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Abstract

We present a new proof of the sphere covering inequality in the spirit of compar-
ison geometry, and as a by-product we find another sphere covering inequality
that can be viewed as the dual of the original one. We also prove sphere cov-
ering inequalities on surfaces satisfying general isoperimetric inequalities, and
discuss their applications to elliptic equations with exponential nonlinearities in
dimension 2. The approach in this paper extends, improves, and unifies several
inequalities about solutions of elliptic equations with exponential nonlinearities.
© 2020 Wiley Periodicals LLC

1 Introduction
Second-order nonlinear elliptic equations with exponential nonlinearity of the

form

(1.1) �uC eu D f .x/ in � � R2;
arise in many important problems in mathematics, mathematical physics, and bi-
ology. Such equations have been extensively studied in the context of Moser-
Trudinger inequalities, Chern-Simons self-dual vortices, Toda systems, conformal
geometry, statistical mechanics of two-dimensional turbulence, self-gravitating cos-
mic strings, theory of elliptic functions, and hyperelliptic curves and free boundary
models of cell motility; see [2–4, 6–16, 18, 20–25, 32–38, 42] and the references
cited therein.

The sphere covering inequality was recently introduced in [28], and has been
applied to solve various problems about symmetry and uniqueness of solutions of
elliptic equations with exponential nonlinearity in dimension n D 2. In particular,
it was applied to prove a longstanding conjecture of Chang-Yang ( [20]) concerning
the best constant in Moser-Trudinger-type inequalities [28], and has led to several
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symmetry and uniqueness results for mean field equations, Onsager vortices, Sinh-
Gordon equation, cosmic string equation, Toda systems, and rigidity of Hawking
mass in general relativity [26–31, 39, 41].

THEOREM 1.1 (The sphere covering inequality). Let �0 � R
2 be a simply con-

nected domain. Assume u1 2 C 2
� x�0

�
such that

(1.2) �u1 C e2u1 � 0 on �0;

Z
�0

e2u1 dx � 4�:

Let � � �0 be a bounded open set. Assume u2 2 C 2
�x��

such that

�u2 C e2u2 � �u1 C e2u1 in �, u2 > u1 in �; u2j@� D u1j@�:
Then

(1.3)
Z
�

e2u1 dx C
Z
�

e2u2 dx � 4�:

In this paper, we present an approach that completes, simplifies, and improves
the sphere covering inequality and several other inequalities about solutions of the
elliptic equations with exponential nonlinearities. In particular, we will prove the
following generalization of the sphere covering inequality with a method different
from the one in [28].

THEOREM 1.2. Let �0 � R
2 be a simply connected domain. Assume u1 2

C 2. x�0/ such that

(1.4) �u1 C e2u1 � 0 on �0;

Z
�0

e2u1dx � 4�:

Let � � �0 be a bounded open set. Assume u2 2 C 2
�x��

and 0 < � � 1 such
that

�u2 C �e2u2 � �u1 C e2u1 in �, u2 > u1 in �; u2j@� D u1j@�:
Then

(1.5)
Z
�

e2u1 dx C
Z
�

e2u2 dx � 4�

�
:

We shall also prove the following inequality, which can be viewed as the dual of
the sphere covering inequality.

THEOREM 1.3. Let �0 � R
2 be a simply connected domain. Assume u1 2

C 2. x�0/ such that

(1.6) �u1 C e2u1 � 0 on �0;

Z
�0

e2u1dx � 4�:

Let � � �0 be a bounded open set. Assume u2 2 C 2.x�/ such that

�u2 C e2u2 � �u1 C e2u1 in �, u2 < u1 in �; u2j@� D u1j@�:
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Then

(1.7)
Z
�

e2u1 dx C
Z
�

e2u2 dx � 4�:

We will develop an approach for Theorem 1.2 that is different from the one
in [28] and modify it to prove Theorem 1.3. Our method has the general spirit of
comparison geometry. Under the assumption of Theorem 1.2, let g D e2u1 jdxj2;
here jdxj2 is the Euclidean metric. Then the Gauss curvature K � 1 and the area
�.�0/ � 4� , where �.E/ is the measure of E associated with the metric g. It
follows from [1] and [19, lemma 4.2] that the following isoperimetric inequality
holds on .�0; g/ for any domain E in �0 with smooth boundary

(1.8) 4��.E/ � �2.E/ � s2.@E/;

where s is the one-dimensional measure associated with g. Using g as a back-
ground metric, we can rewrite the differential inequality between u1 and u2 into a
differential inequality involving u D u2 � u1. Applying ideas from [1, 40] to the
resulting differential inequality on .�0; g/ gives us an inequality that will imply
Theorem 1.2. Indeed, the proof of Theorem 1.2 is based on the following more
general result.

THEOREM 1.4. Let .M; g/ be a simply connected, smooth Riemann surface. As-
sume K � 1 and �.M/ � 4�; here K is the Gauss curvature and � is the measure
of .M; g/. Let � be a domain with compact closure and nonempty boundary, and
� be a constant. If u 2 C 2.x�/ such that u > 0 in � and

(1.9) ��guC 1 � �e2u; uj@� D 0:

Then

(1.10) 4�

Z
�

e2u d� � �

�Z
�

e2u d�

�2
� 4��.�/ � �2.�/:

In particular, if 0 < � � 1, then

(1.11)
Z
�

e2u d�C �.�/ � 4�

�
:

It is interesting that in this comparison theorem, what is compared is not the
area itself, but the quantity 4��.�/ � �2.�/, which is exactly the quantity that
appeared in the isoperimetric inequality.

The proof of Theorem 1.3 also follows from the following more general result.

THEOREM 1.5. Let .M; g/ be a simply connected, smooth Riemann surface. As-
sume K � 1 and �.M/ � 4�; here K is the Gauss curvature and � is the measure
of .M; g/. Let � be a domain with compact closure and nonempty boundary, and
� be a constant. If u 2 C 2.x�/ such that u < 0 in � and

(1.12) ��guC 1 � �e2u; uj@� D 0:
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Then

(1.13) 4�

Z
�

e2u d� � �

�Z
�

e2u d�

�2
� 4��.�/ � �2.�/:

In particular, if � D 1, then

(1.14)
Z
�

e2u d�C �.�/ � 4�:

In Section 2, we present proofs of Theorems 1.2, 1.3, 1.4, and 1.5. In Section 3,
we will prove sphere covering inequalities on surfaces satisfying general isoperi-
metric inequalities and shall discuss their applications to elliptic equations with
exponential nonlinearities.

2 Differential Inequalities on Surface with Curvature at Most 1
In this section we will prove Theorems 1.4 and 1.5. The main point is that the

approach in [1,40] can be performed on a simply connected surface with curvature
at most 1.

PROOF OF THEOREM 1.4. By approximation and replacing � with � C ", " a
small positive number, we can assume u is a Morse function. For t > 0, let

�.t/ D
Z
fu>tg

e2u d�; �.t/ D
Z
fu>tg

d�:

By the co-area formula we get

�.t/ D
Z
fu>tg

e2u
jruj
jrujd� D

Z 1

t

d�

Z
fuD�g

e2u

jrujds

D
Z 1

t

�
e2�

Z
fuD�g

ds

jruj

�
d�

and

�.t/ D
Z
fu>tg

jruj
jrujd� D

Z 1

t

d�

Z
fuD�g

ds

jruj :
It follows that

�0.t/ D �e2t
Z
fuDtg

ds

jruj and �0.t/ D �
Z
fuDtg

ds

jruj :

In particular,
�0.t/ D e2t�0.t/:

On the other hand, by the differential inequality we haveZ
fu>tg

.��u/d�C �.t/ � ��.t/;

hence Z
fuDtg

jrujds � �� � �:
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Multiplying both sides by ��0.t/ we get

e2t
Z
fuDtg

ds

jruj
Z
fuDtg

jrujds � ����0 C e2t��0;

which implies
e2ts.fu D tg/2 � ����0 C e2t��0:

Applying the isoperimetric inequality on .M; g/ (see [1] and [19, lemma 4.2]) we
get

e2t .4�� � �2/ � ����0 C e2t��0:

Consequently

4�.e2t /0� � .e2t /0�2 � ��.�2/0 C e2t .�2/0:

In other words,
4�

�
.e2t�/0 � �0

� � ��.�2/0 C .e2t�2/0;

and hence
4�.� � e2t�/ � ��2 C e2t�2 is increasing.

Thus
4�.�.0/ � �.0// � ��.0/2 C �.0/2 � 0:

In other words,

4�

Z
�

e2u d� � �

�Z
�

e2u d�

�2
� 4��.�/ � �2.�/:

When 0 < � � 1, we have

4�

Z
�

e2u d� � �

�Z
�

e2u d�

�2
� 4��.�/ � ��2.�/

and

4�

�Z
�

e2u d� � �.�/

�
� �

�Z
�

e2u d�C �.�/

��Z
�

e2u d� � �.�/

�
:

Hence Z
�

e2u d�C �.�/ � 4�

�
: �

We will derive Theorem 1.5 by flipping all the inequalities.

PROOF OF THEOREM 1.5. Again we can assume u is a Morse function. For
t < 0, let

�.t/ D
Z
fu<tg

e2u d�; �.t/ D
Z
fu<tg

d�:

Then

�0.t/ D e2t
Z
fuDtg

ds

jruj ; �0.t/ D
Z
fuDtg

ds

jruj ; �0.t/ D e2t�0.t/:
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On the other hand, since
�u � 1 � ��e2u;

integrating on fu < tg we getZ
fuDtg

jrujds � �.t/ � ���.t/:

We have

e2t
�
4�� � �2

� � e2ts2.fu D tg/ � e2t
Z
fuDtg

ds

jruj
Z
fuDtg

jrujds

� e2t��0 � ���0:

Hence
e2t .�2/0 � �.�2/0 � 4�.e2t /0� � .e2t /0�2:

It follows that
.e2t�2/0 � �.�2/0 � 4��.e2t�/0 � �0�;

and
4�.� � e2t�/C e2t�2 � ��2 is increasing.

In particular,
4�.�.0/ � �.0//C �.0/2 � ��.0/2 � 0:

In other words,

4�

Z
�

e2u d� � �

�Z
�

e2u d�

�2
� 4��.�/ � �2.�/:

When � D 1, we have

4�

�
�.�/ �

Z
�

e2u d�

�
�

�
�.�/C

Z
�

e2u d�

��
�.�/ �

Z
�

e2u d�

�
:

Hence Z
�

e2u d�C �.�/ � 4�: �

Theorem 1.2 easily follows from Theorem 1.4.

PROOF OF THEOREM 1.2. Let g D e2u1 jdxj2, then

K D �e�2u1�u1 � 1

and �.�0/ � 4� . Let u D u2 � u1. We have

��u � e2u1.�e2u � 1/:

Hence
��gu � �e2u � 1:

Note that u > 0 in � and uj@� D 0. Thus by Theorem 1.4 we haveZ
�

e2u d�C �.�/ � 4�

�
:
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In other words, Z
�

e2u1 dx C
Z
�

e2u2 dx � 4�

�
: �

By exactly the same argument as above, Theorem 1.3 follows from Theorem
1.5.

Example 2.1. Fix 0 < r < 1. We take the stereographic projection of the unit
sphere S2 with respect to the north pole to plane

x3 D �
p
1 � r2 D �h1I

then the standard metric on S2 is written as

g1 D
4.1C h1/

2

�jxj2 C .1C h1/2
�2 jdxj2 D e2u1 jdxj2:

For R > 1, we do stereographic projection of R � S2 with respect to the north pole
to the plane

x3 D
p
R2 � r2 D h2I

then the metric on R � S2

g2 D
4R2.R � h2/

2

�jxj2 C .R � h2/2
�2 jdxj2 D e2u2 jdxj2:

Note that for jxj < r , u2.x/ > u1.x/,

�u1 C e2u1 D 0; �u2 CR�2e2u2 D 0;Z
Br

e2u1dx D 2�.1 � h1/;

Z
Br

e2u2dx D 2�R.RC h2/:

We have Z
Br

e2u1 dx C
Z
Br

e2u2 dx > 4�R2:

This is an example for Theorem 1.2 with � D R�2.

Example 2.2. For 0 < r < R < 1, we take the stereographic projection of S2 with
respect to the north pole to the plane

x3 D
p
1 � r2 D h1I

then the metric on S2 is written as

g1 D
4.1 � h1/

2

�jxj2 C .1 � h1/2
�2 jdxj2 D e2u1 jdxj2:

We also do stereographic projection of R � S2 with respect to the north pole to the
plane

x3 D �
p
R2 � r2 D �h2;
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then the metric on R � S2 is written as

g2 D
4R2.RC h2/

2

�jxj2 C .RC h2/2
�2 jdxj2 D e2u2 jdxj2:

Note that for jxj < r , u2.x/ < u1.x/,

�u1 C e2u1 D 0; �u2 C e2u2 D ��R�2 � 1
�
e2u2 ;Z

Br

e2u1 dx D 2�.1C h1/;

Z
Br

e2u2 dx D 2�R.R � h2/ > 2�.1 � h1/:

Hence Z
Br

e2u1 dx C
Z
Br

e2u2 dx > 4�:

This is an example of Theorem 1.3.

Example 2.3. Let � � R2 be a bounded smooth domain, and u a smooth function
on x� such that

��uC 1 � e2u in �; uj@� D 0; u > 0 in �:

It follows from Theorem 1.4 that

(2.1)
Z
�

e2u dx C j�j � 4�:

Because of the usual isoperimetric inequality on R2, the assumption �.M/ � 4�

in Theorem 1.4 is not needed in our situation. Here we will give an example whereR
� e2u dx C j�j is arbitrarily close to 4� .

For 0 < h < 1, denote r D
p
1 � h2. Take the stereographic projection of

S2 with respect to the north pole to the plane x3 D �h; then the metric on S2 is
written as

g1 D
4.1C h/2�jxj2 C .1C h/2

�2 jdxj2 D e2u1 jdxj2:

We have

��u1 D e2u1 in Br ; u1j@Br
D 0; 1 � e2u1 � 4

.1C h/2
:

Let

R D 2

1C h
and h2 D

p
R2 � r2:

Take the stereographic projection of R � S2 with respect to the north pole to the
plane x3 D h2; then the metric on R � S2 is written as

g2 D
4R2.R � h2/

2

�jxj2 C .R � h2/
2
�2 jdxj2 D e2u2 jdxj2:
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We have

��u2 D
.1C h/2

4
e2u2 in Br ; u2j@Br

D 0; u2 > u1 in Br :

Let u D u2 � u1; then u > 0 in Br and uj@Br
D 0. Moreover,

��u D .1C h/2

4
e2u2 � e2u1 D .1C h/2

4
e2u1e2u � e2u1 :

It follows that

��uC 1 � ��uC e2u1 D .1C h/2

4
e2u1e2u � e2u:

On the other hand,Z
Br

e2u dx C jBr j D
Z
Br

e2u2�2u1 dx C jBr j ! 4�

as h " 1�.
The above example shows that one cannot get any improvements to (1.11) by

assuming K � a < 1. Indeed, a D 0 in the example above.

3 Differential Equation on Surface
Satisfying General Isoperimetric Inequalities

In this section we present sphere covering type inequalities on surfaces satisfy-
ing general isoperimetric inequalities (see (3.1) below) and discuss their applica-
tions to elliptic equations with exponential nonlinearities. We find the following
definition particularly useful.

DEFINITION 3.1. Let M be a smooth surface and g be a metric on M . If for some
0 < � � 1 and � 2 R we have

(3.1) 4���.E/ � ��2.E/ � s2.@E/

for any compact smooth domain E � M (here s is the one-dimensional measure
associated with g and � is the two-dimensional measure), then we say .M; g/

satisfies the .�; �/-isoperimetric inequality.

THEOREM 3.2. Let .M; g/ be a smooth Riemann surface satisfying the .�; �/-
isoperimetric inequality for some � 2 .0; 1� and � 2 R. If � � M is an open
domain with compact closure and u 2 C1.x�/ such that

(3.2) ��guC � D �e2u C f; uj@� D 0; u > 0 in �:

Denote

(3.3) � D 1

2�

Z
�

f C d�I
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then

(3.4) 4�.� ��/

Z
�

e2u d� � �

�Z
�

e2u d�

�2
� 4���.�/ � ��2.�/:

In particular, if � D 0 and 0 < � � �, then

(3.5)
Z
�

e2u d�C �.�/ � 4��

�
:

Remark 3.3. It is worth pointing out that as long as the .�; �/-isoperimetric inequal-
ity is valid, the smoothness of u and metric g is not essential to our argument. In
particular, f can be replaced by a signed measure. This is useful in some singu-
lar Liouville-type equations. We will not elaborate this point further but refer the
reader to [2, 3, 5] and the references therein.

PROOF. By approximation we can assume u is a Morse function. For t > 0, let

�.t/ D
Z
fu>tg

e2u d�; �.t/ D
Z
fu>tg

d�:

As in the proof of Theorem 1.4, we have

�0.t/ D �e2t
Z
fuDtg

ds

jruj ; �0.t/ D �
Z
fuDtg

ds

jruj :

Hence
�0.t/ D e2t�0.t/:

On the other hand,Z
fu>tg

.��u/d�C ��.t/ D ��.t/C
Z
fu>tg

f d�;

hence Z
fuDtg

jrujds � �� � �� C 2��:

We have

e2t
Z
fuDtg

ds

jruj
Z
fuDtg

jrujds � ����0 C �e2t��0 � 2���0;

which implies

e2ts2.fu D tg/ � ����0 C �e2t��0 � 2���0:

Using (3.1) we get

e2t .4��� � ��2/ � ����0 C �e2t��0 � 2���0:

It follows that

4���.e2t�/0 � �0� � ��.�2/0 C �.e2t�2/0 � 4���0:

Integrating for t from 0 to 1, we get

4��.�.0/ � �.0// � ��.0/2 � ��.0/2 C 4���.0/:
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In other words,

4�.� ��/

Z
�

e2u d� � �

�Z
�

e2u d�

�2
� 4���2.�/ � ��.�/: �

If we flip the inequalities as in the proof of Theorem 1.5, we get the following:

THEOREM 3.4. Let .M; g/ be a smooth Riemann surface satisfying the .�; �/-
isoperimetric inequality for some � 2 .0; 1� and � 2 R. Assume � � M is an
open domain with compact closure and u 2 C1

�x��
such that

(3.6) ��guC � D �e2u C f; uj@� D 0; u < 0 in �:

Denote

(3.7) � D 1

2�

Z
�

f � d�I

then

(3.8) 4���.�/ � ��2.�/ � 4�.� C�/

Z
�

e2u d� � �

�Z
�

e2u d�

�2
:

In particular, if � D 0 and � D � > 0, then

(3.9)
Z
�

e2u d�C �.�/ � 4��

�
:

Next we discuss some known and new applications of Theorems 3.2 and 3.4.

Example 3.5 ([1,40]). Let .M; zg/ be a simply connected, smooth Riemann surface
with curvature zK � 1. If E is a compact simply connected domain in M with
nonempty smooth boundary, then we can find u 2 C1.E/ such that

��zgu D zK on E; uj@E D 0:

Let g D e�2uzg; then the curvature of g is 0. By the Riemann mapping theorem
and the Taylor series argument for holomorphic functions in [17], .E; g/ satisfies
the .1; 0/-isoperimetric inequality. On the other hand,

��gu � e2u on E; uj@E D 0:

If we let
� D fp 2 E W u.p/ > 0g;

then
��gu � e2u on �; uj@� D 0; u > 0 in �:

Theorem 3.2 tells us

4�

Z
�

e2u d� �
�Z

�

e2u d�

�2
� 4��.�/:
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Hence

4�

�Z
E

e2u d� � �.E/

�
� 4�

�Z
�

e2u d� � �.�/

�
�

�Z
�

e2u d�

�2

�
�Z

E

e2u d�

�2
;

i.e.,
4� z�.E/ � z�2.E/ � 4��.E/ � s2.@E/ D zs2.@E/:

This is exactly the argument given in [1, 40].
If we assume further that z�.M/ � 4� , then following [19, lemma 4.2] we know,

for E to be a compact domain with boundary smooth but not necessarily simply
connected, there still holds

4� z�.E/ � z�2.E/ � zs2.@E/:
In other words, .1; 1/-isoperimetric inequality is true for .M; zg/. As a conse-
quence, Theorem 1.4 follows from Theorem 3.2.

Example 3.6. Let .M; zg/ be a simply connected smooth Riemann surface with
curvature zK. Assume a � 0 and

(3.10) � D 1

2�

Z
M

. zK � a/C d z� < 1:

Then for any compact, simply connected domain E in M with nonempty smooth
boundary, we have

(3.11) 4�.1 ��/z�.E/ � az�2.E/ � zs2.@E/:
In particular, if we assume further that z�.M/ � 4�.1��/

a
, then .M; zg/ satisfies the

.1 ��; a/-isoperimetric inequality. In fact, this is even true when zg is singular;
see [2, 3, 5] and the references therein.

Indeed, as in the previous example, we can find u 2 C1.E/ such that

�z�u D zK on E; uj@E D 0:

Let g D e�2uzg; then .E; g/ satisfies the .1; 0/-isoperimetric inequality and

��gu D ae2u C . zK � a/e2u on E:

Note that
1

2�

Z
E

�
. zK � a/e2u

�C
d� D 1

2�

Z
E

. zK � a/C d z� � � < 1:

Let
� D fp 2 E W u.p/ > 0gI

then

��gu D ae2u C . zK � a/e2u on �; uj@� D 0; u > 0 in �:
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Theorem 3.2 implies

4�.1 ��/

Z
�

e2u d� � a

�Z
�

e2u d�

�2
� 4��.�/:

Hence

4�.1 ��/

Z
E

e2u d� � 4��.E/ � 4�.1 ��/

Z
�

e2u d� � 4��.�/

� a

�Z
�

e2u d�

�2
� a

�Z
E

e2u d�

�2
:

In other words,

4�.1 ��/z�.E/ � az�2.E/ � 4��.E/ � s2.@E/ D zs2.@E/:
Example 3.7 ([1–3, 5]). Let �0 � R

2 be a simply connected domain and u; h 2
C1.�0/ with h.x/ > 0 for any x 2 �0. We write

(3.12) ��u D he2u C f

and

(3.13) � D 1

2�

Z
�0

�
f � 1

2
� log h

�C
dx:

If � < 1 and

(3.14)
Z
�0

he2u dx � 4�.1 ��/;

then .�0; he
2ujdxj2/ satisfies the .1 ��; 1/-isoperimetric inequality. As pointed

out earlier in Remark 3.3, the regularity assumption of u and h can be weakened,
and we refer the reader to [2, 3, 5].

PROOF. For convenience we denote g D he2ujdxj2; then its curvature

K D h�1e�2u
�
��u � 1

2
� log h

�
D h�1e�2u

�
he2u C f � 1

2
� log h

�

D 1C h�1e�2u
�
f � 1

2
� log h

�
:

Hence

1

2�

Z
�0

.K � 1/C d� D 1

2�

Z
�0

�
f � 1

2
� log h

�C
dx D � < 1

and

�.�0/ D
Z
�0

he2u dx � 4�.1 ��/:

It follows from Example 3.6 that .�0; g/ satisfies the .1 ��; 1/-isoperimetric in-
equality �
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If we replace the reference metric from Euclidean metric to an arbitrary one, we
end up with the following formulation.

LEMMA 3.8. Let .M; g/ be a simply connected Riemann surface with curvature K
and u 2 C1.M/. We write

(3.15) ��gu D e2u C f

and

(3.16) � D 1

2�

Z
M

.f CK/C d�:

If � < 1 and

(3.17)
Z
M

e2u d� � 4�.1 ��/;

then .M; e2ug/ satisfies the .1 ��; 1/-isoperimetric inequality.

PROOF. Let zg D e2ug; then

zK D e�2u.K ��u/ D 1C e�2u.f CK/:

In particular,

1

2�

Z
M

. zK � 1/C d z� D 1

2�

Z
M

.f CK/C d� D � < 1

and

z�.M/ D
Z
M

e2u d� � 4�.1 ��/:

It follows from Example 3.6 that .M; zg/ satisfies the .1 ��; 1/-isoperimetric in-
equality. �

Note that Lemma 3.8 also follows from Example 3.7 and the Riemann mapping
theorem. With Lemma 3.8 at hand, we can deduce easily a variation of the sphere
covering inequality.

PROPOSITION 3.9. Let .M; g/ be a simply connected Riemann surface and u1 2
C1.M/. We write

(3.18) ��gu1 D e2u1 C f

and

(3.19) � D 1

2�

Z
M

.f CK/C d�:

Here K is the curvature of .M; g/. Assume � < 1 and

(3.20)
Z
M

e2u1 d� � 4�.1 ��/:
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Let � �M be a domain with a compact closure and nonempty boundary. Assume
u2 2 C1.x�/ and 0 < � � 1 such that

�gu2 C �e2u2 � �gu1 C e2u1 in �; u2 > u1 in �; u2j@� D u1j@�:
Then

(3.21)
Z
�

e2u1 d�C
Z
�

e2u2 d� � 4�.1 ��/

�
:

Note that Theorem 1.2 is a special case of Proposition 3.9.

PROOF OF PROPOSITION 3.9. Let zg D e2u1g; then it follows from Lemma 3.8
that .M; zg/ satisfies the .1 ��; 1/-isoperimetric inequality. Let u D u2�u1; then
on � we have

��gu � e2u1.�e2u � 1/:

Hence
��zgu � �e2u � 1:

Moreover, u > 0 in � and uj@� D 0; it follows from Theorem 3.2 thatZ
�

e2u d z�C z�.�/ � 4�.1 ��/

�
:

In other words, Z
�

e2u1 d�C
Z
�

e2u2 d� � 4�.1 ��/

�
:

�

Using Theorem 3.4 with the same proof, we also have a dual inequality gener-
alizing Theorem 1.3.

PROPOSITION 3.10. Let .M; g/ be a simply connected Riemann surface with cur-
vature K and u1 2 C1.M/. We write

(3.22) ��gu1 D e2u1 C f

and

(3.23) � D 1

2�

Z
M

.f CK/C d�:

Assume � < 1 and

(3.24)
Z
M

e2u1 d� � 4�.1 ��/:

Let � � M be a domain with compact closure and nonempty boundary. Assume
u2 2 C1.x�/ such that

�gu2 C e2u2 � �gu1 C e2u1 in �, u2 < u1 in �; u2j@� D u1j@�:
Then

(3.25)
Z
�

e2u1 d�C
Z
�

e2u2 d� � 4�.1 ��/:
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Example 3.11. Let .M; g/ be a simply connected Riemann surface with curva-
ture K and u1; h 2 C1.M/ with h > 0. We write

(3.26) ��gu1 D he2u1 C f

and

(3.27) � D 1

2�

Z
M

�
f CK � 1

2
�g log h

�C
d�:

Assume � < 1 and

(3.28)
Z
M

he2u1 d� � 4�.1 ��/:

Let � � M be a domain with compact closure and nonempty boundary. Assume
u2 2 C1.x�/ and 0 < � � 1 such that

�gu2 C �he2u2 � �gu1 C he2u1 in �, u2 > u1 in �; u2j@� D u1j@�:
Then

(3.29)
Z
�

he2u1 d�C
Z
�

he2u2 d� � 4�.1 ��/

�
:

PROOF. Let

v1 D u1 C
1

2
log h; v2 D u2 C

1

2
log hI

then

(3.30) ��gv1 D e2v1 C f � 1

2
� log h:

Moreover,

�gv2 C �e2v2 � �gv1 C e2v1 in �, v2 > v1 in �; v2j@� D v1j@�:
Then we can apply Proposition 3.9 to get the desired conclusion. �

By a straightforward modification we can also deal with the case where h changes
sign.

Example 3.12. Let .M; g/ be a simply connected Riemann surface with curva-
ture K and u1; h;H 2 C1.M/ with h � H and H > 0. We write

(3.31) ��gu1 D He2u1 C f

and

(3.32) � D 1

2�

Z
M

�
f CK � 1

2
�g logH

�C
d�:

Assume � < 1 and

(3.33)
Z
M

He2u1 d� � 4�.1 ��/:
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Let � � M be a domain with compact closure and nonempty boundary. Assume
u2 2 C1.x�/ such that

�gu2 C he2u2 � �gu1 C he2u1 in �, u2 > u1 in �; u2j@� D u1j@�:
Then

(3.34)
Z
�

He2u1 d�C
Z
�

He2u2 d� � 4�.1 ��/:

PROOF. We have

�gu2 � �gu1 � h.e2u2 � e2u1/ � �gu1 �H.e2u2 � e2u1/:

Hence
�gu2 CHe2u2 � �gu1 CHe2u1 in �.

Then we can apply Example 3.11. �

Next we turn to solutions of semilinear equations with equal weights; see [5,29].

PROPOSITION 3.13. Let � � R
2 be a bounded open simply connected domain.

Assume u1; u2 2 C1.x�/ such that

(3.35) �u1 C e2u1 � 0

and

�u1 C e2u1 � �u2 C e2u2 in �; u1 C c > u2 in �; u1j@� C c D u2j@�:
Here c is a constant. If

(3.36)
Z
�

e2u1 dx D
Z
�

e2u2 dx D �;

then � � 4� .

PROOF. Note that c > 0. If � � 4� , we will show � D 4� . Indeed, let
g D e2u1 jdxj2; then K � 1 and �.�/ D � � 4� . If we write u D u2 � u1 � c,
then

��guC 1 � e2c � e2u:
Moreover, u < 0 in � and uj@� D 0. It follows from Theorem 1.5 that

4�

Z
�

e2u d� � e2c
�Z

�

e2u d�

�2
� 4��.�/ � �2.�/:

Hence
0 � .1 � e�2c/�.4� � �/;

and we get � � 4� . �
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PROPOSITION 3.14. Let � � R2 be a bounded, open, simply connected domain.
Assume u1; u2 2 C1.x�/ such that

�u1 C e2u1 D �u2 C e2u2 � 0 in �; u1j@� C c D u2j@�:
Here c is a constant. If u1 is not identically equal to u2 and

(3.37)
Z
�

e2u1 dx D
Z
�

e2u2 dx D �;

then � � 4� .

PROOF. If � � 4� , we will show � D 4� . Indeed, let g D e2u1 jdxj2; then
K � 1 and �.�/ D � � 4� . If we write u D u2 � u1 � c, then

(3.38) ��guC 1 D e2c � e2u:
Let

�C D fx 2 � W u.x/ > 0g; �� D fx 2 � W u.x/ < 0gI
then it follows from the unique continuation property that j� n .�C [��/j D 0.
On �C, by Theorem 1.4 we have

4�

Z
�C

e2u d� � e2c
�Z

�C
e2u d�

�2
� 4��.�C/ � �2.�C/:

On ��, by Theorem 1.5 we have

4�

Z
��

e2u d� � e2c
�Z

��
e2u d�

�2
� 4��.��/ � �2.��/:

Using

�.�C/C �.��/ D �;

Z
�C

e2u d�C
Z
��

e2u d� D e�2c�;

and subtracting the two inequalities we get

.4� � �/

�Z
�C

e2u d� �
Z
��

e2u d�

�
� .4� � �/.�.�C/ � �.��//:

In other words,

.4� � �/

�Z
�C

e2u d� � �
�
�C

�C �.��/ �
Z
��

e2u d�

�
� 0:

Since u is not identically equal to 0, we seeZ
�C

e2u d� � �
�
�C

�C �.��/ �
Z
��

e2u d� > 0.

Hence � � 4� . �

We can replace the Euclidean domain with a Riemann surface.



THE SPHERE COVERING INEQUALITY AND ITS DUAL 19

Example 3.15. Let .M; g/ be a simply connected, compact Riemann surface with
nonempty boundary and u1 2 C1.M/. We write

(3.39) ��gu1 D e2u1 C f

and

(3.40) � D 1

2�

Z
M

.f CK/C d�:

Here K is the curvature of g. Assume u2 2 C1.M/ such that

�gu1 C e2u1 � �gu2 C e2u2 in M ,

u1 C c > u2 in M; u1j@M C c D u2j@M :

Here c is a constant. If

(3.41)
Z
M

e2u1 d� D
Z
M

e2u2 d� D �;

then

(3.42) � � 4�.1 ��/:

PROOF. Without loss of generality we can assume � < 1 and � � 4�.1 ��/.
Let zg D e2u1g, then Lemma 3.8 implies .M; zg/ satisfies .1 ��; 1/-isoperimetric
inequality. If we write u D u2 � u1 � c, then

�z�uC 1 � e2c � e2u on M .

Moreover, u < 0 in M and uj@M D 0. It follows from Theorem 3.4 that

4�.1 ��/

Z
M

e2u d z� � e2c
�Z

M

e2u d z�
�2

� 4�.1 ��/z�.M/ � z�2.M/:

Hence
0 � .1 � e�2c/�.4�.1 ��/ � �/:

Since c > 0, we get � � 4�.1 ��/. �

Using the argument in Example 3.11 we get the following:

Example 3.16. Let .M; g/ be a simply connected, compact Riemann surface with
nonempty boundary and curvature K and u1; h 2 C1.M/ with h > 0. We write

(3.43) ��gu1 D he2u1 C f

and

(3.44) � D 1

2�

Z
M

�
f CK � 1

2
�g log h

�C
d�:

Assume u2 2 C1.M/ such that

�gu1 C he2u1 � �gu2 C he2u2 in M ,

u1 C c > u2 in M; u1j@M C c D u2j@M :
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Here c is a constant. If

(3.45)
Z
M

he2u1 d� D
Z
M

he2u2 d� D �;

then

(3.46) � � 4�.1 ��/:

In the same spirit as the proof of Proposition 3.14 but using both Theorem 3.2
and 3.4 instead, we have the following:

Example 3.17. Let .M; g/ be a simply connected, compact Riemann surface with
nonempty boundary and curvature K, and u1; u2; h 2 C1.M/ with h > 0. As-
sume

��u1 � he2u1 D ��u2 � he2u2 D f in M;(3.47)
u1j@M C c D u2j@M :(3.48)

Here c is a constant. We denote

(3.49) � D 1

2�

Z
M

�
f CK � 1

2
�g log h

�C
d�:

If u1 is not identically equal to u2 and

(3.50)
Z
M

he2u1 d� D
Z
M

he2u2 d� D �;

then

(3.51) � � 4�.1 ��/:
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