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This paper addresses the problem of approximating the price of options on discrete
and continuous arithmetic averages of the underlying, i.e. discretely and continuously
monitored Asian options, in local volatility models. A “path-integral”-type expression
for option prices is obtained using a Brownian bridge representation for the transition
density between consecutive sampling times and a Laplace asymptotic formula. In the
limit where the sampling time window approaches zero, the option price is found to be
approximated by a constrained variational problem on paths in time-price space. We refer
to the optimizing path as the most-likely path (MLP). An approximation for the implied
normal volatility follows accordingly. The small-time asymptotics and the existence of
the MLP are also rigorously recovered using large deviation theory.

Keywords: Asian option pricing; asymptotic expansion; exotic option; large deviation
theory; most-likely-path.

1. Introduction

Asian options, also known as average price options, are among the most liquidly
traded exotic options in commodities such as agriculture, energy, and fixed incomes

∗Corresponding author.
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markets. Nowadays average price options represent a high percentage of options
on oil; some are directly on the futures contracts of oil, while others on spreads
between two types of oil futures. Asian options are also commonly used as a risk
management vehicle for, owing to its averaging feature, (a) the underlying average
price is more difficult to manipulate; (b) the average price is less sensitive to abrupt
shocks; and (c) such options are cheaper than similar vanilla options.

There is a rich literature on the problem of pricing Asian options, in part due
to the difficulty of finding analytical solutions even for simpler cases like the Black–
Scholes model. We mention only the following few and refer the interested readers to
the references therein. To our knowledge, Kemna & Vorst (1990) was the first pub-
lished work tackling the problem of Asian option pricing in Black–Scholes model.
As numerically pricing Asian options by Monte Carlo simulations is concerned,
Kemna & Vorst (1990) also introduced a variance reduction technique by using the
price of geometric average option, whose analytic form is readily obtained, as a con-
trol variate. See also Curran (1994) for further analysis and extension to portfolio
options on the technique of conditioning. Further development and improvement of
Monte Carlo schemes since then were followed up by Broadie & Glasserman (1996)
(for a direct method of estimating the Greeks of an Asian option by Monte Carlo
simulation, see Sec. 4.2, p. 275), Vazquez-Abad & Dufresne (1998) (combining con-
trol variate and change of measure/likelihood ratio), and Glasserman et al. (1999)
(importance sampling), etc. Attempts to find closed or semi-closed form expressions
for Asian option pricing in Black–Scholes models first appeared in the seminal work
of Geman & Yor (1993). Among other interesting results in Geman & Yor (1993),
the Laplace transform of the Asian option price with respect to time to maturity is
derived and has been known as the celebrated Geman–Yor formula. An extension
of the Geman–Yor approach to a jump diffusion model can be found in Cai & Kou
(2012). However, numerical inversion of the Geman–Yor formula was shown slow
and needed to be handled with care, see for example the discussions in Dufresne
(2000) and Fu et al. (1999). Analytical approximation of the risk neutral density for
the average price, which in turn yields an approximation of the Asian option, under
Black–Scholes model dates back to the work of Turnbull & Wakeman (1991) and
Ritchken et al. (1993). Both papers applied the Edgeworth expansion to the density
of discretely monitored average price around lognormal distribution and obtained
Black–Scholes type formula (up to correction terms) for the price of Asian option.
Such analytical approximations are more appealing in practice than the Monte
Carlo solutions because explicit expressions for the Greeks are readily accessible.
Finally, PDE method is pursued by Rogers & Shi (1995) and Večeř (2001) (see also
Večeř (2014) for a more recent development) after an ingeniously chosen change of
variable.

Literatures on the pricing of Asian options under more general dynamics for
the underlying security such as local volatility or stochastic volatility models,
as opposed to those in the Black–Scholes model, are comparatively little. Less
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ambitious approaches to the pricing of Asian options include arbitrage free bounds
as in Albrecher et al. (2008) and Rogers & Shi (1995), and also approximative
and asymptotic solutions such as Dassios & Nagaradjasarma (2006), Foschi et al.
(2013), and Pagliarani et al. (2017). Approximations resorting to asymptotic expan-
sions are mostly Itô–Taylor type expansion based as originated from the work of
Kunitomo & Takahashi (1992), see also Cai et al. (2014) for a more recent devel-
opment along this line. Despite being straightforward but tedious, such expansions
usually require calculations up to third or fourth order in order to achieve satisfac-
tory accuracy. Finally, though not directly related to the current paper, Asian option
pricing under stochastic volatility models is discussed in Fouque & Han (2003) and
Shiraya & Takahashi (2012).

In the current paper, we address the problem of approximating the price of
options on the discrete arithmetic average, and its continuous-time limit, with the
underlying following a local volatility model. For the discretely monitored Asian
option, we assume that the average is over a set of equally spaced discrete time
samples before expiry. The application of the Brownian bridge representation for
the transition density (see Theorem 2.1 below) obtained in Wang & Gatheral (2005)
between consecutive sampling time points leads to a “path-integral” type expression
for the Asian option price, see (2.12). A direct application of a Laplace asymptotic
formula (in this case high-dimensional, see Lemma 2.1) yields an approximation of
the option price (see Theorem 2.2). In the limit where the sampling time window
approaches zero, the leading order term (in small time to expiry) can be expressed as
a constrained variational problem of finding an optimal path, referred to as the most-
likely-path (MLP), in the time-price space. An approximation of the continuously
monitored Asian option price is obtained once the variational problem is solved, see
Definition 2.1 and Theorem 2.3. The MLP approximation coincides with a rigorous
derivation of the leading order based on a recent extension of the Freidlin–Wentzell
theorem for a large class of models, see Theorem 3.1. As for implied volatility, we
opt to use the Bachelier model as benchmark rather than the Black–Scholes model
because of the lack of analytical expression for Asian options in the Black–Scholes
model. Such defined implied volatility in the European option case is sometimes
referred to as the implied normal volatility in practice. By comparing corresponding
expansions from the benchmark Bachelier model and from the local volatility model,
we obtain, as the main result of the paper, the lowest order approximation of the
implied normal volatility for Asian option in Theorem 2.5.

The paper is organized as follows. Section 2 lays out the model and provides
derivations of the Laplace type approximation for discretely monitored Asian calls
and the most-likely-path approximations for continuously monitored Asian call
options. Section 3 is devoted to a rigorous derivation of the asymptotic behavior
obtained in Sec. 2 based on large deviation theory. It was drawn to our attention
that a rigorous proof of the most-likely-path approximation for the price of con-
tinuously monitored Asian option by the theory of large deviation has been done
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independently in Pirjol & Zhu (2016). Finally, we conclude by presenting numerical
tests of the most-likely-path approximation.

Throughout the text, (Wt, t ≥ 0) denotes the standard Brownian motion defined
on the filtered probability space (Ω, (Ft)t≥0,P) satisfying the usual conditions. Dot
will always refer to the partial derivative with respect to the time variable and prime
to the space variable s.

2. Asian Option Pricing in Local Volatility Models

In this section, we derive asymptotic expansions of the prices of both discretely and
continuously monitored Asian calls in local volatility models. First, the most-likely-
path approximation in the discrete case is obtained in Theorem 2.2 using a Brow-
nian bridge representation for the transition density obtained in Wang & Gatheral
(2005) (see Theorem 2.1 below) and a high-dimensional Laplace asymptotic for-
mula (Lemma 2.1). Second, an expression for the most-likely-path approximation
in the continuous case is derived in Theorem 2.3 by taking a formal limit of the
approximation in the discrete case. This provides a heuristic derivation for the lead-
ing order of the most-likely-path approximation for continuously monitored Asian
calls.

We assume that the underlying asset S follows the local volatility model

dSt = Stσ�(St, t)dWt = a(St, t)dWt S0 = s0 > 0. (2.1)

We will suppose that the diffusion function a(s, t) is strictly positive (except possibly
at s = 0 where it could be 0), and grows at most linearly in s: there exists C > 0
such that

0 ≤ a(s, t) ≤ C(1 + |s|) for all t ∈ [0, T ] and for all s ∈ R; (2.2)

and is locally Lipschitz: for every R > 0, there exists CR such that for all t ∈ [0, T ]
and for every x, y ∈ R with |s|, |s′| < R

|a(s, t) − a(s′, t)| ≤ CR|s− s′|. (2.3)

These assumptions are sufficient to imply the existence and uniqueness of a strong
solution to the SDE (2.1). Such solutions will also satisfy a large deviation principle
based on the work in Chiarini & Fisher (2014) as explained in Sec. 3.

Let p(T, sT |t, st), t < T , be the transition probability density from (t, st) to
(T, sT ) for the local volatility model (2.1). Consider the Lamperti transformation
from s to x

x = ϕ(s, t) =
∫ s

s0

dξ

a(ξ, t)
for s > 0. (2.4)

Since a is assumed locally Lipschitz and is strictly positive except at s = 0, the
transformation is well-defined for all s > 0, except possibly at s = 0. The following
representation for the transition density p is derived in Wang & Gatheral (2005).
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Theorem 2.1. Let S = (St, t ≥ 0) be the diffusion process given by (2.1). Define
the function h by h(x, t) = ϕt(s, t) − as(s, t)/2, with s = ϕ−1(x, t), where ϕ

is the Lamperti transformation (2.4) and subindices refer to corresponding par-
tial derivatives. Then the transition density p of S from (t, st) to (T, sT ) has the
representation:

p(T, sT |t, st) =
g(T − t, ϕ(sT , T ) − ϕ(st, t))

a(sT , T )
Ẽϕ(st,t),ϕ(sT ,T )

× [e
R

T
t

h(Xs,s)dXs− 1
2

R
T
t

h2(Xs,s)ds], (2.5)

where g denotes the centered Gaussian density with variance t : g(t, ξ) =
exp(−ξ2/2t)/√2πt and Ẽx,y[·] is the expectation under the Brownian bridge measure
from x to y.

Equivalently, if H is an antiderivative of h with respect to x, namely, ∂xH(x, t) =
h(x, t), for all x and t, then

p(T, sT |t, st) =
g(T − t, ϕ(sT , T ) − ϕ(st, t))

a(sT , T )
eH(ϕ(sT ,T ),T )−H(ϕ(st,t),t)

× Ẽϕ(st,t),ϕ(sT ,T )[e−
1
2

R T
t

h2(Xs,s)+hx(Xs,s)+2Ht(Xs,s)ds]. (2.6)

For notational simplicity, hereafter we shall denote the expectation term in (2.5) as

Ψ(st, sT ) = Ẽϕ(st,t),ϕ(sT ,T )[e
R T

t
h(Xs,s)dXs− 1

2

R T
t

h2(Xs,s)ds]. (2.7)

With this notation, we also have for the term in (2.6)

Ψ(st, sT ) = eH(ϕ(sT ,T ),T )−H(ϕ(st,t),t)

× Ẽϕ(st,t),ϕ(sT ,T )[e−
1
2

R
T
t

h2(Xs,s)+hx(Xs,s)+2Ht(Xs,s)ds]. (2.8)

2.1. Small time asymptotic for discretely monitored Asian call

Assume an (arithmetic) Asian call is sampled discretely at the time points t1 < t2 <

· · · < tn with t0 = 0 and tn = T . In other words, the payoff of such an Asian call is(
1
n

n∑
i=1

Sti −K

)+

, (2.9)

where the time interval between the sampling points is assumed equal, i.e. ti−ti−1 =
∆t = T/n for i = 1, . . . , n. By using the Brownian bridge representation (2.5) or
(2.6), the joint density for St1 , . . . , Stn can be written as

p(t1, st1 |t0, st0)p(t2, st2 |t1, st1) · · · p(tn, stn |tn−1, stn−1) (2.10)

=
n∏

i=1

g(∆t, ϕ(sti , ti) − ϕ(sti−1 , ti−1))
Ψ(sti , sti−1)
a(sti , ti)

. (2.11)
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In this notation, the price C = C(s0, 0;K,T ) of a discretely monitored Asian call
struck at K can be written as

C = E

( 1
n

n∑
i=1

Sti −K

)+


=
∫∫ (

1
n

n∑
i=1

sti −K

)+ n∏
i=1

p(ti, sti |ti−1, sti−1)dst1 · · · dstn

=
1

(2π∆t)
n
2

∫∫ (
1
n

n∑
i=1

sti −K

)+

e−
D(s,t)

∆t W (s, t)ds, (2.12)

where

D(s, t) =
1
2

n∑
i=1

|ϕ(sti , ti) − ϕ(sti−1 , ti−1)|2, W (s, t) =
n∏

i=1

Ψ(sti−1 , sti)
a(sti , ti)

, (2.13)

for t = (t1, . . . , tn), s = (st1 , . . . , stn) and ds = dst1 · · · dstn .
Hence, the evaluation of the Asian call price C becomes the computation of the

multidimensional integral (2.12). The following Laplace asymptotic formula will be
applied to estimate the n-dimensional integral in (2.12) for small ∆t.

Lemma 2.1 (Laplace Asymptotic Formula). Let R be a closed set in Rn with
nonempty and smooth boundary ∂R. Suppose θ is a continuous function in R and
attains its minimum uniquely at x∗ ∈ ∂R and, given any ε > 0, there exists δ > 0
such that θ(x) ≥ θ(x∗) + δ for all x ∈ R\Bε(x∗), where Bε(x∗) = {x : |x− x∗| < ε}
is the open ball of radius ε centered at x∗. Assume that f is integrable in R, i.e.∫

R |f(x)|dx <∞ and that f vanishes identically in Rc and on the boundary ∂R but
the inward normal directional derivative of f at x∗ is nonzero. Then we have the
asymptotic expansion as τ → 0+

∫
R

e−
θ(x)

τ f(x)dx =
(2π)

n−1
2 τ

n+3
2 e−

θ(x∗)
τ√

det ∂2
t θ(x∗)|∇θ(x∗)|

[∇f(x∗) · ∇θ(x∗)
|∇θ(x∗)|2

+
1
2
tr{∂2

tf(x∗)[∂2
t θ(x

∗)]−1} + O(τ)
]
, (2.14)

where ∂2
t f(x∗) and ∂2

t θ(x
∗) are the Hessian matrices of f and θ respectively in the

tangential direction to R at x∗.

The proof of the lemma is standard and straightforward. See for instance Sec. 8.3
in Bleinstein & Handelsman (1986).

Now we apply the Laplace asymptotic formula (2.14) to the multidimensional
integral (2.12) by taking θ = D(s, t), f = ( 1

n

∑n
i=1 sti − K)W (s, t), and R as

the half space R := {s : 1/n
∑n

i=1 sti ≥ K}. The crucial step in applying the
Laplace asymptotic formula (2.14) is the determination of the minimum point of
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D in the half space R, which boils down to solving the constrained optimization
problem:

min
s

1
2

n∑
i=1

|ϕ(sti , ti) − ϕ(sti−1 , ti−1)|2 (2.15)

subject to

1
n

n∑
i=1

sti ≥ K. (2.16)

Remark 2.1. We shall assume s0 < K in the following for if s0 ≥ K, the value of
the constrained optimization problem (2.15):(2.16) is 0 since one can simply take
st1 = st2 = · · · = stn = s0. Then s1 + · · · + sn = ns0 ≥ nK and ϕ(sti , ti) =
ϕ(st0 , ti) = 0 for all 1 ≤ i ≤ n. Thus the objective function in (2.15) attains its
global minimum 0.

Remark 2.2. We show in Appendix that, for ∆t small enough, the objective func-
tion in (2.15) is in fact convex, which in turn implies that the minimizer, if there
exists any, is unique since the constraint is a linear inequality.

We summarize the result for the price of a discretely monitored Asian call in
Theorem 2.2 whose proof in the time homogeneous case is simply a direct appli-
cation of the Laplace asymptotic formula (2.14) since the functions D and W are
independent of t. We remark that, modulo the exponential term, the result suggests
the next order term is of order 3/2 in ∆t, which coincides with the order in the case
for European options, see for example Theorem 2.3 in Gatheral et al. (2012).

Theorem 2.2 (Discrete Monitored Asian Option). The price C =
C(s0, 0;K,T ) of a discretely monitored Asian call struck at K with K > s0 and
expiry time T has the following asymptotic expansion as T → 0+, for fixed n,

C = E

( 1
n

n∑
i=1

Sti −K

)+


=
∫∫

{s: 1
n

P
n
i=1 sti

≥K}

(
1
n

n∑
i=1

sti −K

)
e−

D(s,t)
∆t W (s, t)ds

=
∆t

3
2√

2π
e−

D(s∗,t)
∆t

|∇D(s∗, t)| ×
[

∇W (s∗, t) · ∇D(s∗, t)√
det ∂2

tD(s∗, t)|∇D(s∗, t)|2

+
1
2
tr{∂2

tW (s∗, t)[∂2
tD(s∗, t)]−1} + O (∆t)

]
, (2.17)
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where s∗ = (s∗t1 , . . . , s
∗
tn

) is the minimizer of the minimization problem (2.15) subject
to the constraint 1/n

∑n
i=1 sti ≥ K.

2.2. Continuously monitored Asian call and the most-likely-path

The approximate price of an Asian call obtained in Theorem 2.2 is subject to solving
a high-dimensional constrained optimization problem which is daunting in general.
However, in the limit as ∆t approaches zero, the optimization problem converges
to a variational problem to which, in certain cases such as Black–Scholes and CIR,
the associated Euler–Lagrange equations have closed form solution. The heuristic
computation is given in this section. The rigorous derivation for the leading order
using large deviation is done in Sec. 3.

Let {0 = t0 < t1 < · · · < tn = T } be a partition of the interval [0, T ] with
ti − ti−1 = ∆t := T/n, for i = 1, . . . , n. Then, the price of a continuously monitored
Asian call can be written as the limit of the prices of discretely monitored Asian
calls as n→ ∞. Precisely,

E

( 1
T

∫ T

0

Stdt−K

)+
 = lim

n→∞ E

( 1
n

n∑
i=1

Sti −K

)+
 (2.18)

by applying the Lebesgue dominated convergence theorem. Hence, to the lowest
order, it is natural to approximate the price of a continuously monitored Asian call
by taking the limit of the approximate price of discretely monitored Asian call in
(2.17) as ∆t→ 0. To be specific, rewrite the logarithm of (2.17) as

logC = −D(s∗, t)
∆t

− 1
2

log(2π) +
3
2

log(∆t) − log |∇D(s∗, t)|

+ log

[
∇W (s∗, t) · ∇D(s∗, t)√

det ∂2
tD(s∗, t)|∇D(s∗, t)|2

+
1
2
tr{∂2

tW (s∗, t)[∂2
tD(s∗, t)]−1} + O(∆t)

]
, (2.19)

where we recall that s∗ is the minimizer of (2.15). Note that the first term in the
last expression is dominant as ∆t→ 0.

To determine the limit as ∆t → 0 of the dominant term, we bring ∆t back to
the objective function (2.15) as

1
2∆t

n∑
k=1

∣∣ϕ(sti , ti) − ϕ(sti−1 , ti−1)
∣∣2 . (2.20)

Note that, since

ϕ(sti , ti) − ϕ(sti−1 , ti−1)

= ϕs(sti−1 , ti−1)∆sti + ϕt(sti−1 , ti−1)∆t+ o(∆sti ,∆t), (2.21)
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where ∆sti = sti − sti−1 , we have

lim
∆t→0

1
2∆t

n∑
k=1

|ϕ(sti , ti) − ϕ(sti−1 , ti−1)|2

= lim
∆t→0

1
2∆t

n∑
k=1

|ϕs(sti−1 , ti−1)∆sti |2 + o((∆sti )
2,∆t)

= lim
∆t→0

1
2

n∑
k=1

∣∣∣∣∣∣∣
∆si

∆t
a(si−1, ti−1)

∣∣∣∣∣∣∣
2

∆t

=
1
2

∫ T

0

[
ṡ(t)

a(s(t), t)

]2
dt. (2.22)

Therefore, in the limit as ∆t approaches zero, the optimization problem (2.15)
becomes the following variational problema on the space of paths s : t �→ s(t)

min
s: t�→s(t)

1
2

∫ T

0

[
ṡ(t)

a(s(t), t)

]2
dt (2.23)

subject to

1
T

∫ T

0

s(t)dt = K, s(0) = s0. (2.24)

Definition 2.1. The optimal path of the variational problem (2.23):(2.24) is
referred to as the most-likely-path (MLP) for the Asian call struck at K.

In view of the above, one expects that, at the heuristic level and for the leading
order, the logarithm of the price C of an out-of-the-money Asian call is approxi-
mately given by the solution to the constrained variational problem (2.23):(2.24),
which is equivalent to determining the most-likely-path. To determine the MLP,
the Euler–Lagrange equation associated with the constrained variational problem
(2.23):(2.24) along with proper boundary conditions is derived as follows.

Lemma 2.2. The optimal path of the constrained variational problem (2.23):(2.24)
satisfies the Euler–Lagrange equation

d

dt

(
ṡ

a

)
− at

a2
ṡ+

λ

T
a = 0 (2.25)

with boundary conditions

s(0) = s0, ṡ(T ) = 0, (2.26)

where λ is chosen such that 1/T
∫ T

0 s(t)dt = K.

aAn equivalent formulation of the same problem in the Black–Scholes case was obtained in
Cibelli et al. (2016) [see (1.4)] for the analysis of fundamental solution.
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Proof. We first rewrite the constrained variational problem (2.23):(2.24) in the
Lagrangian form

L(s, λ) =
1
2

∫ T

0

[
ṡ(t)

a(s(t), t)

]2
dt− λ

(
1
T

∫ T

0

s(t)dt−K

)
, (2.27)

where λ is the Lagrange multiplier. Let f : [0, T ] �→ R be a perturbation around
the optimal path s(t) with f(0) = 0. The first order criterion of optimality yields

0 =
d

dε

∣∣∣∣
ε=0

L(s+ εf, λ) (2.28)

=
d

dε

∣∣∣∣
ε=0

1
2

∫ T

0

[
ṡ+ εḟ

a(s+ εf, t)

]2

dt− λ

(
1
T

∫ T

0

{s+ εf}dt−K

)
(2.29)

=
∫ T

0

[
ṡ

a(s, t)

] [
ḟ

a(s, t)
− as(s, t)ṡf

a2(s, t)

]
dt− λ

T

∫ T

0

fdt (2.30)

= −
∫ T

0

{
as(s, t)
a3(s, t)

ṡ2 +
λ

T

}
fdt+

∫ T

0

ṡḟ

a2(s, t)
dt. (2.31)

By applying integration by parts to the second integral and noting that f(0) = 0,
the last equality becomes

0 = −
∫ T

0

{
as(s, t)
a3(s, t)

ṡ2 +
λ

T

}
fdt−

∫ T

0

d

dt

[
ṡ

a2(s, t)

]
fdt+

ṡ(T )
a2(s(T ), T )

f(T ).

(2.32)

Finally, since f is arbitrary and a(s, t) > 0, we obtain the Euler–Lagrange equation

as(s, t)
a3(s, t)

ṡ2 +
λ

T
+

d

dt

[
ṡ

a2(s, t)

]
= 0, (2.33)

which simplifies to

d

dt

(
ṡ

a

)
− at

a2
ṡ+

λ

T
a = 0 (2.34)

with boundary conditions s(0) = s0, ṡ(T ) = 0.

We summarize the final result in the following theorem. A rigorous proof based
on large deviation theory is postponed to Theorem 3.1 in Sec. 3.

Theorem 2.3 (Log Price of a Continuously Monitored Asian Call). The
price C(St, t;K,T ) at time t of a continuously monitored out-of-the-money Asian
call struck at K > s0 and expiry time T, is approximately equal to

logC(St, t;K,T ) = −1
2

∫ T

t

∣∣∣∣ ṡ(τ)
a(s(τ), τ)

∣∣∣∣2 dτ + o(T − t)−1, (2.35)

where s : t �→ s(t) is the solution to the constrained variational problem
(2.23):(2.24).
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We conclude the section by deriving closed form expressions for the most-likely-
path in the Bachelier, the Black–Scholes, and the Cox–Ingersoll–Ross (CIR) models
by solving their corresponding boundary value problems (2.25):(2.26). However, for
more general cases we will have to resort to an iteration scheme for numerical
computations of the most-likely-path. See Sec. 4 for a numerical scheme.

Eaxmple 2.1 (Bachelier Model). In the Bachelier model, a(s, t) = σ, a constant.
The Euler–Lagrange equation (2.25) reduces to

d

dt

(
ṡ

σ

)
+
λ

T
σ = 0, (2.36)

whose general solution is s(t) = −λσ2t2/(2T ) + c1t + c0. From the boundary con-
ditions (2.26) together with 1/T

∫ T

0
s(t)dt = K, we conclude that λ = 3(K −

s0)/(σ2T 2), c1 = 3(K − s0)/T , and c0 = s0. Therefore, the most likely path for
Asian call in the Bachelier model is a downward parabola in the t-s plane given by

s(t) = −3(K − s0)
2

(
t

T

)2

+ 3(K − s0)
t

T
+ s0. (2.37)

We remark that the most-likely-path in this case does not depend on σ. Also, (2.35)
for the Bachelier model becomes

− 1
2

∫ T

0

[
ṡ(t)

a(s(t), t)

]2
dt = −3(K − s0)2

2σ2T
. (2.38)

Thus, it captures the exponential decay of an out-of-the-money Asian call in the
Bachelier model, see (2.64) below.

Eaxmple 2.2 (Black–Scholes Model). In the Black–Scholes model, a(s, t) = σs

with σ being a constant. The Euler–Lagrange equation (2.25) reads

− s̈

s2
+
ṡ2

s3
= λσ2 (2.39)

to which the general solutions are

s(t) =
c21

2λσ2

[
1 − tanh2

(c1
2

[c2 − t]
)]

(2.40)

and

s(t) = − c21
2λσ2

[
1 + tan2

(c1
2

[c2 − t]
)]
, (2.41)

where c1 and c2 are (to be determined) constants. The condition ṡ(T ) = 0 implies
that c2 = T in either case and the conditions s(0) = s0,

∫ T

0
s(t)dt = TK imply

1850029-11
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respectively that

c21
λσ2(1 + cosh(c1T ))

= s0, c1 tanh
(
c1T

2

)
= λσ2KT (2.42)

and
−c21

λσ2(1 + cos(c1T ))
= s0, −c1 tan

(
c1T

2

)
= λσ2KT. (2.43)

By dividing the two equations in (2.42) and rearranging terms, c1 is given by the
solution to the equation

c1T

sinh(c1T )
=
s0
K

if s0 < K (2.44)

or c1 = f−1(s0/K)/T , where f(x) = x/ sinhx. On the other hand, from (2.43) we
obtain that

sin(c1T )
c1T

=
K

s0
if K > s0 (2.45)

or c1 = g−1(K/s0)/T , where g(x) = sinx/x for x ∈ [0, π].
Hence, the most-likely-path s(t) for 0 ≤ t ≤ T in the Black–Scholes model after

simplification becomes

s(t) =
s0 cosh2

(
c1T

2

)
cosh2

(
c1(T − t)

2

) , (2.46)

where c1 = f−1(s0/K)/T for s0 < K; whereas for s0 > K

s(t) =
s0 cos2

(
c1T

2

)
cos2

(
c1(T − t)

2

) (2.47)

and c1 = g−1(K/s0)/T . Moreover, for s0 < K,

1
2

∫ T

0

∣∣∣∣ ṡ(t)σs(t)

∣∣∣∣2 dt =
f−1

(s0
K

)
σ2T

[
1
2
f−1

(s0
K

)
− tanh

(
1
2
f−1

(s0
K

))]
, (2.48)

and for s0 > K

1
2

∫ T

0

∣∣∣∣ ṡ(t)σs(t)

∣∣∣∣2 dt =
g−1

(
K

s0

)
σ2T

[
tan
(

1
2
g−1

(
K

s0

))
− 1

2
g−1

(
K

s0

)]
. (2.49)

Eaxmple 2.3 (Cox–Ingersoll–Ross Model). For the CIR model, a(s, t) = σ
√
s,

where σ is a constant. The Euler–Lagrange equation (2.25) becomes

d

dt

(
ṡ(t)√
s(t)

)
+ 2φ

√
s(t) = 2

d2

dt2
(
√
s(t)) + 2φ

√
s(t) = 0 (2.50)
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for some constant φ with general solution given by√
s(t) = c2 cos(

√
φ(c1 − t)) (2.51)

if φ > 0 and √
s(t) = c2 cosh(

√
−φ(c1 − t)) (2.52)

if φ < 0. The boundary conditions (2.26) imply respectively that

c1 = T and c2 =
√
s0

cos(
√
φT )

or
√
s0

cosh(
√−φT )

. (2.53)

Thus

s(t) = s0

{
cos(

√
φ(T − t))

cos(
√
φT )

}2

or s(t) = s0

{
cosh(

√−φ(T − t))
cosh(

√−φT )

}2

. (2.54)

The parameter φ is determined by the solution to the equation

1
T

∫ T

0

s(t) dt = K =
s0

2
√
φT

[tan(
√
φT ) +

√
φT sec2(

√
φT )] (2.55)

if s0 < K and by

K

s0
=

1
2
√−φT [tanh(

√
−φT ) +

√
−φT sech2(

√
−φT )] (2.56)

if s0 > K. Finally, we have, subject to the determination of φ, that∫ T

0

∣∣∣∣∣ ṡ(t)
σ
√
s(t)

∣∣∣∣∣
2

dt =
s0
√
φ

σ2
[2
√
φT − sin(2

√
φT )] sec2(

√
φT ) (2.57)

for s0 < K and∫ T

0

∣∣∣∣∣ ṡ(t)
σ
√
s(t)

∣∣∣∣∣
2

dt =
s0
√−φ
σ2

[−2
√
−φT + sinh(2

√
−φT )]sech2(

√
−φT ) (2.58)

if s0 > K.

2.3. Implied normal volatility for Asian options

As far as implied volatility is concerned, we opt to use the Bachelier model as
benchmark rather than the conventional Black–Scholes model because of the lack
of analytical expression for Asian options in the Black–Scholes model. Such defined
implied volatility in the European counterpart is sometimes used and referred to
as the implied normal volatility in practice. For European calls, this approximation
is good whenever σ

√
T is small, at least for at-the-money options, see for example

Schachermayer & Teichmann (2007). We expect the same should hold for Asian
options, though the lack of analyticity makes it hard to check. In particular, note
that the approximation might be problematic for small strike prices as the ratio
S/K will be large.
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Recall that, by straightforward calculations, under the Bachelier model

dSt = σbdWt, (2.59)

where σb is a constant, the price of a continuously monitored Asian call option
struck at K with expiry T has the closed form expression

Cb(K,T, σb) =
σb

√
T√

6π
e
− 3(s0−K)2

2σ2
b

T + (s0 −K)N

(√
3(s0 −K)
σb

√
T

)
(2.60)

since the average price 1/T
∫ T

0
Stdt is normally distributed with mean s0 and vari-

ance σ2
bT/3. In (2.60), N(·) denotes the cumulative distribution function of stan-

dard normal distribution. On the other hand, for a discretely monitored Asian call
struck at K with expiry T in the Bachelier model, since St1 + · · · +Stn is normally
distributed with

E[St1 + · · · + Stn ] = ns0, (2.61)

var[St1 + · · · + Stn ] = σ2
bT

(n+ 1)(2n+ 1)
6

, (2.62)

its price Cd
b is given by

Cd
b (K,T, σb) =

σb

√
T√

2Anπ
e
−An(s0−K)2

2σ2
b

T + (s0 −K)N
(√

An(s0 −K)
σb

√
T

)
, (2.63)

where An := 6n2/(n+ 1)(2n+ 1). Apparently, An → 3 as n→ ∞.
Regarding the small time expansion, we remark that by using the asymptotic

expansion N(x) = N ′(x)[−1/x+ 1/x3 + O(1/x5)] as x→ −∞, we have

Cb(st,K) =
σb

√
T − t√
6π

e
− 3(st−K)2

2σ2
b
(T−t) + (st −K)N

(√
3(st −K)
σb

√
T − t

)

= e
− 3(st−K)2

2σ2
b
(T−t)

[
σ3

b (T − t)
3
2

3
√

6π(K − s0)2
+ O(T − t)

5
2

]
(2.64)

as t→ T−. Similarly, in the discrete case as t→ T ,

Cd
b (st,K) = e

−An(st−K)2

2σ2
b
(T−t)

[
σ3

b (T − t)
3
2

An

√
2Anπ(K − s0)2

+ O(T − t)
5
2

]
. (2.65)

We remark that once the small time asymptotic for the price of an out-of-the-
money call is established on the model side, it is a common practice to derive
the small time asymptotic of implied volatility thereby. To that end, the follow-
ing expansion for the implied normal volatility in terms of the call price given in
Grunspan (2011) will be helpful.

Proposition 2.1. For a fixed strike out-of-the-money call with time to expiry T,
let C = C(T ) be the price of the European call regarded as a function of T . Then
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as time to expiry T → 0, the implied normal volatility σN has the asymptotic

σ2
NT =

(s0 −K)2

2(log s0 − logC(T ))
+ o(logC(T )), (2.66)

as T → 0.

2.3.1. Implied normal volatility for discretely monitored Asian option

The implied normal volatility for a discretely monitored Asian call is defined by
solving the following equation for σb

Cd(st,K, T ) =
σb

√
T√

2Anπ
e
−An(s0−K)2

2σ2
b

T + (s0 −K)N
(√

An(s0 −K)
σb

√
T

)
, (2.67)

where An := 6n2/(n+1)(2n+1) and Cd is the price of a discretely monitored Asian
call obtained by the model or from the market. Obviously, among other parameters,
such defined σb depends on K and T .

To derive an asymptotic expansion for the implied normal volatility σb defined
in (2.67) in small time, the idea, as in Gatheral et al. (2012), is to compare the
corresponding terms in the expansions on both side of (2.67). The lowest order
term is thus obtained by matching the exponential terms on both side of (2.67).
Precisely, recall the small time asymptotic of the price of a discrete Asian call from
Theorem 2.2

E

( 1
n

n∑
i=1

Sti −K

)+
 =

∆t
3
2√

2π
e−

D(s∗,t)
∆t

|∇D(s∗, t)| ×
[

∇W (s∗, t) · ∇D(s∗, t)√
det ∂2

tD(s∗, t)|∇D(s∗, t)|2

+
1
2
tr{∂2

tW (s∗, t)[∂2
tD(s∗, t)]−1} + O(∆t)

]
,

where ∆t = T/n. By matching the exponential terms in the above expression and
in (2.65), we have

e
−An(st−K)2

2σ2
b

T = e−
D(s∗,t)

∆t

⇒ An(st −K)2

2σ2
bT

=
D(s∗, t)

∆t
=
nD(s∗, t)

T

⇒ 1
σ2

b

=
2nD(s∗, t)
An(st −K)2

=
n

An(st −K)2

n∑
k=1

|ϕ(s∗ti
, ti) − ϕ(s∗ti−1

, ti−1)|2.

(2.68)

Hence, the lowest (zeroth) order approximation of the implied normal volatility is
given by

σb =
√
An|st −K|

(
n

n∑
k=1

|ϕ(s∗ti
, ti) − ϕ(s∗ti−1

, ti−1)|2
)− 1

2

+ o(1), (2.69)
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where recall that (s∗t1 , . . . , s
∗
tn

) is the solution to the n-dimensional constrained opti-
mization problem (2.15):(2.16). We summarize the result in the following theorem.

Theorem 2.4 (Implied Normal Volatility Asymptotic for Discrete Asian
Call). For a discretely monitored out-of-the-money Asian call struck at K, i.e.
s0 < K, in which the underlying is driven by the local volatility model (2.1), the
implied normal volatility σd

b defined as in (2.67) has the asymptotic expansion as
T → 0+

σd
b (K,T ) = σd

b,0(K) + O(T ), (2.70)

where

σd
b,0(K) =

√
An|st −K|

(
n

n∑
k=1

|ϕ(s∗ti
, ti) − ϕ(s∗ti−1

, ti−1)|2
)− 1

2

, (2.71)

with An = 6n2/(n + 1)(2n + 1) and (s∗t1 , . . . , s
∗
tn

) the solution to the constrained
optimization problem (2.15):(2.16).

2.3.2. Implied normal volatility for continuously monitored Asian option

For continuously monitored Asian calls, the implied normal volatility is thus defined
by solving the following equation for σb

C(st,K, T ) =
σb

√
T − t√
6π

e
− 3(st−K)2

2σ2
b
(T−t) + (st −K)N

(√
3(st −K)
σb

√
T − t

)
, (2.72)

where C is the price of an Asian call obtained by the model or from the market.
Notice that the right-hand side of (2.72) can be regarded as the price of a European
call option in the Bachelier model but with one third of σ2

b as the variance (volatility
squared) parameter. In other words, in the Bachelier world, the price of an Asian
call is equal to the price of its European counterpart but with only one third of
variance. By combining the asymptotics (2.35) for the call price and (2.66) for the
implied normal volatility, a small time asymptotic for the implied normal volatility
of an out-of-the-money Asian call is established. Alternatively, we may also obtain
the same approximation by straightforwardly taking the limit as n → ∞ of σd

b,0 in
Theorem 2.4. We summarize the result in the following theorem.

Theorem 2.5 (Implied Normal Volatility Asymptotic for Continuous
Asian Call). For a continuously monitored out-of-the-money Asian call struck at
K, i.e. s0 < K, in which the underlying is driven by the local volatility model (2.1),
the implied normal volatility σb defined in (2.72) has the asymptotic expansion as
T → 0+

σb(K,T ) = σb,0 + o(T ), (2.73)
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where

σb,0 =

(
T

3(K − s0)2

∫ T

0

[ ˙̃s(t)
a(s̃(t), t)

]2
dt

)− 1
2

, (2.74)

and s̃(t) is the most-likely-path for Asian option determined by solving the varia-
tional problem (2.23):(2.24).

Proof. Recall from (2.66) that the implied normal volatility σ of a European option
has the asymptotic

σ2T =
(s0 −K)2

2(log s0 − logC(T ))
+ o(logC(T )). (2.75)

Thus, by substituting logC(T ) with (2.35) and using the fact that Asian variance
equals one third of its European counterpart in Bachelier world, we obtain for
implied normal volatility σb of an Asian call

σ2
bT

3
=

(s0 −K)2

2(log s0 − logC(T ))
+ o(logC(T )) (2.76)

= − (K − s0)2

2 logC(T )
+ o(logC(T )) (2.77)

= (K − s0)2
[∫ T

0

[ ˙̃s(t)
a(s̃(t), t)

]2
dt

]−1

+ o(T ), (2.78)

where we used (2.35) in the last equality. Finally, the result is obtained by rear-
ranging terms.

Eaxmple 2.4 (Time-Dependent Bachelier Model). Finally, we consider a
time-dependent Bachelier model in which

dSt = σθ(t)dWt. (2.79)

Note that in this case a(s, t) = σθ(t), the Euler–Lagrange equation (2.25) reduces
to

d

dt

(
ṡ

σθ(t)

)
− θ′(t)ṡ
σθ2(t)

+
λ

T
σθ(t) = 0, (2.80)

⇒ 1
θ(t)

d

dt

(
ṡ

θ(t)

)
− θ′(t)
θ2(t)

ṡ

θ(t)
+
λ

T
σ2 = 0. (2.81)

Integrating the last equation subject to the condition ṡ(T ) = 0 gives

ṡ(t)
θ2(t)

=
λ

T
σ2(T − t) (2.82)

for some constant λ set using the condition

1
T

∫ T

0

s(t) dt = K. (2.83)
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This gives

λ =
T 2(K − s0)

σ2

∫ T

0

(T − u)2θ2(u)du
. (2.84)

Also, from (2.82) one easily obtain∫ T

0

∣∣∣∣ ṡ(t)a(s, t)

∣∣∣∣2 dt =
∫ T

0

∣∣∣∣ ṡ(t)σθ(t)

∣∣∣∣2 dt =
λ2σ2

T 2

∫ T

0

(T − t)2θ2(t) dt

=
T 2(K − s0)2

σ2

∫ T

0

(T − t)2θ2(t)dt
. (2.85)

This gives

σ2
b,0 =

3σ2

T 3

∫ T

0

(T − t)2θ2(t) dt. (2.86)

On the other hand, we have S̄T = 1/T
∫ T

0
Stdt where

St = s0 + σ

∫ t

0

θ(u)dWu. (2.87)

A straightforward computation then yields

var[S̄T ] =
σ2

T 2

∫ T

0

(T − u)2θ(u)2 du. (2.88)

So the exact Bachelier implied volatility in the time-dependent Bachelier case is
given by

σ2
b =

3σ2

T 3

∫ T

0

(T − u)2θ(u)2 du. (2.89)

Thus, the most-likely-path approximation is exact in the time-dependent Bachelier
case.

2.4. Approximation of Greeks

The approximation of implied volatility in Theorem 2.5 is also applicable for
approximations of Greeks. For example, we may calculate the delta as follows.
For notational simplicity, denote by vb := σ2

bT . Suppressing and holding the other
parameters fixed, since the Bachelier implied volatility is defined through

C(s) = Cb(s, vb), (2.90)

the delta ∆ satisfies

∆ :=
∂C

∂s
=
∂Cb

∂s
+
∂Cb

∂vb

∂vb

∂s
, (2.91)
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where Cb is the function defined in (2.72). Note that by straightforward calculations
we have

∂Cb

∂s
= N

(√
3(s−K)√

vb

)
and

∂Cb

∂vb
=

1
2
√

6πvb
e
− 3(s−K)2

2vb . (2.92)

Thus, with vb ≈ vb,0 := σ2
b,0T , it follows that

∆ ≈ N

(√
3(s−K)√
vb,0

)
+

1
2
√

6πvb,0

e
− 3(s−K)2

2vb,0
∂vb,0

∂s
. (2.93)

The expressions on the right-hand side of (2.93) can be calculated easily except the
last term which can be calculated as follows. Recall that

vb,0 = 3(K − s)2
[∫ T

0

[ ˙̃s(t)
a(s̃(t), t)

]2
dt

]−1

, (2.94)

we have

∂vb,0

∂s
= 6(s−K)

[∫ T

0

[ ˙̃s(t)
a(s̃(t), t)

]2
dt

]−1

− 3(K − s)2
[∫ T

0

[ ˙̃s(t)
a(s̃(t), t)

]2
dt

]−2
∂

∂s

∫ T

0

[ ˙̃s(t)
a(s̃(t), t)

]2
dt

=
2vb,0

s−K
− v2

b,0

3(K − s)2
∂

∂s

∫ T

0

[ ˙̃s(t)
a(s̃(t), t)

]2
dt. (2.95)

The integral in (2.95) in the general case needs to be evaluated numerically. Simi-
larly, since the gamma Γ satisfies

Γ :=
∂∆
∂s

=
∂2Cb

∂s2
+ 2

∂2Cb

∂s∂vb

∂vb

∂s
+
∂2Cb

∂v2
b

(
∂vb

∂s

)2

+
∂Cb

∂vb

∂2vb

∂s2
, (2.96)

an approximation of Γ is given by substituting vb with vb,0, subject to numerically
evaluations of the derivatives ∂svb,0 and ∂2

svb,0. However, we remark that in the
Black–Scholes (Example 2.2) and the CIR (Example 2.3) models, since the σb,0’s
have closed form expressions, closed expressions for Greeks are available. We refer
the reader to Pirjol & Zhu (2018) for more detailed discussions on Greeks of Asian
options in the Black–Scholes model.

3. Large Deviation Principle

In this section, we prove Theorem 3.1 which is a large deviation reformulation of
Theorem 2.3 for continuously monitored options. Finer tools would be needed to
go beyond the leading order of the asymptotic expansion in Theorem 2.2 suggested
by the discrete approximation. However, in particular cases, these terms are given
by a Girsanov change of measure. We will illustrate this using the Bachelier model
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at the end of the section. A more refined expansion for more general processes does
not appear tractable with current methods.

Theorem 3.1 (Large Deviation for the Log-Price of Continuous Mon-
itored Asian Call). The price C(s0, 0;K,T ) at time t = 0 of a continuously
monitored out-of-the-money Asian call struck at K > s0 with expiry time T for the
price process (St, t ≥ 0) of (2.1) admits the following expansion in T

C(s0, 0;K,T ) = exp
{
−J(K)

T
+ o(T−1)

}
(3.1)

where

J(K) = inf

{
I(f) : f ∈ C([0, T ]) and

∫ T

0

f(u) = K

}
. (3.2)

Moreover, if f(t) = x+
∫ t

0 a(f(s), s)g(s)ds for some g ∈ L2([0, T ]) then

I(f) =
1
2

∫ T

0

(
ḟ(t)

a(f(t), 0)

)2

dt, (3.3)

and I(f) is ∞ otherwise.

The idea to prove the theorem is to treat ε = T as a small parameter and expand
around ε = 0. We do a simple time-change t = uT and write for simplicity

Sε := (Sε
u, u ∈ [0, 1]) = (SuT , u ∈ [0, 1]). (3.4)

Note that with this notation:
1
T

∫ T

0

Stdt =
∫ 1

0

Sε
u du. (3.5)

By the scaling property of Brownian motion, the process (Sε
u, u ∈ [0, 1]) satisfies

the SDE

dSε
u = aε(Sε

u, u)
√
εdWu, (3.6)

where aε(x, u) := a(x, uε). Since a(x, ·) is assumed to be continuous uniformly in x,
we can write

a(x, uε) = a(x, 0) + O(ε). (3.7)

A large deviation principle for the process means that there exists a rate function
I : C([0, T ]) → [0,∞] that is lower semi-continuous and has compact level sets such
that for any Borel subset A of paths in C([0, 1]),

− inf
s∈int(A)

I(s) ≤ lim inf
ε→0

ε log P(Sε ∈ A) ≤ lim sup
ε→0

ε log P(Sε ∈ A) ≤ − inf
s∈cl(A)

I(s),

(3.8)

where int(A) denotes the interior of A and cl(A) is its closure. Roughly speaking, a
large deviation principle quantifies the probability of atypical path at the exponen-
tial scale with the help of the rate function. The proof of Theorem 3.1 is based on an
extension of the Freidlin–Wentzell theorem, see e.g. Dembo & Zeitouni (1999). The
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standard statement of the theorem holds for time-homogeneous drift and volatility
under Lipschitz and boundedness assumptions. Here we will use a recent result of
Chiarini & Fisher (2014). Note that the locally Lipschitz condition (2.3) is not sat-
isfied in the CIR model. However, in this case, the volatility is time-homogeneous
and a weaker assumption is needed for a large deviation to hold. This is the content
of Theorem 4 in Chiarini & Fisher (2014).

Theorem 3.2 (Theorem 2, Theorem 4 and Example 1 in Chiarini & Fisher
(2014)). The family of diffusions (3.6) satisfy a large deviation principle with rate
function

I(f) = inf
{g∈L2([0,1]):f(t)=x+

R
t
0 a(f(s),0)g(s)ds}

1
2

∫ T

0

|g(t)|2dt, (3.9)

whenever the set {g ∈ L2([0, 1]) : f(t) = x +
∫ t

0 a(f(s), 0)g(s)ds} is nonempty and
I(f) is ∞ otherwise.

Formally, it is good to think of the set {g ∈ L2([0, T ]) : f(t) = x +∫ t

0
a(f(s), 0)g(s)ds} as the set of “white-noise paths” t �→ Ẇt. The map g �→ f

where f is the solution of f(t) = x+
∫ t

0
ā(f(s), s)g(s)ds can then be thought of as

the map sending an underlying Brownian path to the corresponding diffusion path.
In the case where the volatility is nonzero for the path f , the map can be inverted
and the rate function reduces to the simplest case

I(f) =
1
2

∫ 1

0

(
ḟ(t)

a(f(t), 0)

)2

dt. (3.10)

This is certainly the case for geometric Brownian motion and the CIR model. The
reader is referred to Theorem 1 in Chiarini & Fisher (2014) and Proposition 3.11
in Baldi & Caramellino (2011) for general sufficient conditions for (3.10) to hold.

Proof. [Proof of Theorem 3.1] Observe that for any random variable X and K > 0,
we have the identity

E[(X −K)+] =
∫ ∞

K

P(X > x)dx. (3.11)

For simplicity, write T for the functional T : C([0, 1]) → R with T (f) =
∫ 1

0
f(u)du.

Note that T is continuous on C([0, 1]) equipped with the topology of uniform con-
vergence. By the contraction principle [see e.g. Dembo & Zeitouni (1999)] and The-
orem 3.2, the family of random variables (T (Sε), ε > 0) satisfies a large deviation
principle with rate function J : R → [0,∞] with

J(y) = inf{I(f) : T (f) = y, f ∈ C([0, 1])}, y ∈ R. (3.12)

By (3.11), we have

log E[(T (Sε) −K)+] = log
∫ ∞

K

P(T (Sε) > x)dx. (3.13)
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On one hand, we have for any M > K

log
∫ ∞

K

P(T (Sε) > x) dx =

(
log
∫ M

K

P(T (Sε) > x) dx

)

+ log

1 +
log
∫ ∞

M

P(T (Sε) > x) dx

log
∫ M

K

P(T (Sε) > x) dx

. (3.14)

For M large enough (possibly dependent on ε), the term in the second parenthesis
is smaller than 2. Pick M = ε−1. For ε small enough we thus have

log
∫ ∞

K

P(T (Sε) > x) dx ≤ log 2 + log(ε−1 −K) + log P(T (Sε) > K). (3.15)

This proves that

lim sup
ε→0

ε log
∫ ∞

K

P(T (Sε) > x) dx ≤ lim
ε→0

ε log P(T (Sε) > K) = −J(K), (3.16)

since (T (Sε), ε > 0) satisfies a large deviation with rate function J .
On the other hand, for δ > 0∫ ∞

K

P(T (Sε) > x) dx ≥
∫ K+δ

K

P(T (Sε) > x) dx ≥ δP(T (Sε) > K + δ). (3.17)

Therefore, for any δ > 0, the above with the use of (3.8) becomes

lim inf
ε→0

ε log
∫ ∞

K

P(T (Sε) > x) dx ≥ −J(K + δ). (3.18)

It remains to show that limδ→0 J(K+δ) = J(K). First, notice that lim infδ→0 J(K+
δ) ≥ J(K) since J is lower semi-continuous (it is a rate function). So it suffices to
show that lim supδ→0 J(K + δ) ≤ J(K). By definition, J(K + δ) = inf{I(x) :
x ∈ C([0, 1]) and

∫ 1

0
x(u)du = K + δ}. Pick a sequence (yn) ∈ C([0, 1]) such that

I(yn) → J(K) and
∫ 1

0
yn(u)du = K. By definition of the infimum, this sequence

can be picked such that I(yn) < J(K) − 1/n. Pick z a differentiable function on
[0, 1] such that

∫
z = 1 and z(0) = 0. Then

∫
(yn(u) + δz(u))du = K + δ. Moreover

J(K + δ) < I(yn + δz). (3.19)

It is easy to check that for fixed n, limδ→0 I(yn + δz) = I(yn). Therefore

lim sup
δ→0

J(K + δ) < I(yn) < J(K) − 1
n
. (3.20)

Since n is arbitrary, this proves the claim.

1850029-22



August 20, 2018 9:29 WSPC/S0219-0249 104-IJTAF SPI-J071
1850029

Most-Likely-Path in Asian Option Pricing

The asymptotic expansion (2.35) suggests that the lower order corrections to
(3.1) are much smaller than the dominant term in T−1. We expect more precisely
that

E

( 1
T

∫ T

0

Su du−K

)+
 = exp

{
−J(K)

T
+

3
2

logT + O(1)
}
. (3.21)

This can be verified rigorously for the Bachelier model (Example 1) using a Girsanov
change of measure designed to tilt towards the most-likely path minimizing the rate
function J for a given K. The correction is expected to be of the same order for
other models as well as for other types of options.

For the Bachelier model, the diffusion on [0, 1] is dSε
u =

√
εdWu and the most-

likely path (2.37) when written as a path on [0, 1] is

s(u) = −3(K − s0)
2

u2 + 3(K − s0)u+ s0, u ∈ [0, 1]. (3.22)

By (3.11), the price of the call option becomes

E

[(∫ 1

0

Sε
udu−K

)+
]

=
∫ ∞

K

P

(∫ 1

0

Sε
u du > x

)
dx. (3.23)

Write Q for the measure with dQ/dP = exp(ε−1/2
∫ 1

0 ṡ(u)dWu − ε−1

2

∫ 1

0 ṡ(u)2du).
Under Q, the process (Wu, u ∈ [0, 1]) is a Brownian motion with drift ε−1/2ṡ(u).
With this notation, (3.23) becomes

e−
ε−1
2

R 1
0 ṡ(u)2du

∫ ∞

K

EQ[e−ε−1/2 R 1
0 ṡ(u)dfWu1{R 1

0 ε1/2fWudu+K>x}]dx (3.24)

where (W̃u, u ∈ [0, 1]) is a standard Brownian motion under Q and we use the fact
that

∫ 1

0
s(u)du = K by definition of the most likely path. By doing the change of

variable y = x−K, this reduces to

E

[(∫ 1

0

Sε
udu−K

)+
]

= e−
ε−1
2

R 1
0 ṡ(u)2du

×
∫ ∞

0

EQ[e−ε−1/2 R 1
0 ṡ(u)dfWu1{R 1

0 ε1/2fWudu>x}]dx. (3.25)

The first term is e−ε−1J(K) and gives the first order. To evaluate the second term,
it is convenient to first integrate x to get

EQ

[
e−ε−1/2 R 1

0 ṡ(u)dfWu

(∫ 1

0

ε1/2W̃u du

)+
]
. (3.26)

Note that ṡ(u) = 3(K − s0)(1 − u), therefore∫ 1

0

ṡ(u)dW̃u = 3(K − s0)
∫ 1

0

W̃udu. (3.27)
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Write X for the random variable
∫ 1

0
W̃udu which is Gaussian with mean 0 and

variance 1/3. We have

ε1/2EQ

[
X+e−ε−1/23(K−s0)X

]
= ε3/2

∫ ∞

0

ye−3(K−s0)y e
− 3εy2

2√
2π
3

dy. (3.28)

The integral is of order 1. We conclude that

E

( 1
T

∫ T

0

Su du−K

)+
 = exp

(
−T−1J(K) +

3
2

logT + O(1)
)
. (3.29)

4. Numerical Tests

From Theorem 2.5, we have the following approximate formula for Asian Bachelier
implied volatility:

σb,0 =

(
T

3(K − s0)2

∫ T

0

[ ˙̃s(t)
a(s̃(t), t)

]2
dt

)− 1
2

, (4.1)

where s̃(t) is the most-likely-path for an Asian option determined by solving the
variational problem

min
s:t�→s(t)

1
2

∫ T

0

[
ṡ(t)

a(s(t), t)

]2
dt (4.2)

subject to

1
T

∫ T

0

s(t)dt = K, s(0) = s0. (4.3)

We now proceed to test numerically the approximate implied volatility for-
mula (4.1) for various definitions of the local volatility function a(s, t) = s σ�(s, t)
in the local volatility model (2.1). In each case, to evaluate (4.1), we need to
compute the most-likely-path s̃(t). To this end, we exploit the following iteration
scheme.

Lemma 4.1. The most-likely path s̃(t) satisfies the recursive formula

s̃(t) = s0 +
I(t)
Ī(T )

[K − s0], (4.4)

where

I(t) =
∫ t

0

∫ T

r

a(s̃(r), r)a(s̃(u), u)e−
R

u
t

at(s̃(v),v)
a(s̃(v),v) dv dudr,

Ī(T ) =
1
T

∫ T

0

I(u) du.
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Proof. From Lemma 2.2, s̃(t) satisfies the Euler–Lagrange equation (2.25) which
we reiterate in the following for convenience

d

dt

(
ṡ

a

)
− at

a2
ṡ+

λ

T
a = 0 (4.5)

with boundary conditions

s(0) = s0, ṡ(T ) = 0, (4.6)

where λ is chosen such that 1/T
∫ T

0
s(t)dt = K.

For ease of notation, define ã(t) := a(s̃(t), t) and f(s, t) = at/a = ∂t log a. Also,
f̃(t) = f(s̃(t), t). Applying the integrating factor exp(− ∫ t

0
f̃(u)du) and integrating

(4.5) with the boundary condition ṡ(T ) = 0 gives

−e−
R t
0 f̃(v)dv ṡ(t)

ã(t)
= − λ

T

∫ T

t

ã(u)e−
R u
0 f̃(v)dv du. (4.7)

It follows that
ṡ(t)
ã(t)

=
λ

T

∫ T

t

ã(u)e−
R u

t
f̃(v)dv du. (4.8)

Rearranging and integrating again gives

s(t) − s0 =
λ

T
I(t), (4.9)

where I(t) =
∫ t

0

∫ T

r ã(r)ã(u) exp(− ∫ u

t f̃(v)dv) dudr. Now apply the boundary con-
dition 1/T

∫ T

0 s(t)dt = K to get

K − s0 =
λ

T
Ī(T ) (4.10)

and the result follows.

Lemma 4.1 leads to an efficient fixed-point algorithm for solving for the most-
likely-path. The natural choice of first guess is the Bachelier most-likely-path (2.37):

s(t) = s0 + 3(K − s0)
t

T
− 3(K − s0)

2

(
t

T

)2

. (4.11)

The resulting algorithm typically converges sufficiently after three or four iterations.

4.1. A time-dependent CIR model

We consider the model

dSt = e−λtσ
√
St dWt (4.12)

with S0 = 1, σ = 0.2 and λ = 1. Thus

a(s, t) = e−λtσ
√
s. (4.13)

Though we computed a quasi-closed-form for the most-likely-path for the time-
homogeneous case in Example 2.3, in this time-inhomogeneous case, we choose to
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Fig. 1. The 1-year Bachelier Asian implied volatility smile corresponding to the time-dependent
CIR local volatility function (4.13). The blue dotted line is from Monte Carlo simulation with
error bars; the red solid line is the approximation σb,0.

compare our approximate implied volatility formula (4.1) evaluated using the fixed-
point iteration algorithm against Monte Carlo simulations generated with 1000
time steps and 2 million sample paths. The results are shown in Fig. 1. We remark
that the most-likely-path approximation in this example slightly underestimates the
normal implied volatility for Asian option inferred from simulation.

4.2. Time-dependent quadratic local volatility

Next we consider the following quadratic local volatility model:

dSt = e−λtσ
[
1 + ψ(St − 1) +

γ

2
(St − 1)2

]
dWt (4.14)

with σ = 0.2, ψ = −0.5, γ = 0.1, and λ = 1. We remark that though in this
example the function a grows quadratically to infinity as |x| → ∞ which vio-
lates the linear growth condition (2.2) required for the theoretical argument, we
did the numerical experiment for testing the applicability of the most-likely-path
methodology.

Though a closed-form solution for European options with these parameters is
given in Andersen (2001), we again resort to Monte Carlo simulation to estimate the
value of Asian options in this model. Likewise, simulations are generated with 1000
time steps and 2 million sample paths. The results are shown in Fig. 2. Similarly,
the most-likely-path approximation in this example also underestimates the normal
implied volatility for Asian option inferred from simulation.
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Fig. 2. The 1-year Bachelier Asian implied volatility smile corresponding to the time-dependent
quadratic local volatility function (4.14). The blue dotted line is from Monte Carlo simulation
with error bars; the red solid line is the approximation σb,0.

4.3. Benchmark scenarios in Black–Scholes and CIR models

In this subsection, for the Black–Scholes and CIR models, we compare the
most-likely-path approximation to a few existing approximations with the bench-
mark scenarios proposed in Geman & Eydeland (1995) and Fu et al. (1999) that
were commonly used in the literatures on Asian option pricing, see for instance
Dassios & Nagaradjasarma (2006), Dufresne (2000), Foschi et al. (2013), Linetsky
(2004), Večeř & Xu (2002).

With the approximation of Bachelier implied volatility σb,0 given in Theorem 2.5,
we may calculate the approximate price of the Asian call struck at K and expired
at T by

e−rT

{√
v

2π
e−

(A−K)2

2v + (A−K)N
(
A−K√

v

)}
(4.15)

with

A =
S0(eµT − 1)

µT
, v =

σ2
b,0

µ2T 2

(
3 − 4eµT + e2µT

2µ
+ T

)
(4.16)

and µ = r − q. Note that (4.15) is indeed the price of the Asian call struck at K
and expired at T under the Bachelier model

dSt = (r − q)Stdt+ σdWt (4.17)

with risk free rate r and dividend rate q, both assumed constant. We remark that,
since many of the benchmark scenarios are of ATM, the ATM approximate implied
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volatility is obtained by taking the limit of σb,0 as K approaches S0. Explicitly, the
limits in the Black–Scholes and CIR cases are given by

lim
K→S0

σb,0 =

{
σS0 for the Black–Scholes model,

σ
√
S0 for the CIR model.

(4.18)

Table 1 exhibits the numerical results for the asymptotic approximation for
the Asian options obtained from (4.15) for the scenarios considered in Fu et al.
(1999). Based on the results in Linetsky (2004), the relative discrepancies of the
approximate prices are less than 1.5% in all the seven benchmark scenarios and
within 1% for options expiring in a year. Table 2 shows the numerical tests
for Asian option pricing in the CIR model for the seven scenarios proposed in
Dassios & Nagaradjasarma (2006). Data is quoted from Table 5 in Foschi et al.
(2013). Based on the results in Foschi et al. (2013), the relative discrepancies of
the approximate prices are less than 1% in all the seven benchmark scenarios and
within 0.6% for options expiring in a year. We may thus arguably conclude that
the short expiry approximation results of the current paper provide a reasonable
approximation for Asian option prices in these models.

Table 1. Prices of Asian calls in the Black–Scholes model in the benchmark scenarios.
The last four columns correspond to the approximate price from (4.15) (ALW), the
third order approximation from Foschi et al. (2013) (FPP3), the precise evaluation in
Linetsky (2004) (Linetsky), and the relative discrepancy of ALW to Linetsky.

Case S0 K r σ T ALW FPP3 Linetsky rel. discrp.

1 2 2 0.02 0.1 1 0.056042 0.055986 0.055986 0.10%
2 2 2 0.18 0.3 1 0.219607 0.218387 0.218387 0.56%
3 2 2 0.0125 0.25 2 0.172939 0.172267 0.172269 0.39%
4 1.9 2 0.05 0.5 1 0.195034 0.193164 0.193174 0.96%
5 2 2 0.05 0.5 1 0.248277 0.246406 0.246416 0.73%
6 2.1 2 0.05 0.5 1 0.308029 0.306210 0.306220 0.59%
7 2 2 0.05 0.5 2 0.355167 0.350040 0.350095 1.45%

Table 2. Prices of Asian calls in the CIR model in the benchmark scenarios consid-
ered in Dassios & Nagaradjasarma (2006). The last four columns correspond to the
approximate price from (4.15) (ALW), from Dassios & Nagaradjasarma (2006) (DN),
the third order approximation from Foschi et al. (2013) (FPP3), and the relative dis-
crepancy of ALW to FPP3.

Case S0 K r σ T ALW DN FPP3 rel. discrp.

1 2 2 0.02 0.14 1 0.055591 0.0197 0.055562 0.05%
2 2 2 0.18 0.42 1 0.218521 0.2189 0.217874 0.30%
3 2 2 0.0125 0.35 2 0.171331 0.1725 0.170926 0.24%
4 1.9 2 0.05 0.69 1 0.191950 0.1902 0.190834 0.58%
5 2 2 0.05 0.72 1 0.252333 NA 0.251121 0.48%
6 2.1 2 0.05 0.72 1 0.309864 0.3098 0.308715 0.37%
7 2 2 0.05 0.71 2 0.356411 0.3339 0.353197 0.91%
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5. Conclusion

We have derived a small time asymptotic of the price of discretely monitored
Asian options up to first order. The most-likely-path approximation for continu-
ously monitored Asian calls has been derived heuristically by taking the limit of
the corresponding term from discretely monitored case and proved rigorously using
the theory of large deviation. Numerical experiments in both time-dependent CIR
and time-dependent quadratic local volatility models showed that there is room
to improve the performance of the most-likely-path approximation. One possibil-
ity is to include higher order terms. Large deviation theory generically provides no
insights beyond the term of exponential decay. On the other hand, it is conceivable
that taking the limit of corresponding terms from the discretely monitored case may
yield tractable expressions for numerical evaluations. The calculations of higher
order terms are considerably more involved and henceforth were left to further
work.
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Appendix. Convexity of the Constrained Optimization Problem

We analyze the convexity of the constrained optimization problem (2.15):(2.16) in
this Appendix. Recall the Lamperti transformation ϕ(s, t) :=

∫ s

s0
1/a(ξ, t)dξ and

the objective function D

D(s, t) =
1
2

n∑
i=1

|ϕ(si, ti) − ϕ(si−1, ti−1)|2. (A.1)

For notational simplicity, we shall write the function a(·, ti) as ai(·) and similarly
ϕ(·, ti) as ϕi(·). By straightforward calculations, the second partial derivatives of D
are given by

∂2D

∂s2i
=

2
a2

i (si)
+
a′i(si)
a2

i (si)
[ϕi−1(si−1) + ϕi+1(si+1) − 2ϕi(si)]; (A.2)

∂2D

∂s2n
=

1
a2

n(sn)
− a′n(sn)
a2

n(sn)
[ϕn−1(sn) − ϕn−1(sn−1)]; (A.3)
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∂2D

∂si∂sj
=

−1
ai(si)aj(sj)

, if |i− j| = 1; (A.4)

∂2D

∂si∂sj
= 0, if |i− j| ≥ 2. (A.5)

We decompose the Hessian matrix H = [∂si∂sjD] as H = H1 + H2, where H1 is
the symmetric tridiagonal matrix with diagonal entries given by

H1
kk =

2
a2

k(sk)
for k = 1, . . . , n− 1, H1

nn =
1

a2
n(sn)

(A.6)

and off-diagonal entries by

H1
k,k+1 =

−1
ak(sk)ak+1(sk+1)

for k = 1, . . . , n− 1. (A.7)

H2 is a diagonal matrix with diagonal entries given by

H2
kk =

a′k(sk)
a2

k(sk)
[ϕk−1(sk−1) + ϕk+1(sk+1) − 2ϕk(sk)] for k = 1, . . . , n− 1, (A.8)

H2
nn = −a

′
n(sn)
a2

n(sn)
[ϕn−1(sn) − ϕn−1(sn−1)]. (A.9)

We claim that H1 is positively definite. Let Ĥ1 be the square submatrix of H1

consisting of the first n− 1 rows and columns of H1. We partition H1 as

H1 =

[
Ĥ1 cT

c H1
nn

]
, (A.10)

where c = [0 · · · 0 H1
n−1,n] is an (n − 1) row vector. Note that, by induction,

one can show that the principle minors of Ĥ1 are (k + 1)
∏k

j=1 a
−2
j (sj) > 0, for

k = 1, . . . , n− 1. By applying the identity for determinant, if A is invertible,

det

[
A bT

b d

]
= det(A) × (d− bA−1bT ), (A.11)

we calculate the determinant of H1 as

det(H1) = det(Ĥ1) × {H1
nn − c(Ĥ1)−1cT } (A.12)

= det(Ĥ1)H1
nn − (H1

n−1,n)2 det( ˆ̂
H1) (A.13)

=
n∏

k=1

1
a2

k(sk)
> 0, (A.14)

where ˆ̂
H1 is the square submatrix of H1 by deleting the last two rows and columns

of H1. Thus, by Sylvester’s criterion H1 is positive definite.
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Finally, since

ϕk−1(sk−1) + ϕk+1(sk+1) − 2ϕk(sk)

= ϕ′
k(sk)(∆sk+1 + ∆sk) + o(∆sk+1,∆sk,∆t) (A.15)

ϕn−1(sn) − ϕn−1(sn−1) = ϕ′
n−1(sn−1)∆sn + o(∆sn), (A.16)

where ∆sk = sk −sk−1, the entries of H2 are small if the si’s are close to each other
and ∆t is small. In this case, H is positive definite. Hence, the objective function
D is convex.

References

H. Albrecher, P. A. Mayer & W. Schoutens (2008) General lower bounds for arithmetic
Asian option prices, Applied Mathematical Finance 15 (2), 123–149.

L. Andersen (2011) Option pricing with quadratic volatility: A revisit, Finance and
Stochastics 15 (2), 191–219.

P. Baldi & L. Caramellino (2011) General Freidlin–Wentzell large deviations and positive
diffusions, Statistics and Probability Letters 81 (8), 1218–1229.

N. Bleinstein & R. A. Handelsman (1986) Asymptotic Expansions of Integrals. Dover
Publications.

P. P. Boyle & D. Emanuel (1980) Discretely adjusted option hedges, Journal of Financial
Economics 8 (3), 259–282.

M. Broadie & P. Glasserman (1996) Estimating security price derivatives using simulation,
Management Science 42, 269–285.

N. Cai & S. G. Kou (2012) Pricing Asian options under a hyper-exponential jump diffusion
model, Operations Research 60 (1), 64–77.

N. Cai, C. Li & C. Shi (2014) Closed-form expansions of discretely monitored Asian options
in diffusion models, Mathematics of Operations Research 39 (3), 789–822.

A. Chiarini & M. Fisher (2014) On large deviations for small noise Itô processes, Advances
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