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Abstract: Wederive lower bounds for the variance of the difference of energies between
incongruent ground states, i.e., states with edge overlaps strictly less than one, of the
Edwards–Anderson model onZd . The bounds highlight a relation between the existence
of incongruent ground states and the absence of edge disorder chaos. In particular, it
suggests that the presence of disorder chaos is necessary for the variance to be of order
less than the volume. In addition, a relation is established between the scale of disorder
chaos and the size of critical droplets. The results imply a long-conjectured relation
between the droplet theory of Fisher and Huse and the absence of incongruence.

1. Introduction

The Edwards–Anderson (EA) model is a nearest-neighbor model of a realistic spin glass
in finite dimensions [13]. As opposed to the infinite-range version, the Sherrington–
Kirkpatrick (SK) model [32], the critical behavior of the EA model and in particular
the existence of a phase transition and the nature of this phase transition remain elusive
from both mathematical and physical perspectives. We refer to [10,16,19,21,24,28,29]
and references therein for more details on competing pictures for the low-temperature
thermodynamic structure of the EA model. In the case of the SK model, it is known
that there exist at low enough temperature states with edge overlap1 strictly less than
one [22–24,30,31]. Such states are said to be incongruent. The question of existence
of incongruent ground states at zero temperature for the EA model in finite dimensions
is the main motivation of the present paper. More concretely, we relate the existence of
such incongruent states to non-trivial lower bounds for the variance of the difference of
ground state energies, which we relate in turn to the presence and extent of edge disorder
chaos.

1 In the SK model, unlike in the EA model, edge and spin overlaps are trivially related.
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1.1. Background. Consider a finite subset� ⊂ Z
d ;� is considered to be a cube centered

at the origin with side-length L so that |�| = Ld . The set of nearest-neighbor edges
{x, y} with |x − y| = 1 and x, y ∈ � is denoted by �∗. We denote the couplings on
(Zd)∗, the set of all nearest-neighbor edges of Zd , by J = (Jxy, {x, y} ∈ (Zd)∗). We
suppose that the couplings are independent and identically distributed Gaussian random
variable with mean 0 and variance 1. The distribution of J is denoted by ν.

The EA Hamiltonian on � ⊂ Z
d for the disorder J is the Ising-type Hamiltonian

with random couplings J :

H�,J (η) =
∑

{x,y}∈�∗
−Jxyηxηy, (1)

where η ∈ {−1,+1}� is a spin configuration in �.

Definition 1.1. A spin configuration σ ∈ {−1,+1}Zd
is a ground state for the EAHamil-

tonian for the couplings J if for every finite subsetB ofZd the configuration σ restricted
to B minimizes

HB,J (η) +
∑

{x,y}∈∂B
−Jxyηxσy over η ∈ {−1,+1}B, (2)

where ∂B stands for the edges with one vertex x in B and one vertex y in Bc.

The minimizer of (2) is unique ν-a.s. for the boundary condition given by σ in Bc.
The above definition is equivalent to the property that for any finite subset B of Zd

∑

{x,y}∈∂B
Jxyσxσy ≥ 0 . (3)

Consider the edge overlap between σ 1, σ 2 in �:

Q�(σ 1, σ 2) = 1

|�∗|
∑

{x,y}∈�∗
σ 1
x σ 1

y σ 2
x σ 2

y . (4)

Two ground states are said to be incongruent if

lim sup
�→Zd

Q�(σ 1, σ 2) < 1. (5)

In other words, there is a strictly positive fraction of edges in� for which σ 1
x σ 1

y �= σ 2
x σ 2

y .

We write G(J ) ⊂ {−1,+1}Zd
for the set of infinite-volume ground states for the

couplings J . In Sect. 2, we recall the construction of certain measures on G(J ) from
limits of finite-volume ground states with specified boundary conditions. Such ameasure
will be denoted by κJ and referred to as a metastate. From these measures, it is possible
to study three questions:

(i) Is there more than one sub-sequential limit κJ along an infinite sequence of
volumes?

(ii) How many ground states are in the support of κJ ?
(iii) Do there exist two or more incongruent ground states in the support of these

measures?
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To study these questions, we consider the probabilitymeasureP on triples (J, σ 1, σ 2)

where
dP = dν(J )× dκ(1)

J (σ 1)× dκ(2)
J (σ 2), (6)

where κ
(1)
J , κ

(2)
J are two metastates. The measure P samples the disorder J and then two

ground states for that disorder according to κ
(1)
J × κ

(2)
J . Questions (i), (ii), and (iii) were

answered for the half-plane in [6] (see also [5] for general results on the set of ground
states). This paper is mainly concerned with Question (iii) for the model onZd . Question
(iii) is narrower than (i) and (ii) in general, except when periodic boundary conditions
are considered. In that particular case, P is translation-invariant and the existence of a
single edge where σ 1 and σ 2 differ ensures the existence of a positive density of such
edges.

1.2. Main results. It is possible to modify the couplings locally under the measure dP
as follows. First, we redefine P to add an extra independent copy J ′ of the couplings:

dP = dν(J )× dν(J ′)× dκ(1)
J (σ 1)× dκ(2)

J (σ 2). (7)

We consider an interpolation J (t) parametrized by t ≥ 0 where

Jxy(t) = e−t Jxy +
√
1− e−2t J ′xy if {x, y} ∈ �∗, (8)

and Jxy(t) = Jxy if {x, y} /∈ �∗. For each ground state σ 1 and σ 2, we will construct
in Sect. 2 a measurable map t 	→ σ i (t), i = 1, 2, which for each t gives a ground state
for the value of the interpolated couplings at t . (We slightly abuse notation here since
we use σ i for the map as well as for the initial point σ i = σ i (0).) It turns out that the
distribution of the ground states σ i (t) under κ

(i)
J is exactly the one of σ i under κ

(i)
J (t),

cf. Sect. 2.
The first main result of this paper is to establish a lower bound for the variance of the

difference of ground state energies in terms of local coupling modifications.

Theorem 1.2. For all t > 0,

Var
(
H�,J (σ

1)− H�,J (σ
2)

)

≥ 2|�∗|
∫ t

0

⎧
⎨

⎩E

[
1− Q�(σ 1, σ 2)

]
−

∑

i=1,2

(
2 · E[

1− Q�(σ i , σ i (s))
])1/2

⎫
⎬

⎭ e−sds.

(9)

The main interest of this bound is the explicit connection between incongruence,
represented by the first expectation, and disorder chaos, or rather the absence thereof,
represented by the second expectation.

Definition 1.3 (Absence of Disorder Chaos). We say that there is absence of disorder
chaos at scale α, 0 ≤ α ≤ 1, for P, if for any ε > 0 there exist Aε with P(Aε) > 1− ε

and C = C(ε) > 0, such that

Q�(σ i , σ i (t)) > 1− ε on Aε, i = 1, 2,

for all t ≤ C |�|−α and all � large enough.



1022 L.-P. Arguin, C. M. Newman, D. L. Stein

In other words, there is absence of disorder chaos at scale α if with large probability,
the fraction of edges for which σ 1(t) is different from σ 1(0) remains small for t ≤
C |�|−α . Let I be the event that incongruent states exist, that is

I =
{

(J, σ 1, σ 2) : lim sup
�→Zd

Q�(σ 1, σ 2) < 1

}
. (10)

Definition 1.3 and Theorem 1.2 imply:

Corollary 1.4. Let P be as in Eq. (6) with P(I) > 0. If there is absence of disorder
chaos at scale 0 ≤ α ≤ 1, then there exists C > 0 independent of � such that

Var
(
H�,J (σ

1)− H�,J (σ
2)

)
≥ C |�|1−α. (11)

The second main result is a relation between the size of critical droplets and the
absence of disorder chaos as above. Fix an edge b = {x0, y0} in a box �. As a function
of Jb, the ground state is locally constant, cf. Sect. 2. Roughly speaking, according to
(3), the ground state changes as Jb is increased (or decreased) when the energy of the
boundary (which of course passes through b) of some connected cluster of spins first
becomes negative. This connected cluster could be infinite. We write Db for the subset
of vertices of this cluster inside �. We refer to Db as the critical droplet of the edge b
in �. The important quantity is the size of the boundary ∂Db containing the edges at
the boundary with one vertex in Db and one in its complement; see Fig. 2 below for an
illustration.

The next theorem relates the size of critical droplet boundaries to the absence of
disorder chaos.

Theorem 1.5. Let P be as in Eq. (6). Suppose that there exist 0 ≤ γ ≤ 1 and C < ∞
(independent of �) such that with probability one, for all large �,

|∂Db| ≤ C |�|γ for all b ∈ |�∗|. (12)

Then there is absence of disorder chaos for P at every scale α > 2γ .

Remark 1.6. Assumption (12) is a statement about the distribution of the size of the
droplet. Indeed, we have by a union bound that

P(∃b ∈ �∗ : |∂Db| > a) ≤
∑

b∈�∗
P(|∂Db| > a).

Therefore, taking a = a(�), the assumption (12)would be satisfied if the tail distribution
decays fast enough to ensure summability.

Together with Corollary 1.4, this shows that non-trivial bounds on the variance of
the difference of the ground state energies can be obtained by estimating the size of the
critical droplets. Theorem 1.5 is probably far from optimal as it only gives non-trivial
variance bounds for γ < 1/2. It is easy to check that γ = 0 for d = 1, and one might
expect that γ = 0 also for d = 2. More precise estimates combining the geometry of
the droplets and their energy are needed to improve the result—see Remark 4.2. As a
modest first step in this direction, we get that the variance is uniformly bounded away
from zero.

Corollary 1.7. Let P be as in Eq. (6) with P(I) > 0. Then one has for some constant
C > 0 independent of �,

Var
(
H�,J (σ

1)− H�,J (σ
2)

)
≥ C. (13)
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1.3. Relations to other results. Avariance lower bound for the difference of ground state
energies was proved in [8] under the assumption that the average (over the metastate) of
the edge correlation function differs for σ 1 and σ 2. There the variance lower bound was
obtained by an adaptation of the martingale approach of [3]. The corresponding result
at positive temperature was proved in [7]. As in [3], the variance bound in [7,8] is based
on the elementary inequality

Var
(
H�,J (σ

1)− H�,J (σ
2)

)
≥ Var

(
E

[
H�,J (σ

1)− H�,J (σ
2)

∣∣J�
])

. (14)

A non-trivial variance lower bound can then be proved if there is an inherent asymmetry
between σ 1 and σ 2 on average over κ

(1)
J ×κ

(2)
J and over all couplings but the ones in �.

For ferromagnetic models, such as random-field ferromagnets, this is not a problem as
the plus andminus states retain such an asymmetry. In [7,8], the needed asymmetry arose
as a consequence of the assumption of the existence of incongruence in spin glasses. Of
course, this assumption might not hold in general.

A novel approach used in the present paper is to obtain variance lower bounds by
conditioning on the disorder outside �. In effect, we use the asymmetry between in-
congruent states that always exists when the couplings J�c outside � are fixed, and the
ground states (σ 1, σ 2) (always assumed to be incongruent) for this choice of couplings
outside � are also fixed. One can then think of the ground states in � for the boundary
condition σ 1 as a function of J�: J� 	→ σ 1(J�). By conditioning on (J�c , σ 1, σ 2)

instead of J� as in (14), we get that the variance is bounded below by

E

[
Var

(
H�,J (σ

1)− H�,J (σ
2)

∣∣J�c , σ 1, σ 2)]. (15)

It turns out that the couplings J� are independent of (J�c , σ 1, σ 2), and thus remainGaus-
sian, cf. Lemma2.1.Therefore, variance lower bounds canbeobtainedonVar

(
H�,J (σ

1)−
H�,J (σ

2)
∣∣J�c , σ 1, σ 2

)
using Gaussian methods.

When nomagnetic field is present, disorder chaos in themathematical literature often
refers simply to the overlap Q�(σ 1, σ 1(t)) being close to 0 with large probability for
some positive t ; see e.g. [12]. With this definition, absence of disorder chaos means that
Q�(σ 1, σ 1(t)) is bounded away from 0 for t small. For example, for the EA model,
Chatterjee [12] showed absence of disorder chaos in this sense by proving the bound2

E[Q�(σ 1, σ 1(t))] ≥ Cqe−t/(Cq)

for some constant C > 0 and q = 1/(4d2); see [12]. This bound is a priori too weak
to get a good lower bound using Theorem 1.2. This is because it does not preclude that
σ 1(t) has overlap strictly smaller than one with σ 1(0), and thus severely differs from
σ 1(0) for very small t . Absence of disorder chaos (in the above sense) was also proved
for some range of t depending on the size of the system for p-spin spherical spin glasses
by Subag in [34].

In the physics literature, where the concept arose, the definition of disorder chaos
(or the closely related temperature chaos) is slightly more nuanced, in that both occur
only beyond a lengthscale related to the size of the perturbation t [11,16,18]. Our
Definition 1.3 is simply a formalized version of the standard physics definition, with
an emphasis on the scale of disorder chaos represented by the parameter α.

2 The bound is proved in finite volume for fixed boundary conditions, but also holds when the boundary
conditions are sampled from a metastate.
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The central result of this paper is the connection established through Theorem 1.2
and Corollary 1.4 between the scale of edge disorder chaos and the size of fluctuations
in incongruent ground state energies, which in turn has a direct bearing on the possible
presence or absence of incongruence in short-range spin glasses [7,8,33]. A further,
unanticipated relation is established in Theorem 1.5, in which the size of critical droplets
is shown to set the scale of disorder chaos, creating a direct link between the stability
of spin glass ground states (through the size of their critical droplets) and ground state
multiplicity.

Finally, the results proved in this paper shed light on predictions made by the droplet
theory of spin glasses [14–17], based on scaling approaches [10,21], on the absence of
incongruence in short-range spin glasses. This will be taken up in Sect. 5.

1.4. Structure of the paper. The necessary background about measures on ground states
is given in Sect. 2. In Sect. 3, we prove Theorem 1.2 based on standard Gaussian in-
terpolation applied to the conditional variance (15). The proofs of Theorem 1.5 and
those of Corollaries 1.4 and Corollary 1.7 appear in Sect. 4. Finally, Sect. 5 discusses
the connection between the approach developed here and the droplet theory of Fisher &
Huse.

2. Local Modification of Couplings

In this section,wedevelop the necessary framework to address the dependence of infinite-
volume ground states on localmodifications of couplings. This theory of local excitations
is based on a previous construction of the excitation metastate, see [4,6,7,27]. The main
results are Propositions 2.8 and 2.9 which together yield sufficient conditions, in terms
of the size of the critical droplet of a given edge, for a ground state to remain the same
at that edge under local modification of couplings.

Throughout this section and henceforth, we will sometimes use the notation σe =
σxσy for the spin interaction at the edge e = {x, y}. We will also fix the finite box
� ⊂ Z

d , and sometimes omit its dependence in the notation.

2.1. Measures onground states and local excitations. Wefirst construct ameasure on the
set of ground states G(J ) in terms of finite-volume ones. Consider a box Bn = [−n, n]d
on Zd and the EA Hamiltonian on Bn with specified boundary condition ξ

HBn ,J (η) =
∑

e∈B∗n
−Jeηe +

∑

{x,y}∈∂Bn

−Jxyηxξy . (16)

The ground state for this Hamiltonian is the unique ν-a.s. minimizer over all η ∈
{−1,+1}Bn . Its restriction on � can be determined using Definition (1.1). Equivalently,
it can be determined using the difference of energies which extends more easily to in-
finite volume. More precisely, the restriction of the ground state to � is the unique
ν-a.s. configuration η ∈ {−1,+1}� such that

H�,J (η)− H�,J (η
′) + En(η, η′) < 0 ∀η′ �= η, (17)

where

En(η, η′) =
∑

e∈B∗n\�∗
−Je(σ

η
e − ση′

e ) +
∑

{x,y}∈∂Bn

−Jxy(σ
η
x − ση′

y )ξy . (18)
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The variable En(η, η′) is the difference of energies outside � of the states ση, ση′ that
minimizes HBn ,J over the configurations equal to η on �, and similarly for η′. The
advantage of this formulation is two-fold. First, as detailed below, the random variables
En(η, η′), n ≥ 1, as a function of J are tight. Second, the random variables En =(
En(η, η′); η, η′ ∈ {−1,+1}�)

are independent of J�. This is because the restriction to
fixed η cancels out the dependence on J�. These two observations lead to:

Lemma 2.1. Fix � ⊂ Z
d . There exists a subsequence such that the joint distribution of

(J,En) convergesweakly to aprobabilitymeasureon (J, E)where E = (
E(η, η′); η, η′ ∈

{−1, 1}�)
with the properties:

• Boundedness: For every η, η′

E(η, η′) ≤
∑

e∈∂�

2|Je| a.s. (19)

• Linear relations: E(η, η) = 0 for every η, and for every η, η′, η′′,

E(η, η′′) = E(η, η′) + E(η′, η′′) a.s. (20)

• Independence: Write J = (J�, J�c ) where J� = (Je, e ∈ �∗). Then the pair
(J�c , E) is independent of J�.

Proof. The tightness of the random variables (En, n ∈ N) follows from the inequality

En(η, η′) ≤
∑

e∈∂�

2|Je|. (21)

This is because

HBn ,J (σ
η)− HBn ,J (σ

η′) ≤ H�,J (η)− H�,J (η
′) +

∑

e∈∂�

2|Je| ,

where the inequality is obtained by replacing σ
η
x for x ∈ �c by σ

η′
x in the difference

of energies (17) and (18), which increases the energy by definition of ση. The tightness
of the pair (J, En) directly follows since the J ’s are IID. Equation (19) is also straight-
forward from Eq. (21) at finite n. The linear relations are satisfied for every En and
therefore extend to the weak limits. The same holds for the independence with J�. ��

Since we are interested in incongruent states, only the values ηe = ηxηy on edges e
matter. With this in mind we consider the collection E = (

E(η, η′); η, η′
)
as indexed by

elements η, η′ ∈ {−1,+1}�∗ where ηe = ηxηy . Of course, if two spin configurations are
equal up to a global spin flip, then they correspond to the same element in {−1,+1}�∗ .
We then choose as a representative the one with smaller energy E ; that is, we pick η if
E(η, η′) < 0 and η′ if E(η, η′) > 0. In the case where E(η, η′) = 0, which happens for
examplewhen periodic boundary conditions are considered, the η’s are simply identified.

We write κJ�c (dE) for the conditional distribution of E given J , highlighting the
independence from J�, constructed fromLemma 2.1. The variable E retains the relevant
information on the boundary condition to determine the ground state in the box � (up
to a global spin flip). Given E, the ground state in � can be determined uniquely as a
function of J� as in (17) among all configuration in {−1, 1}�∗ , assuming there are no
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non-trivial degeneracies. These degeneracies will occur, for a given E sampled from
κJ�c , on the critical set given by the union of hyperplanes

C = C(E) =
⋃

η �=η′

{
J� ∈ R

�∗ :
∑

e∈�∗
Je(ηe − η′e) = E(η, η′)

}
. (22)

The union is over distinct η, η′ ∈ {−1,+1}�∗ . We refer to each hyperplane defining
the critical set as a critical hyperplane. We work out the details of the cases where �

contains one and two edges in Remark 2.5 below.
On the complement of the critical sets, it is possible to order the spin configurations

in � (up to spin flips) in decreasing order of their energies. In particular, it is possible
to determine the ground state.

Proposition 2.2. For a given E with the property (20) and J� ∈ R
�∗\C, there is a

well-defined ordering η(1) ≺ η(2) ≺ . . . of the elements of {−1,+1}�∗ given by

η ≺ η′ ⇐⇒ E(η, η′) + H�,J (η)− H�,J (η
′) < 0. (23)

The critical set corresponds to the value of J� for which η(i) = η( j) for some pair
i �= j .

Proof. As a reference point, take η0 ∈ with η0e = +1 for all e ∈ �∗. If J� /∈ C, there
exists a unique η that minimizes the difference of energy

E(η, η0) + H�,J (η)− H�,J (η0).

Indeed, if η′ �= ηwas also aminimizer wewould have by the linearity (20) that E(η, η′)+
H�,J (η)− H�,J (η

′) = 0 contradicting the fact that J� is not in C. Denote this unique
minimizer byη(1).Wedefineη(2) as theminimizer of the difference of energy E(η, η(1))+
H�,J�(η) − H�,J�(η(1)) over η’s not equal to η(1). By construction this difference
of energy is strictly positive. Again η(2) is uniquely defined by linearity. The whole
sequence η( j) is constructed this way until {−1,+1}�∗ is exhausted. The relation η ≺ η′
is straightforward from construction. ��

Theordering introduced abovedefines three importantmaps fromR
�∗\C to {−1, 1}�∗

which allow the study of excitations as a local function of the couplings. The ground
state map is the map

σ(·) : R�∗\C → {−1,+1}�∗

J� 	→ σ(J�) = η(1)
(24)

where σ(J�) is η(1) in the ordering at J� given by Proposition 2.2. For a given edge
b ∈ {−1,+1}�∗ , we define the excitation map at the edge b as

σ +,b(·) : R�∗\C → {−1,+1}�∗

J� 	→ σ +,b(J�)
(25)

where σ +,b(J�) ≺ η for all η �= σ +,b(J�) with ηb = +1. In words, σ +,b(J�) is the
configuration of smallest energy with the restriction that ηb = +1. The map σ−,b(·)
is defined similarly, but restricting to η’s with ηb = −1. Note that we evidently have
σ(J�) = σ +,b(J�) or σ(J�) = σ−,b(J�).

The precise definition of κJ (dσ) appearing in Eq. (6) can now be given. We use the
same notation for both the measure on E and σ as they are directly related.
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Definition 2.3. The probability measure κJ (dσ) on infinite-volume ground states re-
stricted to � is the distribution of σ(J�) as defined in (24) under κJ�c (dE).

Remark 2.4. It is not hard to check that the definition of κJ (dσ) is equivalent to taking
weak limits of the distribution of the ground states (up to a spin flip) of HBn ,J given in
(16) as a probability measures on {−1,+1}�∗ . The construction in Lemma 2.1 has the
disadvantage of having the dependence on J� implicit in σ , which makes impossible to
study the local modification of the couplings. The advantage of working with E is that
the dependence on J� appears solely in the Hamiltonian in � as in (23). This property
is sometimes referred to as coupling covariance, see e.g. [8].

Remark 2.5. The simplest cases of excitation metastates where � contains one and two
edges were worked out in [27] and [6] respectively. We briefly recall these examples
here to illustrate the general theory.

Case of one edge. Consider� = {x, y}where x, y are nearest-neighbor vertices with
b = {x, y}. We have that ηb = +1 or −1. The collection E of energies has four values
E(+,−), 0, 0 and E(−,+) = −E(+,−). The critical set is defined by a single equation:

2Jb = E(+,−),

and consists of the critical value Cb = E(+,−)/2. Note that Cb is independent of Jb by
Lemma 2.1. The ground state σ(Jb) at the edge b is +1 for Jb > Cb and−1 for Jb < Cb.
The flexibility of the edge b, defined in (27) below, is the function Fb(Jb) giving the
energy difference between σ +,b and σ−,b in absolute value. Here it is simply

Fb(Jb) = |2Jb − E(+,−)| = 2|Jb − Cb|.
Case of two edges. Take � = {x, y, w, z} with edges b = {x, y} and e = {w, z}.

In this case, the configuration η takes values in {++;+−;−+;−−} where we write the
configuration at b first and at e second. The critical set is defined by six equations

2Jb = E(++;−+) 2Jb = E(+−;−−)

2Je = E(++;+−) 2Je = E(−+,−−)

2(Jb + Je) = E(++,−−) 2(Jb − Je) = E(+−;−+).

(26)

There are three possible scenarios: E(++,−+) > E(+−;−−), E(++,−+) =
E(+−;−−), E(++,−+) < E(+−;−−). We look at the first case. It is depicted in
Fig. 1 in the (Jb, Je)-plane. Note that by linearity (20) the inequality implies also
E(++;+−) > E(−+;−−) by adding E(−+,+−) on both sides. The equations (26)
define sixteen regions where the ordering of the η’s (in terms of the energy differences)
is non-degenerate. (Not all twenty-four orderings of the four states are possible, since
some are precluded by the energies.)

We now focus on the degeneracy of the ground state. This happens at points (Jb, Je)
where the energy difference between σ +,b(Jb, Je) and σ−,b(Jb, Je), or between σ +,e

(Jb, Je) and σ−,e(Jb, Je), is zero. We treat the first case. The state σ +,b(Jb, Je) can be
either (++) or (+−), and σ−,b(Jb, Je) can be either (−+) or (−−). The energy difference
between each is

E(++;+−)− 2Je E(−+;−−)− 2Je.

Both are negative for Je large enough, showing that we must have σ +,b(Jb, Je) =
(++) and σ−,b(Jb, Je) = (−+). The same way we have σ +,b(Jb, Je) = (+−) and
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Jb

Je
E (++ ,− +)

2
E (+ − ,−− )

2

E (− + ,−− )
2

E (++ ,+ − )
2

E (++ ,+ − )
2 = Jb + Je

E (+ − ,− +)
2 = Jb − Je

(+ +)

(– –)

(+ –)

(– +)

Fig. 1. An illustration of the critical set for two edges b and e in the (Jb, Je)-plane. The dotted lines are the
lines where the energy difference between two states is zero. The bold lines represent a degeneracy of the
ground state. They delimit four regions where the ground state is non-degenerate

σ−,b(Jb, Je) = (−−) for Je small enough.We conclude that the ground state degeneracy
occurs at Jb = E(++;−+)/2 for Je large enough, and at Jb = E(+−;−−)/2 for Je
small enough. There is also a middle region where the degeneracy occurs between (+−)

and (−+) at Jb = Je + E(+−;−+)/2.

2.2. Critical droplets and flexibilities. Now that we can control the ground state as a
function of J�, we can study how the ground state at given edge b depends on the
couplings in �. The ground state configuration at b is +1 if σ +,b(J�) is the ground
state and −1 if σ−,b(J�) is the ground state. The difference of energies between the
two determines the correct value. Changes in the ground state occur when this energy
difference is zero. With this in mind, we consider the absolute value of the difference of
energies or flexibility of the edge b introduced in [26]:

Fb(J�) =
∣∣∣∣∣−

∑

e∈�∗
Je

(
σ +,b
e (J�)− σ−,b

e (J�)
)
+ E(σ +,b(J�), σ−,b(J�))

∣∣∣∣∣ . (27)

The flexibility Fb is a map that measures the sensitivity of the ground state at the edge
b as a function of the couplings, as highlighted in Proposition 2.8. The terms in the first
sum are only non-zero on the edges of the boundary of the critical droplet of the edge b
in � at J� ∈ R

�∗\C, defined to be the set

∂Db(J�) = {e ∈ �∗ : σ +,b
e (J�) �= σ−,b

e (J�)}. (28)

The following lemma is important to control the stability of the ground states as
couplings are modified. It shows that the flexibility uniquely extends to a continuous
map on R�∗ .
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b

Fig. 2. An illustration of the critical droplet of an edge b (in gray) and its boundary in �. The vertices in the
box � are black. The edges in ∂Db(J�) are the ones in �∗ that cross the boundary of the droplet

Lemma 2.6. For every edge b ∈ �∗, the map J� 	→ Fb(J�) on R
�∗\C is a piecewise

affine function with

∂Fb
∂ Je

(J�) =
{
2σe(J�) if e ∈ ∂Db(J�)

0 otherwise.
(29)

Furthermore, the map extends uniquely to a continuous function on R�∗ .

Proof. Consider J� ∈ R
�∗\C. By the definition of σ(J�) and the fact that R�∗\C is

open, we have that the map σ(·) is constant in a neighborhood V = V (J�) of J�, and so
are σ +,b(·) and σ−,b(·). Write σ , σ +, σ− for the respective values in V . Suppose without
loss of generality, that σ = σ +. The critical droplet boundary ∂Db is also constant on
V . The flexibility of the edge b on V takes the form

Fb(y) =
∑

e∈∂Db

2yeσe − E(σ +, σ−), y ∈ V .

Therefore, the derivative in the ye-direction equals 2σe if e ∈ ∂Db and is 0 otherwise
as claimed. The fact that Fb is a piecewise affine function on R

�∗\C follows from the
form of the derivatives and the fact that σ is piecewise constant.

It remains to prove the extension to a unique continuous function. Take J� ∈ C. By
the same reasoning as above, the function Fb is well-defined and continuous at J� unless
there are degeneracies in the definition of σ +,b(J�) or σ−,b(J�). This happens if there
are more than one minimizer for the difference of energy (23) among the configurations
with +1 at the edge b, and the ones with −1 at the edge b.

Suppose there is exactly one degeneracy for the minimizer σ +,b at J�. This means
that at J� there are configurations η+ and η̃+ such that

∑

e∈�∗
Je(η

+
e − η̃+e ) = E(η+, η̃+). (30)
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In particular, this means that J� sits on the hyperplane defined by η+, η̃+. Note that on
this hyperplane the expressions for the flexibility in (27) for η+ and η̃+ agree since by
(20) and by (30)

−
∑

e∈�∗
Je(η

+
e − η−e ) + E(η+, η−)

= −
∑

e∈�∗
Je(η̃

+
e − η−e ) + E(η̃+, η−)−

∑

e∈�∗
Je(η

+
e − η̃+e ) + E(η+, η̃+)

= −
∑

e∈�∗
Je(η̃

+
e − η−e ) + E(η̃+, η−).

(31)

This implies that the choice of representative for σ +,b on the hyperplane is irrelevant as
far as the flexibility is concerned. Therefore the flexibility extends continuously on the
hyperplane.

Now suppose that there is more than one degeneracy for σ +,b or for σ−,b at J�.
Without loss of generality suppose that there are m configurations η1, . . . , ηm with +1
at the edge b with the same energy difference. (The reasoning for degeneracies for the
−1 excitation is the same.) Then by definition this is the same as having the relations

∑

e∈�∗
Je(η

i
e − η

j
e ) = E(ηi , η j ) for all i, j ≤ m. (32)

In other words, J� lies at the intersection of the hyperplanes defined by the ηi ’s. On each
hyperplane, the flexibility is well-defined and continuous as shown above. Moreover,
the same reasoning as in (31) shows that these definitions must agree on the intersection
by the relations (32). This concludes the proof of the lemma. ��

We now study the stability of ground states as couplings in � are varied. For this, we
fix J�, J ′� ∈ R

�∗ and consider the curve given by the non-linear interpolation

J�(t) = e−t J� +
√
1− e−2t J ′�, t ≥ 0. (33)

Lemma 2.7. Consider the curve J�(t), t ≥ 0 defined in (33). The number of t’s such
that J�(t) is in the critical set is smaller than 4|�∗|.

Proof. A given critical hyperplane is determined by a point y = (ye, e ∈ �∗) on the
hyperplane and a vector v = (ve, e ∈ �∗) orthogonal to it. If J�(t) intersects the
hyperplane at t , then t must satisfy the equation

∑

e∈�∗
ve Je(t) = ve ye.

By writing the expression for Je(t), this yields an equation of the following form for t :

ae−t + b
√
1− e−2t = c,

where a, b, c depend on J�, J ′�, v, y. This equation has at most two solutions. Since
there are at most 2�∗ · 2�∗−1 hyperplanes, we obtain the claimed bound. ��
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For given endpoints (J�, J ′�) for the curve (33), we write Fb(t) = Fb(J�(t)),
σ±,b(J�(t)) = σ±,b(t), and σ(J�(t)) = σ(t) for simplicity. The following result
gives a criterion for the stability of the ground state at an edge in terms of its flexibility.
In short, the ground state remains the same as the couplings in � are varied as long as
the flexibility is not 0.

Proposition 2.8. Consider b ∈ �∗ and the curve t 	→ J�(t) defined in (33). For ν-
almost all (J�, J ′�), we have the following implication:

if Fb(s) > 0 ∀0 ≤ s ≤ t , then σb(s) = σb(0), ∀0 ≤ s ≤ t.

Proof. First, observe that since the curve J�(t) intersects C finitely many times by
Lemma 2.7, the limits limt↓t0 σ(t) and limt↑t0 σ(t) must be well-defined. Suppose there
exists t0 > 0 such that limt↓t0 σb(t) = +1 and limt↑t0 σb(t) = −1 (or vice-versa).
Then t0 must belong to C. Denote the two limits limt↓t0 σ(t) and limt↑t0 σ(t) by σ +

and σ− respectively. The excitations σ +,b and σ−,b might be degenerate at t0. But by
the continuity proved in Lemma 2.6, the flexibility is independent of the choice of the
representatives for σ +,b and σ−,b. We pick σ + and σ− for representatives. This means
that the flexibility at t0 can be written in two ways using σ + and σ−:

E(σ +, σ−)−
∑

e

Je(t0)(σ
+
e − σ−e ) = lim

t↑t0
Fb(t) = lim

t↓t0
Fb(t)

= E(σ−, σ +)−
∑

e

Je(t0)(σ
−
e − σ +

e ) .

Since one is the negative of the other (note that E(η, η′) = −E(η′, η) by (20)), we
conclude that Fb(t0) = 0 as claimed. ��
Proposition 2.9. Consider b ∈ �∗ and the curve s 	→ J�(s) defined in (33). We have
for all 0 ≤ t ≤ 1 that

∣∣Fb(t)− Fb(0)
∣∣ ≤ 6

√
t · max

e∈�∗(|Je| ∨ |J
′
e|) ·max

s≤t |∂Db(s)| .
Proof. Let K be the number of critical hyperplanes crossed by J�(s) before time t .
By Lemma 2.7, this number is less than 4|�∗|. Moreover, if we denote by tk , k ≤ K ,
the values at which the curve intersects C, we must have that it intersects exactly one
hyperplane almost surely by the same lemma. This means that the maps s 	→ σ(s) and
s 	→ σ±,b(s) (and in particular the critical dropletDb(s)) are well-defined and constant
on each interval (tk, tk+1). By the continuity of the flexibility in Lemma 2.6, it is therefore
possible to expand Fb(t) as follows

Fb(t)− Fb(0) =
∑

k:tk<t

∫ tk+1∧t

tk
∇Fb(s) · dJ�

ds
(s)ds

=
∑

k:tk<t

∑

e∈∂Db(k)

2σe(k){Je(tk+1 ∧ t)− Je(tk)},
(34)

where we used the gradient in Lemma 2.6. The notation ∂Db(k) stands for ∂Db(s)when
s ∈ (tk, tk+1), and similarly for σe(k). Note that

|Je(tk+1)− Je(tk)| = |Je|(e−tk − e−tk+1) + |J ′e|(
√
1− e−2tk+1 −

√
1− e−2tk )

≤ max
e∈�∗(|Je| ∨ |J

′
e|) ·

(
e−tk − e−tk+1 +

√
1− e−2tk+1 −

√
1− e−2tk

)
.
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Putting this estimate back in (34) yields

|Fb(t)− Fb(0)| ≤ 2 max
e∈�∗(|Je| ∨ |J

′
e|) ·max

s≤t |∂Db(s)| · (1− e−t +
√
1− e−2t ).

The final estimate follows from the fact that 1− e−x ≤ x for x ≥ 0, and t +
√
2t ≤ 3

√
t

for 0 ≤ t ≤ 1. ��

3. A Variance Bound for Gaussian Couplings

In this section, we prove variance bounds using the local modification of couplings
described in Sect. 2. The main result is the proof of Theorem 1.2 relating the existence
of incongruent states and disorder chaos. The following result is standard, see e.g. [1,12].
We prove it for completeness.

Lemma 3.1. Let Y = (Yi , i ≤ n) and Y ′ = (Y ′i , i ≤ n) be two independent copies
of an n-dimensional Gaussian vector. Consider h : Rn → R in C2(Rn) with bounded
derivatives. We have

Var(h(Y )) =
∫ ∞

0

∑

i≤n
E [∂i h(Y ) · ∂i h(Y (s))] e−sds , (35)

where Y (s) = e−sY +
√
1− e−2sY ′. In particular, for any t ≥ 0,

Var(h(X)) ≥
∫ t

0

∑

i≤n
E [∂i h(Y ) · ∂i h(Y (s))] e−sds. (36)

Proof. Consider the (2n)-dimensional Gaussian vector X (t) = e−t (Y,Y ) +
√
1− e−2t

(Y ′,Y ′′) where Y ′′ is yet another independent copy of Y . Write XA = XA(s) =
e−sY +

√
1− e−2sY ′ for the first n components of X (t), and XB = XB(s) = e−sY +√

1− e−2sY ′′ for the n last. It is clear that

Var(h(X)) =
∫ ∞

0
− d

ds
E[h(XA)h(XB)]ds. (37)

Gaussian integration by parts implies that for a function g : R2n → R of moderate
growth and two independent, but not identically distributed, 2n-dimensional vectors Z
and Z ′,

d

du
E[g(Z(u))] = 1

2

2n∑

i, j=1

(
E[Zi Z j ] − E[Z ′i Z ′j ]

)
E[∂i∂ j g(Z(u))],

for Z(u) = √uZ +
√
1− uZ ′, see e.g. [1]. We apply this with Z = (Y,Y ), Z ′ =

(Y ′,Y ′′) and g(Z(u)) = h(
√
uY +

√
1− uY ′) · h(

√
uY +

√
1− uY ′′). In this instance,

by independence, we haveE[Zi Z j ] = E[Z ′i Z ′j ] = 0 unless i = j , i = j +n or j = i +n.
The case i = j gives E[Zi Z j ] − E[Z ′i Z ′j ] = 0 so only the two others gives a non-zero
contribution with E[Zi Z j ] − E[Z ′i Z ′j ] = E[Zi Z j ] = 1. The derivatives in both cases
i = j + n and j = i + n are

E[∂i∂ j g(Z(u))] = E[∂i h(XA) · ∂ j h(XB)].
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Putting this back in (37) with u = e−2s yields

Var(h(X)) =
∫ ∞

0

∑

i≤n
E[∂i h(XA) · ∂i h(XB)] 2e−2sds

since d
du = −2e−2s d

ds . Observe that the joint distribution of (XA, XB) is the same as
(Y,Y (t)). The first claim then follows by the change of variable s → 2s. The second
claim is straightforward from the fact that the termE[∂i h(XA)·∂i h(XB)] is non-negative
as can be seen by conditioning on Y . ��

Recall the definition of the ground state map (24). As given in Definition 2.3, the
variance of H�,J (σ

1)− H�,J (σ
2) under dP = dν(J )× dν(J ′)× dκ1

J (σ
1)× dκ2

J (σ
2)

is equal to the variance of H�,J (σ
1(J�))− H�,J (σ

2(J�)) under the measure

dP = dν(J )× dν(J ′)× dκ1
J�c (E

1)× dκ2
J�c (E

2). (38)

We consider J�(t) as in Eq. (33), and σ(J�(t)) = σ(t) for short.

Lemma 3.2. Consider � ⊂ Z
d finite. We have for every t ≥ 0,

Var
(
H�,J (σ

1(0))− H�,J (σ
2(0))

)

≥
∫ t

0

∑

b∈�∗
E

[(
σ 1
b (s)− σ 2

b (s)
) · (σ 1

b (0)− σ 2
b (0)

)]
e−sds. (39)

Proof. By conditioning on (J�c , E) we get by the conditional variance formula

Var
(
H�,J (σ

1(J�))− H�,J (σ
2(J�))

)

≥ E

[
Var

(
H�,J (σ

1(J�))− H�,J (σ
2(J�))

∣∣∣J�c , E1, E2
)]

.

The distribution of J� conditioned on (J�c , E
1, E2) remains IID Gaussian by the in-

dependence in Lemma 2.1. We apply Lemma 3.1 with Y = J� and Y (t) = J�(t). To
compute the derivatives, we used Proposition 2.2 and the definition of the ground state
map (24). Since the ground state σ(J�) is constant and well-defined on a set of full
measure, the derivative ∂Jbσ

1
e (J�) is 0 ν-a.s. for every edge e. Therefore we have

∂

∂ Jb
{H�,J (σ

1(J�))− H�,J (σ
2(J�))} = −(σ 1

b (J�)− σ 2
b (J�)) ν − a.s.

We conclude that

E

[
Var

(
H�,J (σ

1(J�))− H�,J (σ
2(J�))

∣∣∣J�c , E1, E2
)]

=
∑

b∈�∗

∫ ∞

0
E

[
(σ 1

b (J�)− σ 2
b (J�))(σ 1

b (J�(s))− σ 2
b (J�(s))

]
e−sds.

The lower bound restricted t ≥ 0 follows from (36). The restriction to one edge b holds
for the same reason since the integrand is positive. ��
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Proof of Theorem 1.2. The theorem is an elementary consequence of Lemma 3.2. First
observe that the quantity

(
2− 2Q�(σ, σ ′)

)1/2 = 1

|�∗|1/2
(

∑

b∈�∗
(σb − σ ′b)2

)1/2

=: ‖σ − σ ′‖

satisfies the triangle inequality. In particular, we have

‖σ − σ ′‖ ≥
∣∣∣‖σ − σ ′′‖ − ‖σ ′ − σ ′′‖

∣∣∣ . (40)

This inequality implies

Q�(σ, σ ′)− Q�(σ ′, σ ′′) = 1− Q�(σ ′, σ ′′)− 1 + Q�(σ, σ ′)

≥ 1

2

(∣∣∣‖σ − σ ′‖ − ‖σ − σ ′′‖
∣∣∣
)2 − 1

2
‖σ − σ ′‖2

= 1

2
‖σ − σ ′′‖2 − ‖σ − σ ′‖‖σ − σ ′′‖

≥ 1

2
‖σ − σ ′′‖2 − 2‖σ − σ ′‖,

since ‖σ − σ ′′‖ ≤ 2. We apply this inequality to σ = σ 1(0), σ ′ = σ 1(s), σ ′′ = σ 2(0)
(and again with 1 replaced by 2) to rewrite the integrand in (39) as

|�∗| · E
[
‖σ 1(0)− σ 2(0)‖2 − 2

∑

i=1,2
‖σ i (0)− σ i (s)‖

]
.

By putting this back in (39), we have

1

|�∗|Var
(
H�,J (σ

1(J�))− H�,J (σ
2(J�))

)

≥
∫ t

0

⎧
⎨

⎩2E
[
1− Q�(σ 1(0), σ 2(0))

]
− 2
√
2

∑

i=1,2
E

[(
1− Q�(σ i (0), σ i (s))

)1/2]
⎫
⎬

⎭ e−sds.

The claim follows by applying Jensen’s inequality to the second term. ��

4. Disorder Chaos and Critical Droplets

We start by establishing Corollary 1.4 as an elementary consequence of Theorem 1.2.

Proof of Corollary 1.4. On one hand, by definition of disorder chaos at scale α, we have
that for every ε > 0 there is C(ε) > 0 and Aε with P(Aε) > 1 − ε such that for every
t ≤ C |�|−α and � large enough

E
[
1− Q�(σ 1, σ 1(t))

] = E
[
1− Q�(σ 1, σ 1(t)); Aε

]

+E
[
1− Q�(σ 1, σ 1(t)); Ac

ε

] ≤ ε(1− ε) + 2ε. (41)
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On the other hand, if there exist incongruent states with positive P-probability, we must
have by Fatou’s lemma

lim inf
�→Zd

E

[
1− Q�(σ 1(0), σ 2(0))

]
≥ 1− E

[
lim sup
�→Zd

Q�(σ 1(0), σ 2(0))
]

> 0. (42)

The result follows from Theorem 1.2 by taking ε small enough and � large enough so
that the right-hand side of Eq. (9) is strictly greater than 0 uniformly for s ≤ C |�|−α .

��
To prove Theorem 1.5, we need the existence of many edges on which a given ground

state is not too sensitive. Since the statements of Theorem 1.5 involve only one replica
σ 1, we set for the rest of this section

dP = dν(J )× dν(J ′)× dκJ�c (E).

Lemma 4.1. For any ε > 0, there exists δ = δ(ε) (independent of �) and a subset Bε

of (J, E) with P(Bε) > 1− ε such that on Bε

#{b ∈ �∗ : |Fb(J�)| > δ} > (1− ε)|�∗| .
Proof. Since #{b ∈ �∗ : |Fb(J�)| > δ} = |�∗|−#{b ∈ �∗ : |Fb(J�)| ≤ δ}, it suffices
to show that for given ε > 0 there is a δ small enough such that

P
(
#{b ∈ �∗ : |Fb(J�)| ≤ δ} > ε|�∗|) < ε.

Markov’s inequality implies that

P
(
#{b ∈ �∗ : |Fb(J�)| ≤ δ} > ε|�∗|) ≤ 1

ε|�∗|E[#{b ∈ �∗ : |Fb(J�)| ≤ δ}]

= 1

ε|�∗|
∑

b∈�∗
P(|Fb(J�)| ≤ δ).

We show that P(|Fb(J�)| ≤ δ}) < cδ (uniformly on the edges b) for some c > 0.
The claim then follows by taking δ = ε2/c. The key observation is that conditioned on
(J�c , E), the states σ±,b(J�) are independent of Jb. This is because the contribution of
Jb in the difference of energies on the right side of (23) cancels when we restrict to η’s
with ηb = +1 (or ηb = −1). In particular, this means that we can write the flexibility
(27) as

Fb(J�) = 2|Jb − Cb|,
where Cb is a measurable function that only depends on E and (Je; e ∈ �∗, e �=
b), see also Remark 2.5. Therefore, the variable Jb is independent of Cb under P (by
independence in Lemma 2.1), and has the standard Gaussian distribution. This implies

P(|Fb(J�)| ≤ δ}) = P(|Jb − Cb| ≤ δ) ≤ P(|Jb| ≤ δ). (43)

It remains to observe that ν{|Jb| ≤ δ} ≤ 2δ/
√
2π to finish the proof. ��

We now have all the ingredients to prove Theorem 1.5.
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Proof of Theorem 1.5. Fix ε > 0. From the definition 1.3, we need to find C = C(ε)

and a subset Aε of (J, J ′, E) with P(Aε) > 1− ε on which

#{b ∈ �∗ : σb(t) = σb(0), ∀t ≤ C |�|−α} > (1− ε)|�∗| .
By Proposition 2.8, this would follow if we find C and Aε on which

#{b ∈ �∗ : Fb(t) > 0, ∀t ≤ C |�|−α} > (1− ε)|�∗| .
We write Bε for the event in Lemma 4.1.

Consider the event B̃ε = {maxe∈�∗(|Je|∨|J ′e|) < C̃
√
log |�|}. A standard argument

using Gaussian estimates shows that there exists C̃ = C̃(ε) large enough such that
P(B̃ε) > 1− ε. We take Aε = Bε ∩ B̃ε. We have by construction P(Aε) > 1−2ε. From
Proposition 2.9 and Eq. (12), it follows that on (1− ε)|�∗| edges

Fb(t) ≥ Fb(0)− 6
√
t · max

e∈�∗(|Je| ∨ |J
′
e|) ·max

s≤t |∂Db(s)| ≥ δ − 6C̃
√
t · √log |�| · C |�|γ .

(44)

Taking α > 2γ , we conclude that Fb(t) > δ/2 for t ≤ (6CC̃δ)−2|�|−α and � large
enough. This completes the proof of the theorem. ��
Remark 4.2. The inequality (44) is far from optimal in general as it does not take into
account the dependence between the droplet Db and the couplings J�, J ′�. The dropletDb is special as it optimizes the energy on its boundary. Here we bounded the value
of the couplings on the boundary in an elementary way by the size of the boundary
times the maximal value of the couplings in the whole box. The factor log |�| we get
from this procedure is one of the reason why we cannot handle the case α = γ . To
improve the result, one would have to develop a better understanding of the delicate
connection between the geometry of the underlying lattice and the extreme statistics of
the couplings.

Similar ideas gives weaker uniform bounds for the variance.

Proof of Corollary 1.7. Note first that the assumption P(I) > 0 implies that there exist
an edge b ∈ �∗ and c > 0 (both independent of �) such that for � large enough
E[1− σ 1

b σ 2
b ] > c. This is because Eq. (42) implies

lim inf
�→Zd

1

|�∗|
∑

b∈�∗
E[1− σ 1

b σ 2
b ] > 0.

In particular, for � large enough we must have
∑

b∈�∗ E[1− σ 1
b σ 2

b ] > c|�∗| for some
c > 0. This implies the claim. Fix such an edge.

We consider the interpolation on this single edge b, that is, we take J�(t) as Je(t) =
e−t Je +

√
1− e−2t J ′e for e = b and Je(t) = Je for e �= b. In this setting, Lemma 3.2

and the same reasoning as in the proof of Theorem 1.2 with Q�(σ 1, σ 2) replaced by
σ 1
b σ 2

b and ‖σ − σ ′‖ by (2− 2σ 2
b σ 2

b )1/2 gives the bound

Var
(
H�,J (σ

1(0))− H�,J (σ
2(0))

)

≥ 2
∫ t

0

⎧
⎨

⎩E

[
1− σ 1

b (0)σ 2
b (0)

]
−√2

∑

i=1,2

(
E

[
1− σ i

b(0)σ
i
b(s)

])1/2
⎫
⎬

⎭ e−sds.
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Proceeding as in (41) (since the first term in the bracket is greater than c independently
of �) it remains to find for any ε > 0 an event Aε and C = C(ε) > 0 such that
P(Aε) > 1− ε, and on Aε

σ 1
b (t) = σ 1

b (0) ∀t ≤ C.

By Proposition 2.8, this holds if Fb(t) > 0 for t ≤ C . We take Aε = Bε ∩ B̃ε for the
events Bε = {Fb(0) > δ} and B̃ε = {(|Jb| ∨ |J ′b|) < C̃}. Recall from Remark 2.5 that
Fb(0) = 2|Jb− Cb| and that Jb is independent of Cb. In particular, we get as in (43) that
P(Bε) > 1 − ε by picking δ small enough. Moreover, C̃ can be taken large enough so
that P(B̃ε) > 1− ε. This implies P(Aε) > 1− 2ε. On this event, we get the same way
as in Proposition 2.9 that

Fb(t) ≥ Fb(0)− 6
√
t · (|Jb| ∨ |J ′b|) ≥ δ − 6C̃

√
t .

It remains to take C = (12C̃δ)−2 to ensure that Fb(t) ≥ δ/2 for t ≤ C thereby proving
the corollary. ��

One might expect the proof to hold by simply dropping all but a single edge in (39).
However, all couplings in � would then be perturbed leading to a worse estimate of the
flexibility in Proposition 2.9.

5. Relations to Scaling Theories

Some of the above results have interesting consequences when combined with non-
rigorous scaling theories of the spin glass phase that have been proposed in the theoretical
physics literature [10,14,16,21]. The scaling-droplet picture is one of several compet-
ing theories attempting to describe the low-temperature thermodynamic properties of the
spin glass phase, and the results presented elsewhere in this paper by themselves neither
favor nor disfavor any of these. However, they do shed additional light on the conse-
quences of some of the assumptions made in the scaling-droplet picture, and these will
be discussed in this section. Because scaling theories represent a non-rigorous approach
(so far) to the study of the spin glass phase, no attempt will bemade atmathematical rigor
in this section (although the conjectures and results will be stated precisely); our goal
is simply to explore what our rigorous results imply for one approach to understanding
finite-dimensional spin glasses.

Before turning to scaling theories, we present a simple bound on the parameter α

introduced in Definition 1.3 that provides a necessary condition for the presence of
incongruence. This relies on an upper bound on fluctuations of (free) energy differences
derived elsewhere but never published [2,25] (however, a statement and proof of the
bound can be found in [33]). The statement of the corresponding theorem is as follows:

Theorem 5.1. (Aizenman–Fisher–Newman–Stein). Let FP be the free energy of the
finite-volume Gibbs state generated by Hamiltonian (1) in a box � of volume Ld using
periodic boundary conditions, and let FAP be that generated using antiperiodic bound-
ary conditions. Let X� = FP − FAP . Then Var(X�) ≤ const. × Ld−1, where Var(·)
denotes the variance over all of the couplings inside the box.

Remark 5.2. Although stated for periodic-antiperiodic boundary conditions, the theorem
applies to any pair of gauge-related boundary conditions, such as two fixed BC’s.
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Theorem 5.1 has been proved only for finite volumes, but it is reasonable to expect
that it applies equally well to free energy fluctuations in finite-volume restrictions of
infinite-volume pure or ground states; i.e., for two pairs of boundary conditions arising
from two putative ground or pure states drawn from the metastate. We therefore propose
the following conjecture:

Conjecture 5.3. The variance bound of Theorem 5.1 extends to Var
(
H�,J (σ

1)

− H�,J (σ
2)

)
of Theorem 1.2; i.e., for any σ 1 and σ 2 chosen as in Theorem 1.2,

Var
(
H�,J (σ

1)− H�,J (σ
2)

)
≤ ALd−1, (45)

where A > 0 is a constant and |�| = Ld.

Because scaling relations are typically expressed in terms of L rather than |�|, the
relation |�| = Ld will be assumed for the remainder of this section.

Corollary 1.4 and Conjecture 5.3 when combined lead immediately to our first result,
which because it relies on a conjecture will be stated as a claim rather than as a corollary:

Claim 5.4. In order for incongruent states to appear in the zero-temperature metastate,
it is necessary that α ≥ 1/d.

Consequently, incongruent states are ruled out if α < 1/d.

5.1. Implications for droplet-scaling theories. Droplet-scaling theories remain one of
the main contenders for the correct description of the spin glass phase in finite dimen-
sions. The primary assumption [14,16] of the droplet picture of Ising spin glasses is
well-known (in what follows, we restrict the discussion to zero temperature): in any
dimension in which the spin glass phase exists, the minimal excitation above the ground
state on length scale L about a fixed point (call it the origin) is a compact droplet of
order Ld coherently flipped spins with an energy cost of Lθ . The (dimension-dependent)
exponent θ originally arose from scaling theories that examined the properties of a disor-
dered zero-temperature fixed point; for any dimension in which a low-temperature spin
glass phase exists, θ > 0. Fisher and Huse (FH) moreover argued that in any dimension,
θ ≤ (d − 1)/2.

There are several possible versions of the droplet-scaling approach. In what follows,
wewill assume the simplest possible version—what can justifiably be called a “minimal”
droplet picture.

To begin, consider all compact, connected clusters of N spins containing the origin
and with Ld ≤ N ≤ (2L)d . Then the droplet theory (at zero temperature) makes the
following assumptions [14,16]:

(i) The distribution ρL(EL) of minimal droplet energies has the scaling form

ρL(EL) ≈ 1

ϒLθe
ρ̃

[
EL

ϒLθe

]
,

where ϒ is constant and of order the standard deviation of the coupling distribu-
tion and ρ̃(0) > 0. In other words, the typical minimal droplet energy is order
Lθe , but there is a probability falling off as L−θe that the minimal droplet energy
is of order one. (The notation θe—“e" for excitation—rather than simply θ is ours
and not FH’s; the reason for this notation will be discussed momentarily.)
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(ii) The surface area of the droplet boundary scales as Lds , where d − 1 < ds < d.3

(Recent simulations of a related quantity in [36], namely the fractal dimension
of the interface induced by switching from periodic to antiperiodic boundary
conditions, find that ds < d for d < 6, and seems to approach d at d = 6.)

(iii) Energy difference fluctuations are governed by a (dimension-dependent) “stiff-
ness exponent” θs (again, our notation, not FH’s), which governs the size of the
free energy fluctuations when one switches from, say, periodic to antiperiodic
boundary conditions in a volume �L . That is, using the notation of Theorem 5.1,

aL2θs ≤ Var(X�) ≤ bL2θs ,

where 0 < a < b < ∞ are constants. In order for a stable spin glass phase to
exist in dimension d, it is necessary that θs > 0.

(iv) Droplet excitation energies scale in the same way as ground state interface ener-
gies; i.e., θs = θe.
This last assumption leads to what we referred to earlier as a “minimal” droplet-
scaling theory, and has been the subject of some debate (see, for example, [18,
20,35]). Additional exponents have been proposed in various places, and in non-
scaling theories there are multiple types of excitations and interfaces with dif-
ferent exponents [20]. However, the version of droplet theory with θs = θe is
the simplest and cleanest, has been shown to hold in some special cases [9], and
corresponds to the original theory as proposed by FH. We therefore adopt it in
what follows, and hereafter set θe = θs = θ .

(v) θ ≤ (d − 1)/2.
At least insofar as this refers to the stiffness exponent, this has been rigorously
proved, as noted above.

After the scaling theories had been introduced, it was quickly noted that they implied
what came to be known as “temperature chaos”, namely a rearrangement on all suffi-
ciently large lengthscales of the pure state correlations upon an infinitesimal change of
temperature [11,16]. This is believed to be closely related to disorder chaos, and the
behavior of the two is expected to be similar; in particular, the exponent governing the
lengthscale beyond which edge and spin overlaps fall to zero is the same in all treatments
of both kinds of spin glass “chaos”.

In analyzing disorder chaos, one begins by considering (see, for example, [18]) a
small perturbation of the couplings of the form

Jxy → J ′xy =
Jxy + ηxy�J
√
1 + (�J )2

(46)

where ηxy is a normally distributed random variable with zero mean and unit variance.
Scaling theory then predicts [11,16,18] that a new ground state will appear outside

of a characteristic length �c that is governed by the various exponents introduced above.
We therefore add this to the above assumptions:

(vi) Upon changing the couplings in the manner (46) above, the ground state rear-
ranges beyond a lengthscale �c governed by

�c(�J ) = �J−1/ξ (47)

3 At first glance it might appear that the condition ds < d is already incompatible with the existence of
incongruent states. However, it is neither a necessary nor sufficient condition for incongruence to be absent.
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where the new exponent ξ = ds/2 − θ . For a system of linear size L , the spin overlap
q obeys the scaling law [18]

〈q(�J, L)〉 = F(L/�c) = F(�J 1/ξ L) (48)

where F(x) ≈ 1 − axξ for x � 1 and F(x) ≈ bx−d/2 for x  1. The edge overlap
behaves similarly.

To express this using our notation, we relate�J in (46) and t in (8). For
√
t < ε � 1

and �J < ε � 1, we have �J = (2t)1/2 + O(ε2). Therefore to order ε2,

�c = t−1/2ξ . (49)

In (49) we rescaled �c by a factor of order one to eliminate a multiplicative constant.
This has no effect on the analysis to follow.

It should be emphasized that Eq. (47) of (vi) is not a separate assumption: it follows
directly from (i) (at least for disorder chaos). For ease of presentation and future refer-
ence, it will be listed along with the assumptions above, but it should be kept in mind
that it is a prediction of scaling theory, not an assumption.

We now turn to a discussion of what the results proved in this paper imply about the
minimal scaling theory described above. One of the central conclusions of the droplet
picture is that the ordered spin glass phase consists of a single pair of spin-reversed
pure states (at T > 0) or ground states (at T = 0) in all dimensions in which a spin
glass phase occurs [15]. The argument against the presence of incongruent states relied
first on the inequality θ ≤ (d − 1)/2, which (at least as far as the spin glass stiffness
is concerned) is no longer in dispute. The second part of the argument relied on a
conjecture that the standard deviation of the energy fluctuations arising from the presence
of incongruent states would scale at least as fast as the square root of the volume,
leading to a contradiction. However, at the time this argument was put forward, there
was little firm support for any sort of lower bound on (free) energy fluctuations arising
from incongruence.4 As a consequence, while it was generally accepted that the droplet
theory leads to a two-state picture, the conclusion has remained mostly conjectural.
(Some authors assert that the droplet picture simply assumes at the outset that there is
only a single pair of ground states [20].)

However, we are now in a position to solidify the argument that the droplet theory
indeed leads to a two-state picture, at least insofar as incongruence is concerned. The
claim we make is the following:

Claim 5.5. If the scaling-droplet theory as defined by Assumptions (i)–(vi) above is
correct, then in any finite dimension the zero-temperature metastate, generated using
coupling-independent boundary conditions, is supported on a single pair of ground
states.

Proof of Claim 5.5. By Definition 1.3, the absence of disorder chaos on scale α means
that

Q�(σ i , σ i (t)) > 1− ε on Aε, i = 1, 2, (50)

4 However, as mentioned in the introduction, recent work by the authors in collaboration with Wehr [7,8]
has proved a lower bound for the variance scaling with the volume for at least certain pairs of incongruent
states.
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for all t ≤ C |�|−α and all� large enough. Using Eq. (49), this leads to the identification

α = 2ξ/d = ds/d − 2θ/d. (51)

In a dimension with a spin glass phase 0 < θ < ds/2, so 0 < α < 1.
Eq. (51) says that the minimal droplet excitation in a volume of linear dimension L

sets the scale for the absence of disorder chaos. Moreover, Corollary 1.4 says that, if
there is ADC at scale α, and σ 1 and σ 2 are incongruent spin configurations in �, then

Var
(
H�,J (σ

1)− H�,J (σ
2)

)
≥ C |�|1−α. (52)

When combined with (51), this becomes

Var
(
H�,J (σ

1)− H�,J (σ
2)

)
≥ CLd−ds+2θ ≥ CL2θ+δ, (53)

where δ(d) ≡ d − ds > 0 using assumption (ii) of the droplet theory.
But by Assumptions (iii) and (iv) of the droplet theory,

Var
(
H�,J (σ

1)− H�,J (σ
2)

)
≤ bL2θ , (54)

leading to a contradiction for sufficiently large L and demonstrating the above claim
that the minimal droplet theory is indeed a two-state theory. ��

It is interesting to note thatwhile the original two-state argument relied on the inequal-
ity θ ≤ (d − 1)/2, this is nowhere used in the above argument; indeed, at least for the
purposes of the argument, θ can be anything at all. The other assumptions of the droplet
theory were all necessary, however. Of particular interest is that the droplet geometry
plays a crucial role in setting the scale of ground state energy difference fluctuations.

5.2. Further relations. We conclude this discussion with an argument that uses no scal-
ing assumptions and arrives at another relation connecting droplet geometries and en-
ergies to the presence or absence of incongruence. In this case, however, the droplets
under consideration are not low-energy excitations above the ground state but rather the
“critical droplets”, introduced above Theorem 1.5, that measure the stability of a given
ground state pair. Consider the critical droplet boundary ∂Db (of energy order one). This
naturally leads to a new exponent d f , defined as |∂Db| = const. Ld f . Then Theorem 1.5
provides the relation α = 2d f /d, and Corollary 1.4 gives the bound

Var
(
H�,J (σ

1)− H�,J (σ
2)

)
≥ const. Ld(1−α) = const. Ld−2d f . (55)

Combining this with (54) then implies that if d f < (d − 2θ)/2, there cannot be in-
congruent ground states. This result bypasses the issue of whether θe = θs; only the
“stiffness” θs enters.
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