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We aim to compute the discrete energy spectrum for two-body scattering in a three-dimensional

box under periodic boundary conditions. The spectrum in the center of mass is obtained by

solving the Sch€odinger equation in a test potential using the Fourier basis. The focus is on how
to project the spectrum into the various irreducible representations of the symmetry groups of

the box. Four examples are given to show how the in¯nite-volume spectrum (including both

bound and scattering states) is resolved in cubic or elongated boxes, and in systems with integer

or half-integer total spin. Such a demonstration is a crucial step in relating the discrete spectrum
in the box to the in¯nite-volume scattering phaseshifts via the Lüscher method.

Keywords: Two-body scattering; cubic and elongated boxes; periodic boundary conditions;
Fourier basis; irreducible representations.

1. Introduction

Scattering is an indispensable tool in probing the nature of interactions between two

particles, either in atomic and molecular physics or in nuclear and particle physics.

An e®ective theoretical method is the use of a ¯nite box to enclose the system under

consideration. The energy of the system is quantized in the box. Scattering resonance

parameters can be extracted from the energy spectrum as a function of the box size.

In the early days, the method was applied mostly to one-dimensional systems and

Dirichlet boundary conditions (for an example see Ref. 1). The breakthrough came in

the seminal work by Lüscher2 that established exact relations between elastic scat-

tering phaseshifts and the two-body energy spectrum enclosed in a three-dimensional

box with periodic boundary conditions. Such relations (also known as quantization

conditions) are fairly general: it does not matter how the energy spectrum is
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obtained. The method is known as the Lüscher method and has been successfully

applied in the ¯eld of lattice QCD to obtain resonance parameters in hadron–

hadron scattering in terms of quark–gluon dynamics. In lattice QCD, the energy

is computed from path integrals on a periodic space-time lattice in large-scale Monte-

Carlo simulations. Since then, various extensions to the Lüscher method have

been made to widen its applications, including moving frames,3 spin-1/2 particles,4

higher partial waves,5 asymmetric boxes,6,7 inelastic scattering,8,9 partial-

wave mixing in Hamiltonian e®ective theory,10 three-body systems,11,12 and matrix

elements.13

In numerical simulations in a periodic box, the standard method to obtain

the energy spectrum is to discretize the box L3 into a lattice N3a3. To remove

the discretization errors, one takes the continuum limit of a ! 0 and L ! 1
while keeping the size L ¼ Na ¯xed. Here, we present an alternative method

without discretization. We use a Fourier basis to compute the energy spectrum.

We show how to apply group theory to the basis to take full account of the

symmetry of the box. We want the framework to be as pedagogical as possible so

the techniques can be applied to a wider range of problems. We employ both cubic

and elongated boxes. The use of elongated boxes has shown promise in reducing

the cost of lattice QCD simulations.14,15 We consider systems of not only integer

spin, but also half-integer spin which is drawing increasing interest.16 Since the

Lüscher method applies regardless of how the interaction energy is obtained in the

box, we use a simple potential model in nonrelativistic quantum mechanics and

focus only on the two-body energy spectrum. To facilitate the application of the

methods we decide to make the entire framework available as a computational

package.a

The presentation is organized as follows. After the in¯nite-volume spectrum is

introduced in Sec. 2, the discrete energy spectrum is discussed in four sections: spin-0

and cubic box in Sec. 3.1, spin-1/2 and cubic box in Sec. 3.3, spin-0 and elongated

box in Sec. 4.1, spin-1/2 and elongated box in Sec. 4.2. Some technical details are

relegated to the three appendices.

2. Scattering in In¯nite Volume

The standard method for two-body scattering in the continuum is to separate it into

the total motion of center of mass (CM) and the relative motion in the CM. In the

CM frame, it is a one-body Schr€odinger equation problem

� }2

2�
r2 þ V ðrÞ

� �
 ðrÞ ¼ E ðrÞ; ð1Þ

where � ¼ m1m2=ðm1 þm2Þ is the reduced mass, and V ðrÞ a local, energy-inde-

pendent potential.

aThe package is written in C++ and Mathematica and can be obtained from the authors upon request.
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In this study, we consider two cases for the interaction potential. First is the

scattering of two spinless particles (hereafter referred to as the spin-0 system) of

either equal or unequal masses. We work with a dimensionless Hamiltonian H ¼
� 1

2
r2 þ V ðrÞ in the unit system } ¼ c ¼ � ¼ 1, with a dimensionless potential and

dimensionless distance r,

V ðrÞ ¼ ð�V0 þ V1r
4Þe��r2 ; ð2Þ

where V0 ¼ 4, V1 ¼ 1=16, and � ¼ 1=8. This potential has a mixture of bound states

and narrow and wide resonances, suitable for testing purposes. Figure 1 shows the

low-lying energy spectrum admitted by the potential. It has four bound states across

three partial waves, and over 10 resonances with varying widths, in the range E < 3

and l � 5. Details on how the states are found are given in Appendix A.

The second case is scattering of a spinless particle and a spin-1/2 particle (here-

after referred to as the spin-1/2 system). The potential now has a spin-orbit coupling

term added to the spin-zero case,

VJlðrÞ ¼ ð�V0 þ V1r
4 þ c‘s ‘ � sÞe��r

2

: ð3Þ

We use the same parameters V0 ¼ 4, V1 ¼ 1=16, and � ¼ 1=8 for the central part.

The wavefunction is the eigenstate of fJ2; Jz; ‘
2; s2g which we label as jJM‘i.

In spherical coordinates, it has the form  ðrÞ ¼ R‘ðrÞYJM‘ð�; �Þ where YJM‘ is the

two-component spin spherical harmonics. The total angular momentum is J ¼ ‘þ s.

Fig. 1. Low-lying energy spectrum allowed by the spin-0 potential in Eq. (2) in the in¯nite volume for

E < 3 and l � 5. Bound states are indicated by a minus sign. Resonances are indicated by the center

position and shaded width.
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For a given partial wave ‘ (except s-wave), there are two possible J values:

J� ¼ ‘� 1=2. The spin-orbit coupling in this basis becomes

‘ � s ¼ 1

2
JðJ þ 1Þ � ‘ð‘þ 1Þ � 3

4

� �
¼

‘=2 for J ¼ ‘þ 1

2

�ð‘þ 1Þ=2 for J ¼ ‘� 1

2
ð‘ 6¼ 0Þ:

8
>><

>>:
ð4Þ

The potential is diagonal in this basis

VJ‘ðrÞ ¼
VJ¼‘þ 1

2

ðrÞ 0

0 VJ¼‘� 1

2

ðrÞ

0

@

1

A: ð5Þ

Thus for each partial wave l, the two states J ¼ ‘� 1

2
can be treated separately in the

in¯nite volume. In the ¯nite volume, however, the two remain coupled as in Eq. (3),

as we will see later. The two potentials are

VJ¼‘þ 1

2

ðrÞ ¼ �V0 þ V1r
4 þ 1

2
‘c‘s

� �
e��r

2

; ð6Þ

VJ¼‘� 1

2

ðrÞ ¼ �V0 þ V1r
4 � 1

2
ð‘þ 1Þc‘s

� �
e��r

2

: ð7Þ

We see that the e®ect of the spin-orbit term is to modify the V0 value. As ‘ increases,

the potential VJ¼‘þ 1

2

ðrÞ is less and less likely to support bound states and resonances.

On the other hand, the depth of VJ¼‘� 1

2

ðrÞ grows with ‘ so it is more and more likely

to support bound states and resonances, although this e®ect is o®set by the in-

creasing centrifugal barrier. Plotting these potentials for low-lying values of ‘ for a

variety of c‘s values leads us to conclude that a value of c‘s on the order of unity

introduces noticeable but not overwhelmingly large changes to the spectrum com-

pared to the spin-zero case. We shall use cs‘ ¼ 1:0 for our test.

Figure 2 shows the energy spectrum of this potential in the range E < 3 and l � 7.

The system has seven bound states, two more than the spin-0 system, including a

very shallow state at E ¼ �0:061. It has about 20 resonances in the given range,

some of them very sharp. Note that two more partial waves are included compared to

the spin-0 case.

Our primary objective is to see how to reproduce these in¯nite-volume states in a

periodic box.

3. Spectrum in Cubic Box

In in¯nite-volume (which we also refer to as continuum in this study), the problem is

spherically symmetric. When con¯ned in a cubic box, however, the spherical sym-

metry is broken by the geometry of the box. Furthermore, for scattering states the

energy spectrum is quantized due to the fact that the back-to-back momentum is a
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multiple of 2�=L where L is the box size. The bound states, on the other hand, should

not be a®ected too much as long as the box size is bigger than the range of the

interaction potential. The goal here is to obtain the discrete energy spectrum in the

box, and identify bound and scattering states while fully respecting the symmetry of

the box.

3.1. Spin-0 system

We want to solve the Schr€odinger equation in a cubic box centered on the origin

with periodic boundary conditions.b In Cartesian coordinates, Eq. (1) takes the

form

� }2

2�

@2

@x2
þ @2

@y2
þ @2

@z2

� �
þ VLðx; y; zÞ

� �
 ðx; y; zÞ ¼ E ðx; y; zÞ; ð8Þ

where the potential becomes periodic

VLð;x; y; zÞ ¼
X

nx;ny;nz

V ðjðxþ nxL; yþ nyL; zþ nzLÞjÞ: ð9Þ

Visually, the continuous space gets tiled into an in¯nite number of L3 boxes in

which the potential is replicated. Under this scenario, the potential is no longer

Fig. 2. (Color online) Low-lying energy spectrum admitted by the spin-1/2 potentials in Eqs. (6) and (7)

in the in¯nite volume for E < 3 and ‘ � 7. For a given partial wave ‘, there are two possible J values,

J ¼ ‘þ 1=2 (blue) and J ¼ ‘� 1=2 (red).

bSince the system is translationally invariant, the results do not depend on where to place the origin.
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rotationally symmetric. Instead, it takes on the symmetry of the box. The wave-

functions satisfy the periodic boundary conditions

 ðxþ nxL; yþ nyL; zþ nzLÞ ¼  ðx; y; zÞ; ð10Þ

for integers ðnx;ny;nzÞ. It is important to point out that this form of periodic

boundary condition assumes that the total momentum P ¼ p1 þ p2 of the two-

particle system is zero in the rest frame of the box (lab frame). This means that the

particles have equal and opposite momenta (p1 ¼ �p2 ¼ k) in both the lab and CM

frames (or the two frames coincide). For moving frames (P 6¼ 0), a modi¯ed

boundary condition is required (see Ref. 3 for example). Solving moving frames is

beyond the scope of this work. We will only consider the rest frame (P ¼ 0).

The energy and momentum are related by the dispersion relation E ¼ }2k2

2� . For a

free particle in the periodic box, the momentum is quantized as k ¼ 2�
L
fnx;ny;nzg so

the energy is quantized. In the presence of interactions, the dispersion relation still

holds, but E and k deviate from the free-particle values. It is these deviations that

encode information about the interaction in terms of phaseshifts or scattering

lengths.

There are di®erent ways to obtain the discreet energy spectrum in the cubic box.

We choose to work with a Fourier basis as a variational basis to diagonalize the

Hamiltonian. In one dimension, the basis is given by

hxjnxi ¼ �nx
ðx;LÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Lð1þ �nx0
Þ

s
cos

2�nxx

L

� �
for nx ¼ 0; 1; 2; . . .

ffiffiffiffi
2

L

r
sin

2�nxx

L

� �
for nx ¼ 1; 2; 3; . . .

8
>>><

>>>:
ð11Þ

It is an orthonormal and complete basis; any function can be expanded in this basis.

We need its form in three dimensions:

hx; y; zjnxnynzi ¼ �nx
ðx;LÞ�ny

ðy;LÞ�nz
ðz;LÞ: ð12Þ

The basis naturally satis¯es the periodic boundary conditions speci¯ed in Eq. (10).

Expanding the wavefunction in this variational basis,

 ðx; y; zÞ ¼
X

vnxnynz
�nx

ðx;LÞ�ny
ðy;LÞ�nz

ðz;LÞ; ð13Þ

leads to the eigenvalue problem in matrix form Hv ¼ Ev where the Hamiltonian

matrix elements are given by the integrals

hn 0
xn

0
yn

0
zjĤ jnxnynzi ¼

Z L=2

�L=2

dx

Z L=2

�L=2

dy

Z L=2

�L=2

dz �n 0
x
ðx;LÞ�n 0

y
ðy;LÞ�n 0

z
ðz;LÞ

� Ĥ�nx
ðx;LÞ�ny

ðy;LÞ�nz
ðz;LÞ: ð14Þ

The eigenvalues fEg are the discrete energies allowed in the box. The eigenvectors

fvg yield the superposition coe±cients for the corresponding wavefunctions. In the
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spirit of variational principle, better convergence on the lower part of the spectrum

can be achieved by including more Fourier modes in the basis. In practice, one can

adjust the number of modes to achieve a desired accuracy.

One issue is if the system has bound states, a very large basis (several thousand) is

required to achieve convergence. The reason is that bound states have wavefunctions

which are very localized near the origin. The expansions of such wavefunctions in

terms of the Fourier modes converge very slowly. It takes many Fourier modes to

build up the localized wave functions of the bound states. A solution to this problem

is to include localized states in our basis. We apply the damping factor e��r
2

on the

basis functions with the adjustable parameter � to control the damping rate. The

damped Fourier modes are no longer orthogonal so we need to solve a generalized

eigenvalue problem Hv ¼ EBv where B ¼ h�0n 0
xn

0
yn

0
zj�nxnynzi is the overlap ma-

trix between the basis states. We intend to include a fairly large number of un-

damped basis states (� ¼ 0) to capture the scattering stationary states. To reproduce

the few bound states, we add a few states with � chosen to match the extent of the

bound states. The damped Fourier modes have the same transformation properties

as the undamped Fourier modes under rotations and re°ections, but their presence

breaks the periodic boundary conditions in the undamped Fourier modes. We choose

� to be su±ciently large to ensure that these functions are localized near the origin

and negligible near the box boundaries, so these functions can be made periodic in

the same manner as the potential was made periodic. For the test potentials in this

study, the matrix elements involved are all analytical. Details of their evaluations are

relegated to Appendix C.

3.2. Block diagonalization

We want to apply group theory to diagonalize the Hamiltonian matrix. First we

brie°y review the terminology of the cubic symmetry. There are 24 elements for the

cubic box that form the octahedral group O, as depicted in Fig. 3.

Fig. 3. The cubic box is invariant under 24 rotations about the various axes, as explained in the text.
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They are divided into ¯ve groups (called conjugacy classes) and are given con-

ventional names: the identity (E); six �=2 rotations about Cartesian axes (C�
4x, C

�
4y,

C�
4z); three � rotations about Cartesian axes (C2x, C2y, C2z); eight 2�=3 rotations

about body diagonals (C�
31, C

�
32, C

�
33, C

�
34); and six � rotations about axes parallel

to face diagonals (C2a, C2b, C2c, C2d, C2e, C2f). The operations are performed in a

right-hand way with the thumb pointing from the center to the various symmetry

points. The O group has ¯ve irreducible representations (irreps) named A1, A2, E,

T1, T2 with respective dimensionality of 1; 1; 2; 3; 3. In addition to the rotations, space

inversion (parity) is also a symmetry of the cubic box. The full symmetry group

including parity is called Oh which has 48 elements and 10 irreps A�
1 , A

�
2 , E

�, T �
1 ,

T �
2 . Sometimes even and odd parity are represented by German words gerade or

ungerade, respectively. For example, Aþ
1
is A1g, and A�

1 is A1u, and so on. We use

these two notations interchangeably in the entire package. More details about the

cubic group can be found in our previous work Ref. 7.

In group theory, the rotationally-symmetric continuum is represented by the

SOð3Þ which has an in¯nite sequence of 2J þ 1 irreps (whose basis vectors are

spherical harmonics YJM) classifying integer angular momentum J ¼ 0; 1; 2; 3; . . .. In

the cubic box, however, only 10 possibilities exist for the classi¯cation of integer

angular momentum: the 10 irreps of the Oh group, shown in Table 1.

A straightforward diagonalization of the Hamiltonian in the Fourier basis yields

eigenstates that are a mixture of the irreps and partial waves. One then has to

disentangle the states as to which irreps they belong with what angular momentum.

For a large basis, the computation becomes both memory and time intensive. A more

e±cient approach is to work on the Fourier basis before diagonalization. We need to

construct the Fourier basis vectors (a linear superposition of the Fourier modes

jnxnynzi) that transform according to the property of the irreps. The Hamiltonian

Table 1. Decomposition of integer angular momentum in

the cubic box according to the irreps of the Oh group. Both

the original decomposition (left) and its inverse (right)
are shown. The number in parentheses indicates the

multiplicity of that J in that irrep.

J Oh Oh J

0 Aþ
1

Aþ
1

0, 4, 6, . . .

1 T �
1 A�

1 9, 13, 15, . . .
2 T þ

2
�Eþ T �

1 1, 3, 5(2), . . .

3 A�
2 � T �

1 � T �
2 T þ

1
4, 6, 8(2), . . .

4 Aþ
1
� Eþ � T þ

1
� T þ

2
T þ
2

2, 4, 6(2), . . .

5 E� � 2T �
1 � T �

2 T �
2 3, 5, 7(2), . . .

6 Aþ
1
�Aþ

2
� Eþ � T þ

1
� 2T þ

2
Eþ 2, 4, 6, . . .

E� 5, 7, 9, . . .

. . . . . . A�
2 3, 7, 9, . . .

Aþ
2

6, 10, 12, . . .
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matrix can then be block-diagonalized in the new basis vectors, as illustrated in the

following equation,

H ¼
irrep1 0 0

0 irrep2 0

0 0 . .
.

0

BB@

1

CCA: ð15Þ

In this manner, the discrete energy spectrum in each irrep sector can be computed

separately in a subspace of the Hamiltonian. The separation can be done by group

theoretical projection operators. To this end, we need to examine how the group

elements of Oh act on our basis states. We ¯rst work with the O group which

contains the proper rotations, and add the space inversion separately later for the Oh

group. We do not need to examine all 24 elements of the O group. In fact, we only

to need to focus on two generating elements of the O group which we choose as Cþ
4z

and Cþ
4y.

For a rotation r 0 ¼ Rr, the quantum operator on the coordinate-space vectors

behaves as Rjri ¼ jRri. Hence, hrjR† ¼ hRrj, and so hrjR ¼ hR�1rj. For a vector

r ¼ xbi þ ybj þ zbk, the action of ðCþ
4zÞ�1 ¼ C�

4z produces a vector �xbj þ ybi þ zbk.
Hence, ðCþ

4zÞ�1jx; y; zi ¼ jy;�x; zi and hx; y; zjCþ
4z ¼ hy;�x; zj. Thus, under Cþ

4z,

we have

hx; y; zjCþ
4zjnx;ny;nzi ¼ hy;�x; zjnx;ny;nzi ¼ �nx

ðyÞ�ny
ð�xÞ�nz

ðzÞ
¼ ð�1Þny�ny

ðxÞ�nx
ðyÞ�nz

ðzÞ ¼ ð�1Þnyhx; y; zjny;nx;nzi;

from which we conclude

hn 0
x;n

0
y;n

0
zjCþ

4zjnx;ny;nzi ¼ ð�1Þny�n 0
xny
�n 0

ynx
�n 0

znz
: ð16Þ

Similarly, under Cþ
4y, we have

hx; y; zjCþ
4yjnx;ny;nzi ¼ h�z; y;xjnx;ny;nzi ¼ �nx

ð�zÞ�ny
ðyÞ�nz

ðxÞ
¼ ð�1Þnx�nz

ðxÞ�ny
ðyÞ�nx

ðzÞ ¼ ð�1Þnxhx; y; zjnz;ny;nxi;

from which we conclude

hn 0
x;n

0
y;n

0
zjCþ

4yjnx;ny;nzi ¼ ð�1Þnx�n 0
xnz
�n 0

yny
�n 0

znx
: ð17Þ

We need to consider three types of basis states separately: all three components

are the same, jn;n;ni; two components are the same, jn;n;mi; all three components

are di®erent, jn;m; ki. We seek a matrix representation to handle the three types.

For the ¯rst type, we obtain a 1-dimensional representation of the operations,

F ½Cþ
4z� ¼ ð�1Þn;F ½Cþ

4y� ¼ ð�1Þn: ð18Þ

For the second type, if we use 1, 2, 3 to represent the three possibilities jn;n;mi,
jn;m;ni, jm;n;ni, respectively, we obtain a three-dimensional matrix

Energy spectrum of two-particle scattering in a periodic box
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representation of the operations,

F ½Cþ
4z� ¼

ð�1Þn 0 0

0 0 ð�1Þn
0 ð�1Þm 0

2

64

3

75; F ½Cþ
4y� ¼

0 0 ð�1Þm
0 ð�1Þn 0

ð�1Þn 0 0

2

64

3

75: ð19Þ

For the third type, if we use 1, 2, 3, 4, 5, 6 to represent the six possibilities

jk;m;ni, jk;n;mi, jm; k;ni, jm;n; ki, jn; k;mi, jn;m; ki, respectively, we obtain a

six-dimensional matrix representation of the operations,

F ½Cþ
4z� ¼

0 0 ð�1Þk 0 0 0

0 0 0 0 ð�1Þk 0

ð�1Þm 0 0 0 0 0

0 0 0 0 0 ð�1Þm
0 ð�1Þn 0 0 0 0

0 0 0 ð�1Þn 0 0

2

666666664

3

777777775

;

ð20Þ

F ½Cþ
4y� ¼

0 0 0 0 0 ð�1Þn
0 0 0 ð�1Þm 0 0

0 0 0 0 ð�1Þn 0

0 ð�1Þk 0 0 0 0

0 0 ð�1Þm 0 0 0

ð�1Þk 0 0 0 0 0

2

666666664

3

777777775

:

Next, to obtain the other elements, we need the multiplication table for the O

group (which can be found in the companion package to save space). The

noncommunicative table re°ects the closure property that all group elements

must satisfy. Inspecting this multiplication table, we can deduce the remaining

22 elements from Cþ
4z and Cþ

4y via a variety of pathways. We choose the fol-

lowing path way (left to right, then down):

C2y ¼ Cþ
4yC

þ
4y ! C�

4y ¼ C2yC
þ
4y ! C2z ¼ Cþ

4zC
þ
4z ! C�

4z ¼ C2zC
þ
4z !

Cþ
34

¼ Cþ
4yC

�
4z ! C�

4x ¼ Cþ
4zC

þ
34

! C2x ¼ C�
4xC

�
4x ! Cþ

4x ¼ C2xC
�
4x !

Cþ
31

¼ Cþ
4xC

þ
4y ! Cþ

32
¼ C�

4yC
þ
4z ! Cþ

33
¼ C�

4yC
�
4z ! C�

31 ¼ C�
4zC

�
4y !

C�
32 ¼ C�

4zC
þ
4y ! C�

33 ¼ Cþ
4zC

þ
4y ! C�

34 ¼ Cþ
4zC

�
4y ! C2a ¼ C2yC

þ
4z !

C2b ¼ C2xC
þ
4z ! C2c ¼ Cþ

4yC2z ! C2d ¼ C2zC
þ
4x ! C2e ¼ C2zC

þ
4y !

C2f ¼ C2yC
þ
4x ! E ¼ C2xC2x:

ð21Þ
Formally, the Oh group can be obtained from the O group by the direct product

Oh ¼ O	 Ci where Ci is the inversion group Ci ¼ fE; isg where is is the space

inversion element. Operationally, the elements for the even-parity irreps are obtained

by doubly-extending the 24 elements fRg to fR;Rg; while elements for the odd-

parity irreps are obtained by fR;�Rg. The action of parity x ! �x; y ! �y; z !
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�z on our basis states is particularly simple:

hx; y; zjIsjnx;ny;nzi ¼ h�x;�y;�zjnx;ny;nzi ¼ �nx
ð�xÞ�ny

ð�yÞ�nz
ð�zÞ

¼ ð�1Þnxþnyþnz�nx
ðxÞ�ny

ðyÞ�nz
ðzÞ

¼ ð�1Þnxþnyþnzhx; y; zjnx;ny;nzi; ð22Þ

from which we conclude

hn 0
x;n

0
y;n

0
zjIsjnx;ny;nzi ¼ ð�1Þnxþnyþnz�n 0

xnx
�n 0

yny
�n 0

znz
: ð23Þ

So we have diagonal representations of dimension 1, 3, and 6, respectively: F ½is� ¼
ð�1Þ3n ¼ ð�1Þn for the ¯rst type, F ½is� ¼ ð�1Þ2nþm ¼ ð�1Þm for the second type, and

F ½is� ¼ ð�1Þkþmþn for the third type. To obtain the matrix representation for the

operations in the Oh group, we doubly extend the original operations F ½R� with the

space inversion applied, fF ½R�;F ½is�F ½R�g.
Finally, the basis vectors that transform corresponding to a given row of a given

irrep can be found by a projection operator. For any given state j’i, a state which

resides in row 	 of irrep � can be obtained by the projection

j�	i ¼ d�

g

X

R2G
�

ð�Þ
	� ðRÞ
URj’i; ð24Þ

where d� is the dimensionality of the irrep �, g is the number of elements in the

symmetry group G, � is the representation matrix, and UR is the unitary operator

that a®ects the symmetry operation R on the state. Note that � is arbitrary. To see

this, act with UG on this state:

UGj�	i ¼
d�

g

X

R2G
�

ð�Þ
	� ðRÞ
UGURj’i ¼

d�

g

X

GR2G
�

ð�Þ
	� ðG�1GRÞ
UGRj’i

¼ �
ð�Þ
	
 ðG�1Þ
j�
i ¼ j�
i� ð�Þ


	 ðGÞ: ð25Þ

Hence, for a starting basis of states j’ni, one computes the projection matrix

P �
	 ðm;nÞ ¼

d�

g

X

R2G
�

ð�Þ
		 ðRÞ
Fmn½R�; ð26Þ

where Fmn½R� ¼ h’mjURj’ni denotes the unitary matrix that implements the oper-

ation on the Fourier basis for element R. The columns of P �
	 ðm;nÞ show the su-

perposition coe±cients in terms of the original basis for the states which reside in row

	 of irrep �. By taking the transpose, the rows then reveal these superpositions.

Di®erent rows give equivalent basis so we work with just one row. The matrix may

not be full rank, in which case a QR decomposition can be used to obtain an or-

thonormal set of independent basis states. The projector P �
	 ðm;nÞ comes in three

types corresponding to the three basis types for the Fourier modes. The basis vectors

thus obtained for the Oh group are given in Table 2. The representation matrices

�
ð�Þ
	� ðRÞ needed to carry out the projection can be found in Table XIII of Ref. 7
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(also in the package). A closer inspection of the table reveals the even–odd symmetry

pairs in the projected Fourier bases: Aþ
1
$ A�

2 , A
�
1 $ Aþ

2
, T þ

1
$ T �

2 , T �
1 $ T þ

2
,

have even and odd switched for all cases of k;m;n. No such obvious symmetry exists

between Eþ and E�. These relations are used as extra checks of the calculations.

In Fig. 4, we show the energy spectrum (lowest 100 levels) as a function of the box

size (called a stabilization diagram) for all ten irreps. We use the following criteria for

selecting how many projected Fourier basis states in the table (represented by

superpositions of jk;m;ni) to achieve stable results. For individual Fourier modes,

Table 2. Orthonormal basis state superpositions that transform according to row 1 of the Oh

group in the cubic box. There are three types: all three directions are the same, two the same,

and all three di®erent. In all cases, n 6¼ m 6¼ k is assumed, and in cases where a state has three
di®erent indices, it should be assumed that k < m < n. These basis states are used in the

block-diagonalization of the Hamiltonian by irreps.

Irrep Projected Fourier basis states as superposition of jnxnynzi

Aþ
1

jn;n;ni; n even
1ffiffi
3

p ðjn;n;mi þ jn;m;ni þ jm;n;niÞ, n;m even

1ffiffi
6

p ðjk;m;ni þ jk;n;mi þ jm; k;ni þ jm;n; ki þ jn; k;mi þ jn;m; kiÞ; n;m; k even

A�
1

1ffiffi
6

p ðjk;m;ni � jk;n;mi � jm; k;ni þ jm;n; ki þ jn; k;mi � jn;m; kiÞ, n;m; k odd

Aþ
2

1ffiffi
6

p ðjk;m;ni � jk;n;mi � jm; k;ni þ jm;n; ki þ jn; k;mi � jn;m; kiÞ, n;m; k even

A�
2 jn;n;ni, n odd

1ffiffi
3

p ðjn;n;mi þ jn;m;ni þ jm;n;niÞ, n;m odd

1ffiffi
6

p ðjk;m;ni þ jk;n;mi þ jm; k;ni þ jm;n; ki þ jn; k;mi þ jn;m; kiÞ, n;m; k odd

Eþ 1ffiffi
2

p ðjn;m;ni � jm;n;niÞ, n;m even

1

2
ðjk;m;ni þ jk;n;mi � jm; k;ni � jn; k;miÞ, n;m; k even

1ffiffiffiffi
12

p ðjk;m;ni � jk;n;mi � jm; k;ni � 2jm;n; ki þ jn; k;mi þ 2jn;m; kiÞ, n;m; k even

E� 1ffiffi
6

p ð2jn;n;mi � jn;m;ni � jm;n;niÞ, n;m odd

1

2
ðjk;m;ni � jk;n;mi þ jm; k;ni � jn; k;miÞ, n;m; k odd

1ffiffiffiffi
12

p ðjk;m;ni þ jk;n;mi þ jm; k;ni � 2jm;n; ki þ jn; k;mi � 2jn;m; kiÞ, n;m; k odd

T þ
1

1ffiffi
2

p ðjk;m;ni � jk;n;miÞ, n;m odd, k even

1ffiffi
2

p ðjm; k;ni � jm;n; kiÞ, n; k odd, m even

1ffiffi
2

p ðjn; k;mi � jn;m; kiÞ, n even, m; k odd

T �
1 jm;n;ni, n even, m odd

1ffiffi
2

p ðjk;m;ni þ jk;n;miÞ, n;m even, k odd

1ffiffi
2

p ðjm; k;ni þ jm;n; kiÞ, n; k even, m odd

1ffiffi
2

p ðjn; k;mi þ jn;m; kiÞ, n odd, m; k even

T þ
2

jm;n;ni, n odd, m even
1ffiffi
2

p ðjk;m;ni þ jk;n;miÞ, n;m odd, k even

1ffiffi
2

p ðjn; k;mi þ jn;m; kiÞ, n even, m; k odd

1ffiffi
2

p ðjm; k;ni þ jm;n; kiÞ, n; k odd, m even

T �
2

1ffiffi
2

p ðjk;m;ni � jk;n;miÞ, n;m even, k odd

1ffiffi
2

p ðjm; k;ni � jm;n; kiÞ; n; k even, m odd

1ffiffi
2

p ðjn; k;mi � jn;m; kiÞ, n odd, m; k even
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Fig. 4. (Color online) Energy spectrum for the spin-0 system as a function of the cubic box size L for all 10

irreps of the Oh group.
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we use up to k;m;n ¼ 32. For total Fourier modes, we use up to kþmþ n ¼ 38.

For the damped modes, we used a damping factor � ¼ 0:5 with individual damped

modes up to 4 and total damped modes up to 4. For example, in the Aþ
1
channel, we

ended up with four damped basis states (consisting of 10 individual jnxnynzi
modes), and 307 undamped basis vectors (consisting of 1510 individual jnxnynzi
modes). The dimension of the H matrix to be diagonalized is 311. For the other

irreps, this size of the H matrix is 146, 146, 235, 504, 374, 605, 707, 705, 609.

Typically, it takes about 10 s on my laptop (2014 model Macbook Pro) to obtain all

eigenvalues for a ¯xed box size L; so about 1110 s to do L from 10 to 32 in steps of

0.2, and around 3 h to run all 10 irreps. The bulk of the time is spent on evaluating

the Fourier integrals to construct the H matrix. For speed, this part of the com-

putation is outsourced to C++ code, but its execution is handled seamlessly from

inside Mathematica.

All the in¯nite-volume states in Fig. 1 should show up in the 10 irrep sectors. To

aid the comparison, faint gridlines are drawn at values expected in the in¯nite-

volume spectrum. The Aþ
1
irrep couples to angular momentum l ¼ 0; 4; 6; . . . (see

Table 1). The two l ¼ 0 bound states with E ¼ �2:448 and E ¼ �0:409 are found in

this channel. The inclusion of damped modes reduces the need for larger basis

vectors to capture the bound states. The bound states have very little dependence

on the box size, as one might expect. The l ¼ 1 bound state with E ¼ �1:409 is

found in the T �
1 sector which couples to l ¼ 1; 3; 5; . . .. The last bound state with

l ¼ 2 and E ¼ �0:386 is found in both T þ
2

and Eþ channels which both couple to

l ¼ 2; 4; 6; . . .. The parity of a given angular momentum J ¼ l is given by ð�1Þl in
the spin-0 system.

The scattering states are quantized and the gap between levels is decreasing with

increasing box size L, as expected. Resonances reveal themselves in such diagrams as

a sequence of avoided level crossings; the closer they approach each other, the

sharper the resonance. In the Aþ
1
channel, we see clearly two sharp resonances; one at

E ¼ 1:297 with l ¼ 0, and one at E ¼ 1:533 with l ¼ 4. The next two resonances

expected in this channel are broad: one at E ¼ 2:4 with l ¼ 0, and E ¼ 2:7 with

l ¼ 4. Broad resonances are not as visible as narrow ones in stabilization diagrams.

Nonetheless, their properties (pole position and width) can be extracted from a

quantitative analysis using Lüscher's method which is beyond the scope of this paper.

The next two sectors, A�
1 and Aþ

2
, are relatively featureless because they couple to

higher-partial waves (starting at l ¼ 9 and l ¼ 6 respectively). The A�
2 channel

couples to l ¼ 3; 7; 9; . . ., where the E ¼ 0:602 with l ¼ 3 state is clearly visible, as

well as the slightly broader resonance at E ¼ 2:07 with l ¼ 3. The T þ
1

channel

couples to l ¼ 4; 6; 8; . . ., where the E ¼ 1:533 with l ¼ 4 state is sitting there

alone. This channel is better than the Aþ
1
to isolate the l ¼ 4 resonance in the system.

There is also some hint of the broad l ¼ 4 state at E ¼ 2:70. The only channel to

access p-wave states is the T �
1 . In addition to the sharp l ¼ 1 resonance at E ¼ 0:522,

one ¯nds the close-by l ¼ 3 resonance at E ¼ 0:602. The lowest l ¼ 5 resonance at
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E ¼ 2:37 is also visible, but less so the l ¼ 1 state at E ¼ 1:91 and the l ¼ 3 state at

E ¼ 2:07. In fact, the best channel to access the l ¼ 3 resonance at E ¼ 0:602 is T �
2

and A�
2 , and the best channel to access the l ¼ 5 resonance at E ¼ 2:37 is the E�.

Both are the lowest and well-isolated in these channels. The T þ
2
and Eþ sectors have

very similar spectra. They both couple to l ¼ 2; 4; 6; . . . and have the same bound

state and scattering resonances. We summarize the above ¯ndings in Fig. 5. It

o®ers a clear overview of how the in¯nite-volume spectrum in Fig. 1 is resolved in

the cubic box.

3.3. Spin-1/2 system

For a system of a spinless particle and a spin-1/2 particle in the cubic box, the

situation is similar to the spin-0 system in the previous section, except that the

matrix elements of the Hamiltonian operator H ¼ T þ Vc þ Vsl are evaluated in a

new basis including spin,

hn 0
xn

0
yn

0
z; "

0jHjnxnynz; "i ¼ ��0�hn 0
xn

0
yn

0
zjT jnxnynzi þ ��0�hn 0

xn
0
yn

0
zjVcjnxnynzi

þ hn 0
xn

0
yn

0
z; "

0jVs‘jnxnynz; "i; ð27Þ

where jnxnynz; "i stands for the Fourier basis coupled to spin-1/2 which is taken as

the direct product of the spatial part jnxnynzi and the spin part j"i. Here " ¼ þð�Þ

Fig. 5. (Color online) Energy spectrum for the spin-0 system for the 10 irreps of the Oh group in the cubic

box, extracted from Fig. 4. It should be compared with Fig. 1. Only states with E < 3 and ‘ � 5 are listed.
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refers to \spin-up" and \spin-down" for the spin-1/2 operator sz. The kinetic

energy term T and the spin-independent central potential term Vc can be handled

as before; only diagonal terms in spin space survive because of the orthogo-

nality h�0j�i ¼ ��0�. The spin-orbit term adds o®-diagonal elements that require the

evaluation of

hn 0
xn

0
yn

0
z; "

0js � ‘jnxnynz; "i ¼ hn 0
xn

0
yn

0
z; "

0jsx‘x þ sy‘y þ sz‘zjnxnynz; "i: ð28Þ

It can be carried out by using the spin operator s ¼ �=2 in terms of Pauli spin

matrices �, and the orbital angular momentum operators in Cartesian coordinates

(recall we use } ¼ 1),

‘x ¼ �i y
@

@z
� z

@

@y

� �
; ‘y ¼ �i x

@

@z
� z

@

@x

� �
; ‘z ¼ �i x

@

@y
� y

@

@x

� �
: ð29Þ

Unlike the spin-zero case, the Hamiltonian matrix can be complex-valued due to the

complexity both in the operators and the basis vectors to be discussed below.

Since the total angular momentum involves half-integers, we need the double-

cover of the O group, denoted as 2O which has 48 elements and three additional

irreps named G1, G2, and H with respective dimensionality of 2; 2; 4. The full sym-

metry group including parity is called 2Oh which has 96 elements and 16 irreps A�
1 ,

A�
2 , E

�, T �
1 , T �

2 , G�
1 , G

�
2 , and H�. Full details of the 2O group are found in Table

XIII of Ref. 7. The six new irreps are responsible for the classi¯cation of half-integer

angular momentum, as shown in Table 3.

To ¯gure out how the Fourier basis behaves under the 2Oh group, we only need to

focus on the half-integer irreps G1, G2, and H. Parity will be added later as before.

To determine the behavior under Cþ
4z and Cþ

4y, ¯rst recall that, for spin-
1

2
states, we

have

Cþ
4z ¼

1ffiffiffi
2

p 1� i 0

0 1þ i

� �
; Cþ

4y ¼
1ffiffiffi
2

p 1 �1

1 1

� �
;

Table 3. Decomposition of angular momentum in

the cubic box according to the six half-integer irreps

of the 2Oh group. Both the original decomposition

(left) and its inverse (right) are shown.

J 2Oh
2Oh J

1/2 G�
1 G�

1
1/2, 7/2, 9/2, . . .

3/2 H� H� 3/2, 5/2, 7/2, . . .

5/2 G�
2 �H� G�

2
5/2, 7/2, 11/2, . . .

7/2 G�
1 �G�

2 �H�

. . . . . .
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where the states are ordered jþi; j�i. Thus, under Cþ
4z, we have

hn 0
x;n

0
y;n

0
z; "

0jCþ
4zjnx;ny;nz; "i

¼ ð�1Þny
1ffiffiffi
2

p ð1� i"Þ�n 0
xny
�n 0

ynx
�n 0

znz
�"0"; ð" ¼ �1Þ: ð30Þ

Under Cþ
4y, we have

hn 0
x;n

0
y;n

0
z; "

0jCþ
4yjnx;ny;nz; "i ¼

1ffiffiffi
2

p ð�1Þnxminð1; "� "0 þ 1Þ�n 0
xnz
�n 0

yny
�n 0

znx
: ð31Þ

There are three types we need to consider: (1) states of the form jn;n;n; "i;
(2) states of the form jn;n;m; "i, where n 6¼ m; and (3) states of the form jn;m; k; "i
where n 6¼ m 6¼ k.

The representation matrices for type 1 are two-dimensional. If we order the states

according to jn;n;n;þi; jn;n;n;�i, then

F ½Cþ
4z� ¼

ð�1Þnffiffiffi
2

p 1� i 0

0 1þ i

� �
; F ½Cþ

4y� ¼
ð�1Þnffiffiffi

2
p 1 �1

1 1

� �
: ð32Þ

When n is even, these states reside in the G1g irrep, and when n is odd, these states

transform according to the G2u irrep, as we will see later.

The representation matrices for type 2 are six-dimensional. If we choose states

1,2,3 to be, respectively, jn;n;m;þi; jn;m;n;þi; jm;n;n;þi, and states 4,5,6 to be,

respectively, jn;n;m;�i; jn;m;n;�i; jm;n;n;�i, then

F ½Cþ
4z� ¼

1ffiffiffi
2

p

ð�1Þnð1� iÞ 0 0 0 0 0

0 0 ð�1Þnð1� iÞ 0 0 0

0 ð�1Þmð1� iÞ 0 0 0 0

0 0 0 ð�1Þnð1þ iÞ 0 0

0 0 0 0 0 ð�1Þnð1þ iÞ
0 0 0 0 ð�1Þmð1þ iÞ

2

666666664

3

777777775

;

ð33Þ

F ½Cþ
4y� ¼

1ffiffiffi
2

p

0 0 ð�1Þm 0 0 �ð�1Þm
0 ð�1Þn 0 0 �ð�1Þn 0

ð�1Þn 0 0 �ð�1Þn 0 0

0 0 ð�1Þm 0 0 ð�1Þm
0 ð�1Þn 0 0 ð�1Þn 0

ð�1Þn 0 0 ð�1Þn 0 0

2

666666664

3

777777775

: ð34Þ

The representation matrices for type 3 are 12-dimensional. Assuming k < m < n

and choosing states 1,2,3,4,5,6 to be jk;m;n;þi; jk;n;m;þi; jm; k;n;þi; jm;n; k;þi;
jn; k;m;þi, jn;m; k;þi, and states 7,8,9,10,11,12 to be jk;m;n;�i; jk;n;m;�i;
jm; k;n;�i; jm;n; k;�i; jn; k;m;�i; jn;m; k;�i, we have (de¯ning 
 ¼ 1þ i to
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save space)

F ½Cþ
4z� ¼

1ffiffiffi
2

p

0 0 ð�1Þk

 0 0 0 0 0 0 0 0 0

0 0 0 0 ð�1Þk

 0 0 0 0 0 0 0

ð�1Þm

 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 ð�1Þm

 0 0 0 0 0 0

0 ð�1Þn

 0 0 0 0 0 0 0 0 0 0

0 0 0 ð�1Þn

 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ð�1Þk
 0 0 0

0 0 0 0 0 0 0 0 0 0 ð�1Þk
 0

0 0 0 0 0 0 ð�1Þm
 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 ð�1Þm

0 0 0 0 0 0 0 ð�1Þn
 0 0 0 0

0 0 0 0 0 0 0 0 0 ð�1Þn
 0 0

2

666666666666666666666664

3

777777777777777777777775

;

ð35Þ

F ½Cþ
4y� ¼

1ffiffiffi
2

p

0 0 0 0 0 ð�1Þn 0 0 0 0 0 �ð�1Þn
0 0 0 ð�1Þm 0 0 0 0 0 �ð�1Þm 0 0

0 0 0 0 ð�1Þn 0 0 0 0 0 �ð�1Þn 0

0 ð�1Þk 0 0 0 0 0 �ð�1Þk 0 0 0 0

0 0 ð�1Þm 0 0 0 0 0 �ð�1Þm 0 0 0

ð�1Þk 0 0 0 0 0 �ð�1Þk 0 0 0 0 0

0 0 0 0 0 ð�1Þn 0 0 0 0 0 ð�1Þn
0 0 0 ð�1Þm 0 0 0 0 0 ð�1Þm 0 0

0 0 0 0 ð�1Þn 0 0 0 0 0 ð�1Þn 0

0 ð�1Þk 0 0 0 0 0 ð�1Þk 0 0 0 0

0 0 ð�1Þm 0 0 0 0 0 ð�1Þm 0 0 0

ð�1Þk 0 0 0 0 0 ð�1Þk 0 0 0 0 0

2

666666666666666666666664

3

777777777777777777777775

:

ð36Þ

To obtain the remaining 46 elements, we need the multiplication table for the

double group 2O (given in the package). Inspecting this multiplication table, we can

deduce the remaining 46 elements from Cþ
4y and Cþ

4z via a variety of pathways. We

choose the following (left to right, then down):

C2y¼Cþ
4yC

þ
4y! ~C

�
4y¼C2yC

þ
4y! ~E¼ ~C

�
4yC

þ
4y! ~C

þ
4y¼ ~ECþ

4y! ~C2y¼ ~C
þ
4yC

þ
4y!

C�
4y¼ ~C2yC

þ
4y! C2z¼Cþ

4zC
þ
4z! ~C

�
4z¼C2zC

þ
4z! ~C

þ
4z¼ ~ECþ

4z! ~C2z¼ ~C
þ
4zC

þ
4z!

C�
4z¼ ~C2zC

þ
4z! Cþ

31
¼Cþ

4yC
þ
4z! Cþ

4x¼C�
4zC

þ
31
! C2x¼Cþ

4xC
þ
4x! ~C

�
4x¼C2xC

þ
4x!

~C
þ
4x¼ ~ECþ

4x! ~C2x¼ ~C
þ
4xC

þ
4x! C�

4x¼ ~C2xC
þ
4x! Cþ

32
¼C�

4yC
þ
4z! Cþ

34
¼Cþ

4yC
�
4z!

Cþ
33
¼C�

4yC
�
4z! C�

32¼C�
4zC

þ
4y! C�

34¼Cþ
4zC

�
4y! C�

33¼Cþ
4zC

þ
4y! C�

31¼C�
4zC

�
4y!

C2a¼C2yC
þ
4z! C2b¼ ~C2xC

þ
4z! C2c¼Cþ

4yC2z! C2d¼C2zC
þ
4x!C2e¼C2zC

þ
4y!

C2f¼C2zC
�
4x! ~C

þ
31¼ ~ECþ

31
! ~C

þ
32¼ ~ECþ

32
! ~C

þ
33¼ ~ECþ

33
! ~C

þ
34¼ ~ECþ

34
!

~C
�
31¼ ~EC�

31! ~C
�
32¼ ~EC�

32! ~C
�
33¼ ~EC�

33! ~C
�
34¼ ~EC�

34! ~C2a¼ ~EC2a!
~C 2b¼ ~EC2b! ~C2c¼ ~EC2c! ~C 2d¼ ~EC2d! ~C2e¼ ~EC2e! ~C2f¼ ~EC2f! E¼ ~C 2xC2x:

ð37Þ
The 48 elements satisfy the generic double group property that the matrices repre-

senting elements C and ~C di®er only by a sign: F ½C� ¼ �F ½ ~C �. This is true for all 24
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pairs of the double group in the even-dimensional half-integer irreps (Gþ
1
, Gþ

2
, Hþ).

The property is used here as a consistency check after all the matrices are found.

Inclusion of parity is done in the same way as in the single group case. The parity

representations are the same F ½is� ¼ ð�1Þ3n ¼ ð�1Þn for the ¯rst type, F ½is� ¼
ð�1Þ2nþm ¼ ð�1Þm for the second type, and F ½is� ¼ ð�1Þkþmþn for the third type,

except multiplied by identity matrix of di®erent dimensions 2, 6, and 12, respec-

tively. The basis vectors obtained for the 2Oh group are given in Table 4. The

representation matrices �
ð�Þ
	� ðRÞ needed to carry out the projection in Eq. (26) can be

found in Table XIII of Ref. 7 (also in the package). They correspond to eigenstates of

spin harmonics of jJM‘i with half-integer J and speci¯c values of ‘ ¼ J � 1=2, not

Table 4. Orthonormal basis state superpositions that transform according to row 1 of the double-valued

irreps of 2Oh in the cubic box. In all cases, n 6¼ m 6¼ k, and in cases where a state has three di®erent indices,

it should be assumed that k < m < n. For a given J value, the two l values are l ¼ J � 1=2, with parity

assignment by ð�1Þl.

Irrep Projected Fourier basis states as superposition of jnxnynz; "i

Gþ
1

jn;n;n;þi, n even
1ffiffi
3

p ðjn;n;m;þi þ jn;m;n;þi þ jm;n;n;þiÞ, n;m even

1ffiffi
6

p ðjk;m;n;þi þ jk;n;m;þi þ jm; k;n;þi þ jm;n; k;þi þ jn; k;m;þi þ jn;m; k;þiÞ, k;m;n even

1ffiffi
6

p ðjk;m;n;þi � jm; k;n;þi � ijk;n;m;�i þ ijm;n; k;�i þ jn; k;m;�i � jn;m; k;�iÞ, k;m odd, n even

1ffiffi
6

p ðjk;n;m;þi � jn; k;m;þi � ijk;m;n;�i þ jm; k;n;�i � jm;n; k;�i þ ijn;m; k;�iÞ, k;n odd, m even

1ffiffi
6

p ðjm;n; k;þi � jn;m; k;þi þ jk;m;n;�i � jk;n;m;�i � ijm; k;n;�i þ ijn; k;m;�iÞ, k even, m;n odd

G�
1

1ffiffi
3

p ðjn;n;m;þi þ ijn;m;n;�i þ jm;n;n;�iÞ, n even, m odd

1ffiffi
6

p ðjk;m;n;þi � jk;n;m;þi � jm; k;n;þi þ jm;n; k;þi þ jn; k;m;þi � jn;m; k;þiÞ, k;m;n odd

1ffiffi
6

p ðjk;m;n;þi þ jm; k;n;þi þ ijk;n;m;�i þ ijm;n; k;�i þ jn; k;m;�i þ jn;m; k;�iÞ, k;m even, n odd

1ffiffi
6

p ðjk;n;m;þi þ jn; k;m;þi þ ijk;m;n;�i þ jm; k;n;�i þ jm;n; k;�i þ ijn;m; k;�iÞ, k;n even, m odd

1ffiffi
6

p ðjm;n; k;þi þ jn;m; k;þi þ jk;m;n;�i þ jk;n;m;�i þ ijm; k;n;�i þ ijn; k;m;�iÞ, k odd, m;n even

Gþ
2

1ffiffi
3

p ðjn;n;m;þi þ ijn;m;n;�i þ jm;n;n;�iÞ, n odd, m even

1ffiffi
6

p ðjk;m;n;þi � jk;n;m;þi � jm; k;n;þi þ jm;n; k;þi þ jn; k;m;þi � jn;m; k;þiÞ, k;m;n even

1ffiffi
6

p ðjk;m;n;þi þ jm; k;n;þi þ ijk;n;m;�i þ ijm;n; k;�i þ jn; k;m;�i þ jn;m; k;�iÞ, k;m odd, n even

1ffiffi
6

p ðjk;n;m;þi þ jn; k;m;þi þ ijk;m;n;�i þ jm; k;n;�i þ jm;n; k;�i þ ijn;m; k;�iÞ, k;n odd, m even

1ffiffi
6

p ðjm;n; k;þi þ jn;m; k;þi þ jk;m;n;�i þ jk;n;m;�i þ ijm; k;n;�i þ ijn; k;m;�iÞ, k even, m;n odd

G�
2 jn;n;n;þi, n odd

1ffiffi
3

p ðjn;n;m;þi þ jn;m;n;þi þ jm;n;n;þiÞ, n;m odd

1ffiffi
6

p ðjk;m;n;þi þ jk;n;m;þi þ jm; k;n;þi þ jm;n; k;þi þ jn; k;m;þi þ jn;m; k;þiÞ, k;m;n odd

1ffiffi
6

p ðjk;m;n;þi � jm; k;n;þi � ijk;n;m;�i þ ijm;n; k;�i þ jn; k;m;�i � jn;m; k;�iÞ, k;m even, n

1ffiffi
6

p ðjk;n;m;þi � jn; k;m;þi � ijk;m;n;�i þ jm; k;n;�i � jm;n; k;�i þ ijn;m; k;�iÞ, k;n even, m odd

1ffiffi
6

p ðjm;n; k;þi � jn;m; k;þi þ jk;m;n;�i � jk;n;m;�i � ijm; k;n;�i þ ijn; k;m;�iÞ, k odd, m;n even

Hþ 1ffiffi
6

p ðjn;m;n;þi þ ijm;n;n;þi þ 2ijn;n;m;�iÞ, n odd, m even

1ffiffi
2

p ðjn;m;n;�i � jm;n;n;�iÞ, n;m even

1ffiffiffiffi
12

p ð2jk;m;n;�i þ jk;n;m;�i � 2jm; k;n;�i � jm;n; k;�i � jn; k;m;�i þ jn;m; k;�iÞ, k;m;n even

1

2
ðjk;n;m;�i þ jm;n; k;�i � jn; k;m;�i � jn;m; k;�iÞ, k;m;n even

1ffiffiffiffi
12

p ð2jk;n;m;þi � jm;n; k;þi þ 2ijn; k;m;þi � ijn;m; k;þi þ ijk;m;n;�i þ ijm; k;n;�iÞ, k;m odd, n even

1

2
ðjm;n; k;þi þ ijn;m; k;þi þ ijk;m;n;�i þ ijm; k;n;�iÞ, k;m odd, n even
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the standard spherical harmonics jJMi with integer J ¼ ‘. A closer inspection of the

table reveals that the even–odd parity symmetry in the irreps leads to symmetric

pairs in the projected Fourier bases: Gþ
1
$ G�

2 and G�
1 $ Gþ

2
have even and odd

switched for all cases of k;m;n. No such obvious symmetry exists between

Hþ $ H�. These relations are used as additional checks of the calculations.

In Fig. 6, we show the stabilization diagrams (100 low-lying levels) for the spin-1/

2 system for the six half-integer irreps of the 2Oh group. The results are obtained by

the same criteria for selecting the projected Fourier basis states, namely, up to 32 for

individual Fourier modes, and up to 38 for total Fourier modes. The same damping

parameters are used: � ¼ 0:5 with individual damped modes up to 4 and total

damped modes up to 4. The resulting basis size (H matrix size) is 916, 853, 906, 844,

1814, and 1690. For the G-type irreps, it takes about 30 s to obtain all eigenvalues for

a ¯xed box size L; so about 3330 seconds to do L from 10 to 32 in steps of 0.2, and

about 3.7 hours to run the four irreps. The H-type irreps have larger basis and takes

3 times longer: 90 s instead of 30, or 2.8 h per irrep. The total time for the spin-1/2

system is about 9.3 h, more than triple the timing for the spin-0 system. This is after a

performance speed-up by building the Fourier basis directly inside the C++ code. In

practice, one does not need the full stabilization diagrams. Often just a few box sizes

are su±cient, which is on the order of minutes.

The situation in the spin-1/2 system is more complicated as indicated in the

in¯nite-volume spectrum in Fig. 2. For a given partial wave l, there are two possi-

bilities for the total angular momentum, J ¼ lþ 1=2 and J ¼ l� 1=2, color-coded as

blue and red, respectively. The parity of a state is given by ð�1Þl. Nonetheless, these

states are expected to manifest themselves in the six irrep sectors in Fig. 6. Again, to

help with the identi¯cation, faint gray gridlines are drawn at values expected from

the in¯nite-volume spectrum.

Table 4. (Continued )

Irrep Projected Fourier basis states as superposition of jnxnynz; "i

1ffiffiffiffi
12

p ð2jk;m;n;þi þ 2ijm; k;n;þi � ijm;n; k;þi � jn;m; k;þi þ ijk;n;m;�i þ ijn; k;m;�iÞ, k;n odd, m even

1

2
ðjm;n; k;þi � ijn;m; k;þi þ jk;n;m;�i þ jn; k;m;�iÞ, k;n odd, m even

1ffiffiffiffi
12

p ð2jk;m;n;þi � jk;n;m;þi � 2ijm; k;n;þi þ ijn; k;m;þi þ jm;n; k;�i þ jn;m; k;�iÞ, k even, m;n odd

1

2
ðjk;n;m;þi � ijn; k;m;þi þ jm;n; k;�i þ jn;m; k;�iÞ, k even, m;n odd

H� 1ffiffi
6

p ð2jn;n;m;�i � jn;m;n;�i � jm;n;n;�iÞ, n;m odd

1

2
ðjn;m;n;þi � ijm;n;n;þiÞ, n even, m odd

1ffiffiffiffi
12

p ð2jk;m;n;�i � jk;n;m;�i þ 2jm; k;n;�i � jm;n; k;�i � jn; k;m;�i � jn;m; k;�iÞ, k;m;n odd

1

2
ðjk;n;m;�i � jm;n; k;�i þ jn; k;m;�i � jn;m; k;�iÞ, k;m;n odd

1ffiffiffiffi
12

p ð2jk;n;m;þi þ jm;n; k;þi � 2ijn; k;m;þi � ijn;m; k;þi � ijk;m;n;�i þ ijm; k;n;�iÞ, k;m even, n odd

1

2
ðjm;n; k;þi � ijn;m; k;þi þ ijk;m;n;�i � ijm; k;n;�iÞ, k;m even, n odd

1ffiffiffiffi
12

p ð2jk;m;n;þi � 2ijm; k;n;þi � ijm;n; k;þi þ jn;m; k;þi � ijk;n;m;�i þ ijn; k;m;�iÞ, k;n even, m odd

1

2
ðjm;n; k;þi þ ijn;m; k;þi � jk;n;m;�i þ jn; k;m;�iÞ, k;n even, m odd

1ffiffiffiffi
12

p ð2jk;m;n;þi þ jk;n;m;þi þ 2ijm; k;n;þi þ ijn; k;m;þi þ jm;n; k;�i � jn;m; k;�iÞ, k odd, m;n even

1

2
ðjk;n;m;þi þ ijn; k;m;þi � jm;n; k;�i þ jn;m; k;�iÞ, k odd, m;n even
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All seven bound states in the spin-1/2 system can be located. Grouped by parity

as implied by ð�1Þl, the Gþ
1
channel has the two J ¼ 1=2; l ¼ 0 states at E ¼ �2:448

and at E ¼ �0:409. The Hþ channel has the J ¼ 3=2; l ¼ 2 state at E ¼ �1:402.

For odd parity, the G�
1 channel has the two J ¼ 1=2; l ¼ 1 states: one at

Fig. 6. (Color online) Energy spectrum for the spin-1/2 system as a function of cubic box size L for the six
half-integer irreps of the 2Oh group. Faint black lines are drawn to guide the eye.
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E ¼ �2:168, the other barely bound at E ¼ �0:061. The J ¼ 5=2; l ¼ 3 state

at E ¼ �0:593 is found in both G�
2 and H�. The remaining J ¼ 3=2; l ¼ 1 state at

E ¼ �1:036 appears in H�.
The lowest-energy scattering state E ¼ 0:225 has high-spin and even-parity

J ¼ 7=2; l ¼ 4. It appears in all three even-parity channels: it sits alone in Gþ
1
, but

has a close neighbor at E ¼ 0:262 and J ¼ 5=2; l ¼ 2 in Gþ
1
and Hþ. The next even-

parity state E ¼ 0:63 and J ¼ 3=2; l ¼ 2 is found in Hþ. The lowest-spin resonance

with E ¼ 1:297 and J ¼ 1=2; l ¼ 0 is Gþ
1
. There are two high-spin states with almost

the same energy: one with E ¼ 1:91 and J ¼ 7=2; l ¼ 4, the other E ¼ 1:90 and

J ¼ 11=2; l ¼ 6 with higher spin but narrower. They are expected in all three even-

parity channels are very hard to disentangle. The relatively narrow resonance with

E ¼ 2:4 and J ¼ 9=2; l ¼ 4 is expected in Gþ
1
and Hþ, but not in Gþ

2
because it does

not couple to J ¼ 9=2. Indeed, this is con¯rmed in the diagrams.

In the odd-parity channel G�
1 , the lowest-energy resonance at E ¼ 1:08 has a high

spin J ¼ 9=2; l ¼ 5. Since the state is fairly sharp, we can see some divergence for box

size larger than 20. It suggests the need for a larger basis for this state. Similar

divergence is observed in the H� where the same state appears. The lowest-spin

resonance with E ¼ 1:55 and J ¼ 1=2; l ¼ 1 is found in G�
1 but it appears as the

third resonance in energy. The sharp resonance with E ¼ 0:81 and J ¼ 3=2; l ¼ 1

appears only in H� because G�
1 and G�

2 do not couple to J ¼ 3=2. The sharp

resonance with E ¼ 1:30 and J ¼ 5=2; l ¼ 3 appears only in G�
2 and H� but not in

Fig. 7. (Color online) Bound and scattering states for the spin-1/2 system as a function of six half-integer
irreps of the 2Oh group in the cubic box, extracted from Fig. 6. It should be compared with Fig. 2. Only

states with E < 3 and ‘ � 5 are listed. For a given partial wave ‘, there are two possible J values,

J ¼ ‘þ 1=2 (blue) and J ¼ ‘þ 1=2 (red).
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G�
1 because it does not couple to J ¼ 5=2. The sharp resonance with E ¼ 1:42 and

J ¼ 7=2; l ¼ 3 appears clearly in all three odd-parity channels. The broad resonance

with E ¼ 2:48 and J ¼ 9=2; l ¼ 5 is expected in G�
1 andH� but not in G�

2 because it

does not couple to J ¼ 9=2, but is not very visible in the diagrams due to its

broadness. Even higher up, the broad state E ¼ 2:6 at J ¼ 7=2; l ¼ 3 and relatively

narrow state E ¼ 2:68 at J ¼ 13=2; l ¼ 7 are expected in three odd-parity channels,

and are indeed hinted.

The above discussions are summarized in Fig. 7. It can be directly compared with

Fig. 2 to see how the in¯nite-volume spectrum in the spin-1/2 system is resolved in

the cubic box.

4. Spectrum in Elongated Box

Here we want to explore the possibility of resolving the same spectrum in

an asymmetric box. Compared to the cubic box, two new issues come into play.

First, the Fourier integrals need to be treated di®erently for di®erent directions.

This is relatively straightforward. Second, a new symmetry group is required cor-

responding to the new geometry. A new group means new irreps; hence new

decompositions of angular momentum. It also means that new basis projections must

be worked out.

4.1. Spin-0 system

We consider an elongated box L� L� �L where � is the elongation factor in the

z-direction. The equation we need to solve takes the same form as Eq. (8), but with a

modi¯ed periodic boundary condition,

 ðxþ nxL; yþ nyL; zþ nzL�Þ ¼  ðx; y; zÞ; ð38Þ

and a modi¯ed potential,

VLðx; y; zÞ ¼
X

nx;ny;nz

V ðjðxþ nxL; yþ nyL; zþ nzL�ÞjÞ: ð39Þ

Instead of being rotationally invariant, the potential takes on the symmetry of the

elongated box.

The Fourier basis in which the Hamiltonian can be diagonalized receives a

modi¯cation in the z-component:

hx; y; zjnxnynzi ¼ �nx
ðx;LÞ�ny

ðy;LÞ�nz
ðz; �LÞ: ð40Þ

The Hamiltonian matrix elements now depend on both L and �,

hn 0
xn

0
yn

0
zjĤ jnxnynzi ¼

Z L=2

�L=2

dx

Z L=2

�L=2

dy

Z �L=2

��L=2
dz �n 0

x
ðx;LÞ�n 0

y
ðy;LÞ�n 0

z
ðz; �LÞ

� Ĥ�nx
ðx;LÞ�ny

ðy;LÞ�nz
ðz; �LÞ: ð41Þ
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Going from cubic box to elongated box, the symmetry group is reduced from the

O group to the D4 group (dihedral or tetragonal group). It is regarded as a subgroup

of the O group. The O and D4 groups are di®erent ¯nite point groups of the con-

tinuous rotation group SOð3Þ. The D4 group has eight elements instead of 24 in the

O group, as depicted in Fig. 8. They can be divided into ¯ve conjugacy classes and

given names: the identity (E), two �=2 rotations about z axes (C�
4z); three � rota-

tions about the Cartesian axes (C2x,C2x,C2z); and two � rotations about the two

diagonals in the xy-plane denoted by Oa and Ob (C2a, C2b). The D4 group has ¯ve

irreps conventionally named A1, A2, B1, B2, and E, with respective dimensions 1, 1,

1, 1, 2. Inclusion of parity extends it to the D4h group which has 10 irreps A�
1 , A

�
2 ,

B�
1 , B

�
2 , E

�. They are responsible for the decomposition of integer angular mo-

mentum in the elongated box, as shown in Table 5. Notice how di®erently it resolves

the angular momentum from that in the cubic box in Table 1.

The Fourier basis vectors that transform according to the irreps of the D4h can

be constructed by group theoretical projection operators, in similar fashion to the

Fig. 8. This box is elongated in the z direction. It is invariant under 8 rotations as explained in the text.

Table 5. Decomposition of integer angular momentum in the

elongated box according to the 10 irreps of the D4h group.

J D4h D4h J

0 Aþ
1

Aþ
1

0, 2, 4(2), . . .

1 A�
2 �E� A�

1 5, 7, 9(2), . . .

2 Aþ
1
�Bþ

1
�Bþ

2
� Eþ A�

2 1, 3, 5(2), . . .

3 A�
2 �B�

1 �B�
2 � 2E� Aþ

2
4, 6, 8(2), . . .

4 2Aþ
1
�Aþ

2
�Bþ

1
�Bþ

2
� 2Eþ Bþ

1
2, 4, 6(2), . . .

5 A�
1 � 2A�

2 �B�
1 �B�

2 � 3E� B�
1 3, 5, 7(2), . . .

6 2Aþ
1
�Aþ

2
� 2Bþ

1
� 2Bþ

2
� 3Eþ Bþ

2
2, 4, 6(2), . . .

B�
2 3, 5, 7(2), . . .

. . . . . . E� 1, 3(2), 5(3), . . .

Eþ 2, 4(2), 6(3), . . .
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cubic case. We ¯rst work with theD4 group which contains the proper rotations; then

add the space inversion separately to obtain the D4h. We focus on two generating

elements of theD4 group: the �=2 rotation about the z axis, denoted by Cþ
4z; and the �

rotation about the y axis, denoted by C2y. The action of Cþ
4z is the same as in the cubic

case. The action of C2y, which rotates the vector ðx; y; zÞ ! ð�x; y;�zÞ, gives
hn 0

x;n
0
y;n

0
zjC2yjnx;ny;nzi ¼ ð�1Þnxþnz�n 0

xnx
�n 0

yny
�n 0

znz
: ð42Þ

Since the order of x, y, z is preserved by this operation, the matrix representation

for the three types of Fourier basis is diagonal. For the ¯rst type where all three

components are the same, jn;n;ni, we simply obtain the identity,

F ½C2y� ¼ ð�1Þnþn ¼ 1: ð43Þ

For the second type where two components can be di®erent, with 1, 2, 3 represe-

nting jn;n;mi, jn;m;ni, jm;n;ni, respectively, we obtain the three-dimensional

representation,

F ½C2y� ¼
ð�1Þnþm

0 0

0 1 0

0 0 ð�1Þnþm

2

4

3

5: ð44Þ

For the third type where all three components are di®erent, with 1, 2, 3, 4, 5, 6

representing jk;m;ni, jk;n;mi, jm; k;ni, jm;n; ki, jn; k;mi, jn;m; ki, respectively,
we obtain a six-dimensional representation,

F ½C2y� ¼

ð�1Þkþn
0 0 0 0 0

0 ð�1Þkþm
0 0 0 0

0 0 ð�1Þmþn
0 0 0

0 0 0 ð�1Þmþk
0 0

0 0 0 0 ð�1Þnþm
0

0 0 0 0 0 ð�1Þnþk

2

666666664

3

777777775

: ð45Þ

The remaining six elements can be obtained by the multiplication table for the D4

group (given in the package) One possible pathway is:

C2z ¼ Cþ
4zC

þ
4z ! C�

4z ¼ Cþ
4zC2z ! C2a ¼ C�

4zC2y ! C2b ¼ Cþ
4zC2y ! C2x

¼ Cþ
4zC2b ! E ¼ C2aC2a: ð46Þ

The diagonal representations are as before: F ½is� ¼ ð�1Þ3n ¼ ð�1Þn for the ¯rst

type, F ½is� ¼ ð�1Þ2nþm ¼ ð�1Þm for the second type, and F ½is� ¼ ð�1Þkþmþn for the

third type, multiplied by identity matrix of dimension 1, 3, and 6, respectively.

Finally, to obtain the matrix representation for the operations in the D4h group, we

doubly extend the original operations F ½R� with the space inversion applied,

fF ½R�;F ½is�F ½R�g. Applying the projection operator in Eq. (26) to the elongated box,

we obtain the Fourier basis vectors that transform according to the irreps of the D4h

group, given in Table 6. The representation matrices �
ð�Þ
	� ðRÞ needed to carry out the
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Table 6. Orthonormal basis state superpositions that transform

according to row 1 of the D4h group in the elongated box. In all

cases, n 6¼ m 6¼ k, and in cases where a state has three di®erent
indices, it should be assumed that k < m < n.

Irrep Projected Fourier basis states as superposition of jnxnynzi

Aþ
1

jn;n;ni, n even

jn;n;mi; 1ffiffi
2

p ðjn;m;ni þ jm;n;niÞ, m;n even

1ffiffi
2

p ðjk;m;ni þ jm; k;niÞ, k;m;n even

1ffiffi
2

p ðjk;n;mi þ jn; k;miÞ, k;m;n even

1ffiffi
2

p ðjm;n; ki þ jn;m; kiÞ, k;m;n even

A�
1

1ffiffi
2

p ðjn;m;ni � jm;n;niÞ, m;n odd

1ffiffi
2

p ðjk;m;ni � jm; k;niÞ, k;m;n odd

1ffiffi
2

p ðjk;n;mi � jn; k;miÞ, k;m;n odd

1ffiffi
2

p ðjm;n; ki � jn;m; kiÞ, k;m;n odd

Aþ
2

1ffiffi
2

p ðjk;m;ni � jm; k;niÞ, n even, k;m odd

1ffiffi
2

p ðjk;n;mi � jn; k;miÞ, m even, k;n odd

1ffiffi
2

p ðjm;n; ki � jn;m; kiÞ, k even, m;n odd

A�
2 jn;n;mi, m odd, n even

1ffiffi
2

p ðjk;m;ni þ jm; k;niÞ, n odd, k;m even

1ffiffi
2

p ðjk;n;mi þ jn; k;miÞ, m odd, k;n even

1ffiffi
2

p ðjm;n; ki þ jn;m; kiÞ, k odd, m;n even

Bþ
1

1ffiffi
2

p ðjn;m;ni � jm;n;niÞ, m;n even

1ffiffi
2

p ðjk;m;ni � jm; k;niÞ, k;m;n even

1ffiffi
2

p ðjk;n;mi � jn; k;miÞ, k;m;n even

1ffiffi
2

p ðjm;n; ki � jn;m; kiÞ, k;m;n even

B�
1 jn;n;ni, n odd

jn;n;mi; 1ffiffi
2

p ðjn;m;ni þ jm;n;niÞ, m;n odd

1ffiffi
2

p ðjk;m;ni þ jm; k;niÞ, k;m;n odd

1ffiffi
2

p ðjk;n;mi þ jn; k;miÞ, k;m;n odd

1ffiffi
2

p ðjm;n; ki þ jn;m; kiÞ, k;m;n odd

Bþ
2

jn;n;mi, m even, n odd
1ffiffi
2

p ðjk;m;ni þ jm; k;niÞ, n even, m; k odd

1ffiffi
2

p ðjk;n;mi þ jn; k;miÞ, m even, n; k odd

1ffiffi
2

p ðjm;n; ki þ jn;m; kiÞ, k even, m;n odd

B�
2

1ffiffi
2

p ðjk;m;ni � jm; k;niÞ, n odd, m; k even

1ffiffi
2

p ðjk;n;mi � jn; k;miÞ, m odd, n; k even

1ffiffi
2

p ðjm;n; ki � jn;m; kiÞ, k odd, m;n even

Eþ jm;n;ni, m even, n odd
jk;m;ni; jk;n;mi, k even, m;n odd

jm; k;ni; jm;n; ki, m even, n; k odd

jn; k;mi; jn;m; ki, n even, m; k odd
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projection in Eq. (26) can be found in Table X of Ref. 7. A closer look of the table

reveals that the even–odd parity symmetry in the irreps leads to symmetric pairs in

the projected Fourier bases. The following pairs have even and odd switched for all

cases of k;m;n: Aþ
1
$ B�

1 , A
�
1 $ Bþ

1
, Aþ

2
$ B�

2 , A
�
2 $ Bþ

2
, and Eþ $ E�. These

relations are used as additional checks of the calculations.

In Fig. 9, we show the energy spectrum (lowest 100 levels) as a function of the

elongation factor � at a ¯xed box size L ¼ 12 for all 10 irreps of the D4h group. The

same criteria are used: up to 32 for individual Fourier modes, and 38 for total Fourier

modes, as well as the damped modes (damping factor � ¼ 0:5 with individual damped

modes up to 4 and total damped modes up to 4). The size of the projected Fourier basis

(size of H matrix) is 815, 520, 605, 707, 705, 609, 705, 609, 1310, 1316 for the 10 irreps.

Typically, it takes about 15 s to obtain all eigenvalues for a ¯xed value of �; so about

915 s to do � from 0.9 to 2.1 in steps of 0.2, and about 3 h to run all 10 irreps. The code

is structured the same way as in the cubic case. The timing is also similar. Even though

only one dimension is varied, as opposed to all three dimensions, it is still a single

adjustable parameter, � instead of L, that enters the calculations.

How is the same in¯nite-volume spectrum in Fig. 1 resolved in the elongated box?

The ¯rst feature to notice is that the \stabilization diagrams" have a di®erent look

compared to the cubic case. There are avoided level crossings induced by the elon-

gation, which makes the visual identi¯cation of resonances more di±cult because it

relies on avoided crossings. Second, the spectrum depends on two parameters L and

�. One has the freedom to pick a box size L, then vary �. Since the gap between levels

is shrinking with increasing L, if a large L is picked, then the levels are more com-

pacted. For this reason, L ¼ 12 is picked in the ¯gure where the gap between levels is

still relatively large. Note, however, that this does not mean that the elongated box is

less e®ective than the cubic one in resolving states. It is only a matter of visual

identi¯cation in stabilization diagrams. As far as quantitative phaseshift analysis of

the spectrum via the Lüscher method is concerned, the two are not fundamentally

di®erent. The elongated geometry does have one advantage when the box is dis-

cretized into a periodic lattice as in lattice QCD, where changing one dimension is

much cheaper than changing 3 dimensions. Third, the angular momentum resolution

is di®erent from that in the cubic case. There are not large gaps between partial

waves as in the cubic case. They are relatively spread out across the irreps. This

means the same state can appear in multiple irreps more frequently.

Table 6. (Continued )

Irrep Projected Fourier basis states as superposition of jnxnynzi

E� jm;n;ni, m odd, n even

jk;m;ni; jk;n;mi, k odd, m;n even

jm; k;ni; jm;n; ki, m odd, n; k even

jn; k;mi; jn;m; ki, n odd, m; k even
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Fig. 9. (Color online) Energy spectrum for the spin-0 system as a function of the elongation factor � for all

10 irreps of the D4h group. The volume of the elongated box is L� L� �L with L ¼ 12.
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For bound states, the identi¯cation is just as easy as in the cubic case. They have

negative values and are expected to be independent of the elongation factor �. In the

Aþ
1
channel, which couples to angular momentum l ¼ 0; 2; 4; . . ., three bounds are

found. The two l ¼ 0 states with E ¼ �2:448 and E ¼ �0:409, and one l ¼ 2 state

with E ¼ �0:386 which also appears in Bþ
1
, Bþ

2
, and Eþ. The remaining bound state

at E ¼ �1:409 and l ¼ 1 is found in A�
2 and E�, both of which couple to

l ¼ 1; 3; 5; . . ..

For scattering states, only extremely sharp resonances are visible. It is helpful to

examine a zoomed-up view of the diagrams. We see the narrow l ¼ 4 resonance at

E ¼ 1:533 is clearly present in the Aþ
2
channel, whereas the broad state expected at

E ¼ 2:7 in the same channel is not. The same E ¼ 1:533 state is present in all ¯ve

even-parity channels because they all couple to l ¼ 4. The l ¼ 2 resonance at E ¼
1:365 is present in all even-parity channels, except for Aþ

2
which it does not couple.

The relatively narrow and high-spin l ¼ 5 resonance at E ¼ 2:37 is present all odd-parity

channels. The l ¼ 3 resonance atE ¼ 0:602 appears in all odd-parity channels, except for

A�
1 . The same is true for the l ¼ 3 resonance atE ¼ 2:07, but is much less clear due to its

broadness. The l ¼ 1 resonance at E ¼ 0:522 appears in A�
2 and E�. Even though it is

very close to the E ¼ 0:602 state, it is still distinguishable from each other.

We summarize the above discussions in Fig. 10, which o®ers a direct comparison

with the in¯nite-volume spectrum in Fig. 1 and the cubic spectrum in Fig. 5.

Fig. 10. (Color online) Bound states and resonances for the spin-0 system as a function of theD4h irreps in
the elongated box of L� L� �L at a ¯xed L ¼ 12. Only states with E < 3 and l � 6 are listed. They are

extracted from Fig. 9 and should be compared with the in¯nite-volume spectrum in Fig. 1 and the cubic

spectrum in Fig. 5.
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4.2. Spin-1/2 system

Since the total angular momentum involves half-integers, we need 2D4, the double

cover group of D4. The 2D4 group has 16 elements and two additional irreps

named G1, G2 with respective dimensionality of 2; 2. The 2D4 group is discussed in

detail in Ref. 7. The full symmetry group including parity is called 2D4h which has 32

elements and 14 irreps A�
1 , A

�
2 , B

�
1 , B

�
2 , E

�, G�
1 , and G�

2 . The four new irreps G�
1 ,

and G�
2 are responsible for the classi¯cation of half-integer angular momentum, as

shown in Table 7.

To ¯gure out how the Fourier basis behaves under the 2D4h group, we only need

to focus on the irreps G1, G2 of the 2D4 group. Parity will be added later. To

determine the behavior under Cþ
4z and C2y spin-1

2
states, we need their matrix re-

presentation in theG1 irrep, which can be obtained from spin-1/2 rotations e�i n
��!� ���!!=2

(where n
��!

is unit rotation axis and ! the rotation angle),

Cþ
4z ¼

1� i�zffiffiffi
2

p ¼ 1ffiffiffi
2

p 1� i 0

0 1þ i

� �
; C2y ¼ �i�y ¼

0 �1

1 0

� �
;

where the states are ordered jþi; j�i. Compared to the cubic case (2O group), Cþ
4z is

the same, along with the corresponding unitary matrices Fmn½Cþ
4z�; but C2y replaces

Cþ
4y as the new generator. Under C2y, we have

hn 0
x;n

0
y;n

0
z; "

0jC2yjnx;ny;nz; "i ¼ ð�1Þnxþnz
"� "0

2
�n 0

xnx
�n 0

yny
�n 0

znz
; ð47Þ

where the spatial part is diagonal as in the integer-spin case. The representation

matrices for type 1 are two-dimensional. If we order the states according to

jn;n;n;þi; jn;n;n;�i, then

F ½C2y� ¼
0 �1

1 0

� �
: ð48Þ

The representation matrices for type 2 are six-dimensional. If we choose states 1,2,3

to be, respectively, jn;n;m;þi; jn;m;n;þi; jm;n;n;þi, and states 4,5,6 to be,

Table 7. Decomposition of angular momentum in the

elongated box according to the four half-integer irreps

of the 2D4h group. Both the original decomposition
(left) and its inverse (right) are shown.

J 2D4h
2D4h J

1/2 G�
1 G�

1
1/2, 3/2, 5/2, . . .

3/2 G�
1 �G�

2 G�
2

3/2, 5/2(2), 7/2(2), . . .

5/2 G�
1 � 2G�

2

7/2 2G�
1 � 2G�

2

. . . . . .
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respectively, jn;n;m;�i; jn;m;n;�i; jm;n;n;�i, then

F ½C2y� ¼

0 0 0 �ð�1Þnþm
0 0

0 0 0 0 �1 0

0 0 0 0 0 �ð�1Þmþn

ð�1Þnþm
0 0 0 0 0

0 1 0 0 0 0

0 0 ð�1Þmþn
0 0 0

2

666666664

3

777777775

: ð49Þ

The representation matrices for type 3 are 12-dimensional. Assuming k < m < n

and choosing states 1,2,3,4,5,6 to be jk;m;n;þi; jk;n;m;þi; jm; k;n;þi; jm;n; k;þi;
jn; k;m;þi; and jn;m; k;þi, and states 7,8,9,10,11,12 to be jk;m;n;�i; jk;n;m;�i;
jm; k;n;�i; jm;n; k;�i; jn; k;m;�i; jn;m; k;�i, we have

F ½C2y�¼

0 0 0 0 0 0 �ð�1Þkþn
0 0 0 0 0

0 0 0 0 0 0 0 �ð�1Þkþm
0 0 0 0

0 0 0 0 0 0 0 0 �ð�1Þmþn
0 0 0

0 0 0 0 0 0 0 0 0 �ð�1Þmþk
0 0

0 0 0 0 0 0 0 0 0 0 �ð�1Þnþm
0

0 0 0 0 0 0 0 0 0 0 0 �ð�1Þnþk

ð�1Þkþn
0 0 0 0 0 0 0 0 0 0 0

0 ð�1Þkþm
0 0 0 0 0 0 0 0 0 0

0 0 ð�1Þmþn
0 0 0 0 0 0 0 0 0

0 0 0 ð�1Þmþk
0 0 0 0 0 0 0 0

0 0 0 0 ð�1Þnþm
0 0 0 0 0 0 0

0 0 0 0 0 ð�1Þnþk
0 0 0 0 0 0

2

6666666666666666666666664

3

7777777777777777777777775

:

ð50Þ

To obtain the other elements, we need the multiplication table for the double

group 2D4 (given in the package). Inspecting this multiplication table, we can deduce

the remaining 14 elements from C2y and Cþ
4z via a variety of pathways. We choose

the following:

C2z¼Cþ
4zC

þ
4z!C2x¼C2yC2z!C2a¼Cþ

4zC2x!C2b¼Cþ
4zC2y!C�

4z¼C2bC2x!
~C
þ
4z¼C2bC2y! ~C

�
4z¼C2zC

þ
4z! ~C2z¼C�

4zC
�
4z! ~C2x¼Cþ

4zC2b! ~C2y¼C2xC2z!
~C2a¼C2zC2b! ~C2b¼C2xC

þ
4z! ~E¼C2xC2x!E¼Cþ

4zC
�
4z:

ð51Þ
The 16 elements satisfy the generic double group property that the matrices repre-

senting elements C and ~C di®er only by a sign: F ½C� ¼ �F ½ ~C �. This is true for all

eight pairs of the double group in the half-integer irreps (G1 and G2). The property is

used here as a consistency check after all the matrices are found. Inclusion of parity is

done in the same way as in the single group case. The parity representations are the

same F ½is� ¼ ð�1Þ3n ¼ ð�1Þn for the ¯rst type, F ½is� ¼ ð�1Þ2nþm ¼ ð�1Þm for the

second type, and F ½is� ¼ ð�1Þkþmþn for the third type, except multiplied by identity

matrix of di®erent dimensions 2, 6, and 12, respectively. The basis vectors obtained

for the 2D4h group are given in Table 8. Inspection of the table reveals further
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Table 8. Orthonormal basis state superpositions that transform according to row 1 of the double-valued

irreps of 2D4h in the elongated box. In all cases, n 6¼ m 6¼ k, and in cases where a state has three di®erent

indices, it should be assumed that k < m < n. For a given J value, the two l values are l ¼ J � 1=2, with
parity assignment by ð�1Þl.

Irrep Projected Fourier basis states as superposition of jnxnynz; "i

Gþ
1

jn;n;n;þi, n even

jn;n;m;þi; 1ffiffi
2

p ðjn;m;n;þi þ jm;n;n;þiÞ, m;n even
1ffiffi
2

p ðjn;m;n;�i þ ijm;n;n;�iÞ, n odd, m even
1ffiffi
2

p ðjk;m;n;þi þ jm; k;n;þiÞ; 1ffiffi
2

p ðjk;n;m;þi þ jn; k;m;þiÞ; 1ffiffi
2

p ðjm;n; k;þi þ jn;m; k;þiÞ,
k;m;n even

1ffiffi
2

p ðjk;m;n;þi � jm; k;n;þiÞ; 1ffiffi
2

p ðjk;n;m;�i þ ijn; k;m;�iÞ; 1ffiffi
2

p ðjm;n; k;�i þ ijn;m; k;�iÞ,
n even, k;m odd

1ffiffi
2

p ðjk;n;m;þi � jn; k;m;þiÞ; 1ffiffi
2

p ðjk;m;n;�i þ ijm; k;n;�iÞ; 1ffiffi
2

p ðjm;n; k;�i � ijn;m; k;�iÞ,
m even, k;n odd

1ffiffi
2

p ðjm;n; k;þi � jn;m; k;þiÞ; 1ffiffi
2

p ðjk;m;n;�i � ijm; k;n;�iÞ; 1ffiffi
2

p ðjk;n;m;�i � ijn; k;m;�iÞ,
k even, m;n odd

G�
1 jn;n;m;þi; 1ffiffi

2
p ðjn;m;n;�i � ijm;n;n;�iÞ, m odd, n even

1ffiffi
2

p ðjn;m;n;þi � jm;n;n;þiÞ, m;n odd
1ffiffi
2

p ðjk;m;n;þi � jm; k;n;þiÞ; 1ffiffi
2

p ðjk;n;m;þi � jn; k;m;þiÞ; 1ffiffi
2

p ðjm;n; k;þi � jn;m; k;þiÞ,
k;m;n odd

1ffiffi
2

p ðjk;n;m;þi þ jn; k;m;þiÞ; 1ffiffi
2

p ðjk;m;n;�i � ijm; k;n;�iÞ; 1ffiffi
2

p ðjm;n; k;�i þ ijn;m; k;�iÞ,
m odd, k;n even

1ffiffi
2

p ðjk;m;n;þi þ jm; k;n;þiÞ; 1ffiffi
2

p ðjk;n;m;�i � ijn; k;m;�iÞ; 1ffiffi
2

p ðjm;n; k;�i � ijn;m; k;�iÞ,
n odd, k;m even

1ffiffi
2

p ðjm;n; k;þi þ jn;m; k;þiÞ; 1ffiffi
2

p ðjk;m;n;�i þ ijm; k;n;�iÞ; 1ffiffi
2

p ðjk;n;m;�i þ ijn; k;m;�iÞ,
k odd, m;n even

Gþ
2

jn;n;m;þi; 1ffiffi
2

p ðjn;m;n;�i � ijm;n;n;�iÞ, m even, n odd
1ffiffi
2

p ðjn;m;n;þi � jm;n;n;þiÞ, m;n even
1ffiffi
2

p ðjk;m;n;þi � jm; k;n;þiÞ; 1ffiffi
2

p ðjk;n;m;þi � jn; k;m;þiÞ; 1ffiffi
2

p ðjm;n; k;þi � jn;m; k;þiÞ,
k;m;n even

1ffiffi
2

p ðjk;n;m;þi þ jn; k;m;þiÞ; 1ffiffi
2

p ðjk;m;n;�i � ijm; k;n;�iÞ; 1ffiffi
2

p ðjm;n; k;�i þ ijn;m; k;�iÞ,
m even, k;n odd

1ffiffi
2

p ðjk;m;n;þi þ jm; k;n;þiÞ; 1ffiffi
2

p ðjk;n;m;�i � ijn; k;m;�iÞ; 1ffiffi
2

p ðjm;n; k;�i � ijn;m; k;�iÞ,
n even, k;m odd

1ffiffi
2

p ðjm;n; k;þi þ jn;m; k;þiÞ; 1ffiffi
2

p ðjk;m;n;�i þ ijm; k;n;�iÞ; 1ffiffi
2

p ðjk;n;m;�i þ ijn; k;m;�iÞ,
k even, m;n odd

G�
2 jn;n;n;þi, n odd

jn;n;m;þi; 1ffiffi
2

p ðjn;m;n;þi þ jm;n;n;þiÞ, m;n odd
1ffiffi
2

p ðjn;m;n;�i þ ijm;n;n;�iÞ, n even, m odd
1ffiffi
2

p ðjk;m;n;þi þ jm; k;n;þiÞ; 1ffiffi
2

p ðjk;n;m;þi þ jn; k;m;þiÞ; 1ffiffi
2

p ðjm;n; k;þi þ jn;m; k;þiÞ,
k;m;n odd

1ffiffi
2

p ðjk;m;n;þi � jm; k;n;þiÞ; 1ffiffi
2

p ðjk;n;m;�i þ ijn; k;m;�iÞ; 1ffiffi
2

p ðjm;n; k;�i þ ijn;m; k;�iÞ,
n odd, k;m even

1ffiffi
2

p ðjk;n;m;þi � jn; k;m;þiÞ; 1ffiffi
2

p ðjk;m;n;�i þ ijm; k;n;�iÞ; 1ffiffi
2

p ðjm;n; k;�i � ijn;m; k;�iÞ,
m odd, k;n even

1ffiffi
2

p ðjm;n; k;þi � jn;m; k;þiÞ; 1ffiffi
2

p ðjk;m;n;�i � ijm; k;n;�iÞ; 1ffiffi
2

p ðjk;n;m;�i � ijn; k;m;�iÞ,
k odd, m;n even
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symmetries. The Gþ
1
and G�

2 have even and odd switched for all cases of k;m;n.

Same is true between G�
1 and Gþ

2
. These symmetry properties serve as additional

checks of the calculations.

In Fig. 9, we show the energy spectrum (lowest 100 levels) as a function of the

elongation factor � at a ¯xed box size L ¼ 12 for all ten irreps of the D4h group. For

the normal Fourier modes, we used the criteria of up to 26 for individual modes, and

28 for total modes. For the damped Fourier modes, we used damping factor � ¼ 0:5

with individual modes up to 4 and total modes up to 4, except for the G�
2 channel

where � ¼ 0:6 and 5 were used. This is done to better capture the bound states. The

size of the projected Fourier basis (size of H matrix) is 1191, 1076, 1182, 1079 for the

four irreps. Typically, it takes about 15 s to obtain all eigenvalues for a ¯xed value of

Fig. 11. (Color online) Stabilization diagrams for the spin-1/2 system from the four half-integer irreps of

the 2D4h group in the elongated box of L� L� �L with L ¼ 12.
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�; so about 915 s to do � from 0.9 to 2.1 in steps of 0.2, and about an hour to run all

four irreps. The code is structured the same way as in the cubic case for the spin-1/2

system, but takes much less time (1 h vs. 9 h). One obvious factor is we have four

irreps in the elongated box as opposed to six irreps in the cubic box. The more

important factor is in the structure of the projected Fourier basis. In the cubic case

(see Table 4), most of the states are superposition of six individual modes, whereas in

the elongated case (see Table 8), the states are superposition of two individual

modes. This is especially true of the four-dimensional H� irreps in the cubic case. As

a result, more individual modes are used in the cubic case.

For bound states, all seven are identi¯ed in the four diagrams. In the even-parity

Gþ
1
channel, which couples to total angular momentum J ¼ 1=2; 3=2; 5=2; . . ., we see

the two J ¼ 1=2 states with E ¼ �2:448 and E ¼ �0:409, and the one J ¼ 3=2 state

with E ¼ �1:402 which also appears in Gþ
2
. In the odd-parity G�

1 channel, which

couples to the same total angular momentum, we see four bound states: the two

J ¼ 1=2 states with E ¼ �2:168 and E ¼ �0:061, the J ¼ 3=2 state with

E ¼ �1:036, and the J ¼ 5=2 state with E ¼ �0:593. The E ¼ �0:593 and E ¼
�1:036 also appear in the G�

2 channel as doubly degenerate states.

For scattering states, the visual identi¯cation is more di±cult; only extremely

sharp resonances are visible. The three low-lying even-parity resonances E ¼ 0:225,

E ¼ 0:262, and E ¼ 0:63 are found in bothGþ
1
andGþ

2
. The E ¼ 1:297 state is inGþ

1

but not in Gþ
2
because the latter does not couple to J ¼ 1=2. The three high-lying

Fig. 12. (Color online) Energy spectrum of the spin-1/2 system in the elongated box of L ¼ 12 as a

function of � for the half-integer irreps of the 2D4h group. They are extracted from Fig. 11 and should be

compared with the in¯nite-volume spectrum in Fig. 2 and the cubic spectrum in Fig. 7.
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even-parity resonances E ¼ 1:81, E ¼ 1:90, E ¼ 1:91, and E ¼ 2:40 also appear

in both channels. In the odd-parity channels, the sharp states at E ¼ 0:81,

E ¼ 1:08, E ¼ 1:3, and E ¼ 1:45 are visible, whereas the broad ones at E ¼ 1:55;

2:08; 2:48; 2:6; 2:68 are less so.

The ¯nal outcome for the spin-1/2 system in the elongated box is summarized in

Fig. 10 along with assigned quantum numbers. It o®ers a direct comparison with the

in¯nite-volume spectrum in Fig. 2 and the cubic spectrum in Fig. 7.

5. Summary and Conclusion

We have shown how to compute the energy spectrum of two-particle scattering in

non-relativistic quantum mechanics in a box with periodic boundary conditions. We

do not discretize the box into a lattice. Instead, we employ a three-dimensional

cartesian Fourier basis to diagonalize the Hamiltonian, which is treated block by

block. It requires a group-theoretical projection of the Fourier basis into sectors that

transform according to the irreducible representations of the symmetry group under

consideration. These irreducible representations are the natural vehicles in which

angular momentum is resolved in the box. We considered four scattering scenarios

that are of current interest. For spin-0 system in cubic box, it involves the octahedral

group Oh and its 10 irreducible representations A�
1 , A

�
2 , E

�, T �
1 , T

�
2 . For spin-1/2

system in cubic box, it involves the 2Oh group and its six half-integer irreducible repre-

sentations G�
1 , G

�
2 , andH�. For spin-0 system in elongated box, it involves the dihedral

group D4h and its 10 irreducible representations A�
1 , A

�
2 , B

�
1 , B

�
2 , E

�. For spin-1/2
system in cubic box, it involves the 2D4h group and its four half-integer irreducible

representations G�
1 and G�

2 . The projected Fourier basis in each case is of general-

purpose; they can be used for the block-diagonalization of any Hamiltonian system in a

box. Convergent results for a hundred low-lying energy levels can be obtained quickly on a

standard workstation or laptop using basis size on the order of a thousand. There is no

di®erence in computation time for di®erent boxes since the box size L (or �) is adjusted as

a single parameter. This is an advantage over the lattice method which scales like N3 in

changing the volume. Using simple test potentials, we demonstrated how the various

bound and scattering states in the in¯nite volume are resolved in the periodic box.

Although elongated boxes are less visually appealing in the identi¯cation of resonances in

stabilization diagrams, they are expected to be just as e®ective as cubic boxes in numerical

analysis via the Lüscher method. Elongated boxes do o®er an advantage in terms of cost-

e®ectiveness in lattice simulations where the box is discretized into a three-dimensional

periodic lattice. In such scenarios, the cost of elongation is proportional toNz whereas the

cost of changing the cubic volume grows with NxNyNz.

Su±cient details are given both in the write-up and in the package on how the

calculation is carried out. It is structured in a way that is relatively straightforward

to modify for new physics projects. We envision the package to be useful in a number

of ways. It can be a pedagogical tool for students who are learning how to apply

group theory in numerical projects under a box geometry. It can be used to validate
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phaseshift formulas (or quantization conditions) that are projected according to the

same irreps of the box, particularly those for half-integer spin in elongated boxes.7

Conventionally these formulas are treated in a self-consistent manner: they are used

to predict phaseshifts given the energies, but also \reverse-engineered" to infer the

energy spectrum from the targeted phaseshifts. A potential model can provide an

independent check of the formulas. The package can also be used to inform the design

of lattice QCD simulations. Systems can be model-tested in a box in simple quantum

mechanics before a full-°edged lattice QCD simulation is embarked upon. Aspects

such as kinematic coverage, irrep channel selection, and pion mass dependence can

all be investigated on a laptop. Such a study to model the delta resonance in pion-

nucleon scattering is under way. Finally, given the challenge of lattice QCD simu-

lation of three-body systems, a model numerical study in the box applying similar

techniques in this package could be bene¯cial.
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Appendix A. In¯nite-volume Solutions

In in¯nite volume, the Sch€odinger equation in Eq. (1) with the central potential V ðrÞ
admits solutions with spherical symmetry. The solution in spherical coordinate can

be expanded in partial waves  ðrÞ ¼
P

lRlðrÞYlmð�; �Þ where Ylm is spherical har-

monics. The radial wavefunction RlðrÞ satis¯es the standard equation,

� }2

2�

d2

dr2
þ lðlþ 1Þ}2

2�r2
þ V ðrÞ

� �
ulðrÞ ¼ EulðrÞ; ðA:1Þ

where ulðrÞ ¼ rRlðrÞ is the auxiliary radial wavefunction. Depending on the poten-

tial, the solution can be bound states whose energies are quantized, or scattering

states whose energy are continuous. The boundary conditions for bound states are

uðrÞmust vanish at the origin and large distances. For scattering states the boundary

conditions are

lim
r!0

ulðrÞ ¼ 0 and lim
r!1

ulðrÞ / ei�l sin kr� l�

2
þ �l

� �
; ðA:2Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�E=}2

p
is the relative back-to-back CM momentum and �l is the

phaseshift for partial-wave l. The presence of the �l�=2 term is to account for the

centrifugal barrier term lðlþ1Þ}2
2�r2 and is inserted to ensure that the phaseshift in this

de¯nition vanishes when the potential itself vanishes. Conventionally, to obtain the

phaseshift it is necessary to solve a second-order di®erential equation from the origin
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to the asymptotic region, then match the solution with an appropriate sine function.

Here we resort to the variable phase method17 which requires solving only a ¯rst-

order di®erential equation,

d~� lðk; rÞ
dr

¼ � UðrÞ
k

½cos ~� lðk; rÞĵ lðkrÞ � sin ~� lðk; rÞn̂lðkrÞ�2; ðA:3Þ

where UðrÞ ¼ 2�
}2
V ðrÞ. The phase function ~� lðk; rÞ is integrated from the origin where

~� lðk; 0Þ ¼ 0 to the asymptotic region where the potential is negligible; then the

scattering phaseshift is obtained directly as the asymptotic value �lðkÞ ¼
limr!1 ~� lðk; 0Þ. A few salient features of the method are worth pointing out. (1) The

physical meaning of the phase equation is clear: It describes the accumulation of the

phaseshift due to the potential from zero to its asymptotic value. If the potential does

not change sign, the asymptotic value is reached monotonically. In the limit of zero

potential strength, the phaseshift vanishes. (2) The physical meaning of the phase

function also becomes apparent: The value of ~� lðk; 0Þ at distance r from the origin is

the scattering phaseshift that would be produced by the potential if it were truncated

beyond r. (3) The phaseshift from this method does not su®er from the mod(�)

ambiguity inherent in Eq. (A.2) and is a continuous function of the momentum k. (4)

The overall negative sign signi¯es a well-known result in scattering: Repulsive

(positive) potentials produce negative phaseshifts; attractive (negative) potentials

produce positive phaseshifts. (5) The negative sign also implies a formal symmetry of

the phase function if we change the sign of momentum k, namely �lðk; rÞ ¼
��lð�k; rÞ (where we added the k-dependence) which leads to the well-known

property of the S-matrix, Slðk; rÞ ¼ S�1

l ð�k; rÞ. (6) At high energies, the 1=k factor

guarantees that the phaseshift vanishes, limk!1�‘ ¼ 0. In the limit of zero energy,

the phaseshift satis¯es Levinson's theorem limk!0�‘ ¼ nb�; where nb is the number of

bound states in the ‘th partial wave. The exception is when a zero-energy s-wave

resonance occurs, in which case Levinson's theorem is modi¯ed to limk!0�0 ¼
ðnb þ 1=2Þ� (we did not encounter such a case in this study). Levinson's theorem is

an index theorem that can reveal the number of bound states purely from the be-

havior of the phaseshifts at low and high energy limits.

To get a landscape view, the test potentials for the two systems in this study,

Eqs. (2) and (3), are plotted together in Fig. A.1 for a number of partial waves. The

black curves correspond to the spin-0 potential V ðrÞ in Eq. (2); the blue curves to the

spin-1/2 potential VJ¼lþ 1

2

ðrÞ in Eq. (6); and the red curves VJ¼l� 1

2

ðrÞ in Eq. (7). T he

spin-orbit coupling coe±cient is chosen as c‘s ¼ 1:0. Note that for s-wave, V ðrÞ and
VJ¼lþ 1

2

ðrÞ are degenerate, while VJ¼l� 1

2

ðrÞ not de¯ned. The range of the potentials

extends to a distance of about r ¼ 8. The centrifugal barrier pushes the e®ective

range further out with increasing partial wave.

In Fig. A.2, we display the phaseshifts and their derivatives computed from the

variable phase method for the spin-0 potential. The gridlines indicating multiples of

� are draw for the phaseshifts. From the values at E ! 0, we can predict the number

of bound states via the Levinson's theorem: there are two bound states in the s-wave,
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Fig. A.1. (Color online) Plot of the test potentials as a function of distance for partial waves up to l ¼ 7.

The three curves correspond to spin-0 potential (black), spin-/12 potential VJ¼lþ 1

2

ðrÞ (blue), and spin-1/2

potential VJ¼l� 1

2

ðrÞ (red). Top two rows: just V ðrÞ. Bottom two rows: V(r) + centrifugal barrier term.

Fig. A.2. Top two rows: phaseshifts as a function of energy for the spin-0 potentials (black curves in

Fig. A.1). Bottom two rows: derivative of phaseshifts. The gridlines indicate multiples of �.
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one in p-wave, one in d-wave, and no bound states in higher partial waves. This is

corroborated by the e®ective potential (the black curve in Fig. A.1). In the l ¼ 3

partial wave, it has a small negative dip but not enough to support a bound state.

We use a Mathematica eigensolver to locate the bound states under Dirichlet

boundary conditions. For scattering states, we are interested in resonances as

signaled by sudden increases in the phaseshifts, or as peaks in the ¯rst derivative

of the phaseshift. We see some very sharp resonances in the lower partial waves.

Each partial wave has a sharp resonance followed by a broad one. The derivative

curves can be modeled by a resonant Breit–Wigner term and a slowly-varying

background,

d�lðEÞ
dE

¼ �=2

ðEr � ErÞ2 þ �2=4
þ c0 þ c1E þ c2E

2 þ c3E
3; ðA:4Þ

where Er is the pole position � the width. This form does not work well with ex-

tremely sharp resonances. In such cases, the pole position and width can be estimated

by inspecting the peaks on a detailed plot.

Figure A.2 depicts the situation in the spin-1/2 system. In the J ¼ lþ 1

2
channel

(blue) which is made shallower by the spin-orbit term, there are two bound states in

the s-wave, one in p-wave, according to Levinson's theorem. In the J ¼ l� 1

2
channel

(red) which is made deeper by the spin-orbit term, there are two bound states in the

Fig. A.3. (Color online) Top two rows: phaseshifts as a function of energy for the spin-1/2 potentials

(color-coded to correspond to blue and red curves in Fig. A.1). Bottom two rows: derivative of phaseshifts.

Energy spectrum of two-particle scattering in a periodic box

2050131-39



s-wave, two in p-wave, one in d-wave. In fact, there is a very shallow bound state

E ¼ �0:061 that is missed by Levinson's theorem (due to numerical inaccuracies in

computing the phaseshift), but caught by the eigensolver. As for scattering states,

the basic feature of a sharp resonance followed by a broader one persists in both

channels. The deeper channel induces two sharp resonances below E ¼ 3 in higher

partial waves (l ¼ 6; 7). More interestingly, there are two extremely sharp resonances

just above threshold (E ¼ 0:262 in l ¼ 2 and E ¼ 0:225 in l ¼ 3).

The combined spectra of bound and scattering states are displayed in the main

text in Fig. 1 for the spin-0 system, and Fig. 2 for the spin-1/2 system.

Appendix B. Cross Check of Energy Spectrum by Lüscher's Method

Lüscher established exact relations (called quantization conditions or QC) between

elastic scattering phaseshifts in the in¯nite-volume and the two-body energy spec-

trum enclosed in a periodic box.2 In general, the QC has couplings to an in¯nite tower

of partial waves and does not have predictive power for phaseshifts. However, if all

higher partial waves but the lowest one can be neglected, it can be used to predict the

phaseshift of the lowest partial wave given the energy in the box. This is often

referred to as the Lüscher method. Here, we perform such a study using the energy

spectrum for the Aþ
1
irrep in the cubic box as an example. The Aþ

1
irrep couples to

partial waves ‘ ¼ 0; 4; 6; . . . so it can be used to predict the s-wave phaseshift via the

equation,

cot �0ðkÞ ¼
Z00ðq2;LÞ
�3=2q

with q � kL

2�
: ðB:1Þ

Here Z00 is a zeta function whose general de¯nition is given by a sum over integers,

Zlmðq2;LÞ ¼
X

n¼fn1;n2;n3g

nlYlmð�; �Þ
n2 � q2

: ðB:2Þ

It has poles at q2 ¼ n2 which are the noninteracting (free-particle) energies in the

box. By feeding the discrete interacting k obtained in a box of size L into Eq. (B.1),

�0ðkÞ can be obtained and compared to that in the in¯nite volume displayed in

Fig. A.2. The prediction is expected to be valid for low energies where the lower

partial waves dominate and box size L > 2R where R is the range of the interaction.

Figure B.1 shows the result of such an comparison for four box sizes. The range

displayed in momentum k of 0 to 0.8 corresponds to energy E of 0 to 1.265. The pole

in the in¯nite-volume result (black curve) is due to the sharp resonance present in

this channel. We see good agreement in the low energy region. The larger boxes

provide more points and reach lower in energy. The agreement deteriorates at higher

energies, which we attribute to the higher partial waves that are cut o® in the

Lüscher method. Though a limited comparison study, it demonstrates the e±cacy of

the Lüscher method and the extent to which it applies, at least for the toy potential

model employed in this work.
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Appendix C. Matrix Elements

The Fourier integrals in Eq. (14) can be carried out analytically for the test poten-

tials. The overlap term is separable into a product,

h�0n 0
xn

0
yn

0
zj�nxnynzi ¼

Z L=2

�L=2

dx�n 0
x
ð�0;xÞ�nx

ð�;xÞ
Z L=2

�L=2

dy�n 0
y
ð�0; yÞ�ny

ð�; yÞ

�
Z L=2

�L=2

dz�n 0
z
ð�0; zÞ�nz

ð�; zÞ: ðC:1Þ

The basis function in x-direction with the damping factor e��x
2

can be concisely

written as

�nx
ð�;xÞ ¼ Zðn;LÞfnðKðn;LÞxÞe��x2

; ðC:2Þ
where the functions are de¯ned as

Kðn;LÞ � �

L
nþ 1

2
ð1� ð�1ÞnÞ

� �
ðn ¼ 0; 1; 2; . . .Þ; Zðn;LÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Lð1þ �n0Þ

s

;

fnðxÞ �
cosðxÞ n even;

sinðxÞ n odd:

(

ðC:3Þ

The Kðn;LÞ function will be used, but the Zðn;LÞ and fnðxÞ functions are absorbed
into new functions below. The ¯nal result for the overlap is given in closed form by

h�0n 0
xn

0
yn

0
zj�nxnynzi ¼ �

ð0Þ
n 0

xnx
ð�Þ� ð0Þ

n 0
yny

ð�Þ� ð0Þ
n 0

znz
ð�Þ: ðC:4Þ

Fig. B.1. (Color online) Phaseshift predicted from the Lüscher method in the cubic box (colored points) is

compared to that from the in¯nite-volume (black curve) in the Aþ
1
irrep of the cubic box.
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The kinetic energy term is also separable and the ¯nal result is given by

h�0n 0
xn

0
yn

0
zjT j�nxnynzi ¼

1

2
½6� þK2ðnx;LÞ þK2ðny;LÞ þK2ðnz;LÞ�� ð0Þ

n 0
xnx

ð�Þ

� �
ð0Þ
n 0

yny
ð�Þ� ð0Þ

n 0
znz

ð�Þ þ �L½Kðnx;LÞ� ð1Þ
n 0

xnx
ð�Þ� ð0Þ

n 0
yny

ð�Þ� ð0Þ
n 0

znz
ð�Þ

þ Kðny;LÞ� ð0Þ
n 0

xnx
ð�Þ� ð1Þ

n 0
yny

ð�Þ� ð0Þ
n 0

znz
ð�Þ þKðnz;LÞ� ð0Þ

n 0
xnx

ð�Þ� ð0Þ
n 0

yny
ð�Þ� ð1Þ

n 0
znz

ð�Þ�

� 1

2
�2L2½� ð2Þ

n 0
xnx

ð�Þ� ð0Þ
n 0

yny
ð�Þ� ð0Þ

n 0
znz

ð�Þ þ �
ð0Þ
n 0

xnx
ð�Þ� ð2Þ

n 0
yny

ð�Þ� ð0Þ
n 0

znz
ð�Þ

þ �
ð0Þ
n 0

xnx
ð�Þ� ð0Þ

n 0
yny

ð�Þ� ð2Þ
n 0

znz
ð�Þ�: ðC:5Þ

The ¯nal result for the potential energy V ðrÞ ¼ ð�V0 þ V1r
4Þe��r2 is given by

h�0n 0
xn

0
yn

0
zjV j�nxnynzi ¼ �V0�

ð0Þ
n 0

xnx
ðaÞ� ð0Þ

n 0
yny

ðaÞ� ð0Þ
n 0

znz
ðaÞ

� 1

16
V1L

4½� ð4Þ
n 0

xnx
ðaÞ� ð0Þ

n 0
yny

ðaÞ� ð0Þ
n 0

znz
ðaÞ þ �

ð0Þ
n 0

xnx
ðaÞ� ð4Þ

n 0
yny

ðaÞ� ð0Þ
n 0

znz
ðaÞ

þ �
ð0Þ
n 0

xnx
ðaÞ� ð0Þ

n 0
yny

ðaÞ� ð4Þ
n 0

znz
ðaÞ þ 2�

ð2Þ
n 0

xnx
ðaÞ� ð2Þ

n 0
yny

ðaÞ� ð0Þ
n 0

znz
ðaÞ

þ 2�
ð2Þ
n 0

xnx
ðaÞ� ð0Þ

n 0
yny

ðaÞ� ð2Þ
n 0

znz
ðaÞ þ 2�

ð0Þ
n 0

xnx
ðaÞ� ð2Þ

n 0
yny

ðaÞ� ð2Þ
n 0

znz
ðaÞ�: ðC:6Þ

They are expressed in terms of a super-function de¯ned by,

�
ðAÞ
n0nð
Þ � Zðn0;nÞ½IAð
; b�ðn0;nÞÞ þ ð�1ÞnþAIAð
; bþðn0;nÞÞ�; ðC:7Þ

where

Zðn0;nÞ � 1

4
½1þ ð�1Þn0þn�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð1þ �n00Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð1þ �n0Þ

s

; ðC:8Þ

and

b�ðn0;nÞ � L

2
½Kðn0;LÞ �Kðn;LÞ�; ðC:9Þ

are pure functions of integers (L cancels in b�ðn0;nÞ function). The variables � and a

represent the following combinations (linear in L),

� ¼ L

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� þ � þ �0

p
; a ¼ L

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� þ �0

p
: ðC:10Þ

The four integrals are de¯ned by

I0ða; bÞ ¼
Z

1

�1

dx cosðbxÞe�a2x2

;

I1ða; bÞ ¼
Z

1

�1

dx x sinðbxÞe�a2x2

;

I2ða; bÞ ¼
Z

1

�1

dx x2 cosðbxÞe�a2x2 ;

I4ða; bÞ ¼
Z

1

�1

dx x4 cosðbxÞe�a2x2 ;

ðC:11Þ
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whose evaluations involve the error function erfðxÞ ¼
R x

�x
dt e�t2 .

Note that the introduction of the damping factor e��x
2

to the basis functions can

cause the overlap to become positive nonde¯nite, especially for small box sizes (when

L is close to the range of the potential). In such cases, a single value decomposition

(SVD) is used to project out the bad subspace in the overlap matrix. Construction of

the Hamiltonian matrix is the most costly part of the calculation. For improved

speed, the evaluation of the matrix elements is done by C++ code whose execution is

seamlessly called from inside Mathematica.

In the case of elongated box L� L� L� with � the elongation factor in the

z-direction, the z integration receives special treatment in Eqs. (40) and (41). The

corresponding results become functions of both L and � instead of just L.

The transition is fairly straightforward. The Zðn0;nÞ and b�ðn0;nÞ functions remain

the same. The Kðn;LÞ, � and a functions receive the substitution L ! L� in the

z-direction. At the same time, the super-function �ðAÞ is rescaled by the factor �A

from the explicit L factors appearing in Eqs. (C.5) and (C.6). Applying these sub-

stitutions, the overlap term is given by

h�0n 0
xn

0
yn

0
zj�nxnynzi ¼ �

ð0Þ
n 0

xnx
ð�Þ� ð0Þ

n 0
yny

ð�Þ� ð0Þ
n 0

znz
ð��Þ: ðC:12Þ

The kinetic energy term is given by

h�0n 0
xn

0
yn

0
zjT j�nxnynzi ¼

1

2
½6� þK2ðnx;LÞ þK2ðny;LÞ þK2ðnz;L�Þ�� ð0Þ

n 0
xnx

ð�Þ

� �
ð0Þ
n 0

yny
ð�Þ� ð0Þ

n 0
znz

ð��Þ þ �L½Kðnx;LÞ� ð1Þ
n 0

xnx
ð�Þ� ð0Þ

n 0
yny

ð�Þ� ð0Þ
n 0

znz
ð��Þ

þ Kðny;LÞ� ð0Þ
n 0

xnx
ð�Þ� ð1Þ

n 0
yny

ð�Þ� ð0Þ
n 0

znz
ð��Þ þ �Kðnz;L�Þ� ð0Þ

n 0
xnx

ð�Þ� ð0Þ
n 0

yny
ð�Þ

� �
ð1Þ
n 0

znz
ð��Þ� � 1

2
�2L2½� ð2Þ

n 0
xnx

ð�Þ� ð0Þ
n 0

yny
ð�Þ� ð0Þ

n 0
znz

ð��Þ þ �
ð0Þ
n 0

xnx
ð�Þ� ð2Þ

n 0
yny

ð�Þ

� �
ð0Þ
n 0

znz
ð��Þ þ �2�

ð0Þ
n 0

xnx
ð�Þ� ð0Þ

n 0
yny

ð�Þ� ð2Þ
n 0

znz
ð��Þ�: ðC:13Þ

The result for the potential energy V ðrÞ ¼ ð�V0 þ V1r
4Þe��r2 is given by

h�0n 0
xn

0
yn

0
zjV j�nxnynzi ¼ �V0�

ð0Þ
n 0

xnx
ðaÞ� ð0Þ

n 0
yny

ðaÞ� ð0Þ
n 0

znz
ða�Þ

þ 1

16
V1L

4½� ð4Þ
n 0

xnx
ðaÞ� ð0Þ

n 0
yny

ðaÞ� ð0Þ
n 0

znz
ða�Þ þ �

ð0Þ
n 0

xnx
ðaÞ� ð4Þ

n 0
yny

ðaÞ� ð0Þ
n 0

znz
ða�Þ

þ �4 �
ð0Þ
n 0

xnx
ðaÞ� ð0Þ

n 0
yny

ðaÞ� ð4Þ
n 0

znz
ða�Þ þ 2�

ð2Þ
n 0

xnx
ðaÞ� ð2Þ

n 0
yny

ðaÞ� ð0Þ
n 0

znz
ða�Þ

þ 2�2 �
ð2Þ
n 0

xnx
ðaÞ� ð0Þ

n 0
yny

ðaÞ� ð2Þ
n 0

znz
ða�Þ þ 2 �2 �

ð0Þ
n 0

xnx
ðaÞ� ð2Þ

n 0
yny

ðaÞ� ð2Þ
n 0

znz
ða�Þ�: ðC:14Þ

The spin-1/2 system is handled in a similar fashion. If a di®erent potential is

desired, only the potential part needs to be re-coded. The overlap and kinetic terms

remain the same.
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