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The existence and multiplicity of similarity solutions for the steady, incompressible and fully developed
laminar flows in a uniformly porous channel with two permeable walls are investigated. We shall focus
on the so-called asymmetric case where the upper wall is with an amount of flow injection and the lower
wall with a different amount of suction. The numerical results suggest that there exist three solutions
designated as type I, type I and type 111 for the asymmetric case, type I solution exists for all non-negative
Reynolds number and types I and III solutions appear simultaneously at a common Reynolds number
that depends on the value of asymmetric parameter ¢ and with the increase of a the common Reynolds
numbers are decreasing. We also theoretically show that there exist three solutions. The corresponding
asymptotic solution for each of the multiple solutions is constructed by the method of boundary layer
correction or matched asymptotic expansion for the most difficult high Reynolds number case. These
asymptotic solutions are all verified by their corresponding numerical solutions.
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1. Introduction

Laminar flows in various geometries with porous walls are of fundamental importance to biological
organisms, air circulation in the respiratory system, contaminant transports in aquifers and fractures,
membrane filtration, control of boundary layer separation, transpiration cooling, propellant burning,
automotive filters, etc. Hence, laminar flows through permeable walls have been extensively studied by
researchers during the past several decades.

The analysis for Navier—Stokes equations that describe the two-dimensional steady laminar flows of
a viscous incompressible fluid through a porous channel with uniform injection or suction was initiated
by Berman (1953). He assumed that the flow is symmetric about the centre line of the channel and
is of similarity form and reduced the problem to a fourth-order highly nonlinear ordinary differential
equation with four boundary conditions and a cross-flow Reynolds number Re (Re = ‘IVTW depends on the
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speed with which fluid is withdrawn from the channel, the half-width of the channel and the kinematic
viscosity of the fluid). He also gave an asymptotic solution for small Reynolds number. Then, numerous
studies have been done about the laminar flows in a channel or tube with permeable walls. Yuan (1956),
Terrill & Shrestha (1965a) and Sellars (1955) obtained an asymptotic solution for the large injection and
large suction cases, respectively. Terrill & Shrestha (1964, 1965a) and Shrestha (1967) derived a series
of asymptotic solutions using the method of matched asymptotic expansion for the large injection and
large suction cases with a transverse magnetic field.

All these works mentioned above had produced only one solution for each value of Re. Raithby (1971)
was the first to find that there is a second solution for values of Re > 12 in a numerical investigation of
the flow in a channel with heat transfer. Then, some studies were also devoted to the analysis of multiple
solutions for the symmetric porous channel flow problem. Robinson (1976) conjectured that there are
three types of solutions that were classified as type I, type II and type III. His conclusion was based on
the numerical solutions and he also derived the asymptotic solutions of types I and /I for the large suction
case. Zaturska et al. (1988), Cox & King (1997) and Lu et al. (1992) also analyzed multiple solutions
for the same problem. Robinson (1976) and Zaturska et al. (1988) pointed out that type / solution exists
for all positive and negative Reynolds numbers, and types II and III solutions exist for Re > Re*, where
Zaturska et al. (1988) found Re* &~ 12.165. Type I solution is increasing and concave down, type 11
solution is increasing with an inflection point, and type III solution is non-monotone with a turning
point. Robinson (1976) pointed out that types I and II differ by exponentially small terms for the large
suction Reynolds number and the inviscid solutions for them are all linear. Type /II solution has a com-
plicated structure, consisting of a viscous layer near the center line of the channel, a sinusoidal inviscid
outer solution, a transition layer and a boundary layer (near the channel wall) for large suction Reynolds
number. Lu (1997, 1999a,b) and MacGillivray & Lu (1994) mainly investigated the asymptotic solution
of type /I1. It should be noted that only three solution branches are found for the porous channel flow due
to the artificially imposed symmetry of the flow about the center line of the channel (i.e. considering the
boundary conditions from the center line and the upper wall of channel). Hence, the solution is symmet-
ric about the center line of channel which is the so-called symmetrical solution. Thus, possible asymmet-
ric branches that could suddenly emerge would not be captured in the above approaches. Zaturska et al.
(1988) showed that asymmetrical solutions can also be found when the full boundary value problem
is solved (i.e. considering the boundary conditions from the upper and lower walls of channel). The
asymmetrical solutions (Zaturska er al., 1988, Cox & King, 2004) are available numerically for a more
restricted range of Reynolds numbers than the symmetrical ones. Brady & Acrivos (1981) presented
three symmetrical solutions for the flow in a channel or tube with an accelerating surface velocity.

In the same vein, the proof of solution multiplicity of Robinson’s over different range of Reynolds
number has been addressed by Shih (1987) who proved theoretically, applying a fixed point theorem,
that there exists only one solution for injection case. Topological and shooting methods were used
by Hastings er al. (1992) to prove the existence of all three of Robinson’s conjectured solutions. He
also presented the asymptotic behaviour for the flow as Re is large negative. Terrill (1965) proposed a
transformation to convert the two-point boundary value problem into an initial value problem to facilitate
the numerical calculation of solutions for an arbitrary Reynolds number. Based on the transformation
proposed by Terrill (1965), Skalak & Wang (1978) described analytically the number and character of
the solutions for each given Reynolds number under fairly general assumptions for the symmetrical
channel and tube flow. The similar method was used by Cox (1991a) to analyze the symmetric solutions
when the two walls are accelerating equally and when one wall is accelerating and the other is stationary.
The uniqueness of similarity solution was investigated theoretically by Chellam & Liu (2006) and their
work mainly considered the symmetric flow in a channel with slip boundary conditions. The temporal
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stability issues of the solutions of Berman class continue to receive favour in the works of Zaturska et al.
(1988), Cox (1991b), King & Cox (2001) and Watson et al. (1990, 1991). The spatial stability of steady
solutions is another topic that has received much attention in the past. In that respect, one may count
Varapaev & Yagodkin (1969), Brady (1984) and Durlofsky & Brady (1998). The asymptotic solutions
of the laminar flow in a porous channel or tube with moving walls also received favour in the works of
Majdalani & Zhou (2003), Dinarvand & Rashidi (2010) and Xu et al. (2010).

With unequal rates of suction or injection at the two walls, the steady solutions of the Berman
problem are less well documented. The class of asymmetrical flows that may be driven by imposing
different velocities on the walls turns out to be very interesting. The study of asymmetric laminar
steady flow may be traced back to Proudman (1960) who found all possible inviscid outer solutions and
identified the places where viscous layers necessarily form. Then, Terrill & Shrestha (1966, 1965b) and
Shrestha & Terrill (1968) extended Proudman’s work and constructed one asymptotic solution using
the method of matched asymptotic expansion for the large injection, large suction and mixed cases,
respectively. Here the mixed cases mean that one wall is with injection while the other is with suction.
Cox (1991b) considered the practical case of an impermeable wall opposing a transpiring wall. Watson
et al. (1991) also investigated the case of asymmetrical flow in a channel where one wall is stationary
and the other is accelerating. Cox & King (2004) constructed asymmetrical asymptotic solution of the
symmetric problem for the large suction Reynolds number case and asymptotic multiple solutions of the
asymmetric problem in which fluid flows through a channel with different suction velocities on each
wall. King & Cox (2005) constructed the asymptotic solutions with stagnation point for the fluid flows
near a permeable wall for large suction or injection case.

The purpose of this paper is not to reconsider any of these previously considered problems, but
instead to provide a thorough analysis for the asymmetric flow in a channel of porous walls with
different permeabilities, where the upper wall is with injection and the lower wall is with suction.
We will show that there exist three multiple solutions in this asymmetric case. We also mark them
as type I, type II and type III solutions as people do for the symmetric case. We should remark here
that type I, type II and type III solutions for the asymmetric case are much different from those for
the symmetric case. We will numerically give the range of the Reynolds number where there exist
three solutions. We will then construct asymptotic solutions for each solution for the most difficult case
of high Reynolds number and numerically validate the constructed solutions. The paper is organized
as follows. In Section 2, by applying mass conservation (Dauenhauer, 2003; Bouyges et al., 2017), a
similar equation can be developed. Hence, a similarity transformation is introduced and the Navier—
Stokes equations are reduced to a single fourth-order nonlinear ordinary differential equation with a
Reynolds number Re and four boundary conditions. In Section 3, we compute the multiple solutions
numerically. We also sketch velocity profiles and streamlines for these asymmetric flows. In Section 4,
we theoretically analyze that there exist three solutions of similarity transformed equation under fairly
general assumptions. In Section 5, for the most difficult high Reynolds number case, the asymptotic
solution for each type of multiple solutions will be constructed using the method of boundary layer
correction or matched asymptotic expansion. In Section 6, all the asymptotic solutions are verified
by numerical solutions and meanwhile these asymptotic solutions may serve as a validation for the
numerical method used in the paper.

2. Mathematical formulation

As shown in Fig. 1, we consider the 2D, steady, incompressible asymmetric laminar flows in a porous
and elongated rectangular channel. The channel exhibits a sufficiently small depth-width ratio of semi-
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FiG. 1. Coordinate system and characteristic streamlines used to describe the fluid flow pattern.

height A to length L. Despite the channel’s finite body length, it is reasonable to assume a semi-infinite
length in order to neglect the influence of the opening at the end (Uchida & Aoki, 1977). The flow is
driven by uniform injection through the upper wall of the channel with speed —v, and uniform suction
through the lower wall with speed —v;, where we assume v, > 0 and v; > 0. We define a parameter
a= 5—;, where @ > 0, to describe the asymmetry. Let X and y be chosen as the coordinates measured
along and perpendicular to the flow direction, respectively and u and v be the velocity components in
the direction of X and y increasing, respectively. The streamwise velocity is zero at the closed headend
x=0).

The equations of the continuity and momentum for the steady laminar flows of an incompressible
Newtonian fluid through a porous channel are (Terrill & Shrestha, 1966)

V.V =0, @2.1)

1
(V-V)V = ——Vp+ vV, (2.2)
o)

where the symbol V = (u(x,y), v(x, y)) represents the velocity vector, p the pressure, p the density and
v the kinematic viscosity of the fluid. The boundary conditions necessary for describing the asymmetric
flow and solving the continuity and momentum equations are

u(0,y) =0, (2.3)
u(x,—h) =0, v, —h)=—v, 2.4)
u(x,h) =0, v(X, h) = —v,. (2.5)

By applying the mass conservation to a volume of fluid extending from the headend (x = 0) to an
arbitrary location X, the flow velocity u,,(x) spatially averaged over the cross section can be found to be
proportion to X (Dauenhauer, 2003; Bouyges et al., 2017). To that end, the mean flow velocity u,, must
be determined from

A -y, (%) = / u(®,y) - dA, (2.6)
ACS
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where A, = 2hz is the surface area of the cross section and z is the length of z coordinate. However,
since A, = Xz is the porous area of channel’s upper wall, A;,, = Xz is the porous area of channel’s lower

wall, and the headend wall is not porous by the boundary condition (2.3), mass conservation requires
that

PA, vy — PALV, —/ pu(x,y) -dA =0. 2.7)

Combining (2.6) and (2.7), one can obtain

u,, = Vo — —v; = — (¥ — V). (2.8)

A sufficient condition for u to satisfy the mass conservation (2.7) is to assume a linear variation with
respect to x. To make further headway, only separable product solutions are sought, thus turning the
linear dependence on X into a necessary condition. Therefore, a self-similarity transformation that can
result in such a variation is desirable. On the other hand, as we know, the study of the fluid flow
equations with a high Reynolds number (which will be mentioned next in (2.16)) is most challenging.
A similarity transformation provides a way to explicitly express the solutions for the channel flow.
Furthermore, for the physical applications, such explicit solutions are often preferred in understanding
the fluid properties especially the boundary layers. For these purposes, we introduce a streamfunction
and express the velocity components in terms of the streamfunction

—% v:—% 2.9)

u=—, —.
ay ox

From this definition of the streamfunction, the continuity (2.1) is naturally satisfied. Then, taking the
curl of the momentum equation deduces the vorticity transport equation

ow Jw o o
i — = —+—, 2.10
“5 % ”(ax2+392) (10)
where
] a
W= = _Vy. 2.11)
ax  dy

Substituting (2.9) and (2.11) into (2.10), one can obtain

oy 0 oy d
WO gy WD vy, (2.12)
ay 0x ox dy

Then, we introduce a streamfunction of the form

¥ = vxF(y), (2.13)
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<

where x = %, y = 7 which are the non-dimensional coordinates and F(y) is independent to the
streamwise coordinate. Then, the velocity components are given by

=2re), v=-—2Fy) (2.14)
u—h y), v——h(y. .

Substituting (2.13) into (2.12), a fourth-order nonlinear ordinary differential equation with a parameter
Re is developed. It is

fiv + Re(ﬁw _f/f//) — 0, (2.15)

where Re = }% is the Reynolds number based on the fluid velocity v, through the upper wall and the
semi-height 4 of channel and f(y) = %' A first integral of (2.15) is

" +Re(ff" — ) =K, (2.16)

where K is an undetermined integration constant.
The boundary conditions of no-slip given by (2.4) and (2.5) can now be updated to the normalized
form

fD=a f(=)=0f1=1f1)=0. 2.17)

We shall seek all possible solutions to the boundary value problem (2.15) or (2.16) and (2.17) for
all non-negative values of Reynolds numbers that correspond to the flow permeating from upper wall of
the porous channel and exiting from the lower wall with different permeabilities. The negative Reynolds
numbers are permissible, correspond to the flow through the walls of channel possibly with a different
suction velocity at each wall and have been investigated by Cox & King (2004).

3. Numerical multiple solutions

Numerical solutions to (2.15) or (2.16) subject to (2.17) are considered for all non-negative Reynolds
number, 0 < Re < oco. All the numerical results are based on the collocation method (e.g. MATLAB
boundary value problem solver bvp4c in which we set the relative error tolerance 10~°). The numerical
results are shown in Fig. 2 with a plot of skin friction at the lower wall —f”(—1) versus Reynolds
number Re at a = 0.4, a = 0.6 and a = 0.8, respectively. The solution curves have been labeled I, IT
and III suggesting three completely different types of solutions. The type I extends over 0 < Re < oo,
in what follows, the common points Re of types /I and III will be taken to be Re = 38.819 at a = 0.4,
Re = 21.145 ata = 0.6 and Re = 14.074 at a = 0.8. For the symmetric flow in a channel, although there
are three types of solutions, two of them have only an exponentially small difference when Re is large
(Robinson, 1976; Brady & Acrivos, 1981). In the following, we will present the velocity components
and streamlines of the three types solutions with several Reynolds numbers at a = 0.8.

Typical velocity profiles of type I solution, i.e. v ~ f(y) and u ~ xf’(y), are shown in Fig. 3. As
can be seen from the streamwise velocity, the flows form a thin boundary layer structure near the lower
wall of the channel for the relatively high Reynolds number. The increasing Reynolds number has little
influence on the flow character, but the boundary layer is thinner and thinner with the increase of Re.

Typical velocity profiles for type II solution are presented in Fig. 4. All of these flows occur as
Re > 14.074 at a = 0.8. As Re is increased, the minimum of transverse velocity in the reverse region is
decreasing and the turning points which are the points such that f(y) = 0 are moving towards the walls
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FIG. 2. Skin friction at the lower wall versus crossflow Reynolds number for the flow through a uniformly porous channel at
a=04,a=0.6and a = 0.8, respectively.
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(a) Transverse velocity of type I (b) Streamwise velocity of type I

FiG. 3. Velocity profiles of type / at a = 0.8 with Re = 40, Re = 70, Re = 100 and Re = 130.

of the channel. The maximum of streamwise velocity is increasing and the minimum is decreasing with
the increase of Re.

The type III solutions, shown in Fig. 5, have an unusual shape. The rapid decay occurs not only for
the streamwise velocity but also for the transverse velocity near the lower wall. With the increase of
Re, the region between the lower wall and the minimum velocity becomes thinner. There is a region of
reverse flow near the lower wall for the streamwise velocity.

All numerical results indicate that the solutions contain inviscid solution and boundary layer solution
that is confined to the viscous layer near the lower wall of the channel. It is obvious that the flow
direction of streamwise velocity inside the boundary layers for types II and III is opposite to the type I.
The reversal flow occurs for both types I and /1.
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Fi1G. 4. Velocity profiles of type II at a = 0.8 with Re = 40, Re = 70, Re = 100 and Re = 130.

(a) Transverse velocity of type 111

0.5

(b) Streamwise velocity of type /11

F1G. 5. Velocity profiles of type /Il at a = 0.8 with Re = 40, Re = 70, Re = 100 and Re = 130.

In an effort to develop a better understanding of the flow character, we show in Fig. 6 sketches of
the streamlines to describe the flow behaviour corresponding to different branches of solutions. These
graphs depict all three types of solutions and enable us to deduce their fundamental characteristics. The
type I streamlines, we can clearly see that the injection at the upper wall push the streamlines closer
to the lower wall and the suction at the lower wall draws them somewhat away from the lower wall.
The type 11 streamlines indicate that the fluid that is injected at the upper wall goes off to infinity; the
central region involves fluid coming in from infinity then returning to infinity; the lower wall withdraws
fluid that comes from infinity (in particular, the fluid that is injected at the upper wall is not the same
fluid as withdrawn at the lower wall). The type III streamlines indicate that the fluid that is injected at
the upper wall goes closely to the lower wall and then goes off to infinity; the lower wall withdraws
fluid that comes from infinity (in particular, the fluid that is injected at the upper wall is the same
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FiG. 6. Streamline patterns of types 7, II and III solutions from top to bottom at a = 0.8 with Re = 40, Re = 70, Re = 100 and
Re = 130.

fluid as withdrawn at the lower wall). For the types I and III streamlines, in the same vein, the large
injection promotes a more abrupt change in the flow direction from streamwise to normal. This tends to
be accompanied by sharper flow turning near the wall. These differences in streamline curvature, and
hence, the flow turning rate, become more appreciable when we focus our attention further right hand
of the channel.

4. Existence of multiple solutions

Skalak & Wang (1978), Cox (1991a) and Chellam & Liu (2006) considered symmetric flow in a channel
with porous walls, accelerating walls and slip boundary conditions, respectively. In this section, we
extend previous analysis (Skalak & Wang, 1978; Cox, 1991a, Chellam & Liu, 2006) to investigate
asymmetric flow in a porous channel with different permeabilities and to discuss the existence of
multiple solutions.

The two-point boundary value problem, (2.16) and (2.17), can be converted into an initial value
problem. Rescalling (2.16) and (2.17) by introducing f(y) = %bg(é) /Re and £ = %b(y + 1) (Terrill,
1965; Skalak & Wang, 1978):

"

g +g¢" —g*=x. (4.1)

2aRe 2Re
g0)=——. g0) =0, 5(b) = — =, g(b) =0, 4.2)
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16RK

> 0, b > 0 and Re > 0. Assume all the initial conditions of (4.1) can be

where x =

8(0) = 2aRe/b, g(0)=0, g"(0)=A4, g"(0) =5, (4.3)

where A, B # 0. If we find a point £* such that g’(§) = 0, we obtain b by setting £* = b and the value
of g(b) at this point gives the Reynolds number Re = %bg(b). Then, we can obtain the original solution
f (). Since for our physical model, our analysis is restricted to positive Re, there must be g(b) > 0
(i.e. g(€*) > 0). Thus, we will discuss analytically the number of possible roots £* of g’(&) (each with
g(E*) > 0), which is based on the signs of A and B, covering the entire range of & > 0.

Let hy(§) = g/ &), hy(§) = g"(§), h3(§) = W"(§), hy(€) = g (&) and hs(§) = g (&) for all
& > 0. Differentiate (4.1) twice

h4 = hlh2 — gh3, (44)
hs + ghy = (h,)*. (4.5)

LEMMA 4.1 If B < 0, then g™ (£) > Oforall £ > 0. In particular, g’ (£) is a strictly increasing function
of & on [0, 4+00).

Proof. By (4.4), since g'(0) = 0, then /4(0) = g’(0)g”(0) — g(0)h3(0) = —g(0)B. Since g(0) > 0 and
o /
B < 0, then ,(0) > 0. By (4.5), then hﬁ‘ +ghy > Oforallé > 0, ie. (gj(f g(t)dth4(%.)) > 0 for all

£ > 0, which implies that elo 80diy (£) > hy(0) > 0 for all £ > 0. Hence hy(£) = g™ (£) > 0 for all
£>0. O

REMARK 4.1 The proof of Lemma 4.1 only uses the condition g(0)B < 0.

ProPOSITION 4.1 Assume that A > O and B < 0.

(a) If there exists some x, > O such that g”’(x,) = 0, then there is no point { > x, such that
g (¢) =0and g(¢) > 0.

(b) Ifg”(€) < Oforallé > 0and h,(x) = 0 for some @ > 0, then there exists some ¢ > « such
that g'(¢) = 0 and g(¢) > 0.

Proof. (a) By Lemma 4.1, then h4(§) > O for all § > 0. Since h5(xy) = 0, then h3(§) < O forall § €
[0,xy) and h5(§) > O for all § > x,, which implies that &, (£) is strictly decreasing on [0, x;) and strictly
increasing on (xy, +00). Hence x is the unique global minimum point of /,(§) on [0, 4+00). Since
hs(xy) = 0, by (4.4) and Lemma 4.1, then hy (xy) = hy (xp)hy(xg) —8(x)h3(xg) = hy(xg)hy(xy) > 0. Let
us assume that there is some ¢ > x suchthath,; (¢) = ¢’(¢) = 0and g(¢) > 0. Since ¢'(0) = ¢'(¢) =0,
by Lagrange’s mean value theorem, then there exists some o € (0, {) such that i, (o) = 0. Since x;, is the
unique global minimum point of 4, (§) on [0, +-00) and &, (xy) # 0, then i, (xy) < 0. Since A,(§) > 0
for all & > 0 and h3(§) > O for all £ > x, then 1ims—>+oo h,(§) = 4o00. Since h,(0) = A > 0,
hy(x9) < 0 and hy(§) > O forall £ > 0, then there exists a unique 8 > x, such that 7,(§) < O for all
a <& <pB,and hy(§) > O0forall0 < & < oandall £ > B. Since Ay (xy)hy(xy) > 0and h,y(xy) < O,
then hy (xp) < 0. Since (§) = 0, by (4.4), then =y (£) = hy(©)hy() — g(@)h3(C) = —g()hs(0).
Since hy(§) > O forall £ > 0 and g(¢) > 0, then 23(¢) < 0, which implies that £ < x,, this leads to a
contradiction.
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(b) Since g”(§) < O for all & > 0 and hy() = O for some o« > 0, then 2,(§) > 0 for all
0< & <aand hy(§) < Oforall £ > «, which implies that £, (&) is strictly increasing on [0, «) and
strictly decreasing on («, 4+-00). Hence « is the unique global maximum point of 4 (£) on [0, 4+00).
Since h;(0) = 0, then i (o) > 0. Since h,(§) < O for all £ > « and h3(§) < O forall £ > 0, then
limsﬁJr<>Q hqy(§) = —oo. Since hy (o) > O and h,(§) < O for all £ > «, then there exists a unique { > o
such that ¢/(¢) = h,(¢) = 0. Since by (¢) = 0, by e(4.4), then i, (£) = hy(D)hy(£) — g(O)hy(¢) =
—g(¢)h3(¢). Since ¢ > o, h3(§) < O forall £ > 0 and Lemma 4.1, then g(¢) > 0. Therefore, in
this case, there exists a solution of (2.16) and (2.17). We will designate this solution as type I solution
corresponding to the numerical type I solution in Section 3. O

ProPOSITION 4.2 Assume that A < O and B < 0.

(a) Then there exists some x, > 0 such that g’ (x,) = 0.

(b) Then there is no point ¢ > 0 such that g’(¢) = 0 and g(¢) > 0.

Proof. (a) If the statement is not right, since B = g”’(0) < 0, then h3(§) < O for all £ > 0. Since
A=g"(0) <0,then hy(§) <A < Oforall § > 0, which implies that 1, (§) — h;(0) < A forall& > 0.
Since h;(0) = 0, then /#,(§) < 0 and £, (§) < A& for all £ > 0, which implies that g(§) — g(0) < ‘%$2
for all £ > 0. Hence lim, _, , , g(§) = —o0. By (4.5), then hs = (hy)* — ghy for all § > 0. By Lemma
4.1, then hy(§) > O forall £ > 0. Since limg_, |, g(§) = —o0, then there exists some M > 0 such that
hs(§) > Oforall§ > M. Since hy(§) > 0 and h5(§) > O forall £ > M, then 1ims—>+oo hy(§) = +o0,
this leads to a contradiction.

(b) By the result of part (a) then there exists some x;, > 0 such that g"’(x,) = 0. Since h4(§) > 0
for all & > 0, then h3(§) < O for all £ € [0,x,) and h3(§) > O for all £ > x,, which implies that
hy (&) is strictly decreasing on [0, x;) and strictly increasing on (x,, +00). Hence x;, is the unique global
minimum point of /,(£) on [0, +00). Since g”(0) = A < 0 and h3(§) < 0 for all £ € [0,x), then
hy(§) <A < Oforall § € (0,xp]. Since #;(0) = 0, then h;(§) < A§ < O for all § € (0,xy]. Since
h3(§) > O for all § > x, and hy(§) > O forall & > 0, then lim;_, | h,(§) = +00. Since hy(xy) < 0
and h3(§) > O for all £ > Xx, then there exists a unique x; > x, such that 7,(§) < O for all £ € [x;, x),
hy(x;) = 0and hy(§) > O forall £ > x,. Since h,(§) < A < O forall & € (0,x,], then h,(§) < O for
all 0 < & < x; and h,(§) > O for all & > x;, which implies that s, (§) is strictly decreasing on [0, x;]
and strictly increasing on [x;, +-00). Hence x, is the unique global minimum point of %, (§) on [0, +-00).
Since i (§) < A§ < Oforall§ € (0,xy], then iy (x;) < 0. Since h,(§) > Oforall§ > x; and 5(§) > 0
for all & > xo, then limg_, | 7y (§) = +o0. Since 7 (§) < Oforall 0 <& < x; and hy(§) > O for
all £ > x;, then there exists a unique x, > x; such that i; (x,) = 0. So we know that x, is the unique
solution of h{(§) = 0 for all £ > 0. On the other hand, since x, > x; > x,, then hy(x,) > 0 and
hs(x,) > 0. Since h(x,) = 0, by (4.4), then hy(xy) = hy (xy)hy (X)) — g(xX))N5(xy) = —g(x)h5(x5) > 0.
Since h3(x,) > 0, then g(x,) < 0. Since x, is the unique solution of /;(§) = O for all £ > 0, and
g(x,) < 0, then there is no point { > 0 such that ¢’(¢) = 0 and g(¢) > 0. O

ProPOSITION 4.3  Assume that B > 0.

(a) Ifhy(&) #O0forall§ > 0, then 7 (§) < Oforall £ <O.

(b) If hy(&y) = O for some &, > 0, then 1y (§) < Oforall0 < & < &;and hy(§) > Oforall§ > &,.
Proof. (a) By (4.4), since g'(0) = 0, then h,(0) = h;(0)h,(0) — g(0)h;(0) = —g(0)B. Since g(0) > 0

and B > 0, then h,(0) < 0. By the assumption that 2,(§) # O for all £ > 0, then h4(§) < O for all
& <0.
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(b) By the proof of part (a), we know that /4,(0) < 0. Let ¥ = {§ > 0 : hy(§) = 0}, by the
assumption, then &, € X'. Since hy(0) < 0, by the continuity, we know that n := infsE 5 & € (0,§],
which implies that £, > n, hy(n) = 0 and hy(§) < O for all 0 < & < n. By (4.5), then i, 4 ghy > O for

& ’
all€ >0, ie. ( Jy s0dr, (5)) 0 for all £ > 0, which implies that o sOdy (&) = hy(n) = 0 for all
£ > 1. Hence hy(§) = g™ (&) > O forall £ > .

Cram 4.4 hy(&) > O0forall§ > 1. (Il

Proof. If not, since hy(§) > 0 for all £ > n, then there exists some o > 7 such that iy(a) = 0.
If hy(5) = Oforall n < & < «, by (4.5), then h,(§) = O for all n < & < «. Rewrite (4.4) as
hy + ghl, — hyhy = 0 for all & > 0, since h, () = h, (1) = 0, by the uniqueness theorem of solutions
to the ODE, then £,(£) = 0 for all § > 0, which implies that B = h3(0) = h,(0) = 0, this leads to a
contradiction. Since h4(§) > O for all £ > n, then there exists some 8 € (1, ) such that h,(8) > 0.

& 7
Since (ef,, g(t)dth4($)) > Oforall £ > 0and hy(B) > O, then hy(§) > O for all§ > B. Since o > B,
then h4(B) < hy(a) = 0, this leads to a contradiction. Therefore, we know that /14(§) > O forall £ > k]

Since hy(§y) = hy(n) =0, §, > n, by Claim 4.4, then &, = n. By the definition of 1 and Claim 4.4,
then hy(§) < Oforall 0 <& < &jand hy(§) > Oforall & > &,. O

PROPOSITION 4.5 Assume that A > 0 and B > 0, if g™ (£) < 0 for all £ > 0, then g”’(£) > 0 for all
& > 0. In particular, since g”(0) = A > 0, then g”(¢§) > A > Oforall § > 0. Moreover, since g'(0) = 0,
then g’(§) > O forall § > 0.

Proof. 1f not, since h3(0) = B > 0 and 14 (§) < O for all £ > 0, then there exists a unique x; > 0 such
that h3(§) > O forall 0 < & < x5, h3(xy) = 0 and h3(§) < O for all & > Xx,. Since h,(0) = A > 0 and
hy(§) > Oforall 0 < & < xp, then h,(§) > O forall 0 < & < x. Since /;(0) = 0, then i (§) > 0
for all 0 < & < xj, which implies that i (xy)h,(xy) > 0. Since A;(xy) = 0 and hy(§) < O for all
& > 0, by (4.4), we know that ki (xg)h,y(xg) = hy(xy) — g(xg)hs(xg) = hy(xg) < O, this leads to a
contradiction. O

ProPOSITION 4.6 Assume that A > 0 and B > 0, and there exists some &, > 0 such that g(4) &) <0
for all & € (0,£,) and g™® () > O for all £ > &,. Then &, is the unique global minimum point of g"”’(§)
on [0, 00) and g”'(§y) > 0. In particular, since g"(0) = A > 0, then g"(§) > A > Oforall & > 0.
Moreover, since g’(0) = 0, then g’(§) > 0 forall £ > 0.

Proof. Since g () < 0 for all £ € (0,£,) and g (&) > 0 for all & > &y, then g" (&) is strictly
decreasing on [0,&,] and strictly increasing on [&;, +00), which implies that &; is the unique global
minimum point of g’ (£) on [0, 00). Now let us decide the sign of h3(§,) = g"(&,). If h5(§,) < 0, since
h3(0) = B > 0 and g@ (&) < 0forall & € [0, &), then there exists a unique n € (0,§,] such that
hy(§) > 0forall0 <& < n, hy(n) = 0and h3(§) < Oforall §; > & > n. Since 7,(0) = A > 0, then
hy(§) > A > 0forall 0 < & < . Since hy(0) = 0, then h;(§) > 0 for all 0 < & < n, which implies
that h; (n)h,(n) > 0. Since hy(n) =0, hy(§) < Oforall0 <& < &;and 0 < n < §), by (4.4), we know
that 2y (m)hy (n) = hy(n) — g(mh3(n) = hy(n) < 0, this leads to a contradiction. O

PROPOSITION 4.7 Assume that A < 0 and B > 0, and g™ (¢) < O forall &€ >0

(a) If g”(xy) = 0 for some x;, > 0, then there is no point £ > 0 such that g’(¢) = 0 and g(¢) > 0.
In particular, there is no point { > x such that g’(¢) = 0 and g(¢) > 0.

(b) If g”(&) > 0 forall & > 0, then there is no point ¢ > 0 such that g’(¢) = 0 and g(¢) > 0.
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Proof. (a) If there exists some ¢ > 0 such that g'(¢) = 0 and g(¢) > 0, since /1,(§) < O forall & > 0,
by (4.4), then hy(§) = hy($)hy(8) — g(O)h3(8) = —g(£)h3(¢) < 0. Since g(¢) > 0, then h3(¢) > 0.
Since by (&) < Oforall § > 0 and h;(xy) = 0,then 0 < ¢ < x,. Since g'(0) = ¢'(¢) = 0, by Lagrange’s
mean value theorem, then £, () = 0 for some n € (0, ¢). Since hy(§) < Oforall £ > 0 and h;(xy) =0,
then h3(§) > O for all £ € [0,x,) and h3(§) < O for all £ > x,, which implies that h, (&) is strictly
increasing on [0, x,] and strictly decreasing on [x,, +00). Hence x;, is the unique global maximum point
of h1,(&) on [0, +00). Since h,(n) = 0, then h,(xy) > 0. Since 7y (§) < 0 forall £ > 0 and h3(xy) =0,
by (4.4), then hy(xq) = h{(xp)hy(xg) — 8(xp)h3(xg) = hy(xg)h,(xy) < 0. Since h,(x;) > O, then
hy(xy) < 0. Since h3(§) > O for all £ € [0,x,), then h,(§) < O for all £ € [0,n) and h,(§) > O for
all £ € (n,xy), which implies that & (§) is strictly decreasing on [0, n) and strictly increasing on (1, x;).
Since h,(0) = 0, then h,(§) < O for all £ € (0,x,). Since ¢ € (0,xp), then g'(¢) = hy(¢) < O, this
leads to a contradiction.

(b) If there exists some ¢ > 0 such that g’(¢) = 0 and g(¢) > 0, since g’(0) = 0, by Lagrange’s
mean value theorem, then 4, (7) = 0 for some 1 € (0, ¢). Since h3(§) > Oforall§ > 0, then h,(§) <0
forall & € [0,n) and h,(§) > Oforall £ > 5, which implies that &, (§) is strictly decreasing on [0, n] and
strictly increasing on [, +00). Since < ¢ and h;(0) = h;(¢) =0, then h;(§) < Oforall0 <& < ¢
and h;(§) > O for all £ > ¢, which implies that ¢ is the unique global minimum point of g(§) on
[0, 400). Since A := g(¢) > 0, then g(§) > A > Oforall & > 0. Since hy(§) < Oforall § > 0, by
(4.5), then hs(§) = (hz(é))2 —g&)hy(§) > Oforall £ > 0. Since h3(§) > 0 and 7y (§) < O for all
§ > 0, then there exists some L > 0 such that lim;_, |  #3(§) = L and h3(§) > L > O forall § > 0.
By Lagrange’s mean value theorem, there exists some sequence {y,}°2, such that lim = 400

= n— oo yl’l
and lim,_,  /,(y,) = 0. Since h5(§) > O for all £ > 0, then 74 (&) {ls ;trictly increasing on [0, +00),
which implies that lim _, , ., h4(§) = 0. By Lagrange’s mean value theorem, there exists some sequence
{x,}°2, such that lim X, = +o00 and lim hs(x,) = 0. Since g(§) > 0 and hy(§) < O for all
& > 0, then limsup,_, . [hs(x,) + g(x,)h,(x,)] < 0. On the other hand, since 1,(§) > 0 forall § > n

n—oo’'n n— oo
and h3(§) > O for all £ > 0, then limsup,,_, (hz(xn))2 > 0, which contradicts with (4.5). Il

ProrosSITION 4.8 Assume that A < 0 and B > 0, and there exists some &, > 0 such that g E) <0
forall & € (0,&,) and g (&) > O forall £ > &,.

(a) Ifg"”(xy) > 0forsomex, > &, then there is no point { > x, such that g’(¢) = 0 and g(¢) > 0.
In particular, if g”'(§,) > 0, then there is no point { > &, such that ¢’(¢) = 0 and g(¢) > 0.

(b) Ifg” (&) <Oforall & € [&),00) and g”(§) has only one zero on [0, 00), then there is no point
¢ > &, such that g’(¢) =0 and g(¢) > 0.

(c) Ifg"(&) < Oforall & € [§,,00) and g"(«) = 0 and g'(«r) > O for some point o > &, then
there exists a unique ¢ > « such that g’(¢) = 0 and g(¢) > 0. In particular, there exists a
unique y € (0,¢) such that g'(y) = 0.If y < &, then g(y) < 0.If y > &, then g(y) > 0.

Proof. (a) Assume that there is some point { > x such that g'(¢) = 0 and g(¢) > 0, since hy(§) =
g (&) > 0forall &£ > &, and g"” (xy) > 0, then h;(¢) > 0. Since k(&) > O for all £ > &, by (4.4),
then 7y () = hy(£)hy () — g(£)h3(¢) = —g(&)h3(¢) > 0. Since g(¢) > 0, then ~3(¢) < O, this leads
to a contradiction.

(b) Assume that there is some point £ > &; such that g'(¢) = 0 and g(¢) > 0, since g'(0) = 0,
by Lagrange’s mean value theorem, then there exists some « € (0, ¢) such that iy («) = g"(«) = 0.
Since ¢g”(0) = A < 0 and g”(&) has only one zero on [0, 00), then /,(§) < O for all § # «, which
implies that « is the unique global maximum point of g”(§). Hence A;(er) = 0 and A, () < 0. Since
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g () < Oforall £ € (0,&) and g (&) > 0 forall £ > &j, then 0 < o < &,. Since h3(@) = 0
and h;(§) = g"(§) < Oforall & > &, then 0 < @ < &, which implies that 4,(r) < 0. On the other
hand, since h, () = hy(a) = 0, by (4.4), then hy (o) = hy(@)hy(a) — g(a)hs(a) = 0, this leads to a
contradiction.

(c) Since g¥(&) < O forall £ € (0,£) and g™ (&) > O for all & > &, then /(&) is strictly
decreasing on [0, &,] and strictly increasing on [&,, +00), which implies that &, is the unique global
minimum point of /3(¢) on [0, +00). Since h3(§;) < 0, 13(0) =B > 0and hy(§) < Oforall0 < & <
&,, then there exists a unique x; € (0, ;) such that ~3(§) > O forall 0 < & < x; and h3(§) < O for all
x; < & < & Since h3(§) < Oforall § > &, then h3(§) > Oforall 0 < & < x; and h3(§) < O for
all £ > x;, which implies that &, (£) is strictly increasing on [0, x, ] and strictly decreasing on [x;, +-00).
Since h,(0) = A < 0 and h, (o) = O, then h,(§) has either 1 or 2 zeros on [0, +00). If h,(§) has only
one zero on [0, +00), since h,(0) = A < 0 and &,() = 0, then « is the only global maximum point
of hy (&) on [0, +00). Since h, (&) is strictly increasing on [0, x;] and strictly decreasing on [x;, +00),
then @ = x;, which implies that « = x; < &, this contradicts a > &. If 11,(§) has two zeros on
[0, +00), then there exists a unique B € (0,x;) such that #,(§) > Oforall § <& < o and h,(§) <O
forall £ € (0,8) U (@, +00). Since h,(§) < O for all £ > o« and #;3(§) < O for all § > x, then
limg_)Jroo hy(§) = —oo. Since h (@) = g'(«) > 0 and h,(§) < O for all £ > «, then there exists a
unique £ > o such that h, () = g'(¢) = 0. Since ¢ > «a > &, and hy(§) > O for all £ > &;, by (4.4),
then 1, (¢) = h($)hy (&) — g(8)h3(8) = —g(¢&)h3(¢) > 0. Since ¢ > a > &, and h3(§) < O for all
§ > &), then g(¢) > 0.

Since /;(0) = 0 and 7,(§) < Oforall0 < & < B, then h(§) < Oforall 0 < & < B. Since
hy(a) > 0 and h, (&) is strictly increasing for all 8 < & < «, then there must exist a point y € (B8, «)
such that 4;(y) = 0 and hy(y) > 0. Since 0 < x; < &, and hy(x;) < 0, by (4.4), then hy(x;) =
hy(xhy(x)) — g(xhs(x;) = hy(x)hy(x;) < 0. Since hy(x;) > 0, then h;(x;) < 0. Hence, it is
obvious that x; < y < «a and h3(y) < 0. Since 7 (§) < Oforall 0 < & < y and h;(§) > O for all
y < & < ¢, then point y is the minimum value of g(£) on [0, {]. Now let us decide the sign of g(y).
Since x| < &; < «, two cases will arise:

D Ifx; <y < &, by (4.4), then hy(y) = hi(y)hy(y) — g(¥)h3(y) = —g(y)h3(y) < 0O, then
g(y) < 0. Therefore, in this case, there exists a solution of (2.16) and (2.17). We will designate this
solution as type II solution corresponding to the numerical type II solution in Section 3.

2)It§) < y < a, by (44), then hy(y) = hy(¥)hy(y) — g(¥)hs3(y) = —g(¥)h3(y) > 0, then
g(y) > 0. Therefore, in this case, there exists a solution of (2.16) and (2.17). We will designate this
solution as type /11 solution corresponding to the numerical type III solution in Section 3. (I

5. Asymptotic multiple solutions for high Reynolds number Re

We have shown the existence of multiple solutions and from the numerical solutions, we know that when
Re is relatively large, there exists three solutions. Since the upper wall is with injection while the lower
wall is with suction that indicates that the flow may exhibit a boundary layer structure near the lower
wall for high Reynolds number, it is of considerable theoretical interest to construct asymptotic solution
for the three types solutions that can help us to develop a better understanding of the characteristics of
boundary layer. 1

By treating ¢ = 5, as a small perturbation parameter, (2.16) can be written as

gf/// + (ﬁv// _f/2) — k, (5‘1)
where k = K/Re.
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5.1 Asymptotic solution of type I

From the numerical solution of type / in Fig. 3, we can see that the streamwise velocity rapidly decays
near the lower wall (y = —1). Hence, by the method of boundary layer correction, f(y) and k can be
expanded as follows:

FO) =) + (i) +hy () + £ (HO) +hy () + -+, (5.2)
k=ko+ ek, +&%ky 4 - -, (5.3)
where n = % is a stretching transformation near y = —1 and h;(n), i = 1,2 - - are boundary layer

functions. By substituting (5.2) into (2.17) and collecting the equal powers of ¢, the boundary conditions
become

f()ly:] = 1> fé'y:l = 09 f0|y:_1 =a, (54)
filey +hilymg =0, i=1,2,---, (5.5)
Flmi =00 floy =00 filey +hil,g =0, i=12,--, (5.6)

where /1; denotes the derivative of 4, with respect to 7. We note here that f,(y) is the solution of the
reduced problem

fofd =18 =k (5.7)

satisfying boundary conditions (5.4). The construction is similar to that of section 4.1 in Guo et al.
(2018), where additional factors such as a magnetic force and a boundary expansion rate are considered.
So we omit the details here and only provide the asymptotic solution of (2.16) and (2.17) for type 1
solution

. A . A b
f) =cosz+ e{(Q(z) + b) sinz + %(z sinz + cosz) + % + E(ztanzz —tanz)

b b
+ i(ln(l —sinz) — Incos z)(zsinz + cosz) + — sin2b - e~} + O(e?), (5.8)
a

where n = lsﬂ,z =by—b,b= COS;”, 0@) = bfoqusecqb(l — sec? ¢)d¢ and

1
= Sabsin (2b) + cos (2b))

— 2ab” tan® (2b) + ab(cos (2b) + 2b sin (2b))(In(1 + sin (2b)) — Incos (2b))).

(2(b — ab — aQ(—2b)) sin (2b) + ab tan (2b)

REMARK 5.1 The asymptotic solution (5.8) is constructed for the case 0 < a < 1 (where the injection
is stronger than the suction). For the case a > 1 (where the suction is stronger than the injection), the
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asymptotic solution can be constructed similarly. Hence, we neglect the details of the construction, but
just present the asymptotic solution as follows:

1 1 1 1 1
f(@) =coshz+e((—b+ E)»z + Q(z)) sinhz — E)» coshz + zbtanhz + E)»sechz + 5)» sinh ztanh z
(5.9

1 b
+ Ebz tanh? 7 + b(cosh z — z sinh z) arctan(tanh %) — = sinh(2b)e™™) + O(£?),
a

where n = 12 s = by — b, b= % Q(2) = b [; ¢seche tanh? ¢dg and

= _ _ 2 2
h=—r NS (2a(Q(—=2b) — b)csch(2b) + 2ab*sech?(2b) + abesch(2b)sech(2b)

+ b coth(b)sech(2b) + b tanh(b)sech(2b)) — 4ab2csch(2b) arctan(tanh(b))
+ 2ab coth(2b)csch(2b) arctan(tanh(b)).

5.2 Asymptotic solution of type I1

Constructing an asymptotic expansion as Re — oo for the solution of type II is a more complicated
process than that presented in the previous subsection. From Fig. 4(a), we know that f(y) vanishes at
exactly two points y; in (—1,0) and y, in (0, 1) (called turning points), then there may exist an interior
layer near the zero of f closest to y = —1 and an interior layer near the zero of f closest to y = 1.
Meanwhile, from Fig. 4(b), we see that there may exist a boundary layer near y = —1 since the lower
wall is with suction. Cox & King (2004) give a more systematic asymptotic treatment, for the problem
with interior layer and boundary layer, than that of MacGillivray & Lu (1994). In our problem, there
exists an interior layer near the zero of f(y) closest to y = 1 but does not exist a boundary layer near
y = 1. We thus adopt the MacGillivray & Lu (1994) approach to deal with the interior layer solution
and the boundary conditions at y = 1. Hence, the technique used in this section follows the symmetric
flow case in MacGillivray & Lu (1994) and Lu (1997, 1999a) where there exists only one turning point.

Define that the distance between y = —1 and y = y; is A, and the distance between y = 1 and
Yy = y, is A,, hence, it follows that y, = —1 4+ A; and y, = 1 — A, which are unknown a priori. By
differentiating (5.1), we obtain

gfiv + (ﬁ/// _f/f//) = 0. (5.10)

1) Asymptotic solution between the turning points y; and y,
Letting ¢ = 0, (5.10) becomes

" —ff =o0. (5.11)

We observe three types of solutions for the equation: cy, ¢ sinh(dy+ ¢) and ¢ sin(dy+ ¢). But, to have the
solution be valid uniformly in [y, y,] and satisfy the conditions f(y;) = 0 and f(y,) = 0, the following
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has to hold:

f) ~ Asin y—(1+4)) (5.12a)

T

T
=—Asin—— @y — (1 — A,)), 5.12b
sin 53— 0= (1= 4) (5.12b)

where A < 0 is a constant. Figure 4 shows that the turning points y; and y, are moving towards the
left-end point and the right-end point of the interval [—1, 1], respectively, with the increase of Re. The
quantities A, A, and A which are related to ¢, will be determined next by matching as ¢ — 0.
2) Asymptotic solution near y = y; and inner solution near y = —1

We introduce a variable transformation

_1 A —
r:%, yel[-1,—1+4 4, (5.13)
1

Letting f(y) =f(—=14+ A, —14)) :]_‘(r), then, (5.10) becomes

gfiv _ (ﬁ/// _]7‘7‘//) — O, (514)

where € = Ail. The boundary conditions to be satisfied by (5.14) are

f0)=0, f)y=a, f(1)=0. (5.15)

Since € — 0 as ¢ — 0, (5.14) subject to (5.15) is still a singular perturbation problem.
(1) Outer solution
Setting € = 0, the reduced equation is

7 -Ff =o, (5.16)

satisfying the boundary condition £(0) = 0,£(1) = a and f () > 0 for all 7. Equation (5.16) may have
three possible solutions: o 7, asin %r and a sinh(ln(#g)r). By the proof of Proposition 4.8(c) for the
type II solution, we know that %b(yl +1) <y <&, then g"(&) < 01in (0, %b(yl + 1)), thusfw(t) <0
in (0, 1). Hence, trigonometric functions and hyperbolic functions can be excluded. The outer solution
is

fo)=0t+---, (5.17)

where o will be determined by matching.
(2) Inner solution
The lower wall of the channel is with suction, hence, we introduce a stretching variable x* = Iz

- e B
Letting f(t) = f(x*), then, (5.14) becomes

" +ff" —ff" =o. (5.18)
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The conditions at point x* = 0 are f(O) =a and]?’(O) = 0. The inner solution can be expanded as:
FO& =a+e(*) +---. (5.19)
Substituting (5.19) into (5.18) and collecting the terms of O(€), we can obtain the equation of]?l x*)
A +afi" =0, (5.20)
satisfying?1 0) =f{(0) = 0. Then, the expression of?\1 (x*) is
AG*) = by (e +ax* — 1) + byx*?, (5.21)
where b and b, will be determined by matching. Hence, the inner solution becomes
76N = a+80b (e +ax* — 1) + by ) 4 - (5.22)
Meanwhile, assume that the expression of outer solution can be written as
f@) =0t +& (1) +EFr () +--- . (5.23)

Substituting (5.23) into (5.14) yields that]_”l () satisfies

=/

ify —f| =0. (5.24)
The corresponding condition isj_fl (0) = 0. Then, the expression of]_”1 (1) is

_ 1
fi(o) = 5c1t3 +d, (5.25)

where ¢, and d; are constants. The outer solution (5.23) expressing in terms of inner variable x* is

F(r) = 0(1 — Ex*) + 5(ey (1 — 5x)3 + dy (1 — Ex*)) + - -
=o+&(—ox"+c; +d)+---. (5.26)

Matching the inner solution (5.22) with the outer solution (5 .26)_ giveso = a,b; = —1,b, = 0 and
¢; +d; = 0. Following the e_lnalysis in Lu (1999a), we know that f;() are all linear, i = 1,2, - - -, where
¢; =0and d; = 1. Hence, f(7) can be written as

f(r) ~ 0@, (5.27)

0202 udy 60 U0 }s9nB Aq 2906085/082/2/S8AVEASHE-S]0IE/JRWEWI/LI0Y"dNO"0ILLISPEOE//:SARY W) PAPEOIUMOQ



298 H. GUO ET AL.

where 0(8) =a+d; g+ d2§2 +---andf(e) —> aasg — 0. The_inner solution has exponentially small
terms and outer solution has to be more precise, we assume that f(7) is as follow:

@) =0@)T + D 8ih(0), (5.28)

i=1

where 8; = §,(¢) = 0(g") and ;| < §; for all positive integers n and i. Equation (5.28) is valid in the
small neighborhood of the turning point y; = —1 + A;. Substituting (5.28) into (5.14) and collecting
the terms of O(8,) yield

EhY — 0th| + 6h] = 0, (5.29)

satisfying the condition £;(0) = 0. One solution of &, is k(1) = —%13 + r, T, where r| is a constant.
Setting §, = 8% and collecting the terms of O(8,) yield

. 3
ThY — OTHY + Ol + % —0. (5.30)

Differentiate (5.30) and multiply by the integrating factor e_z%fz, then, we can obtain
T
R @3
0

where C is a constant. If we choose T < 0 which is away from zero, hév will have exponentially large
term. Then, we can choose C to eliminate the exponentially large term. Evaluating (5.31) leads to

; 1 2e 1 /06
hy = —ge%fz{—(g)m[? -3 g|r|e—%f2 o]} = CenT (5.32)
Hence, we choose C = > 02%. Evaluating (5.32), we obtain asymptotic expression
hy ~67 . (5.33)
Hence, the expression for 7 < 0 is
— 'L'3 2 1 7:5
f(r)=91+81(—g+r1r)+819‘ (§+~~)+~-~. (5.34)

Then, expanding (5.12a) at the turning point y; = —1 4 A, yields

b4
~ Asin —— (@ —(-1+ A4
f» sz—Al—Ag(y (=1+4))

__4 TAT +A( TAT ;3 A TAT

5
_ 5.35
2—-A -4, 312-A -4, 5!2—A1—A2)+ ( )
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Comparing the linear term in (5.34) and (5.35), we can obtain

2—A, — A
A~ _a(—12)’ (5.36)
A,
where 0 ~ a is used. Then, comparing the cubic term, we get
A
8 ~a(——1 2, (5.37)
Hence, the asymptotic expansion of f(7) is
7 T4, 2T T4, 4n-1
=0 —_— ) — —)0 hy+ - . 5.38
J@) =07+ a(G o e at G e (5.38)

3) The determination of A; and A,
In this section, we will find the asymptotic relationship between A, A, and ¢ by matching near

7 = 1. From (5.31) with C = ¥2Z  we can know

20./6°
. 1 9.2 (7 02 28w 0 2 2emr o2 1
Y= ——ex" / 2o T ds — — — % = — ex’ 4+ —T+ .-, (5.39)
27 % 0 200 00 0
Then, from (5.38) and (5.39), we can have
a‘f ,
ﬁ = 513 () (5.40)
772
A 02 TA 1
VS S WY, pot R P L) BN L
WS T I Ly w7y L

The outer solution (5.40) expressing in the terms of inner variable x* is

e 7/2 -
ray g\ /27902 4 Ppe gt o Fx b
g4 dxt Q-4 —A,)4
2 A, 4l = %
— )" =1 - e 5.41
ta G - E + (541)
Differentiating (5.22) four times gives
1 d%f SN
S e (5.42)

74 et -3
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Comparing (5.41) and (5.42) suggests that the overlap domain must satisfy the conditions: %‘gx*z <1
and x*2 >> 1. It is obvious that

7/2 4
A oA
! V2ge ~ L (5.43)

92 S
Q2—A,— A g

—a'?x
Finally, setting 6 ~ a + €, we obtain the asymptotic relationship:

&€

€ a 2err9¢8

7 _ _ 8
At _@Q-41 -4y (5.44)

The relationship (5.44) is obtained by matching the interior layer and boundary layer that requires
matching of the exponentially small term in (5.41) to the exponential term in (5.42). The exponentially
small term of the form e~%*" in (5.41) from interior layer is made more concrete. Indeed, (5.44) yields

A(e) ~ —8¢loge as & —0 (5.45)

which shows A; > ¢. The relationship between A; and A, will be obtained next in 4). Then, the values
of A, and A, can be determined explicitly.
4) Asymptotic solution near y = y,

In order to analyze the asymptotic behaviour near y = y,, we also introduce a variable transformation

—14A
n= "k yell- Ayl (5.46)
2

Letting f(y) = f(1 — A, + nA,) = f(n), then, (5.10) becomes
&Y+ G =11 =0, (5.47)
where &€ = Aiz. The boundary conditions to be satisfied by (5.47) are

foy=0, f(H=1, f1) =0, (5.48)

& — 0 as & — 0, but there is no boundary layer near n = 1 (or y = 1), hence, (5.14) and (5.15) form a
regular perturbation problem. Setting & = 0, the reduced equation is

=17 =0 (5.49)

satisfying the boundary conditions (5.48). The corresponding solution is

fM)zﬁn%n (5.50)
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Since there is no boundary layer near the upper wall of the channel, we expand f () at the point 7 = 0

~ m I © 4 I s 0 551
f(")_?’_ﬁ(in) +§(5n) + 0(8). (5.51)

Then, expand (5.12b) at the turning pointy, =1 — A,

. T
f(O) ~ —Asin m(y —(1-4y)

T A4 A TAsN A TAsN
= A S ) S

5
= 2 Y4 5.52
—a -4, 3% a -4 5% Ta ) T (5:52)

Comparing the linear term in (5.51) and (5.52): % ~—A %, then we can obtain
A~ — 72 (5.53)
From (5.36) and (5.53), the relationship between A, and A, is obvious:
A
L2 _ T (5.54)
A4 2a

5.3 Asymptotic solution of type IIl

The numerical solution for type /Il in Fig. 5 shows that, as Re — oo, the flow should consist of an
inviscid core and a thin boundary layer near the lower wall. Both transverse and streamwise velocities
rapidly decay and then the streamwise velocity rapidly increases near the lower wall for type /I solution
while only streamwise velocity rapidly decays for types I and I solutions. Therefore, it is reasonable to
expect that the high Reynolds number structure of the flow can be determined by boundary layer theory
near the lower wall. Further, in this case we expect from numerical results that only two boundary
conditions at the upper wall (y = 1) are satisfied by the reduced problem. This makes the construction
much harder than that of type I solution. We expand k as (5.3) and f as follows:

FO) =fo) +ho(m) + e(fi0) + () + 2 (H0) +hy () + -+, (5.55)

where n = % is a stretching transformation near the lower wall dimensionless height y = —1 and
h;(n), i = 0,1,2--. are boundary layer functions. By substituting (5.55) into (2.17), the boundary

conditions become

foh=1 =1, foly=1 =0, (5.56)
h0|77=() =a _f0|y=71’ ﬁo|n=o =0, (5.57)
filke1 =0, fillymy =0, =12, (5.58)

hilymo = —filie1s Rilymo = =fi1leys i=12,--, (5.59)
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where HO denotes the derivative of A, with respect to 5. Substituting (5.55) and (5.3) into (5.1) and
collecting the terms of O(1), we can obtain the equation of f, (same as (5.7)):

fofd = 1 =k, (5.60)

satisfying boundary conditions (5.56) (different from (5.4)). Similarly, collecting the terms of 0(s72),
we can obtain the equation of A:

iy + (hg + fo(=1D))ig — By = 0, (5.61)

satisfying boundary conditions (5.57).
One expression of f;, with the boundary conditions (5.56) is

Jo = cos(by — b), (5.62)

where b is an undetermined parameter and we denote f,(—1) = cos 2b as 8. We shall determine 8 such
that (5.61) subject to boundary conditions (5.57) has a boundary layer solution. Usually, we request a
boundary layer function to tend to zero as n — oo. However, for problem (5.61) with (5.57) such a
solution may not exist. A rigorous proof is highly nontrivial, we will report it in a forthcoming paper.
For the purpose of the construction of the first-order asymptotic solution here in the paper, it is enough
to request a boundary layer function hy(2/¢) — 0 (or much smaller than O(g)) when ¢ is sufficiently
small. It is obvious that hy(n) = a — B and (a — B)e~P" are two solutions of (5.61), but the former is not
a boundary layer function and the latter does not satisfy (5.57). It is hardly possible, however, to obtain
any other explicit solution for the nonlinear (5.61) with (5.57). We thus make use of both analytic and
numerical tools to predict S.
Next, we shall show that 8 < 0 is impossible.

PRrOPOSITION 5.1 Let hy(n) be a boundary layer function solution of (5.61) and (5.57) in [0, 2/¢), then
we can have:

(@) If hg(ny) > 0 for some n; > 0, then ij(n) > 0 forall n > n,.
(b) There holds that h6(n) < Oforalln > 0.
(c) There holds that /(1) < 0 for all n > 0.
(d) There exists some 7, > 0 such that (1) > 0 for all > n,.

(e) B < 0is impossible.

Proof. (a) Let hy (1) = hij(n) for all n > 0, by (5.61), then i, + (hg + B)hy = (hé))2 > O0foralln >0,
o | o

which implies that (e'lnl(hO(tHﬂ)d[hz(n)) > Oforall n > n;.So we get efnl(hO(')Jrﬁ)dthz(n) = hy(n) =

hg(ny) > 0 for all n > n,, which implies that (1) = hy(n) > 0 forall n > n,.

(b) If not, that is, there exists some A, > 0 such that h{)(ko) > 0. Since h6(0) = 0, then there exists
some b € [0, 1) such that hy(b) = 0 and hy(n) > O for all n € (b, Ay]. Then hj(b) > 0. By the
result of part (a), then hg(n) > 0 for all n > b, which implies that hf)(n) is increasing in [b,2/¢). So
hy(n) = hy(ry) == o > 0 forall n > X, which implies that 1y (17) — hy(ry) > o (n—Ay) forall n > A.
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Since ¢ > 0, by taking n — 2/¢ sufficiently large (or & sufficiently small), then hq(2/¢) is large, and
then is in contradiction to a boundary layer function.

(c) If not, by the result of part (b), then there exists some A; > O such that 0 = h{)(kl) =
sup, > h[)(n), which implies that hg (A1) = 0. By the uniqueness theorem of solution to ODE, then
hy = hg(A;) [0,2/¢), and then is in contradiction to a boundary layer function.

(d) If not, that is, hg(n) < O for all n > 0, then hé)(n) is non-increasing on [0,2/¢). By the result of
part (c), then /() < hy(1) < 0 for all n > 1, which implies that 1 (1) — hy(1) < hy(1)(n — 1) for
all n > 1. Since Ay (1) < 0, by taking n — 2/e sufficiently large, then h((2/¢) is negatively large, and
then is in contradiction to a boundary layer function.

(e) If not, that is B < 0, since h,(2/¢) is sufficiently small as ¢ is sufficiently small, then when
n < 2/e is sufficiently large (say n > n3 > 1,), we have 8 + hy(n) < 0 for all n > n5. From (5.61), we
have

—m 1
B (1) = i (ng)e” b P0OTHIE L / R (s)e™ K o@+Prg, (5.63)
n3

We mark the right most term as B(n). Integrating (5.63) from 75 to , we can obtain

n_ rx n
Hy(m) = Hy(ng) + hg(ng) [ e @Yy / B(x)dx. (5.64)
n

n3 3

Fixed 73, it is obvious that the first term at the right hand of (5.64) is a negative constant and the third
term is always positive. Since 8 + hq(n) < 0, by the results of parts (a) and (d), hg (n3) > 0, then we

have hg(n3) fn’l e f;,3 (h°+ﬂ)dtdx > hg(n3)(n —13). Hence, hg(n) is sufficiently large as 7 is close to 2 /¢,
then h,(2/¢) cannot be close to 0, in contradiction to a boundary layer function. O

Although we can prove 8 > 0, it is still difficult to determine B analytically. We thus determine
B numerically. Gradually increasing Re and comparing the type /Il numerical solution of (5.1) and
(2.17) for a given boundary condition value a with the solution of the reduced problem as in expression

(5.62), we can numerically estimate 8. The results are summarized in Table 1. Then, it is obvious that
-1
b= COSZ B Then, we can solve the boundary layer (5.61) subject to (5.57) numerically. The numerical

results for iy(n) show that hy(n) — 0 as n — 2/e. Finally, the asymptotic solution up to O(¢) is
FO) =1, + hy(n) + O(e). This will be compared with the numerical solution in next section.

6. Comparisons of numerical and asymptotic solutions

Numerical solutions for (2.16) and (2.17) can be readily obtained by MATLAB boundary value problem
solver bvp4c. Comparisons of the asymptotic solutions and numerical solutions will be shown in the
following tables. To develop a better understanding of the accuracy of asymptotic solutions constructed
in Section 5, we also graphically show the streamwise velocity profiles f'(y) or transverse velocity
profiles f(y) over different ranges of Reynolds numbers at some fixed asymmetric parameter.

TABLE 1 The numerical results of B at different given boundary condition values a for Re = 1500.

a 0.9 0.8 0.7 0.6 0.5 04 0.3
B 0.0889 0.0783 0.0672 0.0551 0.0417 0.0264 0.0079
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TABLE 2 Comparison between numerical and asymptotic results for f'(y) at a = 0.5 with Re = 50,
Re =75 and Re = 100.

o Re =50 Re =15 Re = 100
y Numeric Asymptotic Numeric Asymptotic Numeric Asymptotic
-1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-0.8 0.4348 0.4342 0.4322 0.4324 0.4302 0.4304
-0.6 0.4015 0.4024 0.3976 0.3979 0.3955 0.3957
-0.4 0.3622 0.3629 0.3584 0.3587 0.3564 0.3566
-0.2 0.3186 0.3193 0.3151 0.3154 0.3134 0.3135
-0.0 0.2714 0.2720 0.2683 0.2686 0.2667 0.2669
0.2 0.2211 0.2215 0.2185 0.2186 0.2171 0.2172
0.4 0.1681 0.1684 0.1661 0.1662 0.1650 0.1651
0.6 0.1132 0.1134 0.1118 0.1119 0.1111 0.1111
0.8 0.0570 0.0571 0.0562 0.0563 0.0559 0.0559
1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.45
Num:Re=50
0.4 = = = Asy: Re=50
Num:Re=75
0.35 Asy: Re=75
Num:Re=100
0.3 = = = Asy: Re=100 |
f(1/9'25
0.2
0.15
0.1
0.05
=1 -0.5 0 0.5 1

FiG. 7. Comparison between numerical and asymptotic solutions for f/(y) at @ = 0.5 with Re = 50, Re = 75 and Re = 100. The
solid lines represent numerical solutions and the dashed lines show asymptotic solutions.

For the type I solution, we will make comparison between numerical and asymptotic solution for
S’ () so as to see the accuracy of the type I asymptotic solution constructed in (5.8). From Table 2,
it can be seen that the asymptotic solution is matched well with the numerical solution. Furthermore,
we graphically present the comparison in Figure 7, and see that the error between the numerical and
asymptotic solutions is decreasing with the increase of Re. Hence, the results are found to be in very
well agreement which indicates that the accuracy of the asymptotic solution is reliable.

For the type I/ solution, since the turning points y; = —14+A; and y, = 1— A, are unknown a priori,
getting the values of them is very important and difficult. We will contrast numerical and asymptotic
results at the turning points. The asymptotic relationships of A, and A, are from (5.44) and (5.54). From
Table 3, it can be seen that the error between the numerical and asymptotic results of the turning points
is decreasing with the increase of Re and that A; and A, get smaller and smaller as Re increases. The
comparison of numerical and asymptotic solutions for the transverse velocity profiles is shown in Fig. 8
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TABLE 3 Comparison between numerical and asymptotic results for the turning points y; = —1 + A,
andy, =1— A, ata=0.38.

Re n=-1+4 y=1-4,
Numeric Asymptotic Numeric Asymptotic
100 -0.7449 -0.7315 0.5457 0.4728
200 -0.8263 -0.8227 0.6753 0.6519
400 -0.8914 -0.8921 0.7868 0.7959
600 -0.9203 -0.9202 0.8483 0.8434
800 -0.9363 -0.9363 0.8783 0.8750
1
Num:Re=200
o} = = = Asy: Re=200
Num:Re=400
Asy: Re=400
-1} Num:Re=600 s
S~~~ Asy: Ressoo 2 7
_2 3 ~ - - - - ~,
) ==
_3 L
_4 b
_5 b
-6 — =
-1 -0.5 0 0.5 1

FiG. 8. Comparison between numerical and asymptotic solutions for f(y) at @ = 0.8 with Re = 200, Re = 400 and Re = 600.
The solid lines represent numerical solutions and the dashed lines show asymptotic solutions.

(where the asymptotic solutions are from (5.38), (5.12a) or (5.12b) and (5.50)) which also indicates that
the error between the numerical and asymptotic solutions is decreasing with the increase of Re. These
verify our constructing process of the type /I asymptotic solution in previous section.

For the type III solution, we will compare the numerical solution with the type III asymptotic
solution. Because of the complexity of the boundary layer problem (5.61) and (5.57), we compute the
asymptotic solution f(y) = f,(y) + ho(n) + O(e) in the following way: f;,(y) is obtained from (5.62) and
B or b is estimated from numerical solution of (5.1) and (2.17), and A, is obtained numerically based on
solving (5.61) and (5.57). Table 4 shows the comparison between numerical and asymptotic solutions
for transverse velocity profiles at a fixed Reynolds number Re with different asymmetric parameters
a and Fig. 9 presents them at a fixed asymmetric parameter a with different large Reynolds numbers
Re. They all indicate that the asymptotic solution matches well with the numerical solution for large
Reynolds numbers.

7. Conclusion

In this article, we have considered the multiplicity and asymptotics of similarity solutions for laminar
flows in a porous channel with different permeabilities, in particular, flows permeating from upper wall
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TABLE 4 Comparison between numerical and asymptotic solutions for f(y) at Re = 800 with a =
0.652, a = 0.748 and a = 0.876.

UAG)) a = 0.652 a=0.748 a=0.876

y Numeric Asymptotic Numeric Asymptotic Numeric Asymptotic
-1.0 0.6520 0.6520 0.7480 0.7480 0.8760 0.8760
-0.6 0.3489 0.3462 0.3590 0.3516 0.3711 0.3586
-0.4 0.4866 0.4838 0.4948 0.4880 0.5047 0.4933
-0.2 0.6131 0.6103 0.6194 0.6133 0.6271 0.6169
0.0 0.7255 0.7228 0.7301 0.7246 0.7356 0.7267
0.2 0.8212 0.8187 0.8242 0.8196 0.8279 0.8204
0.4 0.8981 0.8959 0.8998 0.8960 0.9019 0.8960
0.6 0.9543 0.9526 0.9550 0.9523 0.9560 0.9518
0.8 0.9885 0.9875 0.9887 0.9872 0.9889 0.9867
1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Num:Re=600
0.9F - - - Asy: Re=600
Num:Re=800
0.8 Asy: Re=800
Num:Re=1000
0.7F  — - - Asy: Re=1000

ﬂy)o'e

0.5

0.4

F1G. 9. Comparison between numerical and asymptotic solutions for f(y) at @ = 0.8 with Re = 600, Re = 800 and Re = 1000.
The solid lines represent numerical solutions and the dashed lines show asymptotic solutions.

of the porous channel and exiting from the lower wall. We numerically show that there exist three
solutions designated as types I, II and I, type I solution extends over 0 < Re < oo and types /I and
II1 solutions appear at a common point Re for a fixed asymmetric parameter a. The value of common
point Re is decreasing with the increase of a. Then, we rigorously prove that there exist three similarity
solutions. Meanwhile, the asymptotic solution for each of the three types of similarity solutions is
constructed for the most interesting and challenging high Reynolds number case and is also verified
numerically. For the type I solution, its streamwise velocity has an exponentially rapid decay. For the
type II solution, there are two turning points and its streamwise velocity also has an exponentially rapid
decay. For the type Il solution, there exists an exponentially rapid change not only for its streamwise
velocity (decay and then increase) but also for its transverse velocity (decay). The reversal flow occurs
for both types II and /Il solutions.
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