarantees that if P is β-primitive, any curve of class β meeting
E only at P is integral and no multiple covers or maps with reducible image appear

in the moduli space M
P

β (S,E).

Remark 4.7. For surfaces S with Picard number ρ(S) ≥ 2, the extremal rational
curves have class D with pa(D) = 0 and D2 ≤ 0. In the case of del Pezzo surfaces
(other than P2), the extremal rays are generated by line classes and the conic
classes that don’t decompose as sums of line classes. The latter are exactly the
conic classes of the form h − ei when S a blowup of P2 and the fiber classes in
the case of P1 × P1. The line and conic classes are classified in [19, Examples 2.3
and 2.11]. In particular there are only finitely many extremal rays. So the effective
cone is polyhedral, hence closed, and pseudo-effective is the same as effective for del
Pezzo surfaces. In particular, there are only finitely many ways of decomposing β
as above. We leave the definition as is since it also applies to more general surfaces.
Similarly, the results of this section may be adapted to hold more generally.

Lemma 4.8. Assume that S = P2 and let d ≥ 1. Then the following are equivalent.

(1) P is dh-primitive.
(2) P is of order 3d for a choice (not necessarily all) of 0 ∈ E a flex point.
(3) For a fixed flex point 0 ∈ E,{

P is of order 3d, if 3|d.
P is of order d or 3d, if 3� | d.

Proof. Choose 0 ∈ E to be any flex point. Let ord(P ) be the order of P for
the resulting group law, so that ord(P )|3d. From the definition, we see that P
is β-primitive if and only if ord(P )� | 3d1 for all d1 such that 1 ≤ d1 < d. This is
equivalent to (3). Condition (2) then is obtained by noting that all other flex points
are of order 3 with respect to 0. �

Lemma 4.9. Let β ∈ H2(S,Z) be a curve class. Assume that (S,E) is general and
let P ∈ E(β). Then P is not β-primitive if and only if there is a cycle class β̄ and
an integer k > 1 such that β = kβ̄ and β̄|E ∼ w

k P .

Proof. We are looking at deformation classes of (S,E). Since the Picard group does
not change, we consider a class γ as being a class in each deformation.
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Consider a decomposition of β into effective classes β = β′+β′′ with β′|E ∼ w′P .
Assume first that β = kβ′ for k ∈ Q. Note that we can check equalities with Q-
coefficients as Pic(S) is torsion-free. Choose a, b ∈ Z to satisfy aw+bw′ = gcd(w,w′)
and set β̄ = aβ + bβ′. Then β|E ∼ gcd(w,w′)P . Since w = kw′, akw′ + bw′ =

gcd(w,w′) and β = (ak + b)β′ = gcd(w,w′)
w′ β′. It follows that w

gcd(w,w′)β = w
w′ β

′ =

kβ′ = β. Since w
gcd(w,w′) is an integer greater than 1, we are done with the case

β = kβ′.
Assume now that β �= kβ′ for any k ∈ Q. This case excludes P2. We will show

that this can only happen on a proper closed subset of the moduli of the (S,E).
Let S = Sr be the blowup of P2 in r general points P1, . . . , Pr for 1 ≤ r ≤ 8. Then
E ⊂ Sr is the strict transform of a cubic in P2 through P1, . . . , Pr. We identify
points on E with those on this cubic. Recall that ei is the exceptional divisor over
Pi. Choose also a flex point P0. Let

β ∼ dh−
∑

aiei and β′ ∼ d′h−
∑

a′iei

with d, d′, ai, a
′
i ∈ Z. Note that there are only a finite number of possibilities for

β′. Indeed, the set

{β′ ∈ H2(S,R) effective and (E.β′) ≤ (E.β)}
is compact (since the effective cone is closed). We find that

3d′P0 −
∑

a′iPi ∼ w′P on E,

as well as

3dP0 −
∑

aiPi ∼ wP on E,

so that

(4.1) 3(d′w − dw′)P0 +
∑

(w′ai − wa′i)Pi ∼ 0.

Assume that the w′ai − wa′i are not all zero and view (4.1) as an equation in the
Pi on E. As such, it defines a proper closed subset of the set of tuples of blowup
loci {(Pi)}. Outside of this set,

(4.2) ai =
w

w′ a
′
i.

By calculating the degree of the divisor (4.1), we see that d′w − dw′ = 0, from
which it follows that β = d

d′ β
′ using (4.2). Thus β �= kβ′ is only possible on a

closed proper subset of the parameter space.
In the case of P1×P1, we blow up a point on E away from E(β) and deduce the

result from the S2 case. �

We introduce some more notation. Let β be a curve class, let (S,E) be general
with respect to β and let P ∈ E(β). It follows from Lemma 4.9, that there is a
unique k(β, P ) ∈ N such that P is β/k(β, P )-primitive. If moreover β/k(β, P ) is
a primitive curve class, i.e. is a primitive vector in the cone of effective classes, we
say that P is a β-zero point of E.

For example, flex points are dh-zero points for all d ≥ 1. Indeed, in this case
k(dh, P ) = d since h is primitive (but no multiple of it is). For Sr and a class
β = dh−

∑
aiei with gcd(d, a1, . . . , ar) = 1, each point of E(β) is both β-zero and

β-primitive.
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Lemma 4.10. Let β be a curve class, let (S,E) be general with respect to β and
let P ∈ E(β). Then P is β-primitive if and only if P is of order w for a choice
(not necessarily all) of β-zero point 0 ∈ E.

Proof. This is a natural extension of the proof of Lemma 4.8. �

Proposition 4.11. For each curve class β and a general pair (S,E), there is a
β-primitive point P ∈ E(β).

Proof. This follows from Lemma 4.10 and the fact that Z/w × Z/w has elements
of order w. �

4.3. Log BPS numbers at primitive points.

Conjecture 4.12 (Special case of Conjecture 3.4). For a curve class β, for a
general pair (S,E) and for β-primitive P, P ′ ∈ E(β),

mP
β = mP ′

β .

The number mP
β = NP

β (S,E) is invariant under log smooth deformation, cf.

[66]. Deforming the triple S ⊃ E � P keeping E smooth and P β-primitive is
such a log smooth deformation. Hence a sufficient condition for Conjecture 4.12 to
hold is that in the moduli space of such S ⊃ E � P there is a unique connected
component.

For P, P ′ ∈ E(β) that are β-primitive for β = β/k, k ≥ 1, a similar argument is

expected to show that NP
β (S,E) = NP ′

β (S,E).

In fact, Conjecture 4.12 is true for S = P2.

Lemma 4.13. Let S = P2 and fix d ≥ 1. Then the universal locus

Ud = {(P,E) | E is a smooth plane cubic and P is a d-primitive point of E}
of d-primitive points is irreducible.

Proof. We adapt an argument from [48]. It suffices to show that for any smooth cu-
bic E and distinct d-primitive points P, P ′ ∈ E, we can find a path in Ud connecting
(P,E) and (P ′, E).

To that end, choose a flex P0 of E distinct from P and P ′. As before, the map
Q �→ Q − P0 identifies E(d) with the set of 3d-torsion points of Pic0(E). The
d-primitivity condition on a point q ∈ E becomes

(4.3) Q− P0 is not 3d′-torsion for any d′ < d,

independent of the choice of flex P0. In particular, P −P0 and P ′−P0 satisfy (4.3).
Furthermore, by Lemma 4.8, we know that the orders of P − P0 and P ′ − P0 are
exactly 3d if 3|d and either d or 3d if 3� | d.

Up to change of coordinates in P2, we can identify E with the image of Eω1,ω2
:=

C/(Zω1 ⊕ Zω2) under the map

(4.4) ι : Eω1,ω2
→ P2, ι(z) = (℘(z), ℘′(z), 1)

for some independent periods ω1 and ω2, with ι(0) = P0. In (4.4), ℘ is the Weier-
strass function on C, periodic with respect to the lattice Zω1 ⊕ Zω2. We put ω =

(ω1, ω2) for convenience. For some m,n,m′, n′ ∈ ((1/3d)Z)/Z, let P̃ = mω1 + nω2

and P̃ ′ = m′ω1 + n′ω2 be the 3d-torsion points of Eω corresponding to P and P ′

respectively via ι.
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We claim that the flex P0 can be chosen so that P − P0 and P ′ − P0 have the
same order. There is nothing to show unless 3� | d, P −P0 has order 3d, and P ′−P0

has order d, up to interchange of P and P ′. Replacing P0 by a different flex is
tantamount to adding a nontrivial 3-torsion point t to both P − P0 and P ′ − P0.
We observe that for some choice of flex, both points have order 3d. Otherwise for
all nontrivial 3-torsion points t, either d(P − P0 + t) = 0 or d(P ′ − P0 + t) = 0,
which is immediately seen to be impossible, recalling that 3� | d.

Having guaranteed that P − P0 and P ′ − P0 have the same order by a judicious
choice of flex, then since SL(2,Z) acts transitively on the set of torsion points of
Eω � (R/Z)2 of any fixed order, we can find A ∈ SL(2,Z) so that (m′, n′) =
(m,n)A. We then choose a path A(t), 0 ≤ t ≤ 1 in SL(2,R) satisfying A(0) = I
and A(1) = A. Then the required path in Ud can be taken to be

(4.5) t �→
(
ι
(
(m,n)A(t) tω

)
, ι
(
Eω tA(t)

))
.

�
As discussed above, Lemma 4.13 establishes our Conjecture for S = P2.

Proposition 4.14. Conjecture 4.12 is true for S = P2.

As the results of our calculations in this section are independent of P , we some-
times omit P and write mβ = mP

β .

Proposition 4.15. Let β ∈ H2(S,Z) be a curve class that contains an integral
curve and choose P ∈ E(β). Then there is a short exact sequence

0 �� H0(OS(β − E)) �� H0(OS(β))
res �� H0(OE(wP )) �� 0,

where res is the restriction map. Moreover, h0(OS(β − E)) = pa(β), h
0(OS(β)) =

χ(OS(β)) = pa(β) + w and h1(OS(β)) = h2(OS(β)) = 0.

Proof. Consider the short exact sequence

0 → OS(−E) → OS → OE → 0.

Since β|E ∼ wP , tensoring with OS(β) yields

(4.6) 0 → OS(β − E) → OS(β) → OE(wP ) → 0.

Consider the maps induced on sections

(4.7) 0 → H0(OS(β − E)) → H0(OS(β)) → H0(OE(wP )),

where the last map is the restriction map. By Serre duality, H1(OS(β − E)) =
H1(OS(−β)). Denote by Oβ the structure sheaf OC of an integral curve of class β.
From the long exact sequence induced from

0 → OS(−β) → OS → Oβ → 0

we obtain H0(OS) = H0(Oβ) and thus H1(OS(−β)) ↪→ H1(OS) = 0. It fol-

lows that the restriction map in (4.7) is surjective. Moreover, H2(OS(β − E)) =
H0(OS(−β)) = 0 by Serre duality. Thus it follows from Riemann-Roch and the
adjunction formula that

h0(OS(β − E)) = χ(OS(β − E)) =
1

2
(β − E).β + 1 = pa(β).

Finally, from the long exact cohomology sequence associated to (4.6), we find that
h1(OS(β)) = h2(OS(β)) = 0 and therefore h0(OS(β)) = χ(OS(β)). �
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Definition 4.16. Set

|OS(β, P )| := {C ∈ |β| : C ∩E ⊇ wP as subschemes of E} .

Up to scalar multiple, there is only one section in H0(OE(wP )) that vanishes to
order w at P . Denote the corresponding one-dimensional subspace of H0(OE(wP ))
by LP . By Proposition 4.15,

|OS(β, P )| = P
(
res−1(LP )

)
is of dimension pa(β).

Remark 4.17. If P is β-primitive, we identify Mβ,P with the set of rational curves
in |OS(β, P )| with only one branch at P . The set Mβ,P is finite by Proposition
2.12.

Proposition 4.18 (See also Theorem 3.10 of [19]). Let β ∈ H2(S,Z) be a curve
class and P a β-primitive point. Consider the blow-down π : S → S′ of S along
some line classes l such that β.l = 0. Then π(P ) is π∗β-primitive on π(E), and
each curve C ∈ Mβ,P is isomorphic to exactly one curve C ′ ∈ Mπ∗β,π(P ) and vice-
versa. Furthermore, for each such C, a neighborhood of C in S is isomorphic to a

neighborhood of C ′ in S′ and mP
β = m

π(P )
π∗β

.

Proof. It is straightforward to see that π(P ) is π∗β-primitive.
Let C ∈ |OS(β, P )| and assume that C does not contain E. Then C is integral

and does not meet any representative of l. Therefore, blowing down a line l does not
change members of |OS(β, P )| except for those containing E. In particular, it does
not change the geometry in a neighborhood of elements of Mβ,P and Mπ∗β,π(P ).

Hence there is an isomorphism of moduli spaces M
P

β (S,E) ∼= M
π∗P
π∗β (S′, π(E)) and

mP
β = NP

β (S,E) = N π∗P
π∗β

(S′, π(E)) = m
π(P )
π∗β

. �

Corollary 4.19. Let β ∈ H2(S,Z) be a curve class containing an integral member
and such that pa(β) ≥ 1. Each distinct two lines l1 and l2 with β.l1 = β.l2 = 0
are mutually disjoint. Let η be the number of disjoint lines l with β.l = 0 and let
π : S → S′ be the del Pezzo surface obtained by blowing down these lines. Assume
that β �= −KS7

, −KS8
or − 2KS8

(which are ample). Then π∗β is very ample and

mP
β = m

π(P )
π∗β

.

Proof. If two distinct lines l1 and l2 were to satisfy β.l1 = β.l2 = 0, then since
β2 > 0 by adjunction, it follows from the Hodge index theorem that (l1 + l2)

2 < 0
and therefore l1 and l2 are mutually disjoint. Furthermore, π∗β is very ample by

Lemma 4.5 and mP
β = m

π(P )
π∗β

by Proposition 4.18. �

Remark 4.20. By Proposition 4.18, the log BPS number mβ should depend on
e(S)− η and not simply on e(S). This is exactly what we observe in the prediction
of Theorem 1.12 (analogously [19, Theorem 1.1] for the local BPS invariants).

Proposition 4.21 (See Proposition 1.8). Let (S,E) be a regular log Calabi-Yau
surface with smooth divisor and let β ∈ H2(S,Z) be a curve class. Let C be an
(integral) rational curve of class β maximally tangent to E at P , and denote the
normalization map by n : P1 → C. Then:

(1) The map n gives an isolated point of M
P

β (S,E), and contributes a positive

integer to NP
β (S,E).
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(2) If C is immersed outside P , [n] contributes 1 to NP
β (S,E).

(3) If n is smooth at P , then it contributes e(Pic
0
(C)) to NP

β (S,E).

(4) If C is smooth at P and has arithmetic genus 1, then its contribution

e(Pic
0
(C)) equals e(C) and can be recovered from the associated elliptic

fibration.

Assume that S is del Pezzo.

(5) Let P ∈ E(β) be β-primitive. Assume that all C ∈ Mβ,P are smooth at P .
Then

mP
β =

∑
C∈Mβ,P

e(Pic
0
(C)).

Proof.
(1) By Proposition 2.17, n lifts to a unique stable log map. By [46, Example 7.1]

or more generally Proposition 2.11, in a neighborhood of [n], the moduli of stable
log maps is isomorphic to a certain locally closed substack of the moduli of 1-
marked ordinary stable maps parametrizing maps f with f∗E = w.(marked point).
It follows from Proposition 2.12 that [n] is isolated. Since n has no nontrivial
automorphisms, this isolated component is a scheme, and the contribution of [n] is
given by its length. Here we use the fact that the virtual fundamental class of a
non-reduced point is the fundamental class and its degree is the length of the point.

(2) Let x ∈ P1 be such that n−1(E) = {x}. The deformation of [n] in Mβ(S,E)

is governed by the complex of vector bundles T • := [TP1(− log x)
dn→ n∗TS(− logE)]

in degrees −1 and 0. In particular, the tangent space is given by R0Γ(P1, T •).
If n is immersive outside x, dn is injective away from x. If locally x is given

by y = 0, then at x, TP1(− log x) is generated by y ∂
∂y . Moreover, n∗TS(− logE) is

generated by s ∂
∂s and ∂

∂t if in local coordinates s, t at f(x), E is given by s = 0.

Then, dn : y ∂
∂y �→ w · s ∂

∂s is injective as well and thus dn is injective everywhere.

By calculating the degree, we see that T • is quasi-isomorphic to OP1(−1). So
[n] is infinitesimally rigid.

(3) Let M[n] be the connected component of Mβ(S,E) at [n] and denote by m(C)
the length of M[n]. The multiplicity of [n] as a stable map to C, i.e. the length of

the scheme M0,0(C, [C]), was calculated in [26], see also [77], to be e(Pic
0
(C)).

As we noted above, the moduli of log structure is trivial and M[n] can be con-
sidered as a subscheme of M0,0(S, [C]) by [46, Example 7.1] or Proposition 2.11.
In order to show that m(C) is the stable map multiplicity of [n], we need to show
that deformations of [n] in M[n] factor (scheme-theoretically) through C. Note that
since C is assumed to be smooth at P , in the notation of [46, Example 7.1], this
guarantees that ux = μx at P remains true in a deformation.3

Consider the open sub-linear system

|OS(β, P )|◦ := {C ∈ |β| : C ∩ E = wP} ⊆ |OS(β, P )|

and denote by Pic
0
(β, P ) the relative compactified Jacobian of the universal curve

over |OS(β, P )|◦. Then [20, Theorem 1.11] states that Pic
0
(β, P ) is smooth at each

3On the converse, say C has a cusp at P . Then [n] has a first order deformation as a stable
map, resolving the cusp. Under this deformation the pullback of E is no longer a multiple of μx

(e.g. if μx = 2, resp. 3, and x is defined by t = 0, then the pullback of E is defined by t2 + ε, resp.
t3 + εt, for an infinitesimal parameter ε).
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point of the fiber Pic
0
(C). Using this result, the statement follows from [26, Section

F, proof of Theorem 2].
(4) In this case, we can recover (3) directly. Outside the member of β with a

singularity at P (see §5.3), the curve family can be identified with the associated

elliptic fibration, and with Pic
0
(β, P ) at integral fibers. The total space of the

elliptic fibration is given by successive blowups at P , so it is a nonsingular surface.
(5) follows from (3). �

It is shown in [77, §6] that in an appropriate sense and up to sign the contribution

of an integral rational curve C to nβ is given by e(Pic
0
(C)). In light of Conjecture

1.6, Proposition 4.21 states that in a normalized way, C contributes the same to
the local and log BPS numbers.

5. Calculations at primitive points

In this section, we compute mP
β for all del Pezzo surfaces S with smooth anti-

canonical divisor E, classes β of arithmetic genus up to 2 and β-primitive points
P . In genus 2, we will assume that (S,E) is general.

5.1. Strategy of proof and summary of results. Let P ∈ E(β) be β-primitive.
Recall that w = β.E and that Mβ,P denotes the finite set of integral rational curves
of class β maximally tangent to E at P that have only 1 analytic branch on E.

By Definition 4.6 of β-primitivity and Proposition 2.12, M
P

β (S,E) is a disjoint
union of (possibly non-reduced) points with each point corresponding to the unique
log map induced from the normalization map n : P1 → C for C ∈ Mβ,P (Proposition

2.17(2)). Therefore the virtual fundamental class [M
P

β (S,E)]vir is the fundamental

class of M
P

β (S,E) and mP
β = NP

β (S,E) is the sum of the lengths of the points. In

Proposition 4.21 we calculated the contributions to mP
β in the two situations where

C is immersed outside of P and when n is smooth at P .
Our strategy of proof therefore consists of finding all elements of Mβ,P and

calculating their contribution to mP
β . In the case of P2, we note two alternative

approaches to this calculation: by tropical correspondence in the associated scat-
tering diagram in [38] and by degenerating E to the union of the coordinate axes
in [5].

We make some comments about the possible curve classes.

Lemma 5.1. Let β be a curve class on S. Then β falls into one of the following
categories.

(1) β does not contain an integral curve. This occurs for instance when pa(β) <
0.

(2) β contains an integral curve and pa(β) = 0. Among these, line classes are
not nef, conic classes are nef but not big and the rest are nef and big.

(3) β contains an integral curve and pa(β) ≥ 1. In this case containing an
integral curve is equivalent to being nef and big.

Proof. By [70, (7.6) Corollary], if pa(β) < 0, then β is not irreducible. By [55, §2.3
(P7)], nef and big divisors admit a smooth irreducible member, so nef and big
always implies containing an integral curve. If S = P1 × P1, then the statements
can be checked numerically.
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Assume S is a blowup of P2. By [24, Proposition 3.2], effective divisors fall into
2 categories: A) nef and big ones; B) line classes, conic classes of the form h − ei
and classes β that admit a decomposition β = β′ + l for β′ effective and l a line
class. The last category includes the remaining conic classes. Line and conic classes
have arithmetic genus 0.

By [24, Theorem 4.7] nef divisors are globally generated and hence admit a
smooth member. By the remark after Corollary 3.3 of [83], nef but non-big divisors
are multiples of conic classes kD. For k > 1, their arithmetic genus is negative and
they are not integral (a general member will be a disjoint union of k curves of class
D). Then, non-nef divisors necessarily have a line class as a component, i.e. can be
written as β = β′ + l for β′ effective, l a line class and β′.l ≤ 0. If β′ �= 0, then any
curve of class β contains l, hence is not irreducible. �

Theorem 5.2. Let S be a del Pezzo surface and let E be a smooth anticanonical
divisor. Let β be a curve class. Let η be the number of line classes l such that
β.l = 0. Recall that S8 denotes the del Pezzo surface obtained by blowing up P2 in
8 general points.

(0) If β does not contain an integral curve, such as when pa(β) < 0, then
mP

β = 0.

Assume that β contains an integral curve.

(1) If pa(β) = 0, then mP
β = 1.

(2) If pa(β) = 1 and β �= −KS8
, then mP

β = e(S)− η.

(3) If β = −KS8
, then mP

β = 12.

(4) If pa(β) = 2 and β �= −2KS8
, then mP

β =
(
e(S)−η

2

)
+ 5.

(5) If β = −2KS8
, then mP

β = 66.

We prove Theorem 5.2 in the remainder of this section. (0) is straightforward:
When there is no integral curve of class β, then Mβ,P is empty (as P is β-primitive)
andmP

β = 0. Henceforth we assume that β contains an integral curve. In particular,
in this case Proposition 4.15 holds.

5.2. Arithmetic genus 0. Assume that pa(β) = 0 and let P be a β-primitive
point. By Proposition 4.15, H0(OS(β − E)) = 0 and H0(OS(β)) � H0(OE(wP )).
There is thus a (unique up to scaling) non-zero section s ∈ H0(OE(wP )) that
vanishes at P of order w. By β-primitivity, the corresponding curve is necessarily
integral, thus it is isomorphic to P1. Hence mP

β = 1.

5.3. Arithmetic genus 1. Assume now that pa(β) = 1 and let P ∈ E(β) be a
β-primitive point. Assume first that w > 1. Let η be the number of disjoint lines
l with β.l = 0. We blow down all such lines in S, yielding a del Pezzo surface
π : S → S′ with divisor E′ and a curve class β′ := π∗β. Then e(S′) = e(S)− η and

by Corollary 4.19, β is ample and mP
β = mP ′

E′ for P ′ := π(P ). By [19, Lemma 4.3]

or Proposition 2.18 (3), β′ = [E′].
It follows from Proposition 4.15 that the linear system Λ := |OS′(E′, P ′)| of

Definition 4.16 is of dimension 1, i.e. is a linear pencil on S′. Note that any member
of Λ\{E′} has at worst a node or a cusp, since it is integral by β-primitivity and is
of arithmetic genus 1; E′ itself is of course nonsingular. We will first describe the
pencil and then consider its associated universal elliptic fibration.
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Denote by σE the section of O(E′) giving E′ and by σ another section. Then
the elements of Λ correspond to the zero loci C[s:t] of sσ + tσE for [s : t] ∈ P1.
Restricting to an open affine neighborhood U of P ′, there are functions f := σ|U
and g := σE |U such that C[s:t]

∣∣
U
is given by sf + tg = 0. We write fP ′ and gP ′ for

their stalks at P ′.
Let T∨

S′,P ′ := mP ′/m2
P ′ be the cotangent space of S′ at P ′. The cotangent space

T∨
E′,P ′ of E′ at P ′ can be identified with the 1-dimensional subspace of mP ′/m2

P ′

cut out by gP ′ mod m2
P ′ with natural linear quotient map res : T∨

S′,P ′ → T∨
E′,P ′ .

Consider now ϕ(s, t) := d(sfP ′ + tgP ′) ∈ T∨
S′,P ′ . As w > 1, C[s:t] is tangent

to E′ at P ′ and sfP ′ + tgP ′ is a contant multiple of gP ′ mod m2
P ′ . Hence ϕ(s, t)

lies in the 1-dimensional kernel of res. Then ϕ(0, 1) �= 0. Therefore ϕ(s, t) =
s ϕ(1, 0) + t ϕ(0, 1), for [s : t] ∈ P1, spans all of ker(res) and there is exactly one
choice of [a : b] such that ϕ[a, b] = 0. This value corresponds to the unique member
D := C[a:b] of Λ that is nodal or cuspidal at P ′. If D is nodal at P ′, one of
its branches meets E′ with multiplicity 1, and the other branch meets E′ with
multiplicity w − 1.

Next, to obtain the associated universal elliptic fibration, we blow up w times
along the inverse images of P ′ in the strict transforms of E′. Assume first that D
is nodal at P ′. The first blowup will separate the two branches of D and the total
transform of D becomes a cycle of two P1’s. Each successive blowup but the last
will introduce another P1 in the cycle. After the first w− 1 blowups, the preimage

D̃ of D consists of a cycle of w P1’s with topological Euler characteristic w. The
last blowup then separates all of the curves in our pencil and we obtain a family
C → P1, where the last exceptional divisor maps isomorphically to the base P1.

We apply the same procedure for D cuspidal at P ′. In this case D̃ is a chain of

P1’s and the Euler characteristic of D̃ is w + 1.
In both cases, D̃ is a fiber of C → P1. The other fibers are members of Λ

other than D. Using Proposition 4.21(4), we can calculate mP
β by computing the

topological Euler characteristic of C. For a smooth curve C of the pencil, e(C) = 0.

If C is nodal, then e(Pic
0
(C)) = e(C) = 1 and if C is cuspidal, e(Pic

0
(C)) = e(C) =

2. In case D is nodal at P ′,

e(C) = # {nodal fibers}+ 2 ·# {cuspidal fibers}+ w,

where we do not count D among {nodal fibers}. In case D is cuspidal at P ′,

e(C) = # {nodal fibers}+ 2 ·# {cuspidal fibers}+ w + 1.

On the other hand,

e(C) = e(S′) + # {blowups} = e(S′) + w.

IfD is nodal at P ′, thenD �∈ Mβ′,P ′ and does not contribute tomP
β . By Proposition

4.21(4),

mP
β = # {nodal fibers}+ 2 ·# {cuspidal fibers} = e(S′) = e(S)− η.

If D is cuspidal at P ′, then D is also in Mβ′,P ′ and contributes 1 to mP
β by Propo-

sition 4.21(2). Therefore

mP
β = 1 +# {nodal fibers}+ 2 ·# {cuspidal fibers} = e(S′) = e(S)− η

as well.
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Finally, we consider the case that w = 1. Then it follows that β = −KS8
. Since

the intersection multiplicity is 1, there is no curve in the pencil Λ that is singular
at P . To obtain the universal family, we only need to blow up once and obtain that

e(S8) + 1 = e(C) = # {nodal fibers}+ 2 ·# {cuspidal fibers} ,
so that mP

β = e(S8) + 1 = 12. Note that η = 0 in this case, since β.� = 1 for any
line.

Remark 5.3. In light of the previous argument, note that we expect that for general
(S,E), curves with a cusp at the marked point are avoided.

Remark 5.4. In the case of P2, we can rule out cuspidal degree 3 curves meeting E
in a 3h-primitive point, as was noted in the proof of [80, Proposition 1.5]. Indeed,
suppose that there is a degree 3 cuspidal curve C meeting E in a 9-torsion point
P , where we take the group law on E obtained by choosing a flex point as 0. Then
C also has a group law, and is isomorphic to Ga away from its cusp. The zero of
C is a flex point. Moreover, E induces the equation 9P = 0 on C. Since C has
no torsion, P = 0 is a flex point, which is impossible since C and E have 9-tuple
intersection at P and since P is not a flex point for E.

5.4. Approach for arithmetic genus 2 and higher. Assume that (S,E) is
general and let β be a curve class with pa(β) = 2 containing an integral member.
Let P ∈ E(β) be a β-primitive point and let η be the number of disjoint lines l
with β.l = 0. By Corollary 4.19, after blowing down these lines, we may assume
that β is very ample, except when β = −2KS8

, which we will treat at the end. We
will also treat P1 × P1 separately. Finally, note that there are no genus 2 classes
for P2.

Our approach consists in counting curves in Mβ,P and showing that they are all
nodal away from P by degeneration technique. This was done in [80]. It would
take us too far afield to explain [80] in detail, so we content ourselves with giving
a brief introduction to its methods.

An A1-curve on (S,E) can be identified with a morphism f : P1 → S such that
f∗E = w[∞]. We start with a certain degeneration of (P1, w[∞]) ([80, §3, second
paragraph]). This is given by a flat family p(w) : C(w) → U (w) ∼= P1 of curves and
a Cartier divisor Z(w) on C(w) such that the following holds:

• For s ∈ U (w) \ {∞}, the fiber (C(w)
s ,Z(w)

s ) is isomorphic to (P1, w[∞]).

• The fiber C(w)
∞ has two components C1 and C2 each isomorphic to P1,

intersecting at a point Q, and Z(w)
∞ |C1

= (w − 1)Q and Z(w)
∞ |C2

= Q.

On the other hand, we also consider a family of target spaces. Let S → T be
a family of smooth projective rational surfaces, E a relative smooth anticanonical
divisor, B a relative divisor class which will correspond to β and P a closed sub-
scheme of E which gives a section of S → T such that B|E ∼ wP as relative divisor
classes on E . Let St denote the fiber of S at t ∈ T etc.

Construction 5.5 (Section 3 in [80], in particular Definition 3.3 and the para-
graph before Lemma 3.10). Given (S, E ,P,B) as above, there is a moduli space
M(S, E ,P,B) which represents the functor

(a scheme U over T ) �→ (the set of isomorphisms classes (C,Z, f)),

where
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• C is a flat family of curves over U , Z is a Cartier divisor on C and (C,Z) is
isomorphic to a family induced from (C(w),Z(w)) by a morphism U → U (w),

• f : C → S is a morphism over T which satisfies the following:
– For any u ∈ U over t ∈ T , the restriction fu : Cu → St is generically

injective and (fu)∗[Cu] = Bt.
– f∗E = Z.

An isomorphism between (C,Z, f) and (C′,Z ′, f ′) is an isomorphism C → C′ which
maps Z to Z ′ and commutes with f and f ′.

The spaceM(S, E ,P,B) contains an open subspaceM0(S, E ,P,B) parametrizing
generically injective morphisms P1 → St that meet Et with maximal tangency at
Pt. The complement M(S, E ,P,B) \M0(S, E ,P,B) parametrizes morphisms from
P1 ∪pt P

1 to St where the first component meets Et at Pt with multiplicity w − 1
and the second with multiplicity 1.

Lemma 5.6 (Lemma 3.4 of [80]). Consider the case of (S,E, P, β), i.e. a family
over a point.

(1) Geometric points of M0(S,E, P, β) bijectively correspond to elements of
Mβ,P .

(2) A point of M0(S,E, P, β) corresponding to C ∈ Mβ,P is reduced if the
normalization map P1 → C is immersive away from P .

By Lemma 5.6 and Proposition 4.21(2), and under the assumption that all curves
of Mβ,P are immersed away from P , mP

β =
∣∣Mβ,P

∣∣ = ∣∣M0(S,E, P, β)
∣∣.

Now we construct certain surfaces and divisor classes. Let d, (ai)
r
i=1 and (bj)

m
j=1

be positive integers and write w = w(d; (ai); (bj)) = 3d −
∑

ai −
∑

bj , which we
assume to be positive. We take a smooth plane cubic E0 and points P1, . . . , Pr ∈ E0

and P ∈ E0 such that dh|E0
∼

∑
aiPi + (w +

∑
bj)P . We impose a kind of

“primitivity” on P ([80, Definition 3.6]). Let S be the surface given by blowing up
P2 at P1, . . . , Pr and then successively m times at P and the corresponding points
on the proper transforms of E0. The proper transform of E0 on S is denoted by
E. Write h for the hyperplane class, ei for the class of the exceptional curve over
Pi, and fj for the class of the exceptional curve of the j-the blowup at P . Let
β = dh −

∑r
i=1 aiei −

∑m
j=1 bjfj . Then, in [80], the integers n(d; (ai); (bj)) are

defined as degM0(S,E, P, β) for a general choice of E0, P1, . . . , Pr. If m = 0, i.e.
there are no (bj), then we simply write n(d; (ai); ) for degM0(S,E, P, β).

If r ≤ 8 and m = 0, then S is a general del Pezzo surface Sr. In this case, under
the assumption that the curves of Mβ,P are immersed away from P ,

n(d; (ai); ) = degM0(S,E, P, β) =
∣∣M0(Sr, E, P, β)

∣∣ = mP
β ,

the BPS numbers we are looking for.
To derive the main recursive formula, we consider a certain degeneration of

(S,E, P, β) with m = 0 (i.e. no bj ’s). Over a smooth curve germ 0 ∈ Δ, we
consider families of P1, . . . , Pr, P ∈ E0 such that P meets Pr over 0. Then we have
a family (S, E ,P,B) over Δ.

For a general choice of the relevant data, it turns out that M(S, E ,P,B) is finite
and flat and that it coincides with M0(S, E ,P,B) outside 0. Over 0, (S0, E0,P0, β)
can be identified with the case of m = 1 and (d; (ai)

r−1
i=1 ; ar), and each element of

M(S0, E0,P0, β) is either

(1) an A1-curve on (S0, E0),
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(2) the sum of F and an A1-curve on (S0, E0) in the case w ≥ 2. or
(3) the sum of F and a rational curve disjoint from E0 in the case w = 1,

where F is the exceptional curve of the blowup at P . This gives [80, Theorem 3.8
(3)]: Under certain technical conditions which are satisfied in our case,

n(d; (ai)
r
i=1; ) = n(d; (ai)

r−1
i=1 ; ar) + μ · n(d; (ai)r−1

i=1 ; ar + 1),

where μ is ar+1 if w(d; (ai)
r
i=1; ) = 1 and 1 otherwise. Note that when w(d; (ai)

r
i=1; )

= 1, the rational curve and F in (3) intersect at ar + 1 points so there are ar + 1
choices of morphisms from P1 ∪pt P

1 to this sum. If ar = 1, the first term of the
right hand side can be related to the invariants with m = 0 by [80, Theorem 3.8]:

n(d; (ai)
r−1
i=1 ; 1) = n(d; (ai)

r−1
i=1 ; ).

On the other hand, larger values of ai and bj means smaller arithmetic genus, which
makes the calculation easier.

Finally, if w(d; (ai)
r
i=1; ) = 1, then the tangency condition is automatically sat-

isfied for curves in the class dh−
∑

aiei, and n(d; (ai); ) is nothing but the number
of rational curves.

Remark 5.7. In the modern language, it should be possible to replace the use of
M(S, E ,P,D) by the deformation invariance of log Gromov-Witten invariants and
Theorem 6.9, although the analysis of degenerate curves is still necessary.

Using these facts, Section 4 of [80] provides tables of n(d; (ai); (bj)). It is also
checked that the curves relevant to us are immersed away from P . These tables
contain all the curve classes of arithmetic genus 2 of Sr for r ≤ 8. Examining the
numbers, for β �= −2KS8

, we find that

mP
β =

(
e(Sr)− η

2

)
+ 5.

For β = −2KS8
, mP

β = n(6, 28; ) is given in [80, p. 21] to be x − 24, where

x = 90 = n(6; 28, 1; ) is found by calculating n(6; ; ) in two different ways [80, proof
of Cor. 4.5]. Therefore mP

β = 66.

It remains to consider P1 × P1. Up to permuting the generators h1 and h2, the
only genus 2 class is 2h1 + 3h2. Blowing up P1 × P1 in a general point, 2h1 + 3h2

pulls back to a (non-very ample) class β′ on S2 and the exceptional divisor for the

blowup is the unique line class not meeting β′. By Proposition 4.18, mP
β = mP ′

β′ for

P ′ the preimage of P . By the calculations of [80],

mβ′ =

(
e(S2)− 1

2

)
+ 5 =

(
e(P1 × P1)

2

)
+ 5

as expected.

Remark 5.8. Note that in all calculations that we encountered, mP
β was given in

terms of polynomials of topological numbers associated to S.

This finishes the proof of Theorem 5.2. Combining the calculations of this section
and the ones of [80] with Theorem 1.12 (Theorem 1.1 in [19]) proves Theorem 1.11.
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6. Multiple covers and loop quiver DT invariants

Let (S,E) be a log Calabi-Yau surface pair. Let C be an integral nodal rational
curve in S that meets E with maximal tangency at P . Denote by [C] the class of
C, as usual. For now, neither is S assumed to be del Pezzo, nor is P assumed to
be [C]-primitive. By Proposition 4.21(1), the normalization map [P1 → C] is an
isolated 0-dimensional component of M[C](S,E).

In the previous sections, we typically considered the moduli space M[C](S,E) of
genus 0 basic stable log maps of maximal tangency and class [C] and its associated

log GW invariant N[C](S,E). By Proposition 2.12, the components M
P

[C](S,E)
corresponding to maps at P are disjoint from the other components and we may
consider the invariant NP

[C](S,E) at P . By Proposition 4.21(2), the normalization

map [P1 → C] has length 1 and contributes 1 to NP
[C](S,E).

Let l ∈ N and consider the moduli space Ml[C](S,E). This moduli space has a
distinguished component of dimension l−1 that corresponds to l : 1 multiple covers
of C that are totally ramified at P , in other words to the maps [f : D → C] ∈
Ml[C](S,E) with f∗D = lC as cycles. Denote by Contr(l, C) the contribution of

this component to the invariant NP
l[C](S,E). In the language of relative stable maps

(equivalent to stable log maps by [2]), it is defined and calculated in [43, Section 6]
to be

(6.1) Contr(l, C) =
1

l2

(
l(C.E − 1)− 1

l − 1

)
,

with the identification
(−1
l−1

)
= (−1)l−1.

Furthermore, we defined the log BPS number at P of class l[C], mP
l[C]. Write

[C] = gβ for β a primitive curve class. ThenmP
l[C] = mP

lgβ is defined by the recursive

formula

(6.2) NP
hβ(S,E) =

∑
k|h

(−1)(k−1) h
k (β.E)

k2
mP

h
k β

.

where mP
β′ = 0 if there is no curve of class β′ that is maximally tangent to E at

P . A natural question is to ask what the contribution of multiple covers over C to
mP

l[C] is. To answer this, we invert (6.2),

mP
hβ =

∑
k|h

(−1)(k−1) h
k (β.E)

k2
μ(k)NP

h
k β

(S,E),

and in particular

(6.3) mP
l[C] = mP

lgβ =
∑
k|lg

(−1)(k−1) lg
k (β.E)

k2
μ(k)NP

lg
k β

(S,E),

In the right hand side of (6.3), we pick out the NP
lg
k β

(S,E) where the moduli space

has a component corresponding to multiple covers over C. This happens exactly
when k|l, in which case we have l

k : 1 covers over C that contribute Contr( l
k , C) to

NP
l
k [C]

(S,E).
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Figure 6.1

Definition 6.1. Let l ∈ N. Define the multiple cover contribution ContrBPS(l, C)
of C to mP

l[C] to be

ContrBPS(l, C) :=
∑
k|l

(−1)(k−1)l(C.E)/k

k2
μ(k) Contr(l/k, C).

When C is nodal, by definition ContrBPS(1, C) = Contr(1, C) = 1. This is
expected since there are not multiple covers.

We will express these contributions in terms of generalized Donaldson-Thomas
(DT) invariants of loop quivers. Motivated by the framework of Kontsevich-
Soibelman in [56], Reineke in [76] and [75] calculated these invariants. We state
Reineke’s calculation in Theorem 6.3 below and briefly survey the definition of the
DT invariants in this particular setting.

Fix m ≥ 1 and consider the m-loop quiver, consisting of one vertex and m
loops. The associated framed m-loop quiver Lm contains an additional vertex and
an arrow directed towards the original vertex. The quiver Lm is depicted in Figure
6.1.

Let n ≥ 0. A representation of Lm of dimension vector (1, n) is represented by

(v, (ϕ1, . . . , ϕm)) ∈ Cn ⊕Mn(C)
⊕m.

Denote by C〈ψ1, . . . , ψm〉 the free algebra on m generators. Then (v, (ϕ1, . . . , ϕm))
is stable if C〈ϕ1, . . . , ϕm〉v = Cn, i.e. v is cyclic for the representation of the free
algebra on Cn.

Denote by

U ⊂ Cn ⊕Mn(C)
⊕m

the open subset of stable representations of Lm of dimension vector (1, n). Then
GLn(C) acts on U via

g · (v, ϕi) = (gv, gϕig
−1).

The geometric quotient for this action is the noncommutative Hilbert scheme Hilb(m)
n .

Consider the generating function

F (m)(t) :=
∑
n≥0

χ
(
Hilb(m)

n

)
tn ∈ Z[[t]].

Since F (0) = 1, F (t) admits a product expansion.

Definition 6.2 (Definition 3.1 in [76], following [56]). Define the generalized

Donaldson-Thomas invariants DT(m)
n ∈ Q of Lm through the product expansion
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(Kontsevich-Soibelman wall-crossing formula):

F (m)((−1)m−1t) =
∏
n≥1

(1− tn)−(−1)(m−1)nnDT(m)
n .

For the following theorem, note that the formula as stated in [76] has a typo.

Theorem 6.3 (Theorem 3.2 in [76], see also Lemma 12 of [32] and [28, 29]). We

have DT(m)
n ∈ N and

DT(m)
n =

1

n2

∑
d|n

μ
(n
d

)
(−1)(m−1)(n−d)

(
dm− 1

d− 1

)
.

Coming back to contributions of multiple covers to themP
β , we have the following

unexpected result.

Proposition 6.4 (See Proposition 1.16). Assume that the normalization map
[P1 → C] ∈ Mβ(S,E) is infinitesimally rigid. Then

ContrBPS(l, C) = DT
(C.E−1)
l .

Proof. The argument follows the same lines as the proof of the main result in [32]
and we therefore do not reproduce it here. �

Provided C is nodal, using Proposition 6.4 and Theorem 6.3, we find that

ContrBPS(1, C) = DT
(C.E−1)
1 = 1 as expected. For the remainder of this section, S

will be a del Pezzo surface.

Proposition 6.5. Let S be a del Pezzo surface and let E be smooth anticanonical
and general. Let β be a line or conic class. Let l ∈ N and let P ∈ E(lβ). If
P ∈ E(β), let C be the unique curve of class β maximally tangent to E at P . Then

the moduli space M
P

lβ(S,E) consists only of l : 1 multiple covers of C that are totally
ramified at P , i.e. to the maps [f : D → C] with f∗D = lC as cycles. Accordingly

NP
lβ(S,E) = Contr(l, C) =

{
(−1)l−1

l2 for line classes,
1
l2 for conic classes.

If P �∈ E(β) however, then M
P

lβ(S,E) is empty and NP
lβ(S,E) = 0.

Proof. Assume first that P ∈ E(β). Let [f : D → S] ∈ M
P

lβ(S,E). Assume that β
is a line class or a conic class of the form h− ei. Then β is extremal in the effective
cone of S and the only possible decomposition of lβ is as

∑
liβ,

∑
li = l, hence

f∗D = lC as cycles. Thus M
P

lβ(S,E) consists only of l : 1 multiple covers over C

and NP
lβ(S,E) = Contr(l, C).

If β is a decomposable conic class, then as β.KS = −2, β = η1+η2 for η1 and η2
line classes with necessarily η1.η2 = 1. For general E, that intersection point will
be away from E, hence there is no maximal tangency log map with image curve
reducible with one component in class η1 and one component in class η2 and the
same argument as above applies.
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If P �∈ E(β) and [f : D → S] ∈ M
P

lβ(S,E), then by the same argument as above,
the image of D has to be a curve of class β. But there are no such curves and
therefore the moduli space is empty and NP

lβ(S,E) = 0. �

We prove the first part of Theorem 1.4:

Proposition 6.6. Let S be a del Pezzo surface and let E be smooth anticanonical
and general. Let β be a line class or a conic class. Let l ∈ N and let P ∈ E(lβ).
Then

mP
β =

{
1 if l = 1,

0 if l ≥ 2.

Consequently Conjectures 1.2 and 1.3 hold for multiples of line and conic classes.

Proof. Assume first that β is a line class. As β.E = 1, E(β) consists of only one

point P0, which is β-primitive. For that point, mP0

β = 1 follows from Theorem

5.2(1). Denote by C the (-1)-curve of class β maximally tangent to E at P0. Let

l ≥ 2 and let l′|l. By Proposition 6.5, NP0

l′β(S,E) = Contr(l′, C). In other words, the

right hand side of (6.3) (with g = 1) is the same as the right hand side of Definition

6.1. Consequently mP0

lβ = ContrBPS(l, C) = DT
(0)
l . We now apply Theorem 6.3

and use a standard result about Möbius functions:

DT
(0)
l =

1

l2

∑
l′|l

μ

(
l

l′

)
(−1)(−1)(l−l′)

(
−1

l′ − 1

)

=
1

l2

∑
l′|l

μ

(
l

l′

)
(−1)(l−l′)(−1)l

′−1

=
(−1)(l−1)

l2

∑
l′|l

μ

(
l

l′

)
=

(−1)(l−1)

l2

∑
l′|l

μ (l′) = 0.

Assume now that P ∈ E(lβ) \ E(β). Applying Proposition 6.5 to (6.3), we obtain
that mP

lβ = 0.
The proof for conic classes follows the same argument with the modification that,

for l ≥ 2, mP0

lβ = ContrBPS(l, C) = DT
(1)
l and

DT
(1)
l =

1

l2

∑
l′|l

μ

(
l

l′

)
(−1)(1−1)(l−l′)

(
l′ − 1

l′ − 1

)
=

1

l2

∑
l′|l

μ

(
l

l′

)
= 0.

�

6.1. Calculations for multiples of the hyperplane class. We summarize the
results from this section, which proves the second part of Theorem 1.4:

Proposition 6.7. Let S be a del Pezzo surface other than P1 × P1. Let E be a
general smooth anticanonical divisor and denote by h the pullback of the hyperplane
class. Then

mP
h = 1 for all P ∈ E(h), mP

2h = 1 for all P ∈ E(2h),
mP

3h = 3 for all P ∈ E(3h), mP
4h = 16 for all P ∈ E(4h).

In particular Conjecture 3.4 holds for S and curve classes dh, 1 ≤ d ≤ 4.
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We note that Proposition 6.7 can also be deduced from the main result of [8].
The approach we take here is by analysis of the moduli spaces, with a rather
concrete description of the relevant curves. This illustrates the “inner workings” of
Definition 1.1 of log BPS numbers.

The rest of this section is devoted to proving Proposition 6.7. We proceed

by analyzing the moduli spaces M
P

dh(S,E) and calculating the contributions of

each component to NP
dh(S,E). First note that since h.ei = 0, M

P

dh(S,E) remains
unchanged when blowing down all exceptional divisors ei. Accordingly, we may
assume that S = P2. Throughout this section, d will be an integer 1 ≤ d ≤ 4.

Recall that Mdh is the set of image cycles of genus 0 stable log maps to (P2, E)
of class dh and of maximal tangency. Recall that for P ∈ E, Mdh,P = {D ∈ Mdh |
Supp(D) ∩E = P}. By Proposition 2.17, Mβ =

∐
P∈E(dh) Mdh,P and any element

of Mdh,P is a sum of rational curves maximally tangent to E, meeting E at the
same point.

We divide E(dh) by arithmetic property of its points. Let

E(dh)prim := {P ∈ E(dh) | P is dh-primitive}.
In the current case of S = P2, we have a decomposition

E(dh) =
∐
k|d

E(kh)prim.

Choosing as zero element 0 ∈ E a flex point, we can identify the group (E(dh), 0)
with Z/3d×Z/3d by Lemma 2.14. Under this identification, E(kh)prim for a divisor
k of d can be identified with{

P ∈ Z/3d× Z/3d
∣∣∣ P is of order

k or 3k if 3� |k
3k if 3|k

}
.

by Lemma 4.8.
To give a rough description of Mdh,P , let

M int
dh,P := {C ∈ Mdh,P | C is integral}.

Let P ∈ E(kh)prim and d and l multiples of k with l ≤ d. Then P ∈ E(lh) and
there may be a (necessarily finite) number of rational curves of degree lh that are
maximally tangent at P . Such curves, for different l, can be added together yielding
elements of Mdh,P . For example, for P ∈ E(h) = E(h)prim, Mh,P = M int

h,P consists
of the unique flex line LP . Then dLP belongs to Mdh,P .

Recall that j(E), the j-invariant of E, classifies smooth plane cubics defined over
C up to projective equivalence.

Proposition 6.8. The sets Mdh,P are described as follows.
(1)

If P ∈ E(h), then Mh,P = {LP } ,where LP is the flex tangent.

(2)

If P ∈ E(h), then M2h,P = { 2LP } .
If P ∈ E(2h)prim, then M2h,P = M int

2h,P = {CP } consists of a unique conic.

(3)

If P ∈ E(h), then M3h,P = { 3LP } ∪M int
3h,P ,
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where

if j(E) �= 0, then M int
3h,P consists of 2 nodal cubics smooth at P , and

if j(E) = 0, then M int
3h,P consists of 1 cuspidal cubic smooth at P .

If P ∈E(3h)prim, then M3h,P =M int
3h,P consists of 3 nodal cubics smooth at P .

(4) Let E be general.

If P ∈E(h), then M4h,P ={4LP } ∪
{
LP + C | C ∈ M int

3h,P

}
∪M int

4h,P

with
∣∣M int

3h,P

∣∣ = 2 and
∣∣M int

4h,P

∣∣ = 8.

If P ∈ E(2h)prim, then M4h,P = { 2CP } ∪M int
4h,P with

∣∣M int
4h,P

∣∣ = 14.

If P ∈ E(4h)prim, then M4h,P = M int
4h,P with

∣∣M int
4h,P

∣∣ = 16.

All curves in M int
4h,P are immersed and are smooth at P .

Proof. First note that M int
dh,P is exactly the set of A1-curves, i.e. rational curves

maximally tangent to E at P .
Noting that an element of Mdh,P is a sum of elements of Mlh,P for various l by

Proposition 2.10. it is easy to see that Mdh,P is contained in the right hand side,
For the other inclusion, the fact that a multiple of an A1-curve is contained in

M int
dh,P follows from [43, Proposition 6.1]. For curves with 2 components, we use

Theorem 6.9.
Now we explain how to obtain the description of M int

dh,P given above.

(1), (2), (3) For the dh-primitive points with d = 1, 2, 3, the statements were
proven in Section 5. The assertion on M2h,P for P ∈ E(h) is easy.

Assume that P ∈ E(h), i.e. that P is a flex point. Similarly to Section 5.3,
consider the pencil of degree 3 curves maximally tangent to E at P . There is again
a unique member D that is singular at P . Necessarily, D is the triple flex line. To
obtain the universal family, we blow up 9 times along the inverse images of P in
the strict transforms of E. This elliptic fibration (where the last exceptional divisor
can be identified with the base) has Euler characteristic 12. One fiber is a chain
of 9 rational curves including the triple line. This fiber has Euler characteristic 10.
This means that in addition to the triple line, there are either two nodal cubics or
one cuspidal cubic.

If there is a cuspidal cubic then in appropriate coordinates it is given by Y 2Z −
X3. We find that E must then be given by Y 2Z −X3 − aZ3, with a �= 0, which
has j(E) = 0. For j(E) �= 0, there therefore are two nodal cubics.

(4) For 4h-primitive points, the description of M int
4h,P is given in [80, Theorem

2.1]. The general case was treated in [81, Proposition 4.4] . Here we will just give
an overview of the method.

There is a triple cover π : Y → P2 totally ramified at E. It is easy to see that Y
is a del Pezzo surface of degree 6, i.e. a cubic surface. For any A1-curve C of degree
d on (P2, E), π−1(C) splits into three A1-curves of degree d on (Y, π−1(E)red). Let
C ′ be one of these. Luckily, for d = 4, we have pa(C

′) ≤ 1 and we can find a
blowdown Y → P2 which maps C ′ to a conic or a cubic. The former case is easy,
and the latter can be dealt with by the method of elliptic fibrations. After a careful
analysis of the class of C ′ and singular fibers of the elliptic fibrations in the case
pa(C

′) = 1, which depends on the order of P , we obtain the result. �

The multiplicities of reducible members are given by the following.
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Theorem 6.9 (Theorem 1.14 in [20], see also Theorem 1.4 in [81]). Let (X,D) be
a pair consisting of a smooth surface and an effective divisor. Denote by Mβ =

Mβ(X,D) the moduli stack of maximally tangent genus 0 basic stable log maps of
class β to the log scheme associated to (X,D).

Let Z1 and Z2 be proper integral curves on X satisfying the following:

(1) Zi is a rational curve of class βi maximally tangent to D,
(2) (KX +D).βi = 0,
(3) Z1 ∩D and Z2 ∩D consist of the same point P ∈ Dsm, and
(4) The normalization maps fi : P1 → Zi are immersive and (Z1.Z2)P =

min{d1, d2}, where di = D.Zi.

Write d1 = de1, d2 = de2 with gcd(e1, e2) = 1. Then there are d stable log
maps in Mβ1+β2

whose images are Z1 ∪ Z2, and they are isolated with multiplicity
min{e1, e2}.

When X is projective and (X,D) is log smooth, then these curves contribute
min{d1, d2} to the log Gromov-Witten invariant Nβ1+β2

(X,D).

Remark 6.10. In Theorem 6.9, the condition that (Z1.Z2)P = min{d1, d2} means
that Z1 and Z2 are assumed to intersect generically at P . We expect this condition
is satisfied for general E and Z1 �= Z2.

If d1 �= d2, this follows from other assumptions since Z1 and Z2 are then smooth
at P . In the case d1 = d2 = d, in an analytic coordinates x, y near P with
D = (y = 0), we can write Zi = (y = aix

d + . . . ). Then our assumption is that
a1 �= a2.

An example where this condition is obviously not satisfied is the case Z1 = Z2. In
this case, the space of log maps with image cycle Z1+Z2, as well as its contribution
to the log Gromov-Witten invariant, is quite different ([43, Proposition 6.1]).

Definition 6.11. For Z1 and Z2 as in Theorem 6.9, write

Contr(Z1, Z2) := min{d1, d2}.

Corollary 6.12. Let 1 ≤ d ≤ 4 and k|d. Assume E is general. For P, P ′ ∈
E(kh)prim, NP

dh(P
2, E) = NP ′

dh (P
2, E).

Proof. The description of the moduli spaces in Section 2 combined with Proposi-
tion 6.8 and Theorem 6.9 can be used to prove this Corollary. However, a more
conceptual proof for all degrees, based on the proof of Proposition 4.14, was given
in [8, Lemma 1.2.2] and we refer to it. �

Definition 6.13. Assume E is general and k|d. Set

N k
dh(P

2, E) := NP
dh(P

2, E),

mk
dh := mP

dh

for P ∈ E(kh)prim. These numbers are well-defined by Proposition 6.8 and Corol-
lary 6.12.
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Proposition 6.14. Assume E is general. Let 1 ≤ d ≤ 4 and k|d, and take P ∈
E(kh)prim. Then

N k
dh(P

2, E) =
∑

lC∈Mdh,P

Contr(l, C) +
∑

C1+C2∈Mdh,P

Contr(C1, C2),

mk
dh =

∑
lC∈Mdh,P

ContrBPS(l, C) +
∑

C1+C2∈Mdh,P

Contr(C1, C2)

=
∑

lC∈Mdh,P

DT
(3d/l−1)
l +

∑
C1+C2∈Mdh,P

Contr(C1, C2),

where the sums are over all elements of Mdh,P .

Proof. The space M
P

dh(P
2, E) has one isolated component of dimension 0 for each

integral cycle C ∈ Mdh,P . By assumption C is immersed and hence by Proposition

4.21(2), this component contributes 1 = Contr(1, C) = ContrBPS(1, C) to both
N k

dh(P
2, E) and mk

dh.
Let C1 + C2 ∈ Mdh,P with C1 of degree d1 = de1 and C2 of degree d2 = de2 for

gcd(e1, e2) = 1 (and d = d1 + d2). For each such cycle, by Theorem 6.9 M
P

dh(P
2, E)

has 3d isolated zero-dimensional components of length min{e1, e2} each. Together,
they contribute 3dmin{e1, e2} = Contr(C1, C2) to both N k

dh(P
2, E) and mk

dh.
The only components remaining are the components of l : 1 covers over C cor-

responding to image cycles lC ∈ Mdh,P . Such a component is of dimension l − 1

and contribues Contr(l, C) to N k
dh(P

2, E) by (6.1), and ContrBPS(l, C) to mk
dh by

(6.3). �

Remark 6.15. We note that to extend Proposition 6.14 to d > 4, one needs to
compute the contributions to the log Gromov-Witten and log BPS invariants of
components corresponding to more complicated image cycles.

Using Propositions 6.8 and 6.14, we can now prove Proposition 6.7 by explicit
calculation. We also include the calculation of log Gromov-Witten invariants for
completeness. In the calculation of mk

dh etc., a point P ∈ E(kh)prim is taken. We
use notations LP for the flex tangent lines and CP for conics from Proposition 6.8.

m1
h = N 1

h (P
2, E) = Contr(1, LP ) = 1,

m1
2h = ContrBPS(2, LP ) = DT

(2)
2 = 1,

N 1
2h(P

2, E) = Contr(2, LP ) =
3

4
,

m2
2h = N 2

2h(P
2, E) = Contr(1, CP ) = 1,

m1
3h = ContrBPS(3, LP ) +

∑
C∈M int

3h,P

Contr(1, C)

= DT
(2)
3 +2 ·DT

(8)
1 = 3,

N 1
3h(P

2, E) = Contr(3, LP ) +
∑

C∈M int
3h,P

Contr(1, C) = 3 +
1

9
,

m3
3h = N 3

3h(P
2, E) =

∑
C∈M3h,P

Contr(1, C) = 3,
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m1
4h = ContrBPS(4, LP ) +

∑
C∈M int

3h,P

Contr(LP , C) +
∑

C∈M int
4h,P

Contr(1, C)

= DT
(2)
4 +2 ·min{3, 9}+ 8 = 16,

N 1
4h(P

2, E) = Contr(4, LP )+
∑

C∈M int
3h,P

Contr(LP , C)+
∑

C∈M int
4h,P

Contr(1, C)=16+
3

16
,

m2
4h = ContrBPS(2, CP ) +

∑
C∈M int

4h,P

Contr(1, C)

= DT
(5)
2 +14 = 16,

N 2
4h(P

2, E) = Contr(2, CP ) +
∑

C∈M int
4h,P

Contr(1, C) = 16 +
1

4
,

m4
4h = N 4

4h(P
2, E) =

∑
C∈M4h,P

Contr(1, C) = 16.

This completes the proof of Proposition 6.7.
We finish by asking a question:

Open Question 6.16. For each irreducible component M ⊂ M
P

β (S,E), is its

contribution to NP
β (S,E) given by a DT invariant of some quiver? The next case

to understand is the situation of Theorem 6.9.
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