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We aim to compute the discrete energy spectrum for two-body scattering in a three-dimensional
box under periodic boundary conditions. The spectrum in the center of mass is obtained by
solving the Schédinger equation in a test potential using the Fourier basis. The focus is on how
to project the spectrum into the various irreducible representations of the symmetry groups of
the box. Four examples are given to show how the infinite-volume spectrum (including both
bound and scattering states) is resolved in cubic or elongated boxes, and in systems with integer
or half-integer total spin. Such a demonstration is a crucial step in relating the discrete spectrum
in the box to the infinite-volume scattering phaseshifts via the Liischer method.

Keywords: Two-body scattering; cubic and elongated boxes; periodic boundary conditions;
Fourier basis; irreducible representations.

1. Introduction

Scattering is an indispensable tool in probing the nature of interactions between two
particles, either in atomic and molecular physics or in nuclear and particle physics.
An effective theoretical method is the use of a finite box to enclose the system under
consideration. The energy of the system is quantized in the box. Scattering resonance
parameters can be extracted from the energy spectrum as a function of the box size.
In the early days, the method was applied mostly to one-dimensional systems and
Dirichlet boundary conditions (for an example see Ref. 1). The breakthrough came in
the seminal work by Liischer® that established exact relations between elastic scat-
tering phaseshifts and the two-body energy spectrum enclosed in a three-dimensional
box with periodic boundary conditions. Such relations (also known as quantization
conditions) are fairly general: it does not matter how the energy spectrum is
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obtained. The method is known as the Liischer method and has been successfully
applied in the field of lattice QCD to obtain resonance parameters in hadron—
hadron scattering in terms of quark—gluon dynamics. In lattice QCD, the energy
is computed from path integrals on a periodic space-time lattice in large-scale Monte-
Carlo simulations. Since then, various extensions to the Liischer method have
been made to widen its applications, including moving frames,® spin-1/2 particles,’
higher partial waves,” asymmetric boxes,” inelastic scattering,®® partial-
wave mixing in Hamiltonian effective theory,'” three-body systems,''"'? and matrix
elements.!?

In numerical simulations in a periodic box, the standard method to obtain
the energy spectrum is to discretize the box L® into a lattice N3a3. To remove
the discretization errors, one takes the continuum limit of ¢ — 0 and L —
while keeping the size L = Na fixed. Here, we present an alternative method
without discretization. We use a Fourier basis to compute the energy spectrum.
We show how to apply group theory to the basis to take full account of the
symmetry of the box. We want the framework to be as pedagogical as possible so
the techniques can be applied to a wider range of problems. We employ both cubic
and elongated boxes. The use of elongated boxes has shown promise in reducing
the cost of lattice QCD simulations.!®!> We consider systems of not only integer
spin, but also half-integer spin which is drawing increasing interest.'® Since the
Liischer method applies regardless of how the interaction energy is obtained in the
box, we use a simple potential model in nonrelativistic quantum mechanics and
focus only on the two-body energy spectrum. To facilitate the application of the
methods we decide to make the entire framework available as a computational
package.?

The presentation is organized as follows. After the infinite-volume spectrum is
introduced in Sec. 2, the discrete energy spectrum is discussed in four sections: spin-0
and cubic box in Sec. 3.1, spin-1/2 and cubic box in Sec. 3.3, spin-0 and elongated
box in Sec. 4.1, spin-1/2 and elongated box in Sec. 4.2. Some technical details are
relegated to the three appendices.

2. Scattering in Infinite Volume

The standard method for two-body scattering in the continuum is to separate it into
the total motion of center of mass (CM) and the relative motion in the CM. In the
CM frame, it is a one-body Schrodinger equation problem

5V V)| tr) = Bt 1)

where = mymy/(m; + my) is the reduced mass, and V(r) a local, energy-inde-
pendent potential.

2The package is written in C++ and Mathematica and can be obtained from the authors upon request.
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Fig. 1. Low-lying energy spectrum allowed by the spin-0 potential in Eq. (2) in the infinite volume for
E < 3 and [ < 5. Bound states are indicated by a minus sign. Resonances are indicated by the center
position and shaded width.

In this study, we consider two cases for the interaction potential. First is the
scattering of two spinless particles (hereafter referred to as the spin-0 system) of
either equal or unequal masses. We work with a dimensionless Hamiltonian H =
—$V2+ V(r) in the unit system # = ¢ = p = 1, with a dimensionless potential and
dimensionless distance T,

V(r) = (Vo + Virt)e 7, (2)

where Vy =4, V; = 1/16, and § = 1/8. This potential has a mixture of bound states
and narrow and wide resonances, suitable for testing purposes. Figure 1 shows the
low-lying energy spectrum admitted by the potential. It has four bound states across
three partial waves, and over 10 resonances with varying widths, in the range £ < 3
and [ < 5. Details on how the states are found are given in Appendix A.

The second case is scattering of a spinless particle and a spin-1/2 particle (here-
after referred to as the spin-1/2 system). The potential now has a spin-orbit coupling
term added to the spin-zero case,

Va(r) = (=Vo+Virt + ¢4 £ s)e’ﬁrz. (3)

We use the same parameters V) =4, V; = 1/16, and § = 1/8 for the central part.
The wavefunction is the eigenstate of {J?,J.,¢?, s?} which we label as |JMY).
In spherical coordinates, it has the form ¥(r) = R,(7)Y (60, &) where ) sy is the
two-component spin spherical harmonics. The total angular momentum is J = ¢ + s.
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For a given partial wave ¢ (except s-wave), there are two possible J values:
Jy = ¢+ 1/2. The spin-orbit coupling in this basis becomes

1
3 £/2 forJ:€+§

o= |JTH) e+ 2| = : (4)
—(t+1)/2 forJ=€—§ (£ #£0).

The potential is diagonal in this basis

V}:H%(r) 0

Viye(r) = 0 Vs : (5)

Thus for each partial wave [, the two states J = £ & % can be treated separately in the
infinite volume. In the finite volume, however, the two remain coupled as in Eq. (3),
as we will see later. The two potentials are

1 2
Viia(r) = (va Vet 24%) e, (©)

/ 1 32
Vimey(r) = (Vo Vit = (04 D ) ™

We see that the effect of the spin-orbit term is to modify the V, value. As £ increases,
the potential V;_,, 1(r) is less and less likely to support bound states and resonances.
On the other hand, the depth of V- 1(r) grows with £ so it is more and more likely
to support bound states and resonances, although this effect is offset by the in-
creasing centrifugal barrier. Plotting these potentials for low-lying values of ¢ for a
variety of ¢, values leads us to conclude that a value of ¢,, on the order of unity
introduces noticeable but not overwhelmingly large changes to the spectrum com-
pared to the spin-zero case. We shall use ¢, = 1.0 for our test.

Figure 2 shows the energy spectrum of this potential in the range F < 3and [ < 7.
The system has seven bound states, two more than the spin-0 system, including a
very shallow state at £ = —0.061. It has about 20 resonances in the given range,
some of them very sharp. Note that two more partial waves are included compared to
the spin-0 case.

Our primary objective is to see how to reproduce these infinite-volume states in a
periodic box.

3. Spectrum in Cubic Box

In infinite-volume (which we also refer to as continuum in this study), the problem is
spherically symmetric. When confined in a cubic box, however, the spherical sym-
metry is broken by the geometry of the box. Furthermore, for scattering states the
energy spectrum is quantized due to the fact that the back-to-back momentum is a
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Fig. 2. (Color online) Low-lying energy spectrum admitted by the spin-1/2 potentials in Eqgs. (6) and (7)
in the infinite volume for F < 3 and ¢ < 7. For a given partial wave ¢, there are two possible J values,
J=10+1/2 (blue) and J = £ —1/2 (red).

multiple of 27/ L where L is the box size. The bound states, on the other hand, should
not be affected too much as long as the box size is bigger than the range of the
interaction potential. The goal here is to obtain the discrete energy spectrum in the
box, and identify bound and scattering states while fully respecting the symmetry of
the box.

3.1. Spin-0 system

We want to solve the Schrodinger equation in a cubic box centered on the origin
with periodic boundary conditions.” In Cartesian coordinates, Eq. (1) takes the
form

B2 [ 52 2 2
[— ﬂ (6372 + 6792 + aZQ> + Vi (z,y, 2)} P(x,y, 2) = Ey(x,y,2), (8)

where the potential becomes periodic

Vi(z,y,2)= > V((z+n,Ly+n,L,z+n.L)). (9)

Ty Ty 10

Visually, the continuous space gets tiled into an infinite number of L3 boxes in
which the potential is replicated. Under this scenario, the potential is no longer

bSince the system is translationally invariant, the results do not depend on where to place the origin.
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rotationally symmetric. Instead, it takes on the symmetry of the box. The wave-
functions satisfy the periodic boundary conditions

Y(x +n,L,y+n,L,z+n,L) =(x,y,2), (10)

for integers (n,,n,,n.). It is important to point out that this form of periodic
boundary condition assumes that the total momentum P = p; + py of the two-
particle system is zero in the rest frame of the box (lab frame). This means that the
particles have equal and opposite momenta (p; = —p, = k) in both the lab and CM
frames (or the two frames coincide). For moving frames (P # 0), a modified
boundary condition is required (see Ref. 3 for example). Solving moving frames is
beyond the scope of this work. We will only consider the rest frame (P = 0).

.2
ﬁ]‘ . For a

The energy and momentum are related by the dispersion relation £ =
free particle in the periodic box, the momentum is quantized as k = 2& {n,, n,} so
the energy is quantized. In the presence of interactions, the dlspers1on relatlon still
holds, but E and k deviate from the free-particle values. It is these deviations that
encode information about the interaction in terms of phaseshifts or scattering
lengths.

There are different ways to obtain the discreet energy spectrum in the cubic box.
We choose to work with a Fourier basis as a variational basis to diagonalize the
Hamiltonian. In one dimension, the basis is given by

2 2mn,x
L fi .=0,1,2,...
ey (UF) -t

2 2
\/;sin( szx> forn, =1,2,3,...

It is an orthonormal and complete basis; any function can be expanded in this basis.
We need its form in three dimensions:

<£L', Y, Z|nmnyn2> - ¢n_,, (ZL’, L)(bny(ya L)¢n; (Za L) (12)

The basis naturally satisfies the periodic boundary conditions specified in Eq. (10).
Expanding the wavefunction in this variational basis,

qu(xaya Z) = Z n,n,/n ¢n (.’E L)QSTI (ya )(,ZSHZ(Z, L)a (13)

leads to the eigenvalue problem in matrix form Hv = Fv where the Hamiltonian
matrix elements are given by the integrals

<£C|’I”Lm> = ¢n_,, (va) = (11)

L/2 L/2 L/2

~L/2 ~L/2 —L/2

x Ho, (x,L)¢,, (v, L), (2, L). (14)

The eigenvalues {E'} are the discrete energies allowed in the box. The eigenvectors
{v} yield the superposition coefficients for the corresponding wavefunctions. In the
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spirit of variational principle, better convergence on the lower part of the spectrum
can be achieved by including more Fourier modes in the basis. In practice, one can
adjust the number of modes to achieve a desired accuracy.

One issue is if the system has bound states, a very large basis (several thousand) is
required to achieve convergence. The reason is that bound states have wavefunctions
which are very localized near the origin. The expansions of such wavefunctions in
terms of the Fourier modes converge very slowly. It takes many Fourier modes to
build up the localized wave functions of the bound states. A solution to this problem
is to include localized states in our basis. We apply the damping factor e=?"* on the
basis functions with the adjustable parameter v to control the damping rate. The
damped Fourier modes are no longer orthogonal so we need to solve a generalized
eigenvalue problem Hv = EBv where B = (y/n}nyn’|yn,n,n.) is the overlap ma-
trix between the basis states. We intend to include a fairly large number of un-
damped basis states (7 = 0) to capture the scattering stationary states. To reproduce
the few bound states, we add a few states with  chosen to match the extent of the
bound states. The damped Fourier modes have the same transformation properties
as the undamped Fourier modes under rotations and reflections, but their presence
breaks the periodic boundary conditions in the undamped Fourier modes. We choose
v to be sufficiently large to ensure that these functions are localized near the origin
and negligible near the box boundaries, so these functions can be made periodic in
the same manner as the potential was made periodic. For the test potentials in this
study, the matrix elements involved are all analytical. Details of their evaluations are
relegated to Appendix C.

3.2. Block diagonalization

We want to apply group theory to diagonalize the Hamiltonian matrix. First we
briefly review the terminology of the cubic symmetry. There are 24 elements for the
cubic box that form the octahedral group O, as depicted in Fig. 3.

Fig. 3. The cubic box is invariant under 24 rotations about the various axes, as explained in the text.
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They are divided into five groups (called conjugacy classes) and are given con-
ventional names: the identity (E); six 7/2 rotations about Cartesian axes (Cj,, Cj,,
C3%); three 7 rotations about Cartesian axes (Cy,, Cyy, Cyy); eight 2m/3 rotations

about body diagonals (C 5,05, C5, 03:'21); and six 7 rotations about axes parallel
to face diagonals (Cy,, Cy;, Cye, Cag, Cse, Cop). The operations are performed in a
right-hand way with the thumb pointing from the center to the various symmetry
points. The O group has five irreducible representations (irreps) named A;, A,, E,
T, T, with respective dimensionality of 1,1, 2, 3, 3. In addition to the rotations, space
inversion (parity) is also a symmetry of the cubic box. The full symmetry group
including parity is called O;, which has 48 elements and 10 irreps AT, Af, B+, T,
TF. Sometimes even and odd parity are represented by German words gerade or
ungerade, respectively. For example, A is Alg, and A7 is Alu, and so on. We use
these two notations interchangeably in the entire package. More details about the
cubic group can be found in our previous work Ref. 7.

In group theory, the rotationally-symmetric continuum is represented by the
SO(3) which has an infinite sequence of 2.J 4 1 irreps (whose basis vectors are
spherical harmonics Yj,,) classifying integer angular momentum J = 0,1,2,3,.... In
the cubic box, however, only 10 possibilities exist for the classification of integer
angular momentum: the 10 irreps of the O), group, shown in Table 1.

A straightforward diagonalization of the Hamiltonian in the Fourier basis yields
eigenstates that are a mixture of the irreps and partial waves. One then has to
disentangle the states as to which irreps they belong with what angular momentum.
For a large basis, the computation becomes both memory and time intensive. A more
efficient approach is to work on the Fourier basis before diagonalization. We need to
construct the Fourier basis vectors (a linear superposition of the Fourier modes
|ngnyn,)) that transform according to the property of the irreps. The Hamiltonian

Table 1. Decomposition of integer angular momentum in
the cubic box according to the irreps of the O}, group. Both
the original decomposition (left) and its inverse (right)
are shown. The number in parentheses indicates the
multiplicity of that J in that irrep.

J Oh O], J
0 Af Af 0,46, ...
1 Tr AT 9,13,15, ...
2 TS @ Bt T 1,3,5(2), ...
3 AT ©Ty T}  4,6,8(2), ...
4 AtoEteTeT, TS 2,4,6(2),.
5 E-®2T] ® Ty Ty 3,5,7(2),.
6 AfeAfeEreT®2ly ET 2,46, ...
E- 5,7,9,
Ay 3,7,9,...
Af 6,10, 12,
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matrix can then be block-diagonalized in the new basis vectors, as illustrated in the
following equation,

irrepl 0 0

0 0

In this manner, the discrete energy spectrum in each irrep sector can be computed
separately in a subspace of the Hamiltonian. The separation can be done by group
theoretical projection operators. To this end, we need to examine how the group
elements of O;, act on our basis states. We first work with the O group which
contains the proper rotations, and add the space inversion separately later for the O,
group. We do not need to examine all 24 elements of the O group. In fact, we only
to need to focus on two generating elements of the O group which we choose as C'},
and C.

For a rotation 7 = R, the quantum operator on the coordinate-space vectors
behaves as R| ) |R7). Hence, (r|R" = (Rr|, and so (r|R = (R~'r|. For a vector

r= xz+y_7+zk the action of (C}.)! = C}. produces a vector —x3+ yg—i— 2k.
Hence, (C}) Ya,y,2) = |y, —z,2) and (z,y,2|C}, = (y, —x, z|. Thus, under C},
we have
<x7yaz|czz|nm,nyan > <ya —$,Z|TLT,TL n > ¢ r( )¢n ( )¢n (Z)
(=1)"¢, ()b, (Y)bn () = (=1)"(z,y, 20y, nyy ),

from which we conclude

(nh,ni,n |C4+Z|nx,ny,nz> = (—1)”«467,,&_,,5/6”;”1;6”/2,,/:. (16)

Yo
Similarly, under C'j, we have

<33, Y, Z|C£J|nw ngﬁ n’z> = <_Zv Y, ‘r|n;lf7 nya nz) = ¢n, (_Z)qbny (y)d)m(‘r)
(_1)711 ¢7zZ (m)¢n,y(y)¢nm (Z) = (_1)”(. <'Ta Y, Z|n27 Ty, Ty >

from which we conclude

<”;a”;’n;|c4+y|nnn n> ( ) 6IL’IL76H/HU§H/7L (17)

Y

We need to consider three types of basis states separately: all three components
are the same, |n, n,n); two components are the same, |n, n, m); all three components
are different, |n, m, k). We seek a matrix representation to handle the three types.
For the first type, we obtain a 1-dimensional representation of the operations,

FlCL] = (-1)", F[Cy)] = (-1)". (18)

For the second type, if we use 1, 2, 3 to represent the three possibilities |n,n, m),
|n,m,n), |m,n,n), respectively, we obtain a three-dimensional matrix
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representation of the operations,

(=" 0 0 0 0 (=™
FIC{]l=1 o0 0 (=1"|, FlC{l=| 0 (=1 0 |. (19)
0 (=)™ 0 (=" 0 0

For the third type, if we use 1, 2, 3, 4, 5, 6 to represent the six possibilities
|k, m,n), |k,n,m), |m, k,n), |m,n, k), n,k,m), |n,m, k), respectively, we obtain a
six-dimensional matrix representation of the operations,

0 (=DF 0 0
0 0 0 0 (=1
Flot] = (=)™ 0 0 0 0
* 0 0 0 0 o (=
0 (-1)" 0 0 0 0
L0 0 0 (-1 0 0 | (20)
T 0 0 0 0 0 (=1)"]
0 0 0 (=)™ 0 0
0 0 0 0 (-1)" 0
i -1 0 0 0 0
0 0 (=)™ 0 0
L(-D* 0 0 0 0 |

Next, to obtain the other elements, we need the multiplication table for the O
group (which can be found in the companion package to save space). The
noncommunicative table reflects the closure property that all group elements
must satisfy. Inspecting this multiplication table, we can deduce the remaining
22 elements from C, and C’Afy via a variety of pathways. We choose the fol-
lowing path way (left to right, then down):

Cyy = ijC’Iy - Oy = ngij — C,,=0/C{ — C.=0,.C/ —
Ci=CiCr— CnL=CLC{— Cy=0,0,— Cf=0,Ci—
C3 :CL,CLH Cyp=C,CL— CLH=0C,CL— C3=C.Ch—
Cp=05C1 — COp=0/0;— C3=C[CL— Cy=0Cy0} —
Cyy = CQICL — Gy = C4+y02z — Oy = C2ZCL; — Oy = CQZCI;/ -

CQf = CQ;UCL - E= CZ.’L'CQan"
(21)

Formally, the O,, group can be obtained from the O group by the direct product
O, = O ® C; where C; is the inversion group C; = {E,i,} where i, is the space
inversion element. Operationally, the elements for the even-parity irreps are obtained
by doubly-extending the 24 elements {R} to {R, R}; while elements for the odd-
parity irreps are obtained by {R, —R}. The action of parity  — —x,y — —y,z —
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—z on our basis states is particularly simple:

<(E, Y, Z|I€|nrv ny7 n2> = <_':C7 Y, _Z‘naza nyv nz> = ¢71,(_x)¢n,/(_y)¢nz(_z)
— (7 1)% +nytn, ¢n_,, (l’) d)ny (y) QS”: (Z)

= (=1 (2, y, 2lng, ny, n2), (22)
from which we conclude

<7’l ’fl nz|I |’I’LT,’I’Ly,7’l > ( 1)71 ey 671'n,6n;/ny6n’:n:' (23)

So we have diagonal representations of dimension 1, 3, and 6, respectively: F[i,] =
(—1)3" = (—1)" for the first type, F[i,] = (—1)>"*™ = (—1)™ for the second type, and
F[i,] = (=1)*™*" for the third type. To obtain the matrix representation for the
operations in the O} group, we doubly extend the original operations F[R] with the
space inversion applied, {F[R], F[i,|F[R]}.

Finally, the basis vectors that transform corresponding to a given row of a given
irrep can be found by a projection operator. For any given state |¢), a state which
resides in row \ of irrep A can be obtained by the projection

d
IAN) = gA SR Ugle), (24)
ReG

where d, is the dimensionality of the irrep A, ¢ is the number of elements in the
symmetry group G, I' is the representation matrix, and Uy is the unitary operator
that affects the symmetry operation R on the state. Note that pu is arbitrary. To see
this, act with Uy on this state:

Ug|AN) = ZFAM ) UcUglp) = Z FM “'GR) Ugglp)
Reg GReG
A) =1k (A
= F&J<G Y lAv) = |Au>FM><G>. (25)
Hence, for a starting basis of states |p,,), one computes the projection matrix
d
Py (m,n) =—= ZFM *FunlR], (26)
Reg

where F,,,,[R] = (¢,,|Ur|p,) denotes the unitary matrix that implements the oper-
ation on the Fourier basis for element R. The columns of Pi(m,n) show the su-
perposition coefficients in terms of the original basis for the states which reside in row
A of irrep A. By taking the transpose, the rows then reveal these superpositions.
Different rows give equivalent basis so we work with just one row. The matrix may
not be full rank, in which case a QR decomposition can be used to obtain an or-
thonormal set of independent basis states. The projector Pi'(m,n) comes in three
types corresponding to the three basis types for the Fourier modes. The basis vectors
thus obtained for the O, group are given in Table 2. The representation matrices

F&?}(R) needed to carry out the projection can be found in Table XIII of Ref. 7
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Table 2.  Orthonormal basis state superpositions that transform according to row 1 of the O,
group in the cubic box. There are three types: all three directions are the same, two the same,
and all three different. In all cases, n # m # k is assumed, and in cases where a state has three
different indices, it should be assumed that k < m < n. These basis states are used in the
block-diagonalization of the Hamiltonian by irreps.

Irrep Projected Fourier basis states as superposition of |n,n,mn.)

At |n,m,n), neven
ﬁﬂnnm) + |n,m,n) + |m,n,n)), n,m even
%(U{, m,n) + |k,n,m) + |m,k,n) + |m,n, k) + |n, k,m) + |n,m, k)), n,m, k even
AT (|k,m,n) — |k,n,m) — |m, k,n) + |m,n, k) + |n, k,m) — |n,m, k), n,m, k odd
AT (|k,m,n) — |k,n,m) — |m, k,n) + |m,n, k) + |n, k,m) — |n,m, k)), n,m, k even
A3 [n,n,n), nodd
%ﬂn,n,m) + [n,m,n) + |m,n,n)), n,m odd

%(Uﬂ, m,n) + |k, n,m) + |m,k,n) + |m,n, k) + |n, k,m) + |n,m, k), n,m, k odd

Sl

Et %ﬂn,m,n) — |m,n,n)), n,m even

%(|kmn> + |k,n,m) — |m, k,n) — |n, k,m)), n,m, k even

ﬁ(\k,m,n) — |k,n,m) — |m, k,n) — 2lm,n, k) + |n, k,m) + 2|n,m, k)), n,m, k even
E- %(ﬂnvnﬂn) = |n,m,n) — [m,n,n)), n,m odd

1(|k,m,n) — |k,n,m) + |m, k,n) — |n, k,m)), n,m, k odd
ﬁ(\k, m,n) + |k, n,m) + |m,k,n) —2lm,n, k) + |n, k,m) — 2|n,m, k)), n,m, k odd
T 12 (lk,m,n) — |k,n,m)), n,m odd, k even
(Im, k,n) — |m,n, k), n,k odd, m even

(In, k,m) — |n,m, k)), n even, m, k odd

SES-S

7 |m,n,n), n even, m odd
(|k,m,n) + |k,n,m)), n,m even, k odd
(Im, k,n) + |m,n, k), n, k even, m odd

(In, k,m) + |n,m, k), n odd, m, k even

Rt

TS |m,n,n), n odd, m even
|k, m,n) + |k,n,m)), n,m odd, k even

[n, k,m) + |n,m, k)), n even, m, k odd
, n,k odd, m even

Ty |k,n,m

)
|m, k,n) + |m,n, k)
)
)

|m, k,n) — |m,n, k), n,k even, m odd

Sk S o S Sk -

) )
) )
|k, m,n) ), n,m even, k odd
) )
) ), n odd, m, k even

[n, k,m) — |n,m, k)

(also in the package). A closer inspection of the table reveals the even—odd symmetry
pairs in the projected Fourier bases: AT <« A5, AT « A, T\ - Ty, Ty < T,
have even and odd switched for all cases of k, m, n. No such obvious symmetry exists
between ET and E~. These relations are used as extra checks of the calculations.
In Fig. 4, we show the energy spectrum (lowest 100 levels) as a function of the box
size (called a stabilization diagram) for all ten irreps. We use the following criteria for
selecting how many projected Fourier basis states in the table (represented by
superpositions of |k,m,n)) to achieve stable results. For individual Fourier modes,
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Fig. 4. (Color online) Energy spectrum for the spin-0 system as a function of the cubic box size L for all 10
irreps of the O, group.
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we use up to k, m,n = 32. For total Fourier modes, we use up to k +m + n = 38.
For the damped modes, we used a damping factor v = 0.5 with individual damped
modes up to 4 and total damped modes up to 4. For example, in the A} channel, we
ended up with four damped basis states (consisting of 10 individual |n,n,n.)
modes), and 307 undamped basis vectors (consisting of 1510 individual |n,n,n.)
modes). The dimension of the H matrix to be diagonalized is 311. For the other
irreps, this size of the H matrix is 146, 146, 235, 504, 374, 605, 707, 705, 609.
Typically, it takes about 10s on my laptop (2014 model Macbook Pro) to obtain all
eigenvalues for a fixed box size L; so about 1110 s to do L from 10 to 32 in steps of
0.2, and around 3 h to run all 10 irreps. The bulk of the time is spent on evaluating
the Fourier integrals to construct the H matrix. For speed, this part of the com-
putation is outsourced to C++ code, but its execution is handled seamlessly from
inside Mathematica.

All the infinite-volume states in Fig. 1 should show up in the 10 irrep sectors. To
aid the comparison, faint gridlines are drawn at values expected in the infinite-
volume spectrum. The A7 irrep couples to angular momentum [ = 0,4, 6, ... (see
Table 1). The two I = 0 bound states with £ = —2.448 and E = —0.409 are found in
this channel. The inclusion of damped modes reduces the need for larger basis
vectors to capture the bound states. The bound states have very little dependence
on the box size, as one might expect. The [ = 1 bound state with £ = —1.409 is
found in the T sector which couples to [ = 1,3,5,.... The last bound state with
I =2 and E = —0.386 is found in both T and E* channels which both couple to
[ =2,4,6,.... The parity of a given angular momentum J = [ is given by (—1)' in
the spin-0 system.

The scattering states are quantized and the gap between levels is decreasing with
increasing box size L, as expected. Resonances reveal themselves in such diagrams as
a sequence of avoided level crossings; the closer they approach each other, the
sharper the resonance. In the AT channel, we see clearly two sharp resonances; one at
E =1.297 with [ =0, and one at E = 1.533 with [ = 4. The next two resonances
expected in this channel are broad: one at £ = 2.4 with [ =0, and F = 2.7 with
[ = 4. Broad resonances are not as visible as narrow ones in stabilization diagrams.
Nonetheless, their properties (pole position and width) can be extracted from a
quantitative analysis using Liischer’s method which is beyond the scope of this paper.
The next two sectors, A; and AJ, are relatively featureless because they couple to
higher-partial waves (starting at [ =9 and [ = 6 respectively). The A; channel
couples to | = 3,7,9, ..., where the EF = 0.602 with [ = 3 state is clearly visible, as
well as the slightly broader resonance at E = 2.07 with [ = 3. The 7, channel
couples to [ =4,6,8,..., where the £ = 1.533 with | =4 state is sitting there
alone. This channel is better than the A to isolate the I = 4 resonance in the system.
There is also some hint of the broad [ = 4 state at £ = 2.70. The only channel to
access p-wave states is the 7’| . In addition to the sharp [ = 1 resonance at £ = 0.522,
one finds the close-by | = 3 resonance at E = 0.602. The lowest [ = 5 resonance at
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3}
2.70 (1=4) 270 (1=4) 2.70 (1=4) 270 (1=4)
2.37 (1=5) 2.45 (1=2) 2.37 (1=5) 245 (1=2) 2.37 (1=5)
74 (=0 _— —_— =2
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2t —_— —_— 20788
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Irreps

Fig. 5. (Color online) Energy spectrum for the spin-0 system for the 10 irreps of the Oj, group in the cubic
box, extracted from Fig. 4. It should be compared with Fig. 1. Only states with £ < 3 and ¢ < 5 are listed.

E = 2.37 is also visible, but less so the | = 1 state at £ = 1.91 and the | = 3 state at
E =2.07. In fact, the best channel to access the | = 3 resonance at £ = 0.602 is Ty
and Ao, and the best channel to access the [ = 5 resonance at £ = 2.37 is the E~.
Both are the lowest and well-isolated in these channels. The T’ and E* sectors have
very similar spectra. They both couple to | = 2,4,6,... and have the same bound
state and scattering resonances. We summarize the above findings in Fig. 5. It
offers a clear overview of how the infinite-volume spectrum in Fig. 1 is resolved in
the cubic box.

3.3. Spin-1/2 system
For a system of a spinless particle and a spin-1/2 particle in the cubic box, the
situation is similar to the spin-0 system in the previous section, except that the
matrix elements of the Hamiltonian operator H =T + V, + V,; are evaluated in a
new basis including spin,

!

e Hlngnyn,, e) = 6 (niniyn’|Tinnyn.) + bu(nfnin’|V.In,n,n.)

+ <n./rn;nlzv5,|‘/s/é|na:nyn275>v (27)

(nin

where [n,n,n.,¢) stands for the Fourier basis coupled to spin-1/2 which is taken as
the direct product of the spatial part |n,n,n.) and the spin part |¢). Here ¢ = +(—)
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refers to “spin-up” and “spin-down” for the spin-1/2 operator s,. The kinetic
energy term T and the spin-independent central potential term V, can be handled
as before; only diagonal terms in spin space survive because of the orthogo-
nality (€’|€) = 8,.. The spin-orbit term adds off-diagonal elements that require the
evaluation of

(nynyn’, €ls-lnnn, e) = (nhnyn’,els, b, + s, + s.0,|n,nn,, ). (28)

It can be carried out by using the spin operator s = ¢/2 in terms of Pauli spin
matrices o, and the orbital angular momentum operators in Cartesian coordinates
(recall we use h = 1),

{ 0 9] (0 0 ( 0 0
ETZ<y£Za—y>, éyl(JZ&Z%), ézz<z8—y %> (29)

Unlike the spin-zero case, the Hamiltonian matrix can be complex-valued due to the
complexity both in the operators and the basis vectors to be discussed below.

Since the total angular momentum involves half-integers, we need the double-
cover of the O group, denoted as 20 which has 48 elements and three additional
irreps named G,, G5, and H with respective dimensionality of 2,2, 4. The full sym-
metry group including parity is called 20, which has 96 elements and 16 irreps A7,
AT EX TE T GF, GE, and H*. Full details of the 20 group are found in Table
XIIT of Ref. 7. The six new irreps are responsible for the classification of half-integer
angular momentum, as shown in Table 3.

To figure out how the Fourier basis behaves under the 20, group, we only need to
focus on the half-integer irreps G, G5, and H. Parity will be added later as before.
To determine the behavior under C'), and Cj, first recall that, for spin-3 states, we
have

1 [1—2 0 1 |1 -1
+ _ = +:_
C‘“_\/i[ 0 1+zl’ Cl ﬁ{l 1]’

Table 3. Decomposition of angular momentum in
the cubic box according to the six half-integer irreps
of the 20;, group. Both the original decomposition
(left) and its inverse (right) are shown.

J QOh, QOh J

1/2 G* GE O 1/2,7/2,9/2, ...
3/2 H* H*  3/2,5/2,7/2, ...
5/2 GEaoH* GE  5/2,7/2,11/2, ...

72 GfeGryoH*
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where the states are ordered [+),|—). Thus, under C'],, we have

(nhy,ny,nle|CLng, ny,n.;e)

1
s (1 - iE)én;n (Sn’nrén’:nzée’m (E = :I:l) (30)

= (—1)”y \/é

Under C

1> We have

1 .
<n;:a ngjv nlza €/|Ci§;|nm> Ty T3 5> = ﬁ (_1)nz.Inln(17 e—¢+ 1)677,}712571’5,71}/577,’277,‘,' (31)

There are three types we need to consider: (1) states of the form |n,n,n;e);
(2) states of the form |n,n, m;e), where n # m; and (3) states of the form |n, m, k; £)
where n # m # k.

The representation matrices for type 1 are two-dimensional. If we order the states
according to |n,n,n,+), |n,n,n, —), then

roa- P 0] reu-SEL T}

When n is even, these states reside in the G4, irrep, and when 7 is odd, these states
transform according to the G, irrep, as we will see later.

The representation matrices for type 2 are six-dimensional. If we choose states
1,2,3 to be, respectively, |n,n,m, +),|n,m,n,+), |m,n,n,+), and states 4,5,6 to be,
respectively, [n,n,m, —), |n,m,n, =), |m,n,n,—), then

(—1)"(1 — i) 0 0 0 0 0
0 0 (=1"(1-1) 0 0 0
1 0 (yra-i) 0 0 0 !
Flof] = 7 0 0 0 (—=1)"(1 + 1) 0 0
0 0 0 0 0 (=) +1i)
0 0 0 0 (=)™ +1)
(33)
0 0 (=" o0 0 (="
0 (-1" 0 0 —(-1" 0
L= 0 0 —(=p* o 0
F[C,_W] /2 0 0 (-1)" 0 0 (=1)m (34)
0 (-1)" o0 0 (=1 0
(1" 0 o (= 0 0

The representation matrices for type 3 are 12-dimensional. Assuming k < m < n
and choosing states 1,2,3,4,5,6 to be |k, m,n,+), |k, n,m,+),|m, k,n,+), |m,n, k, +),
|n, k,m,+), |n,m, k,+), and states 7,8,9,10,11,12 to be |k,m,n,—),|k,n,m, =),
|m, k,n, =), Im,n, k, =), In,k,m,—), |n,m,k,—), we have (defining o« =1+1 to
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save space)

0 0 (-Dka* 0 0 0 0 0 0 0 0 0
0 0 0 0 (=Lkar 0 0 0 0 0 0 0
(=D)™ma* 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 (=1)™a* 0 0 0 0 0 0
0 (=)"a* 0 0 0 0 0 0 0 0 0 0
F[C;]:i 0 0 0 (=1)"a* 0 0 0 0 0 0 0 0
c V2 0 0 0 0 0 0 0 0 (-1fa 0 0 0
0 0 0 0 0 0 0 0 0 0 (-1)fa 0
0 0 0 0 0 0 (-D)"a 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 (-)"a
0 0 0 0 0 0 0 (="« 0 0 0 0

L 0 0 0 0 0 0 0 0 0 (-)"a 0 0 |

(35)

o 0 0 0 0 (=)* o 0 0 0 0 —(-1)"]
0 0 0 (=)™ o 0 0 0 0 —(=1™ o 0
0 0 0 0 (=)™ o0 0 0 0 (=" 0
0 (-1F o 0 0 0 0 (=% o 0 0
0 0 (=™ o 0 0 0 0o —(=u™ o 0 0
F[CH:L (=% o 0 0 0 0 —(-=1)F o0 0 0 0 0
V20 0 0 0 0 (=)* o 0 0 0 0 (=1
0 0 0 (=)™ o 0 0 0 0 (=™ 0 0
0 0 0 0 (=)™ o0 0 0 0 0 (=1 0
0 (-1F o0 0 0 0 0 (-1)* 0 0 0
0 0 (=™ o 0 0 0 0 (=™ 0 0 0

L(=1)% 0 0 0 0 0 (=DF 0 0 0 0 0 |

(36)

To obtain the remaining 46 elements, we need the multiplication table for the
double group 20 (given in the package). Inspecting this multiplication table, we can
deduce the remaining 46 elements from C4+y and C. via a variety of pathways. We
choose the following (left to right, then down):

Cyy=ClC— Cuy=0y,Cf — E=C,,Cf — C,=EC} — Cyy=C,C} —
Ciy=Cs,Cl,— Co.=CL.C— C.=C,,0f,— C L. =EC{,— Cy,=C.C{,—
Cr=C05.C{— C3=C{C{— CL,=Cr.C{i— Co,=C[.C{,— Cp,=Cy,C{,—
Ch=EC,— Cy,=C1,Ct,— Cp,=Cy,C,— C=C,Cl.— C5=CLCL—
C%:C@C@—»O@:C@CLHC@:CLO@aC@:OLCLaC@:OLC@H
Ca :CZyCIZ - C2b:é'2mci—z—> CQC:CLC’QZ - CQd:CQZCZ;- —Cy=Cy, L—>
Cyy=Cy.Cr,— Cy=ECH - Cp=ECH— Cyy=ECH— Cy=ECH—
Cy=FEC;—Cyp=FECp—Cy=ECy— Cy=ECy;— Cyy=FECy, —
é?szCQb—’é2c=ECQC—>éw:ECw—’é2e=EC2e—>é2f=E02f—>E=ém-sz-
(37)

The 48 elements satisfy the generic double group property that the matrices repre-
senting elements C' and C differ only by a sign: F[C] = —F[C]. This is true for all 24
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pairs of the double group in the even-dimensional half-integer irreps (G, G5, H*).
The property is used here as a consistency check after all the matrices are found.
Inclusion of parity is done in the same way as in the single group case. The parity
representations are the same Fl[i,] = (—1)3" = (=1)" for the first type, F[i,] =
(—1)2"+m = (—1)™ for the second type, and F[i,] = (—1)**™*" for the third type,
except multiplied by identity matrix of different dimensions 2, 6, and 12, respec-
tively. The basis vectors obtained for the 20; group are given in Table 4. The
representation matrices I' E\[;\;) (R) needed to carry out the projection in Eq. (26) can be
found in Table XIII of Ref. 7 (also in the package). They correspond to eigenstates of
spin harmonics of |JM¢) with half-integer J and specific values of £ = J £+ 1/2, not

Table 4. Orthonormal basis state superpositions that transform according to row 1 of the double-valued
irreps of 20, in the cubic box. In all cases, n # m # k, and in cases where a state has three different indices,
it should be assumed that k < m < n. For a given J value, the two [ values are | = J £ 1/2, with parity
assignment by (—1)".

Irrep Projected Fourier basis states as superposition of |n,n,n.,€)

Gf [n,n,m,+), n even

ﬁ(\n,n,m, +) + |n,m,n, +) + |m,n,n,+)), n,m even
ﬁ(\k, m,n,+) + |k, n,m, +) + |m, k,n,+) + |m,n, k,+) + n, k,m, +) + |[n,m, k, +)), k,m,n even
(|k,m,n,+) — |m,k,n,+) —ilk,n,m, =) + ilm,n, k, =) + [n,k,m, =) — |n,m, k,—)), k,m odd, n even
(|k,nym, +) — In, k,m,+) —ilk,m,n, =) + |m, k,n,—) — |m,n, k, =) +i|n,m,k,—)), k,n odd, m even

shsksk

(Im,n, k,+) — |In,m, k,+) + |k, m,n, =) — |k,n,m, —) —ilm, k,n, =) +in, k,m,—)), k even, m,n odd

Gy %(hz,m m,+) +iln,m,n,—) + |m,n,n,—)), n even, m odd

%(U@ myn,+) — |k,n,m,+) — |m, k,n,+) + [myn, ky+) + |nykymy+) — |[nymyk, +)), k,m,n odd
(|k,m,n,+) + |m,k,n,+) + ilk,n,m, =) + ilm,n, k, =) + |n, k,m, =) + |n,m, k,—)), k,m even, n odd
(|k,nym, +) + In, kym, +) +ilk,m,n, =) + |m, k,n, =) + |m,n, k, =) +i|n,m, k,—)), k,n even, m odd

sh-sksk

(Im,n,k,+) + [n,m, k,+) + |k, m,n, =) + |k,n,m, =) + ilm, k,n, =) +i|n, k,m,—)), k odd, m,n even

Gy %(|n,n.m,+) +iln,m,n, =) + |m,n,n,—)), n odd, m even
%(\k m,n,+) — |k,n,m,+) — |m, k,n,+) + |m,n, k,+) + [n, k,m, +) — |n,m, k,+)), k,m,n even
- (|k,m,n,+) + |m,k,n,+) +i|k,n,m,—) + ilm,n, k, =) + |n, k,m, —) + |n,m, k,—)), k,m odd, n even

- (|k,n,m,+) + |n, k,m,+) +ilk,m,n,—) + [m,k,n, =) + |m,n, k, =) +i|n,m, k,—)), k,n odd, m even
(Imyn,k,+) + |n,m, k,+) + |k, m,n, =) + |k,n,m, =) + i|lm, k,n, =) + i|n, k,m, —)), k even, m,n odd

shsksk

G5y [n,n,n,+), n odd
%(\n,n, m,+) + |n,m,n,+) + |m,n,n,+)), n,m odd
ﬁ(|kp m,n,+) + |k,n,m, +) + |m, k,n, +) + |m,n, k, +) + |n, k,m, +) + |n,m, k,+)), k,m,n odd
%(Va m,n,+) — |m, k,n,+) —ilk,n,m, =) +ilm,n,k, =) + |n,k,m, =) — [n,m, k,—)), k,m even, n
L (Jk,n,m,+) — |n, k,m, +) —ilk,m,n, =) + |m,k,n, =) — |m,n, k, =) +iln,m, k,—)), k,n even, m odd

V6
%(\m,n,k‘ +) — [nymyk,+) + |k, myn, =) — |k,n,m, —) —ilm, k,n,—) +in, k,m,—)), k odd, m,n even
H* #(\n m,n,+) + ilm,n,n,+) + 2i|n,n,m, —)), n odd, m even

%(\n, m,n,—) —|m,n,n,—)), n,m even
ﬁ 2|k, m,n, =) + |k,n,m, =) — 2|m, k,n,—) — |m,n, k, =) — |n, k,m, =) + |n,m, k,—)), k,m,n even
L(|k,n,m, =) + |m,n, k, =) — |n,k,m, =) — |n,m, k,—)), k,m,n even
ﬁ(ﬂk,n,m, +) — |m,n, k, +) + 2i|n, k,m, +) — iln,m, k, +) + ilk,m,n, =) + ilm, k,n, —)), k,m odd, n even
F(jm,n, k,+) +iln,m, k,+) + ik, m,n, =) + ilm, k,n, =)), k,m odd, n even
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Table 4. (Continued)

Irrep Projected Fourier basis states as superposition of |n,n,n.,€)

ﬁ(Z\k, m,n,+) + 2ilm, k,n,+) —ilm,n, k,+) — [n,m, k, +) +i|lk,n,m, =) + iln, k,m, —)), k,n odd, m even
L(Im,n, k,+) —iln,m, k,+) + |k, n,m, =) + In, k,m, =), k,n odd, m even

112 2|k, m,n,+) — |k,n,m,+) — 2i|m, k,n,+) + i|n, k,m,+) + |m,n, k, =) + |[n,m, k, —)), k even, m,n odd

B

L(|k,n,m,+) —iln, k,m,+) + |m,n, k, =) + |n,m, k,—)), k even, m,n odd
H- ﬁ(?\n,n, m,—) — |n,m,n,—) — |m,n,n,—)), n,m odd
L(jn,m,n,+) — ilm,n,n,+)), n even, m odd
ﬁ(?\k,m,n, —) = |k,n,m, =) + 2|m, k,n, =) — [m,n, k, =) — |n,k,m, =) — |n,m,k,—)), k,m,n odd
Yk, n,m, =) — [m,n, k, =) + |n, k,m, =) — |n,m, k,—)), k,m,n odd

75 2|k, n,m,+) + |m,n, k,+) — 2i|n, k,m,+) — i|ln,m, k,+) — ilk,m,n, =) +i|lm, k,n,—)), k,m even, n odd

—

%(\m, n,k,+) —iln,m, k,+) +ilk,m,n, —) —ilm, k,n, —)), k,m even, n odd

ﬁ(mk, m,n,+) — 2ilm, k,n,+) —ilm,n, k,+) + [n,m, k, +) — ilk,n,m, —) +i|n, k,m,—)), k,n even, m odd
3 (Im,n, k,+) +iln,m, k,+) — |k,n,m, =) + In, k,m,=)), k,n even, m odd

\/1[—2 2|k, m,n,+) + |k, n,m, +) + 2i|m, k,n, +) + i|n, k,m, +) + |m,n, k, =) — |n,m, k,—)), k odd, m,n even
L(|k,n,m,+) +iln, k,m,+) — |m,n, k, =) + |n,m, k,—)), k odd, m,n even

the standard spherical harmonics |JM) with integer J = ¢. A closer inspection of the
table reveals that the even—odd parity symmetry in the irreps leads to symmetric
pairs in the projected Fourier bases: G{ < G5 and G| < G have even and odd
switched for all cases of k,m,n. No such obvious symmetry exists between
H* < H~. These relations are used as additional checks of the calculations.

In Fig. 6, we show the stabilization diagrams (100 low-lying levels) for the spin-1/
2 system for the six half-integer irreps of the 20,, group. The results are obtained by
the same criteria for selecting the projected Fourier basis states, namely, up to 32 for
individual Fourier modes, and up to 38 for total Fourier modes. The same damping
parameters are used: 7 = 0.5 with individual damped modes up to 4 and total
damped modes up to 4. The resulting basis size (H matrix size) is 916, 853, 906, 844,
1814, and 1690. For the G-type irreps, it takes about 30 s to obtain all eigenvalues for
a fixed box size L; so about 3330 seconds to do L from 10 to 32 in steps of 0.2, and
about 3.7 hours to run the four irreps. The H-type irreps have larger basis and takes
3 times longer: 90's instead of 30, or 2.8 h per irrep. The total time for the spin-1/2
system is about 9.3 h, more than triple the timing for the spin-0 system. This is after a
performance speed-up by building the Fourier basis directly inside the C++ code. In
practice, one does not need the full stabilization diagrams. Often just a few box sizes
are sufficient, which is on the order of minutes.

The situation in the spin-1/2 system is more complicated as indicated in the
infinite-volume spectrum in Fig. 2. For a given partial wave [, there are two possi-
bilities for the total angular momentum, J =1+ 1/2 and J = [ — 1/2, color-coded as
blue and red, respectively. The parity of a state is given by (—1)’. Nonetheless, these
states are expected to manifest themselves in the six irrep sectors in Fig. 6. Again, to
help with the identification, faint gray gridlines are drawn at values expected from
the infinite-volume spectrum.
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Cubic G1g (=1.L.2.....1=04.4,..)

N

Fig. 6. (Color online) Energy spectrum for the spin-1/2 system as a function of cubic box size L for the six
half-integer irreps of the 20}, group. Faint black lines are drawn to guide the eye.

All seven bound states in the spin-1/2 system can be located. Grouped by parity
as implied by (—1), the G channel has the two J = 1/2,] = 0 states at E = —2.448
and at £ = —0.409. The H* channel has the J =3/2,] = 2 state at E = —1.402.
For odd parity, the G| channel has the two J=1/2,l=1 states: one at
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E = —2.168, the other barely bound at F = —0.061. The J=15/2,1 =3 state
at B = —0.593 is found in both G5 and H~. The remaining J = 3/2,1 = 1 state at
E = —1.036 appears in H.

The lowest-energy scattering state F = 0.225 has high-spin and even-parity
J =17/2,1 = 4. It appears in all three even-parity channels: it sits alone in G, but
has a close neighbor at F = 0.262 and J = 5/2,] = 2 in G| and H*. The next even-
parity state F = 0.63 and J = 3/2,1 = 2 is found in H". The lowest-spin resonance
with £ = 1.297 and J = 1/2,1 = 0 is G . There are two high-spin states with almost
the same energy: one with £ =191 and J =7/2,1 =4, the other £ =1.90 and
J =11/2,1 = 6 with higher spin but narrower. They are expected in all three even-
parity channels are very hard to disentangle. The relatively narrow resonance with
E=24and J=9/2,1 = 4is expected in G} and H*, but not in G because it does
not couple to J = 9/2. Indeed, this is confirmed in the diagrams.

In the odd-parity channel G 7, the lowest-energy resonance at £ = 1.08 has a high
spin J = 9/2,1 = 5. Since the state is fairly sharp, we can see some divergence for box
size larger than 20. It suggests the need for a larger basis for this state. Similar
divergence is observed in the H~ where the same state appears. The lowest-spin
resonance with £ =1.55 and J =1/2,1 =1 is found in G| but it appears as the
third resonance in energy. The sharp resonance with £ =0.81 and J =3/2,l=1
appears only in H~ because G| and G; do not couple to J = 3/2. The sharp
resonance with F = 1.30 and J = 5/2,1 = 3 appears only in G5 and H~ but not in

0.225 (1=4,J=7/2)

Energy

2.40 (1=4,J=9/2)

2} 1.91 (1=4,J=7/2)

1.297 (1=0,J=1/2)

-0.409 (1=0,J=1/2)

-2.448 (1=0,J=1/2)

2.6 (1=3,J=7/2)

155 (I=1,J=1/2)

1.42 (1=3,J=7/2)

1.08 (1=5,=9/2)

-0.061 (1=1,J=1/2)

-2.168 (1=1,J=112)

2,68 (1=7,=13/2)

1.90 (1=6,J=11/2)

1.81 (1=2,J=5/2)
1.42 (1=3,J=7/2)

1.30 (1=3,J=5/2)

0.262 (1=2,J=5/2)
0.225 (1=4,J=7/2)

-0.593 (1=3,J=5/2)

240 (1=4,J=912)

1.90 (1=6,J=1112)

1.81 (1=2,J=5/2)

0.63 (1=2,J=3/2)

0.262 (1=2,J=5/2)
0.225 (1=4,J=7/2)

1.402 (1=2,J=3/2)

2,68 (1=7,J=13/2)
2.60 (1=3,J=7/2)

2.48 (1=5,J=9/2)
2.08 (1=1,J=3/2)
1.42 (1=3 J=7/2

1.30 (1=3,J=5/2)
1.08 (1=5,J=9/2)

0.81 (1=1,J=3/2)

-0.593 (1=3,J=5/2)

-1.036 (1=1,J=3/2)

s
+
Gj

Gy

N N
G; G;
Irreps

Fig. 7. (Color online) Bound and scattering states for the spin-1/2 system as a function of six half-integer
irreps of the 20, group in the cubic box, extracted from Fig. 6. It should be compared with Fig. 2. Only
states with £/ < 3 and ¢ <5 are listed. For a given partial wave ¢, there are two possible J values,
J=10+1/2 (blue) and J = £+ 1/2 (red).
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G71 because it does not couple to J = 5/2. The sharp resonance with £ = 1.42 and
J =7/2,1 = 3 appears clearly in all three odd-parity channels. The broad resonance
with E = 2.48 and J = 9/2,1 = 5 is expected in G| and H~ but not in G5 because it
does not couple to J=9/2, but is not very visible in the diagrams due to its
broadness. Even higher up, the broad state E = 2.6 at J = 7/2,1 = 3 and relatively
narrow state E = 2.68 at J = 13/2,1 = 7 are expected in three odd-parity channels,
and are indeed hinted.

The above discussions are summarized in Fig. 7. It can be directly compared with
Fig. 2 to see how the infinite-volume spectrum in the spin-1/2 system is resolved in
the cubic box.

4. Spectrum in Elongated Box

Here we want to explore the possibility of resolving the same spectrum in
an asymmetric box. Compared to the cubic box, two new issues come into play.
First, the Fourier integrals need to be treated differently for different directions.
This is relatively straightforward. Second, a new symmetry group is required cor-
responding to the new geometry. A new group means new irreps; hence new
decompositions of angular momentum. It also means that new basis projections must
be worked out.

4.1. Spin-0 system

We consider an elongated box L x L x nL where 7 is the elongation factor in the
z-direction. The equation we need to solve takes the same form as Eq. (8), but with a
modified periodic boundary condition,

and a modified potential,
Vilw,y,2) = Y V((&+n,Ly+n,L z+n.Ln))). (39)

Instead of being rotationally invariant, the potential takes on the symmetry of the
elongated box.

The Fourier basis in which the Hamiltonian can be diagonalized receives a
modification in the z-component:

(.9, 2lnynyn.) = ¢, (v, L)by (y, L)@y (2,1L). (40)

The Hamiltonian matrix elements now depend on both L and 7,

A L)2 L2 nL)2
(il | Blngnyn,) = / da / dy / 0z G, (2, 1) (4, L)y (2 11)

—L/2 —L/2 nL/2
x He, (x,L)¢,, (y, L)$y (2,1L). (41)

2050131-23



F. X. Lee, C. Morningstar € A. Alexandru

Fig. 8. This box is elongated in the z direction. It is invariant under 8 rotations as explained in the text.

Going from cubic box to elongated box, the symmetry group is reduced from the
O group to the D, group (dihedral or tetragonal group). It is regarded as a subgroup
of the O group. The O and D, groups are different finite point groups of the con-
tinuous rotation group SO(3). The D, group has eight elements instead of 24 in the
O group, as depicted in Fig. 8. They can be divided into five conjugacy classes and
given names: the identity (E), two 7/2 rotations about z axes (C.); three 7 rota-
tions about the Cartesian axes (Cs,,Cs,,C5,); and two 7 rotations about the two
diagonals in the zy-plane denoted by Oa and Ob (Cy,, Cs;). The D, group has five
irreps conventionally named A, A, By, B, and E, with respective dimensions 1, 1,
1, 1, 2. Inclusion of parity extends it to the Dy, group which has 10 irreps AT, A7,
Bi, BF, E*. They are responsible for the decomposition of integer angular mo-
mentum in the elongated box, as shown in Table 5. Notice how differently it resolves
the angular momentum from that in the cubic box in Table 1.

The Fourier basis vectors that transform according to the irreps of the Dy, can
be constructed by group theoretical projection operators, in similar fashion to the

Table 5. Decomposition of integer angular momentum in the
elongated box according to the 10 irreps of the Dy, group.

J D4h D411 J

0 AT AT 0, 2, 4(2),

1 A; @B Ay 5,7,9(2),

2 AT ®oBf ®Bj @ ET Ay 1, 3, 5(2),

3 Ay @ B @ B; ®2E~ AF 4, 6,8(2), ..

4 2Af ® A ® Bf @ B ®2E* BY 2, 4, 6(2),

5 AT ©2A; & By @ B; & 3E- By 3,5, 7(2),

6 2A7 @ AT @ 2B ® 2B ® 3Bt  Bj 2,4, 6(2), .
By  3,57(2),.
E-  1,3(2),5(3), ..
E+  2,4(2),6(3), ..
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cubic case. We first work with the D, group which contains the proper rotations; then
add the space inversion separately to obtain the D,,. We focus on two generating
elements of the D, group: the /2 rotation about the z axis, denoted by C'/ ; and the 7
rotation about the y axis, denoted by Cy,. The action of C 1 is the same as in the cubic
case. The action of Cy,, which rotates the vector (z,y,2) — (—x,y, —2), gives

<’l’l;., TL;, n;‘02gy|na:7 Ny, nz> = (_ 1)n,+n: 67L;n_,, 671 Yy 671’:713 . (42)

Since the order of z, y, z is preserved by this operation, the matrix representation
for the three types of Fourier basis is diagonal. For the first type where all three
components are the same, |n,n,n), we simply obtain the identity,

FlCy,] = (~1)" = 1. (43)

For the second type where two components can be different, with 1, 2, 3 represe-
nting |n,n,m), |n,m,n), |m,n,n), respectively, we obtain the three-dimensional
representation,
(_1)n+m 0 0
F[Cy,] = 0 1 0 ) (44)
O 0 (_1)71+m,
For the third type where all three components are different, with 1, 2, 3, 4, 5, 6

representing |k, m,n), |k,n,m), |m, k,n), |m,n, k), |n,k,m), |n,m, k), respectively,
we obtain a six-dimensional representation,

M (—1)k 0 0 0 0 0
0 (—1)ktm 0 0 0 0
0 0 (_ 1)m,+n 0 0 0
Flewl=1" 0 0 (=m0 0 (45)
0 0 0 0 (_ 1)n+m 0
L 0 0 0 0 0 (—=1)"+* |

The remaining six elements can be obtained by the multiplication table for the D,
group (given in the package) One possible pathway is:

Cy, = CL.CY, — CL, = CL.Cy, — Cyy = C,Cyy — Cyy = C1.Coy — Cy,
= C4+zc2b — E = C3,Cy- (46)

The diagonal representations are as before: F[i,] = (—1)3" = (—1)" for the first
type, F[i,] = (—1)>"*™ = (—=1)™ for the second type, and F[i,] = (—1)**™*" for the
third type, multiplied by identity matrix of dimension 1, 3, and 6, respectively.
Finally, to obtain the matrix representation for the operations in the Dy, group, we
doubly extend the original operations F[R] with the space inversion applied,
{F|R], F[i,)F|R]}. Applying the projection operator in Eq. (26) to the elongated box,
we obtain the Fourier basis vectors that transform according to the irreps of the Dy,
group, given in Table 6. The representation matrices FE\[L) (R) needed to carry out the
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Table 6. Orthonormal basis state superpositions that transform
according to row 1 of the Dy, group in the elongated box. In all
cases, n # m # k, and in cases where a state has three different
indices, it should be assumed that £k < m < n.

Irrep  Projected Fourier basis states as superposition of |n,n,n.)

AL

Et+

|n,m,n), n even
\n,n,m%%(mm’n) + |m,n,n)), m,n even
ﬁ(“@,m,n) + |m, k,n)), k,m,n even
%(lk, n,m) + |n, k,m)), k,m,n even
%ﬂm,n, k) +|n,m,k)), k,m,n even
%(\n,m, n) — |m,n,n)), m,n odd
75 ([k,m, n) = |m, k,n)), k,m,n odd
%(\k, n,m) — |n,k,my), k,m,n odd
%(\m,n, k) — [n,m, k)), k,m,n odd

(|k,m,n) — |m, k,n)), n even, k,m odd
(lk,n,m) — |n, k,m)), m even, k,n odd
(

|m,n, k) — |n,m, k)), k even, m,n odd

Sk ks

[n,n,m), m odd, n even
(|k,m,n) + |m, k,n)), n odd, k,m even
= (|k,n,m) + |n, k,m)), m odd, k,n even

(|m,n, k) + |n,m, k)), k odd, m,n even

Skl sk

2

ﬁﬂn,m,n) —|m,n,n)), m,n even

2

%(Uﬁ?, m,n) — |m,k,n)), k,m,n even
%(U@, n,m) — |n,k,m)), k,m,n even
( )s

2
1

—=(lm,n, k) — |n,m,k)), k,m,n even

2
[n,n,ny, n odd
[n,n, m},% (In,m,n) 4+ |m,n,n)), m,n odd
ﬁ(\k,m,n) + |m, k,n)), k,m,n odd
%(\k,n,m) + |n, k,m)), k,m,n odd
%(\m,m k) + [n,m, k)), k,m,n odd
[n,n,m), m even, n odd
+ |m, k,n)), n even, m, k odd
m even, n, k odd

K
, k even, m,n odd

|k,n,m) — |n, k,m)), m odd, n, k even

( )
( ) ))
& () + I, m, )
(lk,m,n) — |m,k,n)), n odd, m, k even
( ) )
(lm,n, k) — |n,m, k)), k odd, m,n even

|m,n,n), m even, n odd
|k,m,n),|k,n,m), k even, m,n odd
|m, k,n), |m,n, k), m even, n, k odd
|n, k,m),|n,m, k), n even, m, k odd
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Table 6. (Continued)

Irrep  Projected Fourier basis states as superposition of |n,n,n.)

E- |m,n,n), m odd, n even
|k, m,n), |k,n,m), k odd, m,n even
|m, k,n), |m,n, k), m odd, n, k even
[n, k,m), |n,m, k), n odd, m,k even

projection in Eq. (26) can be found in Table X of Ref. 7. A closer look of the table
reveals that the even—odd parity symmetry in the irreps leads to symmetric pairs in
the projected Fourier bases. The following pairs have even and odd switched for all
cases of k,m,n: AT < By, Ay < Bf, Ay & B;,A; < Bj,and E* «— E~. These
relations are used as additional checks of the calculations.

In Fig. 9, we show the energy spectrum (lowest 100 levels) as a function of the
elongation factor 7 at a fixed box size L = 12 for all 10 irreps of the Dy, group. The
same criteria are used: up to 32 for individual Fourier modes, and 38 for total Fourier
modes, as well as the damped modes (damping factor v = 0.5 with individual damped
modes up to 4 and total damped modes up to 4). The size of the projected Fourier basis
(size of H matrix) is 815, 520, 605, 707, 705, 609, 705, 609, 1310, 1316 for the 10 irreps.
Typically, it takes about 15s to obtain all eigenvalues for a fixed value of 7; so about
915s to do 7 from 0.9 to 2.1 in steps of 0.2, and about 3 h to run all 10 irreps. The code
is structured the same way as in the cubic case. The timing is also similar. Even though
only one dimension is varied, as opposed to all three dimensions, it is still a single
adjustable parameter, 7 instead of L, that enters the calculations.

How is the same infinite-volume spectrum in Fig. 1 resolved in the elongated box?
The first feature to notice is that the “stabilization diagrams” have a different look
compared to the cubic case. There are avoided level crossings induced by the elon-
gation, which makes the visual identification of resonances more difficult because it
relies on avoided crossings. Second, the spectrum depends on two parameters L and
7. One has the freedom to pick a box size L, then vary 7. Since the gap between levels
is shrinking with increasing L, if a large L is picked, then the levels are more com-
pacted. For this reason, L = 12 is picked in the figure where the gap between levels is
still relatively large. Note, however, that this does not mean that the elongated box is
less effective than the cubic one in resolving states. It is only a matter of visual
identification in stabilization diagrams. As far as quantitative phaseshift analysis of
the spectrum via the Liischer method is concerned, the two are not fundamentally
different. The elongated geometry does have one advantage when the box is dis-
cretized into a periodic lattice as in lattice QCD, where changing one dimension is
much cheaper than changing 3 dimensions. Third, the angular momentum resolution
is different from that in the cubic case. There are not large gaps between partial
waves as in the cubic case. They are relatively spread out across the irreps. This
means the same state can appear in multiple irreps more frequently.
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Fig. 9. (Color online) Energy spectrum for the spin-0 system as a function of the elongation factor 7 for all
10 irreps of the Dy, group. The volume of the elongated box is L x L x nL with L = 12.
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For bound states, the identification is just as easy as in the cubic case. They have
negative values and are expected to be independent of the elongation factor 5. In the
A7 channel, which couples to angular momentum [ = 0,2,4, ..., three bounds are
found. The two [ = 0 states with £ = —2.448 and F = —0.409, and one [ = 2 state
with £ = —0.386 which also appears in BY, BJ, and E*. The remaining bound state
at £=-1.409 and [ =1 is found in A; and E~, both of which couple to
1=1,3,5,....

For scattering states, only extremely sharp resonances are visible. It is helpful to
examine a zoomed-up view of the diagrams. We see the narrow [ = 4 resonance at
E = 1.533 is clearly present in the A5 channel, whereas the broad state expected at
E = 2.7 in the same channel is not. The same E = 1.533 state is present in all five
even-parity channels because they all couple to [ = 4. The [ = 2 resonance at E =
1.365 is present in all even-parity channels, except for A3 which it does not couple.
The relatively narrow and high-spin [ = 5 resonance at & = 2.37 is present all odd-parity
channels. The [ = 3 resonance at £ = 0.602 appears in all odd-parity channels, except for
A7 . The same is true for the [ = 3 resonance at £ = 2.07, but is much less clear due to its
broadness. The [ = 1 resonance at E = 0.522 appears in A; and E~. Even though it is
very close to the EF = 0.602 state, it is still distinguishable from each other.

We summarize the above discussions in Fig. 10, which offers a direct comparison
with the infinite-volume spectrum in Fig. 1 and the cubic spectrum in Fig. 5.

3
270 (1=4) 270 (1=4) 270 (1=4) 270 (1=4) 270 (1=4)
245 (1=2) 2.37 (I=5) 2.37 (I=5) 245 (1=2) 2.37 (I=5) 2.45 (I=2) 2.37 (I=5) 245 (1=2) 2.37 (I=5)
2.4 (=0) _— e _— e
2,07 (1=3) 2,07 (1=3) 2,07 (1=3) 2,07 (1=3)
2t e — —
1.533 (1=4) 1,533 (1=4) 1.91(=1) 1.533 (1=4) 1,533 (1=4) 1,533 (1<) 1.91(1=1)
1.37 (1=2 1.37 (1=2 1.37 (=2
1 1.365 (1=2) (=2 (=2 (=2
1.297 (1=0)

0.602 (1=3) 0.602 (1=3) 0602 (1=3) 0.602 (1=3)
> - -
= 0522 (I1=1) 0.522 (I=1)
%

2
b or
-0.386 (1=2) -0.386 (1=2) -0.386 (1=2) -0.386 (1=2)
-0.409 (1=0)
-1}
~1.409 (1=1) -1.409 (1=1)
-2}
-2.448 (1=0)
+ - + — + - + — + -
A} A; A3 A; B; B B; B; E E
Irreps

Fig. 10. (Color online) Bound states and resonances for the spin-0 system as a function of the Dy, irreps in
the elongated box of L x L x nL at a fixed L = 12. Only states with E < 3 and [ < 6 are listed. They are
extracted from Fig. 9 and should be compared with the infinite-volume spectrum in Fig. 1 and the cubic

spectrum in Fig. 5.
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4.2. Spin-1/2 system

Since the total angular momentum involves half-integers, we need 2D,, the double
cover group of D,. The 2D, group has 16 elements and two additional irreps
named G, G, with respective dimensionality of 2, 2. The 2D, group is discussed in
detail in Ref. 7. The full symmetry group including parity is called 2D,;, which has 32
elements and 14 irreps AT, A3, Bf, Bf, E*, G5, and G5 . The four new irreps G7,
and G are responsible for the classification of half-integer angular momentum, as
shown in Table 7.

To figure out how the Fourier basis behaves under the 2D,;, group, we only need
to focus on the irreps G;, G5 of the 2D, group. Parity will be added later. To
determine the behavior under C} and Cyy Spin—% states, we need their matiix re-
presentation in the Gy irrep, which can be obtained from spin-1/2 rotations e =" ow/2
(where 7 is unit rotation axis and w the rotation angle),

1—10. 1 1—1 0 0 -1
C+: 2 C = =
AN ﬁ{ 0 1+zl’ = [1 o]’

where the states are ordered |+), |—). Compared to the cubic case (20 group), C is
the same, along with the corresponding unitary matrices F,,,[C.]; but Cs, replaces
CL as the new generator. Under C5,, we have

6_
2

!
Yo

E/
<n,177n n;;gl‘CQy‘nzvnyanz;5> = (_1)71;,,+nz 571fnnd.6n;{1ny6ngnza (47)

where the spatial part is diagonal as in the integer-spin case. The representation

matrices for type 1 are two-dimensional. If we order the states according to
|n,n,n,+), |n,n,n,—), then

F[Cy,) = ﬁ _01 ] . (48)

The representation matrices for type 2 are six-dimensional. If we choose states 1,2,3
to be, respectively, |n,n,m,+),|n,m,n,+),|m,n,n,+), and states 4,56 to be,

Table 7. Decomposition of angular momentum in the
elongated box according to the four half-integer irreps
of the 2Dy, group. Both the original decomposition
(left) and its inverse (right) are shown.

J 2D4h 2D-’1h J

1/2 Gy Gt 1/2,3/2,5/2, ...
32 GYedGsy Gy 3/2,5/2(2), 7/2(2), ...
5/2  Gf®2G%

7/2  2GF ®2GF
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respectively, [n,n,m, =), |n, m,n, =), |m,n,n,—), then

0 0 0  —(=1"m 0 0
0 0 0 0 ~1 0
0o 0 0 0 0 —(=1)mn
F[Cy,| = 49
[Co] (=1)"tm 0 0 0 0 0 (49)
0o 1 0 0 0 0
0 0 (=1mtn 0 0 0

The representation matrices for type 3 are 12-dimensional. Assuming k < m < n
and choosing states 1,2,3,4,5,6 to be |k, m, n, +), |k, n,m, +), |m, k,n, +),|m,n, k, +),
|n, k,m,+), and |n,m, k,+), and states 7,8,9,10,11,12 to be |k, m,n, —), |k,n,m, —),
|m, k,n, =), lm,n, k, =), |n,k,m,=),|n,m, k,—), we have

0 0 0 0 0 0 —(=1)km 0 0 0 0
0 0 0 0 0 0 0 (=1)km 0 0 0 0
0 0 0 0 0 0 0 0 —(=1)mn 0 0 0
0 0 0 0 0 0 0 0 0 —(=)m™*t 0 0
0 0 0 0 0 0 0 0 0 0 —(=1mm 0
FiCy = ok 0 0 0 0 0 0 0 0 0 (=t
(=1)Fn 0 0 0 0 0 0 0
0 (=m0 0 0 0 0 0 0 0 0 0
0 0 (—1)m™n 0 0 0 0 0 0 0 0 0
0 0 0 (=)™ 0 0 0 0 0 0 0 0
0 0 0 0 (=1mm 0 0 0 0 0 0 0
0 0 0 0 0 (=1t 0 0 0 0 0 0o |
(50)

To obtain the other elements, we need the multiplication table for the double
group 2D, (given in the package). Inspecting this multiplication table, we can deduce
the remaining 14 elements from Cy, and C via a variety of pathways. We choose
the following:

Co.= CLCIZ —Cy, = OQyCQZ —Cyy= CLCZT — Oy = 02;;02;1/ — 0 =C0yCy —
C L =CyCy, — Cr= Cy.C{.— Cy,=CrCL—Cy, = ClL.Cy— éQy =9, Cy, —
Coy=Cy.Cop— Coyy=Cy,C .~ E=Cy,Co, » E=C{.Cy..
(51)
The 16 elements satisfy the generic double group property that the matrices repre-

senting elements C' and C differ only by a sign: F[C] = —F[C]. This is true for all
eight pairs of the double group in the half-integer irreps (G, and G;). The property is
used here as a consistency check after all the matrices are found. Inclusion of parity is
done in the same way as in the single group case. The parity representations are the
same Fli,] = (—1)%" = (=1)" for the first type, F[i,] = (—1)*"*"™ = (—=1)™ for the
second type, and F[i,] = (—1)**™*" for the third type, except multiplied by identity
matrix of different dimensions 2, 6, and 12, respectively. The basis vectors obtained

for the 2Dy, group are given in Table 8. Inspection of the table reveals further
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Table 8.

Orthonormal basis state superpositions that transform according to row 1 of the double-valued

irreps of 2Dy, in the elongated box. In all cases, n # m # k, and in cases where a state has three different
indices, it should be assumed that k¥ < m < n. For a given J value, the two [ values are | = J +1/2, with

parity assignment by (—1)".

l

Irrep Projected Fourier basis states as superposition of |n,n,n,,e
] g Ty Ty
Gt [n,m,m,+), n even
\n,n,m,+>,ﬁ(|n,m,n, +> + |m,n,n, +>)7 m,n even
%(m,m,n, =Y +ilm,n,n,—)), n odd, m even
L(‘k‘,mﬂl, +> + ‘mvk7nv +>),L(‘k‘,n7m,+> + ‘n7k7m7 +>)7L(|m7n7k7 +> + ‘”7m~,k7 +>)7
V2 V2 V2
k, m,n even
% (|k, m,n, +> - ‘m> k7 n, +>))% (|k7 n,m, 7> + Z‘nv k%m7 7>)5% (|m7 n, ka 7) + Z‘nv m, k7 7))7
n even, k,m odd
% (|k n,m, +> - ‘TL, k,m, +>)u% (|k7 m,n, 7> + i‘m> k,n, 7>)=% (|m7 n, k, 7) - i‘nv m, k, 7))7
m even, k,n odd
ﬁ (|m” n, k, +> - ‘”’mv k, +>)a% (|k7 m,n, 7) - i‘m’ k,n, 7>)’% (|k7 n,m, 7) - Z"TL, k,m, 7)):
k even, m,n odd
G1 \n,n,m,+>,%(|n,m,n, —)y —ilm,n,n,—)), m odd, n even
%(\n,m,n,qﬁ — |m,n,n,+)), m,n odd
%(“ﬂ m,mn, +> - ‘mvk’nv +>)7%(‘k7n1m7+> - ‘n‘rkim7 +>),%(|m,n,k, +> - \n,m,k,+>),
k,m,n odd
% (lk/ n,m, +> + ‘TL., k7 m, +>)7% (|k’ m,n, _> - L‘m kv n, _>)7% (|7”7 n, kv _> + i‘”v"% kv _>)7
m odd, k,n even
ﬁ (lkvmv n, +> + ‘mﬂ k,n, +>)7% (|k7 n,m, _> - i‘nv k,m, _>)7% (|m7 n, k, _> - i‘nvmv k, _>)7
n odd, k,m even
% (|m7 n, k, +> + \n,m, k, +>)a% (|k7 m,n, 7> + i‘m> k,n, 7>)=% (|k= n,m, 7) + i‘nv k,m, 7))7
k odd, m,n even
Gy \n,n,m,+),%(|n,m.,n, —Y —i|lm,n,n,—)), m even, n odd
%Un,m,m +) —|m,n,n,+)), m,n even
%(‘kv m,mn, +> - ‘m7k>n7 +)),%(U€,n,m,+> - \n,k,m,+>),%(|m,n,k, +> - \n,m, k:+>)7
k, m,n even
ﬁ (|k n,m, +> + ‘TL, k,m, +>)=% (|k7 m,n, 7> - i\m, k,n, 7>)=% (|m7 n, k, 7) + i‘nv m, k, 7))7
m even, k,n odd
ﬁ (lk: m,n, +> + ‘777,, k,m, +>)a% (|k7 n,m, 7> - Z‘n k,m, 7>)’% (|m, n, k, 7) - Z"TL, m, k, 7)):
n even, k, m odd
% (|77L7 n, kv +> + ‘TL.,TTL, kv +>)7% (|ka m,n, _> + L"m kv n, _>)7% (|k, n,m, _> + l‘TI, k77n‘7 _>)7
k even, m,n odd
Gy [n,n,n,+), n odd

|n5 n7 n]” +>7% (|n7 nl’ n7 +> + |m7 n) n7 +>)7 m7 n Odd
% (In,m,n, =) +ilm,n,n,—)), n even, m odd

sk, 4) + b,y ), 2 (s m, ) + [,k +)), 3 (s, b ) + o b, +)),

k,m,n odd
ﬁ (|k,m,n, +) — |m, k,n, +>)7% (|k,n,m, =) + i|n, k,m, —))7% (lm,n, k, =) +iln,m, k,—)),
n odd, k, m even
% (|k,n,m, +) — |n, k,m, +>)% (|k,m,m, =) + ilm, k,n, 7)),% (Im,n,k, =) —iln,m, k,—)),

m odd, k,n even

(|777,, n, ka +> - ‘”’mv k7 +>)ﬂ% (|k7 m,mn, 7> - Z"m’ k n, 7>)’% (|k n,m, 7> - Z"nﬁ k’mv 7)):

s

2
k odd, m,n even
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symmetries. The G and G5 have even and odd switched for all cases of k,m,n.
Same is true between G| and GJ. These symmetry properties serve as additional
checks of the calculations.

In Fig. 9, we show the energy spectrum (lowest 100 levels) as a function of the
elongation factor 7 at a fixed box size L = 12 for all ten irreps of the Dy, group. For
the normal Fourier modes, we used the criteria of up to 26 for individual modes, and
28 for total modes. For the damped Fourier modes, we used damping factor v = 0.5
with individual modes up to 4 and total modes up to 4, except for the G5 channel
where v = 0.6 and 5 were used. This is done to better capture the bound states. The
size of the projected Fourier basis (size of H matrix) is 1191, 1076, 1182, 1079 for the
four irreps. Typically, it takes about 15 s to obtain all eigenvalues for a fixed value of

1 Elongated G1g (J=1,%.3,...,=022,..) 4
b 1_ ]

Elongated G1u (J=1,2,2,..., /=1,1,3,..)
-t J

Elongated G2u (J=3,5,%....,/=135,..)

1t 4 1+ . 4

5
9
IS
>
e
»
3
-
-
.
-
-
»
5

Fig. 11. (Color online) Stabilization diagrams for the spin-1/2 system from the four half-integer irreps of
the 2Dy, group in the elongated box of L x L x nL with L = 12.
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2 1.91 (J=7/2,|=4) 1.91 (J=7/2,=4)

1.81 (J=5/2,1=2) 1.81 (J=3/2,1=2)
1.425 (J=7/2,|=3)

1425 (J=7/21=3
1.297 (J=1/2,1=0)

1.30 (J=5/2,=3) 1.30 (J=5/2,1=3)
11 1.08 (J=9/2,I=5) 1.08 (J=9/2,=5)

0.63 (J=3/2,|=2) 0.81 (J=3/2,1=1) 0.63 (J=3/2,|=2) 0.81 (J=3/2,I=1)
0262 (J=5/2,1=2) 0.262 (J=5/2,1=2)
0.225 (J=7/2,|1=4) 0.225 (J=7/2,|=4)

>

o ~0.061 (J=1/2,I=1)

]

c

w

0.593 (J=5/21=3) -0.593 (J=5/2,1=3)
-0.409 (J=1/2,1=0) _— —_—

-1.036 (J=3/2,I=1) -1.036 (J=3/2,I=1)

~1.402 (J=3/2,}=2) -1.402 (J=3/2,/=2)

-2} -2.168 (J=1/2=1)

-2.448 (J=1/2,l=,0)

-3}

Gi Gj G; Gz
Irreps

Fig. 12. (Color online) Energy spectrum of the spin-1/2 system in the elongated box of L =12 as a
function of n for the half-integer irreps of the 2D,;, group. They are extracted from Fig. 11 and should be
compared with the infinite-volume spectrum in Fig. 2 and the cubic spectrum in Fig. 7.

7; so about 915 to do 7 from 0.9 to 2.1 in steps of 0.2, and about an hour to run all
four irreps. The code is structured the same way as in the cubic case for the spin-1/2
system, but takes much less time (1h vs. 9h). One obvious factor is we have four
irreps in the elongated box as opposed to six irreps in the cubic box. The more
important factor is in the structure of the projected Fourier basis. In the cubic case
(see Table 4), most of the states are superposition of six individual modes, whereas in
the elongated case (see Table 8), the states are superposition of two individual
modes. This is especially true of the four-dimensional H* irreps in the cubic case. As
a result, more individual modes are used in the cubic case.

For bound states, all seven are identified in the four diagrams. In the even-parity
G channel, which couples to total angular momentum J = 1/2,3/2,5/2, ..., we see
the two J = 1/2 states with £ = —2.448 and E = —0.409, and the one J = 3/2 state
with F = —1.402 which also appears in G5 . In the odd-parity G| channel, which
couples to the same total angular momentum, we see four bound states: the two
J=1/2 states with F=-2.168 and FE = —0.061, the J=3/2 state with
E = —1.036, and the J =5/2 state with F = —0.593. The F = —0.593 and E =
—1.036 also appear in the G5 channel as doubly degenerate states.

For scattering states, the visual identification is more difficult; only extremely
sharp resonances are visible. The three low-lying even-parity resonances £ = 0.225,
E =0.262, and FE = 0.63 are found in both G| and G . The E = 1.297 state is in G|
but not in G because the latter does not couple to J = 1/2. The three high-lying
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even-parity resonances =181, F =190, £ =191, and E = 2.40 also appear
in both channels. In the odd-parity channels, the sharp states at F = 0.81,
E =108, F=1.3, and F = 1.45 are visible, whereas the broad ones at £ = 1.55,
2.08,2.48,2.6,2.68 are less so.

The final outcome for the spin-1/2 system in the elongated box is summarized in
Fig. 10 along with assigned quantum numbers. It offers a direct comparison with the
infinite-volume spectrum in Fig. 2 and the cubic spectrum in Fig. 7.

5. Summary and Conclusion

We have shown how to compute the energy spectrum of two-particle scattering in
non-relativistic quantum mechanics in a box with periodic boundary conditions. We
do not discretize the box into a lattice. Instead, we employ a three-dimensional
cartesian Fourier basis to diagonalize the Hamiltonian, which is treated block by
block. It requires a group-theoretical projection of the Fourier basis into sectors that
transform according to the irreducible representations of the symmetry group under
consideration. These irreducible representations are the natural vehicles in which
angular momentum is resolved in the box. We considered four scattering scenarios
that are of current interest. For spin-0 system in cubic box, it involves the octahedral
group O), and its 10 irreducible representations Ay, Ay, E* Ti, Ts . For spin-1/2
system in cubic box, it involves the 20, group and its six half-integer irreducible repre-
sentations G, G5, and H=. For spin-0 system in elongated box, it involves the dihedral
group Dy, and its 10 irreducible representations Ay, A3, Bf, By, E*. For spin-1/2
system in cubic box, it involves the 2Dy, group and its four half-integer irreducible
representations G and G3. The projected Fourier basis in each case is of general-
purpose; they can be used for the block-diagonalization of any Hamiltonian system in a
box. Convergent results for a hundred low-lying energy levels can be obtained quickly on a
standard workstation or laptop using basis size on the order of a thousand. There is no
difference in computation time for different boxes since the box size L (or n) is adjusted as
a single parameter. This is an advantage over the lattice method which scales like N3 in
changing the volume. Using simple test potentials, we demonstrated how the various
bound and scattering states in the infinite volume are resolved in the periodic box.
Although elongated boxes are less visually appealing in the identification of resonances in
stabilization diagrams, they are expected to be just as effective as cubic boxes in numerical
analysis via the Liischer method. Elongated boxes do offer an advantage in terms of cost-
effectiveness in lattice simulations where the box is discretized into a three-dimensional
periodic lattice. In such scenarios, the cost of elongation is proportional to N, whereas the
cost of changing the cubic volume grows with N, N, N..

Sufficient details are given both in the write-up and in the package on how the
calculation is carried out. It is structured in a way that is relatively straightforward
to modify for new physics projects. We envision the package to be useful in a number
of ways. It can be a pedagogical tool for students who are learning how to apply
group theory in numerical projects under a box geometry. It can be used to validate
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phaseshift formulas (or quantization conditions) that are projected according to the
same irreps of the box, particularly those for half-integer spin in elongated boxes.”
Conventionally these formulas are treated in a self-consistent manner: they are used
to predict phaseshifts given the energies, but also “reverse-engineered” to infer the
energy spectrum from the targeted phaseshifts. A potential model can provide an
independent check of the formulas. The package can also be used to inform the design
of lattice QCD simulations. Systems can be model-tested in a box in simple quantum
mechanics before a full-fledged lattice QCD simulation is embarked upon. Aspects
such as kinematic coverage, irrep channel selection, and pion mass dependence can
all be investigated on a laptop. Such a study to model the delta resonance in pion-
nucleon scattering is under way. Finally, given the challenge of lattice QCD simu-
lation of three-body systems, a model numerical study in the box applying similar

techniques in this package could be beneficial.
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Appendix A. Infinite-volume Solutions

In infinite volume, the Schédinger equation in Eq. (1) with the central potential V(r)
admits solutions with spherical symmetry. The solution in spherical coordinate can
be expanded in partial waves ¢(r) = > R;(r)Y},, (0, ¢) where Y}, is spherical har-
monics. The radial wavefunction R;(r) satisfies the standard equation,

R d® I+ 1)R?

_EW+W+V(T) uy(r) = Euy(r), (A1)

where u;(r) = rR;(r) is the auxiliary radial wavefunction. Depending on the poten-
tial, the solution can be bound states whose energies are quantized, or scattering
states whose energy are continuous. The boundary conditions for bound states are
u(r) must vanish at the origin and large distances. For scattering states the boundary
conditions are

limu(r) =0 and lim w(r) o e sin [kr - g + 61} , (A.2)

r—0 7—00

where k= +/2uE/h? is the relative back-to-back CM momentum and §; is the

phaseshift for partial-wave [. The presence of the —i7/2 term is to account for the
centrifugal barrier term l(ljﬂ—lr)zﬁ and is inserted to ensure that the phaseshift in this

definition vanishes when the potential itself vanishes. Conventionally, to obtain the
phaseshift it is necessary to solve a second-order differential equation from the origin
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to the asymptotic region, then match the solution with an appropriate sine function.
Here we resort to the wariable phase method'” which requires solving only a first-
order differential equation,

dglg;’ n__ Ug”) [cos &,(k, ) 1(kr) — sin &, (k, )i, (kr)]?, (A.3)

where U(r) = %—’j V (r). The phase function 6,(k, ) is integrated from the origin where
gl(k, 0) =0 to the asymptotic region where the potential is negligible; then the
scattering phaseshift is obtained directly as the asymptotic value & (k)=
lim,_..6;(k,0). A few salient features of the method are worth pointing out. (1) The
physical meaning of the phase equation is clear: It describes the accumulation of the
phaseshift due to the potential from zero to its asymptotic value. If the potential does
not change sign, the asymptotic value is reached monotonically. In the limit of zero
potential strength, the phaseshift vanishes. (2) The physical meaning of the phase
function also becomes apparent: The value of ) (K, 0) at distance r from the origin is
the scattering phaseshift that would be produced by the potential if it were truncated
beyond r. (3) The phaseshift from this method does not suffer from the mod(r)
ambiguity inherent in Eq. (A.2) and is a continuous function of the momentum k. (4)
The overall negative sign signifies a well-known result in scattering: Repulsive
(positive) potentials produce negative phaseshifts; attractive (negative) potentials
produce positive phaseshifts. (5) The negative sign also implies a formal symmetry of
the phase function if we change the sign of momentum k, namely 6;(k,r) =
—6;(—=k,r) (where we added the k-dependence) which leads to the well-known
property of the S-matrix, S;(k,r) = S; ' (—k,r). (6) At high energies, the 1/k factor
guarantees that the phaseshift vanishes, lim;_,. 6, = 0. In the limit of zero energy,
the phaseshift satisfies Levinson’s theorem lim;_,,6, = nym, where n;, is the number of
bound states in the /th partial wave. The exception is when a zero-energy s-wave
resonance occurs, in which case Levinson’s theorem is modified to lim; 46y =
(ny + 1/2)7 (we did not encounter such a case in this study). Levinson’s theorem is
an index theorem that can reveal the number of bound states purely from the be-
havior of the phaseshifts at low and high energy limits.

To get a landscape view, the test potentials for the two systems in this study,
Egs. (2) and (3), are plotted together in Fig. A.1 for a number of partial waves. The
black curves correspond to the spin-0 potential V(r) in Eq. (2); the blue curves to the
spin-1/2 potential V;_;, 1(r) in Eq. (6); and the red curves V;_;_.(r) in Eq. (7). T he
spin-orbit coupling coeflicient is chosen as ¢,; = 1.0. Note that for s-wave, V(r) and
Vj_i11(r) are degenerate, while V;_;_,(r) not defined. The range of the potentials
extends to a distance of about r = 8. The centrifugal barrier pushes the effective
range further out with increasing partial wave.

In Fig. A.2, we display the phaseshifts and their derivatives computed from the
variable phase method for the spin-0 potential. The gridlines indicating multiples of
7 are draw for the phaseshifts. From the values at £ — 0, we can predict the number
of bound states via the Levinson’s theorem: there are two bound states in the s-wave,
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Fig. A.1. (Color online) Plot of the test potentials as a function of distance for partial waves up tol = 7.
The three curves correspond to spin-0 potential (black), spin-/12 potential V;_;, 1(r) (blue), and spin-1/2
potential V;_;_1(r) (red). Top two rows: just V(r). Bottom two rows: V(r) + centrifugal barrier term.
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Fig. A.2. Top two rows: phaseshifts as a function of energy for the spin-0 potentials (black curves in
Fig. A.1). Bottom two rows: derivative of phaseshifts. The gridlines indicate multiples of .
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Fig. A.3. (Color online) Top two rows: phaseshifts as a function of energy for the spin-1/2 potentials
(color-coded to correspond to blue and red curves in Fig. A.1). Bottom two rows: derivative of phaseshifts.

one in p-wave, one in d-wave, and no bound states in higher partial waves. This is
corroborated by the effective potential (the black curve in Fig. A.1). In the [ =3
partial wave, it has a small negative dip but not enough to support a bound state.
We use a Mathematica eigensolver to locate the bound states under Dirichlet
boundary conditions. For scattering states, we are interested in resonances as
signaled by sudden increases in the phaseshifts, or as peaks in the first derivative
of the phaseshift. We see some very sharp resonances in the lower partial waves.
Each partial wave has a sharp resonance followed by a broad one. The derivative
curves can be modeled by a resonant Breit—Wigner term and a slowly-varying
background,
dé;(E) r/2

dE — (E — E )2 + F2/4 + CO + CIE + 02E2 + 03E37 (A.4)

where E, is the pole position I'" the width. This form does not work well with ex-
tremely sharp resonances. In such cases, the pole position and width can be estimated
by inspecting the peaks on a detailed plot.

Figure A.2 depicts the situation in the spin-1/2 system. In the J =1 —l—% channel
(blue) which is made shallower by the spin-orbit term, there are two bound states in
the s-wave, one in p-wave, according to Levinson’s theorem. In the J =1 — % channel
(red) which is made deeper by the spin-orbit term, there are two bound states in the
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s-wave, two in p-wave, one in d-wave. In fact, there is a very shallow bound state
E = —0.061 that is missed by Levinson’s theorem (due to numerical inaccuracies in
computing the phaseshift), but caught by the eigensolver. As for scattering states,
the basic feature of a sharp resonance followed by a broader one persists in both
channels. The deeper channel induces two sharp resonances below E = 3 in higher
partial waves (I = 6,7). More interestingly, there are two extremely sharp resonances
just above threshold (F =0.262 in [ =2 and £ = 0.225 in | = 3).

The combined spectra of bound and scattering states are displayed in the main
text in Fig. 1 for the spin-0 system, and Fig. 2 for the spin-1/2 system.

Appendix B. Cross Check of Energy Spectrum by Liischer’s Method

Liischer established exact relations (called quantization conditions or QC) between
elastic scattering phaseshifts in the infinite-volume and the two-body energy spec-
trum enclosed in a periodic box.”? In general, the QC has couplings to an infinite tower
of partial waves and does not have predictive power for phaseshifts. However, if all
higher partial waves but the lowest one can be neglected, it can be used to predict the
phaseshift of the lowest partial wave given the energy in the box. This is often
referred to as the Liischer method. Here, we perform such a study using the energy
spectrum for the A irrep in the cubic box as an example. The A irrep couples to
partial waves £ = 0,4, 6, ... so it can be used to predict the s-wave phaseshift via the
equation,
_ Zoo((fa L) kL

Here Z, is a zeta function whose general definition is given by a sum over integers,

zon= Y Do) (B.2)

n={n;,ny,n3} ni = q2
It has poles at ¢> = n? which are the noninteracting (free-particle) energies in the
box. By feeding the discrete interacting k obtained in a box of size L into Eq. (B.1),
69(k) can be obtained and compared to that in the infinite volume displayed in
Fig. A.2. The prediction is expected to be valid for low energies where the lower
partial waves dominate and box size L > 2R where R is the range of the interaction.
Figure B.1 shows the result of such an comparison for four box sizes. The range
displayed in momentum k of 0 to 0.8 corresponds to energy E of 0 to 1.265. The pole
in the infinite-volume result (black curve) is due to the sharp resonance present in
this channel. We see good agreement in the low energy region. The larger boxes
provide more points and reach lower in energy. The agreement deteriorates at higher
energies, which we attribute to the higher partial waves that are cut off in the
Liischer method. Though a limited comparison study, it demonstrates the efficacy of
the Liischer method and the extent to which it applies, at least for the toy potential
model employed in this work.
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Fig. B.1. (Color online) Phaseshift predicted from the Liischer method in the cubic box (colored points) is
compared to that from the infinite-volume (black curve) in the A} irrep of the cubic box.

Appendix C. Matrix Elements

The Fourier integrals in Eq. (14) can be carried out analytically for the test poten-
tials. The overlap term is separable into a product,

L)2 L)2
(Ynonyntlyngn,n.) = / y dx ¢, (Y, )y (7, ) / y dy ¢y (V) b, (V5 9)
—L/2 —L/2

L2
x / dz bt (o, ). (7, 2). (c.1)
—L/2

L/

The basis function in z-direction with the damping factor e=7** can be concisely
written as

¢nr(’7;m) = Z(nvL)fn(K(nvL)x)eivza (CQ)

where the functions are defined as

K(n,L) = %[n—&—%(l—(—l)”) (n=0,1,2,...), Z(n,L)E“ﬁ,

i (2) = {cos(z) n even, (©23)

sin(z) n odd.

The K(n, L) function will be used, but the Z(n, L) and f,,(x) functions are absorbed
into new functions below. The final result for the overlap is given in closed form by

Ml el ). (C.4)

(Ynimynlym,n,n.) = QF)

nhn,
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The kinetic energy term is also separable and the final result is given by

(Ynlnln|Tln, nn):%[Gy—kK (ng, L) + K2(n,, L) + K2(n., L)) (7)

nn

x QO (Nl (1) +LIK(n,, D)0 00l el ()

nyn, nin, nhn, nyn, nin,

+Man“<ﬂW9vmﬁw>+Mmim“<ﬂw%vm$¢ﬂ

-5 L2rg & mar mel m+al) el mel) i)
+ Q;ﬂjnx(r)ﬂﬁfm(f)g @ (@l (C.5)

The final result for the potential energy V(r) = (=V; + Virt)e 7 is given by
(y'n'n nZ|V|’yn nyn,) = fVOQ< ) (a)QLO,:n (a)QEZO,?n‘ (a)

’ﬂ’ﬂ

— el @, @0, @ +9Y, @, @el, @

16 nhn, nyny n NNy nyny nn,
+ O, (@20, (@91, (@) +207, (@07, (@9, ()
+ QQH My (G)QELO;)H,,/(G)QEL )n ( )+ 2Qn My (a)Qf?;”u(a)in)nz (a’)} (CG)

They are expressed in terms of a super-function defined by,

Q) (@) = Z(n',n)[Ly(a,b_(n/,n)) + (=1)"ALy(a,by (0, n))],  (C.7)

where
Zm””:i“+(”mﬂ¢u;&w¢u:6w (©5)

and
bi(n',n) = % [K(n',L)+ K(n,L)], (C.9)

are pure functions of integers (L cancels in b, (n',n) function). The variables 7 and a
represent the following combinations (linear in L),

L L
T=5VB+HY, a=ZVr+Y. (C.10)

The four integrals are defined by
1
Iy(a,b) = / dx cos(bx)e "
-1

1
I(a,b) = / dz x sin(br)e """
-1

i
Ly(a,b) :/ dx z? cos(bx)e~""*
-1

1
Ii(a,b) :/ dx 2 cos(bx)e """,
-1

(C.11)
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whose evaluations involve the error function erf(z) = [* dte ",

Note that the introduction of the damping factor e " to the basis functions can
cause the overlap to become positive nondefinite, especially for small box sizes (when
L is close to the range of the potential). In such cases, a single value decomposition
(SVD) is used to project out the bad subspace in the overlap matrix. Construction of
the Hamiltonian matrix is the most costly part of the calculation. For improved
speed, the evaluation of the matrix elements is done by C++ code whose execution is
seamlessly called from inside Mathematica.

In the case of elongated box L x L x Ln with n the elongation factor in the
z-direction, the z integration receives special treatment in Eqgs. (40) and (41). The
corresponding results become functions of both L and 7 instead of just L.
The transition is fairly straightforward. The Z(n/,n) and b, (n’,n) functions remain
the same. The K(n, L), 7 and a functions receive the substitution L — L in the
z-direction. At the same time, the super-function Q) is rescaled by the factor n
from the explicit L factors appearing in Egs. (C.5) and (C.6). Applying these sub-
stitutions, the overlap term is given by

{(y'n’, nynzhn NN = 97(10/) (T)leo,) (T)Q<0/) (tn). (C.12)

L y"y n.n.

The kinetic energy term is given by

= Loy + K2, D) + K2(ny, L) + K2(n., L)}, (7)

2 nhn,

x Q) (ML), () + LK (n,, DO, QL) (nell), (m)

n TL n TZ n,n,

<T>Q§3?n (MR, () +nK(n., LpQl), (1l (7)

nin, NN, nyn,

(yninyn | Tlyn,n,n.)

+ K(n,, L))

NNy

x Qi) ()] - QLZ[QM (may), el m+el) el )

’I'ZTL

x Q) (m)+n29<> (M) el (). (C.13)

The result for the potential energy V(1) = (—V, + Virt)e 7" is given by
(Ynimyn|Vim,n,n.) = =0\, ()2 ()2, (an)

n'n,

+ —VL4[Q() (@0 (@), (an)+2) (@0 (@), (an)

16 TNy n.n, NNy

+ ol Q(O,) (@90l (a)Q;LL (an)+29(2 (a)ﬂ@ (@), (an)

yTy TNy 77/!/77/!/ n,n,

@92 (@Qf) (an)+2200) (0% (@0 (an)]. (C.14)

nhn, nyn, n'n, nhn, nyn, n'n,

+2nQ

The spin-1/2 system is handled in a similar fashion. If a different potential is
desired, only the potential part needs to be re-coded. The overlap and kinetic terms
remain the same.
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