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The existence and multiplicity of similarity solutions for the steady, incompressible and fully developed
laminar flows in a uniformly porous channel with two permeable walls are investigated. We shall focus
on the so-called asymmetric case where the upper wall is with an amount of flow injection and the lower
wall with a different amount of suction. The numerical results suggest that there exist three solutions
designated as type I, type II and type III for the asymmetric case, type I solution exists for all non-negative
Reynolds number and types II and III solutions appear simultaneously at a common Reynolds number
that depends on the value of asymmetric parameter a and with the increase of a the common Reynolds
numbers are decreasing. We also theoretically show that there exist three solutions. The corresponding
asymptotic solution for each of the multiple solutions is constructed by the method of boundary layer
correction or matched asymptotic expansion for the most difficult high Reynolds number case. These
asymptotic solutions are all verified by their corresponding numerical solutions.
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1. Introduction

Laminar flows in various geometries with porous walls are of fundamental importance to biological
organisms, air circulation in the respiratory system, contaminant transports in aquifers and fractures,
membrane filtration, control of boundary layer separation, transpiration cooling, propellant burning,
automotive filters, etc. Hence, laminar flows through permeable walls have been extensively studied by
researchers during the past several decades.

The analysis for Navier–Stokes equations that describe the two-dimensional steady laminar flows of
a viscous incompressible fluid through a porous channel with uniform injection or suction was initiated
by Berman (1953). He assumed that the flow is symmetric about the centre line of the channel and
is of similarity form and reduced the problem to a fourth-order highly nonlinear ordinary differential
equation with four boundary conditions and a cross-flow Reynolds number Re (Re = dvw

ν
depends on the
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MULTIPLE SOLUTIONS AND THEIR ASYMPTOTICS FOR LAMINAR FLOWS 281

speed with which fluid is withdrawn from the channel, the half-width of the channel and the kinematic
viscosity of the fluid). He also gave an asymptotic solution for small Reynolds number. Then, numerous
studies have been done about the laminar flows in a channel or tube with permeable walls. Yuan (1956),
Terrill & Shrestha (1965a) and Sellars (1955) obtained an asymptotic solution for the large injection and
large suction cases, respectively. Terrill & Shrestha (1964, 1965a) and Shrestha (1967) derived a series
of asymptotic solutions using the method of matched asymptotic expansion for the large injection and
large suction cases with a transverse magnetic field.

All theseworksmentioned abovehadproducedonly one solution for each value of Re. Raithby (1971)
was the first to find that there is a second solution for values of Re > 12 in a numerical investigation of
the flow in a channel with heat transfer. Then, some studies were also devoted to the analysis of multiple
solutions for the symmetric porous channel flow problem. Robinson (1976) conjectured that there are
three types of solutions that were classified as type I, type II and type III. His conclusion was based on
the numerical solutions and he also derived the asymptotic solutions of types I and II for the large suction
case. Zaturska et al. (1988), Cox & King (1997) and Lu et al. (1992) also analyzed multiple solutions
for the same problem. Robinson (1976) and Zaturska et al. (1988) pointed out that type I solution exists
for all positive and negative Reynolds numbers, and types II and III solutions exist for Re > Re∗, where
Zaturska et al. (1988) found Re∗ ≈ 12.165. Type I solution is increasing and concave down, type II
solution is increasing with an inflection point, and type III solution is non-monotone with a turning
point. Robinson (1976) pointed out that types I and II differ by exponentially small terms for the large
suction Reynolds number and the inviscid solutions for them are all linear. Type III solution has a com-
plicated structure, consisting of a viscous layer near the center line of the channel, a sinusoidal inviscid
outer solution, a transition layer and a boundary layer (near the channel wall) for large suction Reynolds
number. Lu (1997, 1999a,b) and MacGillivray & Lu (1994) mainly investigated the asymptotic solution
of type III. It should be noted that only three solution branches are found for the porous channel flow due
to the artificially imposed symmetry of the flow about the center line of the channel (i.e. considering the
boundary conditions from the center line and the upper wall of channel). Hence, the solution is symmet-
ric about the center line of channel which is the so-called symmetrical solution. Thus, possible asymmet-
ric branches that could suddenly emerge would not be captured in the above approaches. Zaturska et al.
(1988) showed that asymmetrical solutions can also be found when the full boundary value problem
is solved (i.e. considering the boundary conditions from the upper and lower walls of channel). The
asymmetrical solutions (Zaturska et al., 1988, Cox & King, 2004) are available numerically for a more
restricted range of Reynolds numbers than the symmetrical ones. Brady & Acrivos (1981) presented
three symmetrical solutions for the flow in a channel or tube with an accelerating surface velocity.

In the same vein, the proof of solution multiplicity of Robinson’s over different range of Reynolds
number has been addressed by Shih (1987) who proved theoretically, applying a fixed point theorem,
that there exists only one solution for injection case. Topological and shooting methods were used
by Hastings et al. (1992) to prove the existence of all three of Robinson’s conjectured solutions. He
also presented the asymptotic behaviour for the flow as Re is large negative. Terrill (1965) proposed a
transformation to convert the two-point boundary value problem into an initial value problem to facilitate
the numerical calculation of solutions for an arbitrary Reynolds number. Based on the transformation
proposed by Terrill (1965), Skalak & Wang (1978) described analytically the number and character of
the solutions for each given Reynolds number under fairly general assumptions for the symmetrical
channel and tube flow. The similar method was used by Cox (1991a) to analyze the symmetric solutions
when the two walls are accelerating equally and when one wall is accelerating and the other is stationary.
The uniqueness of similarity solution was investigated theoretically by Chellam & Liu (2006) and their
work mainly considered the symmetric flow in a channel with slip boundary conditions. The temporal
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stability issues of the solutions of Berman class continue to receive favour in the works of Zaturska et al.
(1988), Cox (1991b), King & Cox (2001) and Watson et al. (1990, 1991). The spatial stability of steady
solutions is another topic that has received much attention in the past. In that respect, one may count
Varapaev & Yagodkin (1969), Brady (1984) and Durlofsky & Brady (1998). The asymptotic solutions
of the laminar flow in a porous channel or tube with moving walls also received favour in the works of
Majdalani & Zhou (2003), Dinarvand & Rashidi (2010) and Xu et al. (2010).

With unequal rates of suction or injection at the two walls, the steady solutions of the Berman
problem are less well documented. The class of asymmetrical flows that may be driven by imposing
different velocities on the walls turns out to be very interesting. The study of asymmetric laminar
steady flow may be traced back to Proudman (1960) who found all possible inviscid outer solutions and
identified the places where viscous layers necessarily form. Then, Terrill & Shrestha (1966, 1965b) and
Shrestha & Terrill (1968) extended Proudman’s work and constructed one asymptotic solution using
the method of matched asymptotic expansion for the large injection, large suction and mixed cases,
respectively. Here the mixed cases mean that one wall is with injection while the other is with suction.
Cox (1991b) considered the practical case of an impermeable wall opposing a transpiring wall. Watson
et al. (1991) also investigated the case of asymmetrical flow in a channel where one wall is stationary
and the other is accelerating. Cox & King (2004) constructed asymmetrical asymptotic solution of the
symmetric problem for the large suction Reynolds number case and asymptotic multiple solutions of the
asymmetric problem in which fluid flows through a channel with different suction velocities on each
wall. King & Cox (2005) constructed the asymptotic solutions with stagnation point for the fluid flows
near a permeable wall for large suction or injection case.

The purpose of this paper is not to reconsider any of these previously considered problems, but
instead to provide a thorough analysis for the asymmetric flow in a channel of porous walls with
different permeabilities, where the upper wall is with injection and the lower wall is with suction.
We will show that there exist three multiple solutions in this asymmetric case. We also mark them
as type I, type II and type III solutions as people do for the symmetric case. We should remark here
that type I, type II and type III solutions for the asymmetric case are much different from those for
the symmetric case. We will numerically give the range of the Reynolds number where there exist
three solutions. We will then construct asymptotic solutions for each solution for the most difficult case
of high Reynolds number and numerically validate the constructed solutions. The paper is organized
as follows. In Section 2, by applying mass conservation (Dauenhauer, 2003; Bouyges et al., 2017), a
similar equation can be developed. Hence, a similarity transformation is introduced and the Navier–
Stokes equations are reduced to a single fourth-order nonlinear ordinary differential equation with a
Reynolds number Re and four boundary conditions. In Section 3, we compute the multiple solutions
numerically. We also sketch velocity profiles and streamlines for these asymmetric flows. In Section 4,
we theoretically analyze that there exist three solutions of similarity transformed equation under fairly
general assumptions. In Section 5, for the most difficult high Reynolds number case, the asymptotic
solution for each type of multiple solutions will be constructed using the method of boundary layer
correction or matched asymptotic expansion. In Section 6, all the asymptotic solutions are verified
by numerical solutions and meanwhile these asymptotic solutions may serve as a validation for the
numerical method used in the paper.

2. Mathematical formulation

As shown in Fig. 1, we consider the 2D, steady, incompressible asymmetric laminar flows in a porous
and elongated rectangular channel. The channel exhibits a sufficiently small depth-width ratio of semi-
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Fig. 1. Coordinate system and characteristic streamlines used to describe the fluid flow pattern.

height h to length L. Despite the channel’s finite body length, it is reasonable to assume a semi-infinite
length in order to neglect the influence of the opening at the end (Uchida & Aoki, 1977). The flow is
driven by uniform injection through the upper wall of the channel with speed −v2 and uniform suction
through the lower wall with speed −v1, where we assume v2 > 0 and v1 > 0. We define a parameter
a = v1

v2
, where a > 0, to describe the asymmetry. Let x̃ and ỹ be chosen as the coordinates measured

along and perpendicular to the flow direction, respectively and u and v be the velocity components in
the direction of x̃ and ỹ increasing, respectively. The streamwise velocity is zero at the closed headend
(x̃ = 0).

The equations of the continuity and momentum for the steady laminar flows of an incompressible
Newtonian fluid through a porous channel are (Terrill & Shrestha, 1966)

∇ · V = 0, (2.1)

(V · ∇)V = − 1

ρ
∇p + ν∇2V, (2.2)

where the symbol V = (u(x̃, ỹ), v(x̃, ỹ)) represents the velocity vector, p the pressure, ρ the density and
ν the kinematic viscosity of the fluid. The boundary conditions necessary for describing the asymmetric
flow and solving the continuity and momentum equations are

u(0, ỹ) = 0, (2.3)

u(x̃,−h) = 0, v(x̃,−h) = −v1, (2.4)

u(x̃, h) = 0, v(x̃, h) = −v2. (2.5)

By applying the mass conservation to a volume of fluid extending from the headend (x̃ = 0) to an
arbitrary location x̃, the flow velocity um(x̃) spatially averaged over the cross section can be found to be
proportion to x̃ (Dauenhauer, 2003; Bouyges et al., 2017). To that end, the mean flow velocity um must
be determined from

Acs · um(x̃) =
∫
Acs

u(x̃, ỹ) · dA, (2.6)
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where Acs = 2hz is the surface area of the cross section and z is the length of z̃ coordinate. However,
since Auw = x̃z is the porous area of channel’s upper wall, Alw = x̃z is the porous area of channel’s lower
wall, and the headend wall is not porous by the boundary condition (2.3), mass conservation requires
that

ρAuwv2 − ρAlwv1 −
∫
Acs

ρu(x̃, ỹ) · dA = 0. (2.7)

Combining (2.6) and (2.7), one can obtain

um = Auw

Acs
v2 − Alw

Acs
v1 = x̃

2h
(v2 − v1). (2.8)

A sufficient condition for u to satisfy the mass conservation (2.7) is to assume a linear variation with
respect to x̃. To make further headway, only separable product solutions are sought, thus turning the
linear dependence on x̃ into a necessary condition. Therefore, a self-similarity transformation that can
result in such a variation is desirable. On the other hand, as we know, the study of the fluid flow
equations with a high Reynolds number (which will be mentioned next in (2.16)) is most challenging.
A similarity transformation provides a way to explicitly express the solutions for the channel flow.
Furthermore, for the physical applications, such explicit solutions are often preferred in understanding
the fluid properties especially the boundary layers. For these purposes, we introduce a streamfunction
and express the velocity components in terms of the streamfunction

u = ∂ψ

∂ ỹ
, v = −∂ψ

∂ x̃
. (2.9)

From this definition of the streamfunction, the continuity (2.1) is naturally satisfied. Then, taking the
curl of the momentum equation deduces the vorticity transport equation

u
∂ω

∂ x̃
+ v

∂ω

∂ ỹ
= ν

(
∂2ω

∂ x̃2
+ ∂2ω

∂ ỹ2

)
, (2.10)

where

ω = ∂v

∂ x̃
− ∂u

∂ ỹ
= −∇2ψ . (2.11)

Substituting (2.9) and (2.11) into (2.10), one can obtain

∂ψ

∂ ỹ

∂

∂ x̃
∇2ψ − ∂ψ

∂ x̃

∂

∂ ỹ
∇2ψ = ν∇2∇2ψ . (2.12)

Then, we introduce a streamfunction of the form

ψ = νxF(y), (2.13)
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where x = x̃
h , y = ỹ

h which are the non-dimensional coordinates and F(y) is independent to the
streamwise coordinate. Then, the velocity components are given by

u = νx

h
F′(y), v = −ν

h
F(y). (2.14)

Substituting (2.13) into (2.12), a fourth-order nonlinear ordinary differential equation with a parameter
Re is developed. It is

f iv + Re(ff ′′′ − f ′f ′′) = 0, (2.15)

where Re = hv2
ν

is the Reynolds number based on the fluid velocity v2 through the upper wall and the

semi-height h of channel and f (y) = F(y)
Re . A first integral of (2.15) is

f ′′′ + Re(ff ′′ − f ′2) = K, (2.16)

where K is an undetermined integration constant.
The boundary conditions of no-slip given by (2.4) and (2.5) can now be updated to the normalized

form

f (−1) = a, f ′(−1) = 0, f (1) = 1, f ′(1) = 0. (2.17)

We shall seek all possible solutions to the boundary value problem (2.15) or (2.16) and (2.17) for
all non-negative values of Reynolds numbers that correspond to the flow permeating from upper wall of
the porous channel and exiting from the lower wall with different permeabilities. The negative Reynolds
numbers are permissible, correspond to the flow through the walls of channel possibly with a different
suction velocity at each wall and have been investigated by Cox & King (2004).

3. Numerical multiple solutions

Numerical solutions to (2.15) or (2.16) subject to (2.17) are considered for all non-negative Reynolds
number, 0 � Re < ∞. All the numerical results are based on the collocation method (e.g. MATLAB
boundary value problem solver bvp4c in which we set the relative error tolerance 10−6). The numerical
results are shown in Fig. 2 with a plot of skin friction at the lower wall −f ′′(−1) versus Reynolds
number Re at a = 0.4, a = 0.6 and a = 0.8, respectively. The solution curves have been labeled I, II
and III suggesting three completely different types of solutions. The type I extends over 0 � Re < ∞,
in what follows, the common points Re of types II and III will be taken to be Re = 38.819 at a = 0.4,
Re = 21.145 at a = 0.6 and Re = 14.074 at a = 0.8. For the symmetric flow in a channel, although there
are three types of solutions, two of them have only an exponentially small difference when Re is large
(Robinson, 1976; Brady & Acrivos, 1981). In the following, we will present the velocity components
and streamlines of the three types solutions with several Reynolds numbers at a = 0.8.

Typical velocity profiles of type I solution, i.e. v ∼ f (y) and u ∼ xf ′(y), are shown in Fig. 3. As
can be seen from the streamwise velocity, the flows form a thin boundary layer structure near the lower
wall of the channel for the relatively high Reynolds number. The increasing Reynolds number has little
influence on the flow character, but the boundary layer is thinner and thinner with the increase of Re.

Typical velocity profiles for type II solution are presented in Fig. 4. All of these flows occur as
Re > 14.074 at a = 0.8. As Re is increased, the minimum of transverse velocity in the reverse region is
decreasing and the turning points which are the points such that f (y) = 0 are moving towards the walls
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Fig. 2. Skin friction at the lower wall versus crossflow Reynolds number for the flow through a uniformly porous channel at
a = 0.4, a = 0.6 and a = 0.8, respectively.

Fig. 3. Velocity profiles of type I at a = 0.8 with Re = 40, Re = 70, Re = 100 and Re = 130.

of the channel. The maximum of streamwise velocity is increasing and the minimum is decreasing with
the increase of Re.

The type III solutions, shown in Fig. 5, have an unusual shape. The rapid decay occurs not only for
the streamwise velocity but also for the transverse velocity near the lower wall. With the increase of
Re, the region between the lower wall and the minimum velocity becomes thinner. There is a region of
reverse flow near the lower wall for the streamwise velocity.

All numerical results indicate that the solutions contain inviscid solution and boundary layer solution
that is confined to the viscous layer near the lower wall of the channel. It is obvious that the flow
direction of streamwise velocity inside the boundary layers for types II and III is opposite to the type I.
The reversal flow occurs for both types II and III.
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Fig. 4. Velocity profiles of type II at a = 0.8 with Re = 40, Re = 70, Re = 100 and Re = 130.

Fig. 5. Velocity profiles of type III at a = 0.8 with Re = 40, Re = 70, Re = 100 and Re = 130.

In an effort to develop a better understanding of the flow character, we show in Fig. 6 sketches of
the streamlines to describe the flow behaviour corresponding to different branches of solutions. These
graphs depict all three types of solutions and enable us to deduce their fundamental characteristics. The
type I streamlines, we can clearly see that the injection at the upper wall push the streamlines closer
to the lower wall and the suction at the lower wall draws them somewhat away from the lower wall.
The type II streamlines indicate that the fluid that is injected at the upper wall goes off to infinity; the
central region involves fluid coming in from infinity then returning to infinity; the lower wall withdraws
fluid that comes from infinity (in particular, the fluid that is injected at the upper wall is not the same
fluid as withdrawn at the lower wall). The type III streamlines indicate that the fluid that is injected at
the upper wall goes closely to the lower wall and then goes off to infinity; the lower wall withdraws
fluid that comes from infinity (in particular, the fluid that is injected at the upper wall is the same
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Fig. 6. Streamline patterns of types I, II and III solutions from top to bottom at a = 0.8 with Re = 40, Re = 70, Re = 100 and
Re = 130.

fluid as withdrawn at the lower wall). For the types II and III streamlines, in the same vein, the large
injection promotes a more abrupt change in the flow direction from streamwise to normal. This tends to
be accompanied by sharper flow turning near the wall. These differences in streamline curvature, and
hence, the flow turning rate, become more appreciable when we focus our attention further right hand
of the channel.

4. Existence of multiple solutions

Skalak &Wang (1978), Cox (1991a) and Chellam & Liu (2006) considered symmetric flow in a channel
with porous walls, accelerating walls and slip boundary conditions, respectively. In this section, we
extend previous analysis (Skalak & Wang, 1978; Cox, 1991a, Chellam & Liu, 2006) to investigate
asymmetric flow in a porous channel with different permeabilities and to discuss the existence of
multiple solutions.

The two-point boundary value problem, (2.16) and (2.17), can be converted into an initial value
problem. Rescalling (2.16) and (2.17) by introducing f (y) = 1

2bg(ξ)/Re and ξ = 1
2b(y + 1) (Terrill,

1965; Skalak & Wang, 1978):

g′′′ + gg′′ − g′2 = χ , (4.1)

g(0) = 2aRe

b
, g′(0) = 0, g(b) = 2Re

b
, g′(b) = 0, (4.2)
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where χ = 16RK
b4

, a > 0, b > 0 and Re > 0. Assume all the initial conditions of (4.1) can be

g(0) = 2aRe/b, g′(0) = 0, g′′(0) = A, g′′′(0) = B, (4.3)

where A,B �= 0. If we find a point ξ∗ such that g′(ξ) = 0, we obtain b by setting ξ∗ = b and the value
of g(b) at this point gives the Reynolds number Re = 1

2bg(b). Then, we can obtain the original solution
f (y). Since for our physical model, our analysis is restricted to positive Re, there must be g(b) > 0
(i.e. g(ξ∗) > 0). Thus, we will discuss analytically the number of possible roots ξ∗ of g′(ξ) (each with
g(ξ∗) > 0), which is based on the signs of A and B, covering the entire range of ξ > 0.

Let h1(ξ) = g′(ξ), h2(ξ) = g′′(ξ), h3(ξ) = h′′′(ξ), h4(ξ) = g(4)(ξ) and h5(ξ) = g(5)(ξ) for all
ξ � 0. Differentiate (4.1) twice

h4 = h1h2 − gh3, (4.4)

h5 + gh4 = (h2)
2. (4.5)

Lemma 4.1 If B < 0, then g(4)(ξ) > 0 for all ξ � 0. In particular, g′′′(ξ) is a strictly increasing function
of ξ on [0,+∞).

Proof. By (4.4), since g′(0) = 0, then h4(0) = g′(0)g′′(0) − g(0)h3(0) = −g(0)B. Since g(0) > 0 and

B < 0, then h4(0) > 0. By (4.5), then h′
4 + gh4 � 0 for all ξ � 0, i.e.

(
e
∫ ξ
0 g(t)dth4(ξ)

)′
� 0 for all

ξ � 0, which implies that e
∫ ξ
0 g(t)dth4(ξ) � h4(0) > 0 for all ξ � 0. Hence h4(ξ) = g(4)(ξ) > 0 for all

ξ � 0. �
Remark 4.1 The proof of Lemma 4.1 only uses the condition g(0)B < 0.

Proposition 4.1 Assume that A > 0 and B < 0.

(a) If there exists some x0 > 0 such that g′′′(x0) = 0, then there is no point ζ > x0 such that
g′(ζ ) = 0 and g(ζ ) > 0.

(b) If g′′′(ξ) < 0 for all ξ � 0 and h2(α) = 0 for some α > 0, then there exists some ζ > α such
that g′(ζ ) = 0 and g(ζ ) > 0.

Proof. (a) By Lemma 4.1, then h4(ξ) > 0 for all ξ � 0. Since h3(x0) = 0, then h3(ξ) < 0 for all ξ ∈
[0, x0) and h3(ξ) > 0 for all ξ > x0, which implies that h2(ξ) is strictly decreasing on [0, x0) and strictly
increasing on (x0,+∞). Hence x0 is the unique global minimum point of h2(ξ) on [0,+∞). Since
h3(x0) = 0, by (4.4) and Lemma 4.1, then h4(x0) = h1(x0)h2(x0)−g(x0)h3(x0) = h1(x0)h2(x0) > 0. Let
us assume that there is some ζ > x0 such that h1(ζ ) = g′(ζ ) = 0 and g(ζ ) > 0. Since g′(0) = g′(ζ ) = 0,
by Lagrange’s mean value theorem, then there exists some α ∈ (0, ζ ) such that h2(α) = 0. Since x0 is the
unique global minimum point of h2(ξ) on [0,+∞) and h2(x0) �= 0, then h2(x0) < 0. Since h4(ξ) > 0
for all ξ � 0 and h3(ξ) > 0 for all ξ > x0, then limξ→+∞ h2(ξ) = +∞. Since h2(0) = A > 0,
h2(x0) < 0 and h4(ξ) > 0 for all ξ � 0, then there exists a unique β > x0 such that h2(ξ) < 0 for all
α < ξ < β, and h2(ξ) > 0 for all 0 � ξ < α and all ξ > β. Since h1(x0)h2(x0) > 0 and h2(x0) < 0,
then h1(x0) < 0. Since h1(ζ ) = 0, by (4.4), then h4(ζ ) = h1(ζ )h2(ζ ) − g(ζ )h3(ζ ) = −g(ζ )h3(ζ ).
Since h4(ξ) > 0 for all ξ > 0 and g(ζ ) > 0, then h3(ζ ) < 0, which implies that ζ < x0, this leads to a
contradiction.
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(b) Since g′′′(ξ) < 0 for all ξ � 0 and h2(α) = 0 for some α > 0, then h2(ξ) > 0 for all
0 � ξ < α and h2(ξ) < 0 for all ξ > α, which implies that h1(ξ) is strictly increasing on [0,α) and
strictly decreasing on (α,+∞). Hence α is the unique global maximum point of h1(ξ) on [0,+∞).
Since h1(0) = 0, then h1(α) > 0. Since h2(ξ) < 0 for all ξ > α and h3(ξ) < 0 for all ξ � 0, then
limξ→+∞ h1(ξ) = −∞. Since h1(α) > 0 and h2(ξ) < 0 for all ξ > α, then there exists a unique ζ > α

such that g′(ζ ) = h1(ζ ) = 0. Since h1(ζ ) = 0, by e(4.4), then h4(ζ ) = h1(ζ )h2(ζ ) − g(ζ )h3(ζ ) =
−g(ζ )h3(ζ ). Since ζ > α, h3(ξ) < 0 for all ξ � 0 and Lemma 4.1, then g(ζ ) > 0. Therefore, in
this case, there exists a solution of (2.16) and (2.17). We will designate this solution as type I solution
corresponding to the numerical type I solution in Section 3. �
Proposition 4.2 Assume that A < 0 and B < 0.

(a) Then there exists some x0 > 0 such that g′′′(x0) = 0.

(b) Then there is no point ζ > 0 such that g′(ζ ) = 0 and g(ζ ) > 0.

Proof. (a) If the statement is not right, since B = g′′′(0) < 0, then h3(ξ) < 0 for all ξ � 0. Since
A = g′′(0) < 0, then h2(ξ) � A < 0 for all ξ � 0, which implies that h1(ξ) − h1(0) � Aξ for all ξ � 0.
Since h1(0) = 0, then h1(ξ) < 0 and h1(ξ) � Aξ for all ξ � 0, which implies that g(ξ) − g(0) � A

2 ξ2

for all ξ � 0. Hence limξ→+∞ g(ξ) = −∞. By (4.5), then h5 = (h2)
2 − gh4 for all ξ � 0. By Lemma

4.1, then h4(ξ) > 0 for all ξ � 0. Since limξ→+∞ g(ξ) = −∞, then there exists some M > 0 such that
h5(ξ) > 0 for all ξ � M. Since h4(ξ) > 0 and h5(ξ) > 0 for all ξ � M, then limξ→+∞ h3(ξ) = +∞,
this leads to a contradiction.

(b) By the result of part (a) then there exists some x0 > 0 such that g′′′(x0) = 0. Since h4(ξ) � 0
for all ξ � 0, then h3(ξ) < 0 for all ξ ∈ [0, x0) and h3(ξ) > 0 for all ξ > x0, which implies that
h2(ξ) is strictly decreasing on [0, x0) and strictly increasing on (x0,+∞). Hence x0 is the unique global
minimum point of h2(ξ) on [0,+∞). Since g′′(0) = A < 0 and h3(ξ) < 0 for all ξ ∈ [0, x0), then
h2(ξ) < A < 0 for all ξ ∈ (0, x0]. Since h1(0) = 0, then h1(ξ) � Aξ < 0 for all ξ ∈ (0, x0]. Since
h3(ξ) > 0 for all ξ > x0 and h4(ξ) > 0 for all ξ � 0, then limξ→+∞ h2(ξ) = +∞. Since h2(x0) < 0
and h3(ξ) > 0 for all ξ > x0, then there exists a unique x1 > x0 such that h2(ξ) < 0 for all ξ ∈ [x0, x1),
h2(x1) = 0 and h2(ξ) > 0 for all ξ > x1. Since h2(ξ) < A < 0 for all ξ ∈ (0, x0], then h2(ξ) < 0 for
all 0 � ξ < x1 and h2(ξ) > 0 for all ξ > x1, which implies that h1(ξ) is strictly decreasing on [0, x1]
and strictly increasing on [x1,+∞). Hence x1 is the unique global minimum point of h1(ξ) on [0,+∞).
Since h1(ξ) � Aξ < 0 for all ξ ∈ (0, x0], then h1(x1) < 0. Since h2(ξ) > 0 for all ξ > x1 and h3(ξ) > 0
for all ξ > x0, then limξ→+∞ h1(ξ) = +∞. Since h1(ξ) < 0 for all 0 < ξ � x1 and h2(ξ) > 0 for
all ξ > x1, then there exists a unique x2 > x1 such that h1(x2) = 0. So we know that x2 is the unique
solution of h1(ξ) = 0 for all ξ > 0. On the other hand, since x2 > x1 > x0, then h4(x2) > 0 and
h3(x2) > 0. Since h1(x2) = 0, by (4.4), then h4(x2) = h1(x2)h2(x2)−g(x2)h3(x2) = −g(x2)h3(x2) > 0.
Since h3(x2) > 0, then g(x2) < 0. Since x2 is the unique solution of h1(ξ) = 0 for all ξ > 0, and
g(x2) < 0, then there is no point ζ > 0 such that g′(ζ ) = 0 and g(ζ ) > 0. �
Proposition 4.3 Assume that B > 0.

(a) If h4(ξ) �= 0 for all ξ > 0, then h4(ξ) < 0 for all ξ � 0.

(b) If h4(ξ0) = 0 for some ξ0 > 0, then h4(ξ) < 0 for all 0 � ξ < ξ0 and h4(ξ) > 0 for all ξ > ξ0.

Proof. (a) By (4.4), since g′(0) = 0, then h4(0) = h1(0)h2(0) − g(0)h3(0) = −g(0)B. Since g(0) > 0
and B > 0, then h4(0) < 0. By the assumption that h4(ξ) �= 0 for all ξ > 0, then h4(ξ) < 0 for all
ξ � 0.
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(b) By the proof of part (a), we know that h4(0) < 0. Let Σ = {ξ > 0 : h4(ξ) = 0}, by the
assumption, then ξ0 ∈ Σ . Since h4(0) < 0, by the continuity, we know that η := infξ∈Σ ξ ∈ (0, ξ0],
which implies that ξ0 � η, h4(η) = 0 and h4(ξ) < 0 for all 0 � ξ < η. By (4.5), then h′

4 + gh4 � 0 for

all ξ � 0, i.e.
(
e
∫ ξ
η g(t)dth4(ξ)

)′
� 0 for all ξ � 0, which implies that e

∫ ξ
η g(t)dth4(ξ) � h4(η) = 0 for all

ξ � η. Hence h4(ξ) = g(4)(ξ) � 0 for all ξ � η.

Claim 4.4 h4(ξ) > 0 for all ξ > η. �
Proof. If not, since h4(ξ) � 0 for all ξ � η, then there exists some α > η such that h4(α) = 0.
If h4(ξ) ≡ 0 for all η � ξ � α, by (4.5), then h2(ξ) ≡ 0 for all η � ξ � α. Rewrite (4.4) as
h′′
2 + gh′

2 − h1h2 = 0 for all ξ � 0, since h2(η) = h′
2(η) = 0, by the uniqueness theorem of solutions

to the ODE, then h2(ξ) = 0 for all ξ � 0, which implies that B = h3(0) = h′
2(0) = 0, this leads to a

contradiction. Since h4(ξ) � 0 for all ξ � η, then there exists some β ∈ (η,α) such that h4(β) > 0.

Since
(
e
∫ ξ
η g(t)dth4(ξ)

)′
� 0 for all ξ � 0 and h4(β) > 0, then h4(ξ) > 0 for all ξ > β. Since α > β,

then h4(β) < h4(α) = 0, this leads to a contradiction. Therefore, we know that h4(ξ) > 0 for all ξ > η.�
Since h4(ξ0) = h4(η) = 0, ξ0 � η, by Claim 4.4, then ξ0 = η. By the definition of η and Claim 4.4,

then h4(ξ) < 0 for all 0 � ξ < ξ0 and h4(ξ) > 0 for all ξ > ξ0. �
Proposition 4.5 Assume that A > 0 and B > 0, if g(4)(ξ) < 0 for all ξ � 0, then g′′′(ξ) > 0 for all
ξ � 0. In particular, since g′′(0) = A > 0, then g′′(ξ) > A > 0 for all ξ > 0. Moreover, since g′(0) = 0,
then g′(ξ) > 0 for all ξ > 0.

Proof. If not, since h3(0) = B > 0 and h4(ξ) < 0 for all ξ � 0, then there exists a unique x0 > 0 such
that h3(ξ) > 0 for all 0 � ξ < x0, h3(x0) = 0 and h3(ξ) < 0 for all ξ > x0. Since h2(0) = A > 0 and
h3(ξ) > 0 for all 0 � ξ < x0, then h2(ξ) > 0 for all 0 � ξ � x0. Since h1(0) = 0, then h1(ξ) > 0
for all 0 � ξ � x0, which implies that h1(x0)h2(x0) > 0. Since h3(x0) = 0 and h4(ξ) < 0 for all
ξ � 0, by (4.4), we know that h1(x0)h2(x0) = h4(x0) − g(x0)h3(x0) = h4(x0) < 0, this leads to a
contradiction. �
Proposition 4.6 Assume that A > 0 and B > 0, and there exists some ξ0 > 0 such that g(4)(ξ) < 0
for all ξ ∈ (0, ξ0) and g(4)(ξ) > 0 for all ξ > ξ0. Then ξ0 is the unique global minimum point of g′′′(ξ)

on [0,∞) and g′′′(ξ0) > 0. In particular, since g′′(0) = A > 0, then g′′(ξ) > A > 0 for all ξ > 0.
Moreover, since g′(0) = 0, then g′(ξ) > 0 for all ξ > 0.

Proof. Since g(4)(ξ) < 0 for all ξ ∈ (0, ξ0) and g(4)(ξ) > 0 for all ξ > ξ0, then g′′′(ξ) is strictly
decreasing on [0, ξ0] and strictly increasing on [ξ0,+∞), which implies that ξ0 is the unique global
minimum point of g′′′(ξ) on [0,∞). Now let us decide the sign of h3(ξ0) = g′′′(ξ0). If h3(ξ0) � 0, since
h3(0) = B > 0 and g(4)(ξ) < 0 for all ξ ∈ [0, ξ0), then there exists a unique η ∈ (0, ξ0] such that
h3(ξ) > 0 for all 0 � ξ < η, h3(η) = 0 and h3(ξ) < 0 for all ξ0 > ξ > η. Since h2(0) = A > 0, then
h2(ξ) > A > 0 for all 0 � ξ � η. Since h1(0) = 0, then h1(ξ) > 0 for all 0 � ξ � η, which implies
that h1(η)h2(η) > 0. Since h3(η) = 0, h4(ξ) < 0 for all 0 � ξ < ξ0 and 0 � η � ξ0, by (4.4), we know
that h1(η)h2(η) = h4(η) − g(η)h3(η) = h4(η) � 0, this leads to a contradiction. �
Proposition 4.7 Assume that A < 0 and B > 0, and g(4)(ξ) < 0 for all ξ � 0.

(a) If g′′′(x0) = 0 for some x0 > 0, then there is no point ζ > 0 such that g′(ζ ) = 0 and g(ζ ) > 0.
In particular, there is no point ζ > x0 such that g′(ζ ) = 0 and g(ζ ) > 0.

(b) If g′′′(ξ) > 0 for all ξ � 0, then there is no point ζ > 0 such that g′(ζ ) = 0 and g(ζ ) > 0.
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Proof. (a) If there exists some ζ > 0 such that g′(ζ ) = 0 and g(ζ ) > 0, since h4(ξ) < 0 for all ξ � 0,
by (4.4), then h4(ζ ) = h1(ζ )h2(ζ ) − g(ζ )h3(ζ ) = −g(ζ )h3(ζ ) < 0. Since g(ζ ) > 0, then h3(ζ ) > 0.
Since h4(ξ) < 0 for all ξ � 0 and h3(x0) = 0, then 0 < ζ < x0. Since g

′(0) = g′(ζ ) = 0, by Lagrange’s
mean value theorem, then h2(η) = 0 for some η ∈ (0, ζ ). Since h4(ξ) < 0 for all ξ � 0 and h3(x0) = 0,
then h3(ξ) > 0 for all ξ ∈ [0, x0) and h3(ξ) < 0 for all ξ > x0, which implies that h2(ξ) is strictly
increasing on [0, x0] and strictly decreasing on [x0,+∞). Hence x0 is the unique global maximum point
of h2(ξ) on [0,+∞). Since h2(η) = 0, then h2(x0) > 0. Since h4(ξ) < 0 for all ξ � 0 and h3(x0) = 0,
by (4.4), then h4(x0) = h1(x0)h2(x0) − g(x0)h3(x0) = h1(x0)h2(x0) < 0. Since h2(x0) > 0, then
h1(x0) < 0. Since h3(ξ) > 0 for all ξ ∈ [0, x0), then h2(ξ) < 0 for all ξ ∈ [0, η) and h2(ξ) > 0 for
all ξ ∈ (η, x0), which implies that h1(ξ) is strictly decreasing on [0, η) and strictly increasing on (η, x0).
Since h1(0) = 0, then h1(ξ) < 0 for all ξ ∈ (0, x0). Since ζ ∈ (0, x0), then g′(ζ ) = h1(ζ ) < 0, this
leads to a contradiction.

(b) If there exists some ζ > 0 such that g′(ζ ) = 0 and g(ζ ) > 0, since g′(0) = 0, by Lagrange’s
mean value theorem, then h2(η) = 0 for some η ∈ (0, ζ ). Since h3(ξ) > 0 for all ξ � 0, then h2(ξ) < 0
for all ξ ∈ [0, η) and h2(ξ) > 0 for all ξ > η, which implies that h1(ξ) is strictly decreasing on [0, η] and
strictly increasing on [η,+∞). Since η < ζ and h1(0) = h1(ζ ) = 0, then h1(ξ) < 0 for all 0 < ξ < ζ

and h1(ξ) > 0 for all ξ > ζ , which implies that ζ is the unique global minimum point of g(ξ) on
[0,+∞). Since Δ := g(ζ ) > 0, then g(ξ) � Δ > 0 for all ξ � 0. Since h4(ξ) < 0 for all ξ � 0, by
(4.5), then h5(ξ) = (h2(ξ))2 − g(ξ)h4(ξ) > 0 for all ξ � 0. Since h3(ξ) > 0 and h4(ξ) < 0 for all
ξ � 0, then there exists some L � 0 such that limξ→+∞ h3(ξ) = L and h3(ξ) > L � 0 for all ξ � 0.
By Lagrange’s mean value theorem, there exists some sequence {yn}∞n=1 such that limn→∞ yn = +∞
and limn→∞ h4(yn) = 0. Since h5(ξ) > 0 for all ξ � 0, then h4(ξ) is strictly increasing on [0,+∞),
which implies that limξ→+∞ h4(ξ) = 0. By Lagrange’s mean value theorem, there exists some sequence
{xn}∞n=1 such that limn→∞ xn = +∞ and limn→∞ h5(xn) = 0. Since g(ξ) > 0 and h4(ξ) < 0 for all
ξ � 0, then lim supn→∞[h5(xn) + g(xn)h4(xn)] � 0. On the other hand, since h2(ξ) > 0 for all ξ > η

and h3(ξ) > 0 for all ξ � 0, then lim supn→∞ (h2(xn))
2 > 0, which contradicts with (4.5). �

Proposition 4.8 Assume that A < 0 and B > 0, and there exists some ξ0 > 0 such that g(4)(ξ) < 0
for all ξ ∈ (0, ξ0) and g(4)(ξ) > 0 for all ξ > ξ0.

(a) If g′′′(x0) � 0 for some x0 � ξ0, then there is no point ζ > x0 such that g
′(ζ ) = 0 and g(ζ ) > 0.

In particular, if g′′′(ξ0) � 0, then there is no point ζ > ξ0 such that g′(ζ ) = 0 and g(ζ ) > 0.

(b) If g′′′(ξ) < 0 for all ξ ∈ [ξ0,∞) and g′′(ξ) has only one zero on [0,∞), then there is no point
ζ > ξ0 such that g′(ζ ) = 0 and g(ζ ) > 0.

(c) If g′′′(ξ) < 0 for all ξ ∈ [ξ0,∞) and g′′(α) = 0 and g′(α) > 0 for some point α > ξ0, then
there exists a unique ζ > α such that g′(ζ ) = 0 and g(ζ ) > 0. In particular, there exists a
unique γ ∈ (0, ζ ) such that g′(γ ) = 0. If γ < ξ0, then g(γ ) < 0. If γ > ξ0, then g(γ ) > 0.

Proof. (a) Assume that there is some point ζ > x0 such that g′(ζ ) = 0 and g(ζ ) > 0, since h4(ξ) =
g(4)(ξ) > 0 for all ξ > ξ0 and g′′′(x0) � 0, then h3(ζ ) > 0. Since h4(ξ) > 0 for all ξ > ξ0, by (4.4),
then h4(ζ ) = h1(ζ )h2(ζ ) − g(ζ )h3(ζ ) = −g(ζ )h3(ζ ) > 0. Since g(ζ ) > 0, then h3(ζ ) < 0, this leads
to a contradiction.

(b) Assume that there is some point ζ > ξ0 such that g′(ζ ) = 0 and g(ζ ) > 0, since g′(0) = 0,
by Lagrange’s mean value theorem, then there exists some α ∈ (0, ζ ) such that h2(α) = g′′(α) = 0.
Since g′′(0) = A < 0 and g′′(ξ) has only one zero on [0,∞), then h2(ξ) < 0 for all ξ �= α, which
implies that α is the unique global maximum point of g′′(ξ). Hence h3(α) = 0 and h4(α) � 0. Since
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g(4)(ξ) < 0 for all ξ ∈ (0, ξ0) and g(4)(ξ) > 0 for all ξ > ξ0, then 0 < α � ξ0. Since h3(α) = 0
and h3(ξ) = g′′′(ξ) < 0 for all ξ � ξ0, then 0 < α < ξ0, which implies that h4(α) < 0. On the other
hand, since h2(α) = h3(α) = 0, by (4.4), then h4(α) = h1(α)h2(α) − g(α)h3(α) = 0, this leads to a
contradiction.

(c) Since g(4)(ξ) < 0 for all ξ ∈ (0, ξ0) and g(4)(ξ) > 0 for all ξ > ξ0, then h3(ξ) is strictly
decreasing on [0, ξ0] and strictly increasing on [ξ0,+∞), which implies that ξ0 is the unique global
minimum point of h3(ξ) on [0,+∞). Since h3(ξ0) < 0, h3(0) = B > 0 and h4(ξ) < 0 for all 0 � ξ <

ξ0, then there exists a unique x1 ∈ (0, ξ0) such that h3(ξ) > 0 for all 0 � ξ < x1 and h3(ξ) < 0 for all
x1 < ξ < ξ0. Since h3(ξ) < 0 for all ξ � ξ0, then h3(ξ) > 0 for all 0 � ξ < x1 and h3(ξ) < 0 for
all ξ > x1, which implies that h2(ξ) is strictly increasing on [0, x1] and strictly decreasing on [x1,+∞).
Since h2(0) = A < 0 and h2(α) = 0, then h2(ξ) has either 1 or 2 zeros on [0,+∞). If h2(ξ) has only
one zero on [0,+∞), since h2(0) = A < 0 and h2(α) = 0, then α is the only global maximum point
of h2(ξ) on [0,+∞). Since h2(ξ) is strictly increasing on [0, x1] and strictly decreasing on [x1,+∞),
then α = x1, which implies that α = x1 < ξ0, this contradicts α > ξ0. If h2(ξ) has two zeros on
[0,+∞), then there exists a unique β ∈ (0, x1) such that h2(ξ) > 0 for all β < ξ < α and h2(ξ) < 0
for all ξ ∈ (0,β) ∪ (α,+∞). Since h2(ξ) < 0 for all ξ > α and h3(ξ) < 0 for all ξ > x1, then
limξ→+∞ h1(ξ) = −∞. Since h1(α) = g′(α) > 0 and h2(ξ) < 0 for all ξ > α, then there exists a
unique ζ > α such that h1(ζ ) = g′(ζ ) = 0. Since ζ > α > ξ0 and h4(ξ) > 0 for all ξ > ξ0, by (4.4),
then h4(ζ ) = h1(ζ )h2(ζ ) − g(ζ )h3(ζ ) = −g(ζ )h3(ζ ) > 0. Since ζ > α > ξ0 and h3(ξ) < 0 for all
ξ � ξ0, then g(ζ ) > 0.

Since h1(0) = 0 and h2(ξ) < 0 for all 0 < ξ < β, then h1(ξ) < 0 for all 0 < ξ � β. Since
h1(α) > 0 and h2(ξ) is strictly increasing for all β < ξ < α, then there must exist a point γ ∈ (β,α)

such that h1(γ ) = 0 and h2(γ ) > 0. Since 0 < x1 < ξ0 and h4(x1) < 0, by (4.4), then h4(x1) =
h1(x1)h2(x1) − g(x1)h3(x1) = h1(x1)h2(x1) < 0. Since h2(x1) > 0, then h1(x1) < 0. Hence, it is
obvious that x1 < γ < α and h3(γ ) < 0. Since h1(ξ) < 0 for all 0 < ξ < γ and h1(ξ) > 0 for all
γ < ξ < ζ , then point γ is the minimum value of g(ξ) on [0, ζ ]. Now let us decide the sign of g(γ ).
Since x1 < ξ0 < α, two cases will arise:

1) If x1 < γ < ξ0, by (4.4), then h4(γ ) = h1(γ )h2(γ ) − g(γ )h3(γ ) = −g(γ )h3(γ ) < 0, then
g(γ ) < 0. Therefore, in this case, there exists a solution of (2.16) and (2.17). We will designate this
solution as type II solution corresponding to the numerical type II solution in Section 3.

2) If ξ0 < γ < α, by (4.4), then h4(γ ) = h1(γ )h2(γ ) − g(γ )h3(γ ) = −g(γ )h3(γ ) > 0, then
g(γ ) > 0. Therefore, in this case, there exists a solution of (2.16) and (2.17). We will designate this
solution as type III solution corresponding to the numerical type III solution in Section 3. �

5. Asymptotic multiple solutions for high Reynolds number Re

We have shown the existence of multiple solutions and from the numerical solutions, we know that when
Re is relatively large, there exists three solutions. Since the upper wall is with injection while the lower
wall is with suction that indicates that the flow may exhibit a boundary layer structure near the lower
wall for high Reynolds number, it is of considerable theoretical interest to construct asymptotic solution
for the three types solutions that can help us to develop a better understanding of the characteristics of
boundary layer.

By treating ε = 1
Re as a small perturbation parameter, (2.16) can be written as

εf ′′′ + (ff ′′ − f ′2) = k, (5.1)
where k = K/Re.
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5.1 Asymptotic solution of type I

From the numerical solution of type I in Fig. 3, we can see that the streamwise velocity rapidly decays
near the lower wall (y = −1). Hence, by the method of boundary layer correction, f (y) and k can be
expanded as follows:

f (y) = f0(y) + ε(f1(y) + h1(η)) + ε2(f2(y) + h2(η)) + · · · , (5.2)

k = k0 + εk1 + ε2k2 + · · · , (5.3)

where η = 1+y
ε

is a stretching transformation near y = −1 and hi(η), i = 1, 2 · · · are boundary layer
functions. By substituting (5.2) into (2.17) and collecting the equal powers of ε, the boundary conditions
become

f0|y=1 = 1, f ′0|y=1 = 0, f0|y=−1 = a, (5.4)

f ′i−1|y=−1 + ḣi|η=0 = 0, i = 1, 2, · · · , (5.5)

fi|y=1 = 0, f ′i |y=1 = 0, fi|y=−1 + hi|η=0 = 0, i = 1, 2, · · · , (5.6)

where ḣi denotes the derivative of hi with respect to η. We note here that f0(y) is the solution of the
reduced problem

f0f
′′
0 − f ′20 = k0 (5.7)

satisfying boundary conditions (5.4). The construction is similar to that of section 4.1 in Guo et al.
(2018), where additional factors such as a magnetic force and a boundary expansion rate are considered.
So we omit the details here and only provide the asymptotic solution of (2.16) and (2.17) for type I
solution

f (y) = cos z + ε{(Q(z) + b) sin z + λ

2b
(z sin z + cos z) + λ

2b
+ b

2
(ztan2z − tan z)

+ b

2
(ln(1 − sin z) − ln cos z)(z sin z + cos z) + b

a
sin 2b · e−aη} + O(ε2), (5.8)

where η = 1+y
ε
, z = by − b, b = cos−1 a

2 , Q(z) = b
∫ z
0 φ secφ(1 − sec2 φ)dφ and

λ = 1

2a(b sin (2b) + cos (2b))
(2(b − ab − aQ(−2b)) sin (2b) + ab tan (2b)

− 2ab2 tan2 (2b) + ab(cos (2b) + 2b sin (2b))(ln(1 + sin (2b)) − ln cos (2b))).

Remark 5.1 The asymptotic solution (5.8) is constructed for the case 0 < a < 1 (where the injection
is stronger than the suction). For the case a > 1 (where the suction is stronger than the injection), the
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asymptotic solution can be constructed similarly. Hence, we neglect the details of the construction, but
just present the asymptotic solution as follows:

f (y) = cosh z + ε((−b + 1

2
λz + Q(z)) sinh z − 1

2
λ cosh z + 1

2
b tanh z + 1

2
λsechz + 1

2
λ sinh z tanh z

(5.9)

+ 1

2
bz tanh2 z + b(cosh z − z sinh z) arctan(tanh

z

2
) − b

a
sinh(2b)e−aη) + O(ε2),

where η = 1+y
ε
, z = by − b, b = cosh−1 a

2 , Q(z) = b
∫ z
0 φsechφ tanh2 φdφ and

λ = 1

ab cosh(b) sinh(b)
(2a(Q(−2b) − b)csch(2b) + 2ab2sech2(2b) + abcsch(2b)sech(2b)

+ b coth(b)sech(2b) + b tanh(b)sech(2b)) − 4ab2csch(2b) arctan(tanh(b))

+ 2ab coth(2b)csch(2b) arctan(tanh(b)).

5.2 Asymptotic solution of type II

Constructing an asymptotic expansion as Re → ∞ for the solution of type II is a more complicated
process than that presented in the previous subsection. From Fig. 4(a), we know that f (y) vanishes at
exactly two points y1 in (−1, 0) and y2 in (0, 1) (called turning points), then there may exist an interior
layer near the zero of f closest to y = −1 and an interior layer near the zero of f closest to y = 1.
Meanwhile, from Fig. 4(b), we see that there may exist a boundary layer near y = −1 since the lower
wall is with suction. Cox & King (2004) give a more systematic asymptotic treatment, for the problem
with interior layer and boundary layer, than that of MacGillivray & Lu (1994). In our problem, there
exists an interior layer near the zero of f (y) closest to y = 1 but does not exist a boundary layer near
y = 1. We thus adopt the MacGillivray & Lu (1994) approach to deal with the interior layer solution
and the boundary conditions at y = 1. Hence, the technique used in this section follows the symmetric
flow case in MacGillivray & Lu (1994) and Lu (1997, 1999a) where there exists only one turning point.

Define that the distance between y = −1 and y = y1 is Δ1 and the distance between y = 1 and
y = y2 is Δ2, hence, it follows that y1 = −1 + Δ1 and y2 = 1 − Δ2 which are unknown a priori. By
differentiating (5.1), we obtain

εf iv + (ff ′′′ − f ′f ′′) = 0. (5.10)

1) Asymptotic solution between the turning points y1 and y2
Letting ε = 0, (5.10) becomes

ff ′′′ − f ′f ′′ = 0. (5.11)

We observe three types of solutions for the equation: cy, c sinh(dy+e) and c sin(dy+e). But, to have the
solution be valid uniformly in [y1, y2] and satisfy the conditions f (y1) = 0 and f (y2) = 0, the following
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has to hold:

f (y) ∼ Λ sin
π

2 − Δ1 − Δ2
(y − (−1 + Δ1)) (5.12a)

= −Λ sin
π

2 − Δ1 − Δ2
(y − (1 − Δ2)), (5.12b)

where Λ < 0 is a constant. Figure 4 shows that the turning points y1 and y2 are moving towards the
left-end point and the right-end point of the interval [−1, 1], respectively, with the increase of Re. The
quantities Δ1, Δ2 and Λ which are related to ε, will be determined next by matching as ε → 0.
2) Asymptotic solution near y = y1 and inner solution near y = −1

We introduce a variable transformation

τ = −1 + Δ1 − y

Δ1
, y ∈ [−1,−1 + Δ1]. (5.13)

Letting f (y) = f (−1 + Δ1 − τΔ1) = f (τ ), then, (5.10) becomes

εf
iv − (f f

′′′ − f
′
f
′′
) = 0, (5.14)

where ε = ε
Δ1

. The boundary conditions to be satisfied by (5.14) are

f (0) = 0, f (1) = a, f
′
(1) = 0. (5.15)

Since ε → 0 as ε → 0, (5.14) subject to (5.15) is still a singular perturbation problem.
(1) Outer solution

Setting ε = 0, the reduced equation is

f f
′′′ − f

′
f
′′ = 0, (5.16)

satisfying the boundary condition f (0) = 0, f (1) = a and f
′
(τ ) > 0 for all τ . Equation (5.16) may have

three possible solutions: στ , a sin π
2 τ and a sinh(ln( 1+

√
5

2 )τ ). By the proof of Proposition 4.8(c) for the

type II solution, we know that 1
2b(y1 + 1) < γ < ξ0, then g

iv(ξ) < 0 in (0, 12b(y1 + 1)), thus f
iv
(τ ) < 0

in (0, 1). Hence, trigonometric functions and hyperbolic functions can be excluded. The outer solution
is

f (τ ) = στ + · · · , (5.17)

where σ will be determined by matching.
(2) Inner solution

The lower wall of the channel is with suction, hence, we introduce a stretching variable x∗ = 1−τ
ε
.

Letting f (τ ) = f̂ (x∗), then, (5.14) becomes

f̂ ′′′′ + f̂ f̂ ′′′ − f̂ ′̂f ′′ = 0. (5.18)
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The conditions at point x∗ = 0 are f̂ (0) = a and f̂ ′(0) = 0. The inner solution can be expanded as:

f̂ (x∗) = a + ε̂f1(x
∗) + · · · . (5.19)

Substituting (5.19) into (5.18) and collecting the terms of O(ε), we can obtain the equation of f̂1(x
∗)

f̂ iv1 + âf ′′′1 = 0, (5.20)

satisfying f̂1(0) = f̂ ′1(0) = 0. Then, the expression of f̂1(x
∗) is

f̂1(x
∗) = b1(e

−ax∗ + ax∗ − 1) + b2x
∗2, (5.21)

where b1 and b2 will be determined by matching. Hence, the inner solution becomes

f̂ (x∗) = a + ε(b1(e
−ax∗ + ax∗ − 1) + b2x

∗2) + · · · . (5.22)

Meanwhile, assume that the expression of outer solution can be written as

f (τ ) = στ + εf 1(τ ) + ε2f 2(τ ) + · · · . (5.23)

Substituting (5.23) into (5.14) yields that f 1(τ ) satisfies

τ f
′′′
1 − f

′′
1 = 0. (5.24)

The corresponding condition is f 1(0) = 0. Then, the expression of f 1(τ ) is

f 1(τ ) = 1

6
c1τ

3 + d1τ , (5.25)

where c1 and d1 are constants. The outer solution (5.23) expressing in terms of inner variable x∗ is

f (τ ) = σ(1 − εx∗) + ε(c1(1 − εx∗)3 + d1(1 − εx∗)) + · · ·
= σ + ε(−σx∗ + c1 + d1) + · · · . (5.26)

Matching the inner solution (5.22) with the outer solution (5.26) gives σ = a, b1 = −1, b2 = 0 and
c1 + d1 = 0. Following the analysis in Lu (1999a), we know that f i(τ ) are all linear, i = 1, 2, · · · , where
c1 = 0 and d1 = 1. Hence, f (τ ) can be written as

f (τ ) ∼ θ(ε)τ , (5.27)
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where θ(ε) = a+d1ε +d2ε
2 +· · · and θ(ε) → a as ε → 0. The inner solution has exponentially small

terms and outer solution has to be more precise, we assume that f (τ ) is as follow:

f (τ ) = θ(ε)τ +
∞∑
i=1

δihi(τ ), (5.28)

where δi = δi(ε) = o(εn) and δi+1 � δi for all positive integers n and i. Equation (5.28) is valid in the
small neighborhood of the turning point y1 = −1 + Δ1. Substituting (5.28) into (5.14) and collecting
the terms of O(δ1) yield

εhiv1 − θτh′′′
1 + θh′′

1 = 0, (5.29)

satisfying the condition h1(0) = 0. One solution of h1 is h1(τ ) = − 1
6τ

3 + r1τ , where r1 is a constant.
Setting δ2 = δ21 and collecting the terms of O(δ2) yield

εhiv2 − θτh′′′
2 + θh′′

2 + τ 3

3
= 0. (5.30)

Differentiate (5.30) and multiply by the integrating factor e− θ
2ε τ 2 , then, we can obtain

hiv2 = −1

ε
e

θ
2ε τ 2

∫ τ

0
s2e− θ

2ε s
2
ds − Ce

θ
2ε τ 2 , (5.31)

where C is a constant. If we choose τ < 0 which is away from zero, hiv2 will have exponentially large
term. Then, we can choose C to eliminate the exponentially large term. Evaluating (5.31) leads to

hiv2 = −1

ε
e

θ
2ε τ 2{−(

2ε

θ
)3/2[

√
π

4
− 1

2

√
θ

2ε
|τ |e− θ

2ε τ 2 + · · · ]} − Ce
θ
2ε τ 2 . (5.32)

Hence, we choose C =
√
2επ

2θ
√

θ
. Evaluating (5.32), we obtain asymptotic expression

hiv2 ∼ θ−1τ . (5.33)

Hence, the expression for τ < 0 is

f (τ ) = θτ + δ1(−
τ 3

6
+ r1τ) + δ21θ

−1(
τ 5

5!
+ · · · ) + · · · . (5.34)

Then, expanding (5.12a) at the turning point y1 = −1 + Δ1 yields

f (y) ∼ Λ sin
π

2 − Δ1 − Δ2
(y − (−1 + Δ1))

= −Λ
πΔ1τ

2 − Δ1 − Δ2
+ Λ

3!
(

πΔ1τ

2 − Δ1 − Δ2
)3 − Λ

5!
(

πΔ1τ

2 − Δ1 − Δ2
)5 + · · · . (5.35)
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Comparing the linear term in (5.34) and (5.35), we can obtain

Λ ∼ −a(2 − Δ1 − Δ2)

πΔ1
, (5.36)

where θ ∼ a is used. Then, comparing the cubic term, we get

δ1 ∼ a(
πΔ1

2 − Δ1 − Δ2
)2. (5.37)

Hence, the asymptotic expansion of f (τ ) is

f (τ ) = θτ + a(
πΔ1

2 − Δ1 − Δ2
)2

τ 3

6
+ a2(

πΔ1

2 − Δ1 − Δ2
)4θ−1h2 + · · · . (5.38)

3) The determination of Δ1 and Δ2
In this section, we will find the asymptotic relationship between Δ1, Δ2 and ε by matching near

τ = 1. From (5.31) with C =
√
2επ

2θ
√

θ
, we can know

hiv2 = −1

ε
e

θ
2ε τ 2

∫ τ

0
s2e− θ

2ε s
2
ds −

√
2επ

2θ
√

θ
e

θ
2ε τ 2 = −

√
2επ

θ
√

θ
e

θ
2ε τ 2 + 1

θ
τ + · · · . (5.39)

Then, from (5.38) and (5.39), we can have

d4f

dτ 4
= δ21h

iv
2 (τ ) (5.40)

= −a1/2π9/2 Δ
7/2
1

(2 − Δ1 − Δ2)
4

√
2εe

θ
2ε τ 2 + a2(

πΔ1

2 − Δ1 − Δ2
)4
1

θ
τ + · · · .

The outer solution (5.40) expressing in the terms of inner variable x∗ is

1

ε4

d4f

dx∗4 = − a1/2π9/2 Δ
7/2
1

(2 − Δ1 − Δ2)
4

√
2εe

θΔ1
2ε e

θε
2 x∗2e−θx∗

+ a2(
πΔ1

2 − Δ1 − Δ2
)4
1

θ
(1 − εx∗) + · · · . (5.41)

Differentiating (5.22) four times gives

1

ε4

d4f

dx∗4 = −a4

ε3
e−ax∗ + · · · . (5.42)
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Comparing (5.41) and (5.42) suggests that the overlap domain must satisfy the conditions: εθ
2 x

∗2 � 1
and x∗2 � 1. It is obvious that

− a1/2π9/2 Δ
7/2
1

(2 − Δ1 − Δ2)
4

√
2εe

θΔ1
2ε ∼ −a4

ε3
. (5.43)

Finally, setting θ ∼ a + ε, we obtain the asymptotic relationship:

Δ1

ε
ea

Δ1
ε = a7(2 − Δ1 − Δ2)

8

2eπ9ε8
. (5.44)

The relationship (5.44) is obtained by matching the interior layer and boundary layer that requires
matching of the exponentially small term in (5.41) to the exponential term in (5.42). The exponentially
small term of the form e−θx∗ in (5.41) from interior layer is made more concrete. Indeed, (5.44) yields

Δ1(ε) ∼ −8ε log ε as ε → 0 (5.45)

which shows Δ1 � ε. The relationship between Δ1 and Δ2 will be obtained next in 4). Then, the values
of Δ1 and Δ2 can be determined explicitly.
4) Asymptotic solution near y = y2

In order to analyze the asymptotic behaviour near y = y2, we also introduce a variable transformation

η = y − 1 + Δ2

Δ2
, y ∈ [1 − Δ2, 1]. (5.46)

Letting f (y) = f (1 − Δ2 + ηΔ2) = f̃ (η), then, (5.10) becomes

ε̃f̃ iv + (f̃ f̃ ′′′ − f̃ ′ f̃ ′′) = 0, (5.47)

where ε̃ = ε
Δ2

. The boundary conditions to be satisfied by (5.47) are

f̃ (0) = 0, f̃ (1) = 1, f̃ ′(1) = 0, (5.48)

ε̃ → 0 as ε → 0, but there is no boundary layer near η = 1 (or y = 1), hence, (5.14) and (5.15) form a
regular perturbation problem. Setting ε̃ = 0, the reduced equation is

f̃ f̃ ′′′ − f̃ ′ f̃ ′′ = 0 (5.49)

satisfying the boundary conditions (5.48). The corresponding solution is

f̃ (η) = sin
π

2
η. (5.50)
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Since there is no boundary layer near the upper wall of the channel, we expand f̃ (η) at the point η = 0

f̃ (η) = π

2
η − 1

3!
(
π

2
η)3 + 1

5!
(
π

2
η)5 + O(ε̃). (5.51)

Then, expand (5.12b) at the turning point y2 = 1 − Δ2

f (y) ∼ −Λ sin
π

2 − Δ1 − Δ2
(y − (1 − Δ2))

= −Λ
πΔ2η

2 − Δ1 − Δ2
+ Λ

3!
(

πΔ2η

2 − Δ1 − Δ2
)3 − Λ

5!
(

πΔ2η

2 − Δ1 − Δ2
)5 + · · · . (5.52)

Comparing the linear term in (5.51) and (5.52): π
2 ∼ −Λ πΔ2

2−Δ1−Δ2
, then we can obtain

Λ ∼ −2 − Δ1 − Δ2

2Δ2
. (5.53)

From (5.36) and (5.53), the relationship between Δ1 and Δ2 is obvious:

Δ2

Δ1
= π

2a
. (5.54)

5.3 Asymptotic solution of type III

The numerical solution for type III in Fig. 5 shows that, as Re → ∞, the flow should consist of an
inviscid core and a thin boundary layer near the lower wall. Both transverse and streamwise velocities
rapidly decay and then the streamwise velocity rapidly increases near the lower wall for type III solution
while only streamwise velocity rapidly decays for types I and II solutions. Therefore, it is reasonable to
expect that the high Reynolds number structure of the flow can be determined by boundary layer theory
near the lower wall. Further, in this case we expect from numerical results that only two boundary
conditions at the upper wall (y = 1) are satisfied by the reduced problem. This makes the construction
much harder than that of type I solution. We expand k as (5.3) and f as follows:

f (y) = f0(y) + h0(η) + ε(f1(y) + h1(η)) + ε2(f2(y) + h2(η)) + · · · , (5.55)

where η = 1+y
ε

is a stretching transformation near the lower wall dimensionless height y = −1 and
hi(η), i = 0, 1, 2 · · · are boundary layer functions. By substituting (5.55) into (2.17), the boundary
conditions become

f0|y=1 = 1, f ′0|y=1 = 0, (5.56)

h0|η=0 = a − f0|y=−1, ḣ0|η=0 = 0, (5.57)

fi|y=1 = 0, f ′i |y=1 = 0, i = 1, 2, · · · , (5.58)

hi|η=0 = −fi|y=−1, ḣi|η=0 = −f ′i−1|y=−1, i = 1, 2, · · · , (5.59)
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where ḣ0 denotes the derivative of h0 with respect to η. Substituting (5.55) and (5.3) into (5.1) and
collecting the terms of O(1), we can obtain the equation of f0 (same as (5.7)):

f0f
′′
0 − f ′20 = k0, (5.60)

satisfying boundary conditions (5.56) (different from (5.4)). Similarly, collecting the terms of O(ε−2),
we can obtain the equation of h0:

...
h0 + (h0 + f0(−1))ḧ0 − ḣ0

2 = 0, (5.61)

satisfying boundary conditions (5.57).
One expression of f0 with the boundary conditions (5.56) is

f0 = cos(by − b), (5.62)

where b is an undetermined parameter and we denote f0(−1) = cos 2b as β. We shall determine β such
that (5.61) subject to boundary conditions (5.57) has a boundary layer solution. Usually, we request a
boundary layer function to tend to zero as η → ∞. However, for problem (5.61) with (5.57) such a
solution may not exist. A rigorous proof is highly nontrivial, we will report it in a forthcoming paper.
For the purpose of the construction of the first-order asymptotic solution here in the paper, it is enough
to request a boundary layer function h0(2/ε) → 0 (or much smaller than O(ε)) when ε is sufficiently
small. It is obvious that h0(η) = a−β and (a−β)e−βη are two solutions of (5.61), but the former is not
a boundary layer function and the latter does not satisfy (5.57). It is hardly possible, however, to obtain
any other explicit solution for the nonlinear (5.61) with (5.57). We thus make use of both analytic and
numerical tools to predict β.

Next, we shall show that β < 0 is impossible.

Proposition 5.1 Let h0(η) be a boundary layer function solution of (5.61) and (5.57) in [0, 2/ε), then
we can have:

(a) If h′′
0(η1) > 0 for some η1 � 0, then h′′

0(η) > 0 for all η � η1.

(b) There holds that h′
0(η) � 0 for all η � 0.

(c) There holds that h′
0(η) < 0 for all η > 0.

(d) There exists some η2 > 0 such that h′′
0(η) > 0 for all η � η2.

(e) β < 0 is impossible.

Proof. (a) Let h2(η) = h′′
0(η) for all η � 0, by (5.61), then h′

2 + (h0 + β)h2 = (h′
0)

2 � 0 for all η � 0,

which implies that
(
e
∫ η
η1

(h0(t)+β)dt
h2(η)

)′
� 0 for all η � η1. So we get e

∫ η
η1

(h0(t)+β)dt
h2(η) � h2(η1) =

h′′
0(η1) > 0 for all η � η1, which implies that h′′

0(η) = h2(η) > 0 for all η � η1.
(b) If not, that is, there exists some λ0 > 0 such that h′

0(λ0) > 0. Since h′
0(0) = 0, then there exists

some b ∈ [0, λ0) such that h′
0(b) = 0 and h′

0(η) > 0 for all η ∈ (b, λ0]. Then h′′
0(b) > 0. By the

result of part (a), then h′′
0(η) > 0 for all η � b, which implies that h′

0(η) is increasing in [b, 2/ε). So
h′
0(η) � h′

0(λ0) := σ > 0 for all η � λ0, which implies that h0(η)−h0(λ0) � σ(η−λ0) for all η � λ0.
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Since σ > 0, by taking η → 2/ε sufficiently large (or ε sufficiently small), then h0(2/ε) is large, and
then is in contradiction to a boundary layer function.

(c) If not, by the result of part (b), then there exists some λ1 > 0 such that 0 = h′
0(λ1) =

supη�0 h′
0(η), which implies that h′′

0(λ1) = 0. By the uniqueness theorem of solution to ODE, then
h0 = h0(λ1) [0, 2/ε), and then is in contradiction to a boundary layer function.

(d) If not, that is, h′′
0(η) � 0 for all η � 0, then h′

0(η) is non-increasing on [0, 2/ε). By the result of
part (c), then h′

0(η) � h′
0(1) < 0 for all η � 1, which implies that h0(η) − h0(1) � h′

0(1)(η − 1) for
all η � 1. Since h′

0(1) < 0, by taking η → 2/ε sufficiently large, then h0(2/ε) is negatively large, and
then is in contradiction to a boundary layer function.

(e) If not, that is β < 0, since h0(2/ε) is sufficiently small as ε is sufficiently small, then when
η < 2/ε is sufficiently large (say η > η3 > η2), we have β + h0(η) < 0 for all η > η3. From (5.61), we
have

h′′
0(η) = h′′

0(η3)e
− ∫ η

η3
(h0(t)+β)dt +

∫ η

η3

h′2
0 (s)e− ∫ η

s (h0(t)+β)dtds. (5.63)

We mark the right most term as B(η). Integrating (5.63) from η3 to η, we can obtain

h′
0(η) = h′

0(η3) + h′′
0(η3)

∫ η

η3

e
− ∫ x

η3
(h0(t)+β)dt

dx +
∫ η

η3

B(x)dx. (5.64)

Fixed η3, it is obvious that the first term at the right hand of (5.64) is a negative constant and the third
term is always positive. Since β + h0(η) < 0, by the results of parts (a) and (d), h′′

0(η3) > 0, then we

have h′′
0(η3)

∫ η

η3
e
− ∫ x

η3
(h0+β)dt

dx � h′′
0(η3)(η−η3). Hence, h

′
0(η) is sufficiently large as η is close to 2/ε,

then h0(2/ε) cannot be close to 0, in contradiction to a boundary layer function. �
Although we can prove β � 0, it is still difficult to determine β analytically. We thus determine

β numerically. Gradually increasing Re and comparing the type III numerical solution of (5.1) and
(2.17) for a given boundary condition value a with the solution of the reduced problem as in expression
(5.62), we can numerically estimate β. The results are summarized in Table 1. Then, it is obvious that

b = cos−1 β
2 . Then, we can solve the boundary layer (5.61) subject to (5.57) numerically. The numerical

results for h0(η) show that h0(η) → 0 as η → 2/ε. Finally, the asymptotic solution up to O(ε) is
f (y) = f0(y) + h0(η) + O(ε). This will be compared with the numerical solution in next section.

6. Comparisons of numerical and asymptotic solutions

Numerical solutions for (2.16) and (2.17) can be readily obtained by MATLAB boundary value problem
solver bvp4c. Comparisons of the asymptotic solutions and numerical solutions will be shown in the
following tables. To develop a better understanding of the accuracy of asymptotic solutions constructed
in Section 5, we also graphically show the streamwise velocity profiles f ′(y) or transverse velocity
profiles f (y) over different ranges of Reynolds numbers at some fixed asymmetric parameter.

Table 1 The numerical results of β at different given boundary condition values a for Re = 1500.

a 0.9 0.8 0.7 0.6 0.5 0.4 0.3

β 0.0889 0.0783 0.0672 0.0551 0.0417 0.0264 0.0079
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Table 2 Comparison between numerical and asymptotic results for f ′(y) at a = 0.5 with Re = 50,
Re = 75 and Re = 100.

f ′(y) Re = 50 Re = 75 Re = 100

y Numeric Asymptotic Numeric Asymptotic Numeric Asymptotic
-1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-0.8 0.4348 0.4342 0.4322 0.4324 0.4302 0.4304
-0.6 0.4015 0.4024 0.3976 0.3979 0.3955 0.3957
-0.4 0.3622 0.3629 0.3584 0.3587 0.3564 0.3566
-0.2 0.3186 0.3193 0.3151 0.3154 0.3134 0.3135
-0.0 0.2714 0.2720 0.2683 0.2686 0.2667 0.2669
0.2 0.2211 0.2215 0.2185 0.2186 0.2171 0.2172
0.4 0.1681 0.1684 0.1661 0.1662 0.1650 0.1651
0.6 0.1132 0.1134 0.1118 0.1119 0.1111 0.1111
0.8 0.0570 0.0571 0.0562 0.0563 0.0559 0.0559
1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Fig. 7. Comparison between numerical and asymptotic solutions for f ′(y) at a = 0.5 with Re = 50, Re = 75 and Re = 100. The
solid lines represent numerical solutions and the dashed lines show asymptotic solutions.

For the type I solution, we will make comparison between numerical and asymptotic solution for
f ′(y) so as to see the accuracy of the type I asymptotic solution constructed in (5.8). From Table 2,
it can be seen that the asymptotic solution is matched well with the numerical solution. Furthermore,
we graphically present the comparison in Figure 7, and see that the error between the numerical and
asymptotic solutions is decreasing with the increase of Re. Hence, the results are found to be in very
well agreement which indicates that the accuracy of the asymptotic solution is reliable.

For the type II solution, since the turning points y1 = −1+Δ1 and y2 = 1−Δ2 are unknown a priori,
getting the values of them is very important and difficult. We will contrast numerical and asymptotic
results at the turning points. The asymptotic relationships ofΔ1 andΔ2 are from (5.44) and (5.54). From
Table 3, it can be seen that the error between the numerical and asymptotic results of the turning points
is decreasing with the increase of Re and that Δ1 and Δ2 get smaller and smaller as Re increases. The
comparison of numerical and asymptotic solutions for the transverse velocity profiles is shown in Fig. 8
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Table 3 Comparison between numerical and asymptotic results for the turning points y1 = −1 + Δ1
and y2 = 1 − Δ2 at a = 0.8.

Re y1 = −1 + Δ1 y2 = 1 − Δ2

Numeric Asymptotic Numeric Asymptotic
100 -0.7449 -0.7315 0.5457 0.4728
200 -0.8263 -0.8227 0.6753 0.6519
400 -0.8914 -0.8921 0.7868 0.7959
600 -0.9203 -0.9202 0.8483 0.8434
800 -0.9363 -0.9363 0.8783 0.8750

Fig. 8. Comparison between numerical and asymptotic solutions for f (y) at a = 0.8 with Re = 200, Re = 400 and Re = 600.
The solid lines represent numerical solutions and the dashed lines show asymptotic solutions.

(where the asymptotic solutions are from (5.38), (5.12a) or (5.12b) and (5.50)) which also indicates that
the error between the numerical and asymptotic solutions is decreasing with the increase of Re. These
verify our constructing process of the type II asymptotic solution in previous section.

For the type III solution, we will compare the numerical solution with the type III asymptotic
solution. Because of the complexity of the boundary layer problem (5.61) and (5.57), we compute the
asymptotic solution f (y) = f0(y)+ h0(η)+O(ε) in the following way: f0(y) is obtained from (5.62) and
β or b is estimated from numerical solution of (5.1) and (2.17), and h0 is obtained numerically based on
solving (5.61) and (5.57). Table 4 shows the comparison between numerical and asymptotic solutions
for transverse velocity profiles at a fixed Reynolds number Re with different asymmetric parameters
a and Fig. 9 presents them at a fixed asymmetric parameter a with different large Reynolds numbers
Re. They all indicate that the asymptotic solution matches well with the numerical solution for large
Reynolds numbers.

7. Conclusion

In this article, we have considered the multiplicity and asymptotics of similarity solutions for laminar
flows in a porous channel with different permeabilities, in particular, flows permeating from upper wall
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Table 4 Comparison between numerical and asymptotic solutions for f (y) at Re = 800 with a =
0.652, a = 0.748 and a = 0.876.

f (y) a = 0.652 a = 0.748 a = 0.876

y Numeric Asymptotic Numeric Asymptotic Numeric Asymptotic
-1.0 0.6520 0.6520 0.7480 0.7480 0.8760 0.8760
-0.6 0.3489 0.3462 0.3590 0.3516 0.3711 0.3586
-0.4 0.4866 0.4838 0.4948 0.4880 0.5047 0.4933
-0.2 0.6131 0.6103 0.6194 0.6133 0.6271 0.6169
0.0 0.7255 0.7228 0.7301 0.7246 0.7356 0.7267
0.2 0.8212 0.8187 0.8242 0.8196 0.8279 0.8204
0.4 0.8981 0.8959 0.8998 0.8960 0.9019 0.8960
0.6 0.9543 0.9526 0.9550 0.9523 0.9560 0.9518
0.8 0.9885 0.9875 0.9887 0.9872 0.9889 0.9867
1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Fig. 9. Comparison between numerical and asymptotic solutions for f (y) at a = 0.8 with Re = 600, Re = 800 and Re = 1000.
The solid lines represent numerical solutions and the dashed lines show asymptotic solutions.

of the porous channel and exiting from the lower wall. We numerically show that there exist three
solutions designated as types I, II and III, type I solution extends over 0 � Re < ∞ and types II and
III solutions appear at a common point Re for a fixed asymmetric parameter a. The value of common
point Re is decreasing with the increase of a. Then, we rigorously prove that there exist three similarity
solutions. Meanwhile, the asymptotic solution for each of the three types of similarity solutions is
constructed for the most interesting and challenging high Reynolds number case and is also verified
numerically. For the type I solution, its streamwise velocity has an exponentially rapid decay. For the
type II solution, there are two turning points and its streamwise velocity also has an exponentially rapid
decay. For the type III solution, there exists an exponentially rapid change not only for its streamwise
velocity (decay and then increase) but also for its transverse velocity (decay). The reversal flow occurs
for both types II and III solutions.
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