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Abstract – Resonant inelastic X-ray scattering (RIXS) detects various types of high- and low-
energy elementary excitations in correlated solids, and this tool will play an increasingly important
role in investigations of time-dependent phenomena in photo-excited systems. While theoretical
frameworks for the computation of equilibrium RIXS spectra are well established, the development
of appropriate methods for nonequilibrium simulations is an active research field. Here, we apply
a recently developed nonequilibrium dynamical mean field theory (DMFT) based approach to
compute the RIXS response of photo-excited two-orbital Mott insulators. The results demonstrate
the feasibility of multi-orbital nonequilibrium RIXS calculations and the sensitivity of the quasi-
elastic fluorescence-like features and d-d excitation peaks on the nonequilibrium population of the
Hubbard bands.
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Introduction. – Resonant inelastic X-ray scattering
(RIXS) [1] is a powerful experimental tool for probing the
charge [2], spin [3–5], orbital [6,7] and lattice [8–10] degrees
of freedom in correlated solids. It is a photon-in, photon-
out technique, where the incoming photon with energy ωin
and momentum q⃗in excites an electron from a core level
into the conduction band. What is measured is the photon
emitted with energy ωout and momentum q⃗out, when the
excited electron or another one fills the core hole. A recent
development are time-resolved RIXS experiments [11–13],
which track the RIXS signal in a material driven out of
its equilibrium state by a laser pulse. Thanks to a high
time resolution, these measurements can reveal the inter-
play between spin, orbital, and lattice degrees of freedom
during the laser driving and relaxation dynamics.

The equilibrium RIXS amplitude I can be ob-
tained from cluster diagonalization and the Kramers-
Heisenberg formula [14,15] Iq⃗in,q⃗out

(ωin,ωout) =
1
π Im⟨ψ|(Hcl − E0− (ωin − ωout) − i0+)−1|ψ⟩, with |ψ⟩ =∑

m ei(q⃗in−q⃗out)·r⃗mD†
m(Hcl − E0 − ωin − iΓ)−1Dm|φ0⟩.

Here, Hcl is the Hamiltonian of the cluster (including core
levels), E0 is the energy of the ground state |φ0⟩, Dm is
the dipole transition operator for lattice site m, which can
also depend on the photon polarization and electron spin,
and Γ is a parameter determining the lifetime of the core
hole. These calculations capture the atomic multiplet

structure very well, but provide only a crude description
of the itinerant nature of the conduction electrons.

The nonequilibrium generalization of this cluster based
RIXS formalism has recently been formulated in ref. [15].
It is based on the measurement of the four-point correla-
tion function

Smn(t1, t2, t
′
1, t

′
2) = ⟨U(−∞, t′1)Dn(t′1)U(t′1, t

′
2)D

†
n(t′2)

×U(t′2, t2)Dm(t2)U(t2, t1)D
†
m(t1)U(t1,−∞)⟩, (1)

with U the time evolution operator, and has initially been
demonstrated for a noninteracting problem, where this
complicated correlation function can be explicitly calcu-
lated. The application of the method to interacting sys-
tems is numerically challenging, because of the difficulties
of measuring and storing Smn(t1, t2, t

′
1, t

′
2). It has been

successfully used to study a single-band Hubbard model
with additional core-hole potential on a small cluster [16],
but extensions of this approach to multi-orbital problems
will be extremely costly. Moreover, while a small cluster
may be sufficient for capturing the dynamics during the
RIXS process, finding a finite cluster that can accurately
represent the nonequilibrium dynamics over a longer pe-
riod of time after a pump laser excitation is challenging.
This difficulty may be overcome within a suitable embed-
ding framework.
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In a separate effort, a dynamical mean field theory
(DMFT) [17] based equilibrium RIXS formalism has been
developed in refs. [18,19]. In this scheme, the orbitals
near the Fermi level are replaced by an impurity problem
with a hybridization function derived from a DMFT cal-
culation. The advantage of this approach is that it can
treat the itinerant nature of the conduction electrons via
the DMFT construction. It thus allows one to compute
a fluorescence-like RIXS signal with a linear dependence
of ωloss = ωin − ωout on ωin. A current limitation of this
method is that it does not provide information on the
q⃗-dependence of the RIXS spectra.

In ref. [20] we showed how the DMFT based RIXS ap-
proach can be implemented on the real-time axis, and
thereby extended to nonequilibrium problems. The ba-
sic idea is to simulate the RIXS probe pulse explicitly
using nonequilibrium DMFT [21], and to measure a time-
dependent correlation function from which the number of
emitted photons can be obtained. We will use here an im-
plementation without rotating wave approximation, and
with the noncrossing approximation (NCA) [22,23] as im-
purity solver (for details, see ref. [20]), to investigate the
equilibrium and nonequilibrium RIXS spectra of the half-
filled an quarter-filled two-orbital Hubbard model in the
Mott insulating regime. In particular, we will show how
these spectra are modified by a short but strong photo-
doping pulse.

Model and method. – We consider a two-orbital
Hubbard model with a coupling to core levels. The lo-
cal (atomic) Hamiltonian reads

Hloc =
∑

α

Unα↑ nα↓

+
∑

σ

[(U − 2J)n1σn2σ̄ + (U − 3J)n1σn2σ]

+Ucdncnd +
∆

2
(nd − 2nc)− µ(nd + nc), (2)

where α = 1, 2 denotes the orbitals, σ =↑, ↓ denotes spin,
dασ and nασ are the corresponding annihilation and den-
sity operators, cσ and ncσ are the annihilation and density
operators for the core level, U is the intra-orbital interac-
tion, J is the Hund coupling, Ucd is the interaction with
the core level, and µ is the chemical potential. We use
the notations nd =

∑
α,σ nασ, nc =

∑
σ ncσ and intro-

duce a parameter ∆ to shift the core energy relative to
the d levels. To mimic the probe pulse, we add a dipolar
coupling between the core level and the first d-orbital1:
Hprobe = Eprobe(t)

∑
σ(d†

1σcσ + h.c.), with a field of the
form Eprobe(t) = Eprobefprobe(t−tprobe) sin(ωin(t−tprobe))
whose amplitude Eprobe is weak enough that the RIXS sig-
nal is quadratic in Eprobe, ωin is the incoming frequency
of the order of the c-d energy splitting, and f(t − tprobe)

1We assume that the polarization of the probe and the dipole
matrix elements are such that core electrons are only excited to
orbital 1. For simplicity the relevant matrix element is absorbed
into the field amplitude Eprobe.

is an envelope function centered at time tprobe. The
d-electrons hop between lattice sites with the kinetic term
Hkin =

∑
⟨i,j⟩,α,σ v(t)(d†

iασdjασ + h.c.). A time-dependent
modulation of the hopping parameter v with frequency
ωpump of the order of U , amplitude vpump and enve-
lope fpump will be used to “photo-excite” the system:
v(t) = v0+ vpumpfpump(t − tpump) sin(ωpump(t − tpump)).
While this modulation does not induce a current, as in the
case of a real electric field pulse [21], it provides an efficient
way of producing a nonthermal electron distribution. Fur-
thermore, to mimic the finite core-hole lifetime (parame-
ter Γ in the Kramers-Heisenberg approach), we couple a
fermionic bath with a box-shaped density of states (DOS)
to the core level.

We consider an infinite-dimensional Bethe lattice with
appropriately renormalized hopping amplitude, so that
the DMFT self-consistency gives a direct relation between
the impurity hybridization function Λν,µ,σ and the lo-
cal Green’s functions Gµ,ν,σ (with ν, µ = (1, 2, c)) [17]:
Λσ(t, t′) = V(t)Gσ(t, t′)V(t′). Here, the bold symbols
represent 3×3 matrices. We choose V11(t) = V22(t) = v(t)
and Vcc(t) = 0 (localized core level). The hybridization
function Λσ of the (equilibrium or photo-excited) lattice
system represents the environment of the probed site and
is not modified in the simulation of the RIXS process. The
RIXS probe pulse, however, introduces coherence between
the c and d1 orbitals, and produces nonzero off-diagonal
elements in Gσ.

The RIXS signal can be computed from the correla-
tion functions Dα,σ,σ′(t, t′) = −i⟨TCPασ(t)P †

ασ′ (t′)⟩ with
Pασ = c†

σdασ, see ref. [20] for details. In the following,
we will focus on the signal emitted by orbital α = 1, and
use v0 = 1 as the unit of energy (h̄/v0 as the unit of
time), which corresponds to a noninteracting lattice DOS
of bandwidth 4.

Results. – Half-filled system. We first consider a half-
filled two-orbital Hubbard model with U = 10, J = 2,
and Ucd = 3. Because of the Hund coupling, the dom-
inant atomic configurations in equilibrium are the half-
filled high-spin doublon states with one electron in each
orbital and parallel spins. The splitting between the Hub-
bard bands is U + J . We choose the parameters µ and
∆ such that i) the energies for d-electron addition and re-
moval (upper and lower Hubbard bands) are symmetric at
± 6, and ii) the core removal energy is2 Ecore = −20. For
model (2), condition i) implies that the electron addition
energy is E(3, 1)−E(2, 2) = 2U − 2J + 2Ucd + ∆

2 −µ ≡ 6,
while ii) implies E(2, 1)− E(2, 2) = 2Ucd −∆− µ ≡ −20.
Here, E(nd, nc) is the energy of the corresponding state
with filling nd and nc for the d and c orbitals, respectively.
These two conditions fix ∆ = 6.667 and µ = 19.33. The

2A realistic core level would be at much lower energy. We choose
a shallow core level to enable calculations with a time step ∆t = 0.01
that still resolve the short timescale h̄/|Ecore|. For larger Ecore, one
should write the core-valence Hamiltonian in the rotating wave ap-
proximation [20]. However, already for Ecore = 20, counter-rotating
terms yield only a small contribution.
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Fig. 1: Left panel: equilibrium spectral functions of the half-filled model with U = 10, J = 2, Ucd = 3, Ecore = −20. The
coupling to a fermion bath with box-shaped DOS from −25 to −15 (black lines) and coupling strength vbath = 1 [20] leads to
a broadening of the c-DOS. The main Hubbard bands in the d-DOS are at ± 6. The middle panel shows the local equilibrium
RIXS response, normalized by E2

probe, and the right panel the normalized local RIXS signal of the photo-doped system with
ωpump = 12 and tprobe − tpump ≈ 2.

corresponding equilibrium spectral functions are shown in
the left panel of fig. 1. Apart from the main Hubbard
bands, we recognize shoulder and satellite structures at
higher energies, which are associated with local spin ex-
citations (triplon insertion plus hopping to a neighboring
site, which leaves behind a low-spin doublon [24]).

The middle panel shows the equilibrium RIXS signal
IRIXS extracted from the D1,σ,σ′ correlation functions,
summed over the spin channels, and normalized by E2

probe.

The probe pulse has an envelope fprobe(t) = exp(−t2/2),
corresponding to a width of ∆t ≈ 2 (and hence to an
energy resolution of about ∆E ≈ 1

4), and an ampli-
tude Eprobe = 0.05, which is well within the perturbative
regime where IRIXS ∝E2

probe. The signal exhibits a single
strong peak at ωin − |Ecore| ≈ 3, which is associated with
processes where a core electron is excited into the upper
Hubbard band and decays back. Without the core-valence
interaction Ucd, the corresponding energy would be given
by the electron insertion into the dominant subband of
the upper Hubbard band at ωin − |Ecore| ≈

U+J
2 = 6,

but because of the core hole interaction, it is shifted
to ≈ U+J

2 − Ucd = 3. Although it is not very clear
on the scale of the plot, the signal peaks at a value of
ωout which is almost independent of ωin within an energy
range approximately equal to the width of the Hubbard
band. This implies that ωloss = ωin − ωout is approxi-
mately proportional to ωin in the corresponding energy
range, i.e., kinetic energy is transmitted to other elec-
trons during the RIXS process (fluorescent line). In ad-
dition, we see a very weak signal at ωout − |Ecore| ≈ −9,
corresponding to ωloss ≈ U + J . This signal originates
from a RIXS process that leaves a singlon-triplon pair in
the system after the core hole is filled (d-d excitation).
The energy of U + J corresponds to the energy differ-
ence E(3, 2) + E(1, 2)− 2E(2, 2) between two sites with a
singlon-triplon pair and two sites in their ground state.

The right panel of fig. 1 shows IRIXS/E2
probe of

the photo-doped system. Here, a few-cycle hopping
modulation is applied to generate a substantial density of
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Eprobe(t)

(v(t)-v0)/10
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Fig. 2: Evolution of the density of triplons (red line) induced
by a short hopping modulation pulse (blue line). The state of
the system immediately after the pulse is probed by a RIXS
pulse (green line, here for ωin = |Ecore|). The violet curve is
proportional to the photon count (for ωout = |Ecore|).

singlons and triplons, before the RIXS spectrum is probed.
Figure 2 shows the evolution of the triplon probability,
p(triplon) = ⟨n1↑ n1↓ n2+n1n2↑ n2↓ −4n1↑ n1↓ n2↑ n2↓ ⟩, with
nα = nα↑ + nα↓ , which is initially very low, because the
system is predominantly in half-filled high-spin states with
one electron per orbital. During the hopping modulation
pulse with frequency ωpulse = U +J (blue line), the triplon
population increases even beyond the infinite temperature
value of 14, while the probability of high-spin doublons de-
creases from 0.99 to 0.17. Due to particle-hole symmetry,
there is a corresponding increase in the density of singlons.
The RIXS probing pulse, which partially overlaps with
the pump pulse, measures the system immediately after
the pump excitation (time delay tprobe − tpump ≈ 2). We
have also measured the RIXS spectrum after a longer time
delay tprobe− tpump ≈ 4, and obtained an almost identical
result. This can be explained by the fact that the transfer
of kinetic energy to local spin excitations occurs quickly

57005-p3
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(during the pump pulse) [25], while the life-time of the
singlons and triplons in this large-gap insulator is orders
of magnitude longer than our simulation times [26].

As we can see in the right panel of fig. 1, the photodop-
ing generates several prominent new peaks in IRIXS with
ωloss ≈ 0 (diagonal), and several weaker peaks correspond-
ing to d-d excitations with ωloss > 0 (lower-right triangle)
and to d-d de-excitations with ωloss < 0 (upper-left tri-
angle). The presence of high- and low-spin doublons in
the photo-doped system now leads to three quasi-elastic
features associated with doublon-to-triplon excitations, at
energies E(3, 1) − E(2, 2) = 3, 3 − J = 1, 3 − 3J = −3.
The new quasi-elastic peaks at ωin,out − |Ecore| ≈ −6, −4
and 0 correspond to RIXS processes where an electron
is excited from the core level to a singlon, and eventu-
ally decays back. The peak near −6 can be associated
with an intermediate high-spin doublon state (e.g., |↑, ↑⟩),
the peak near −4 with an intermediate low-spin doublon
state with one electron in each orbital (e.g., |↑, ↓⟩), and
the peak near 0 with an intermediate doublon state with
a doubly occupied and an empty orbital (e.g., |0, ↑↓⟩). In-
deed, since the Ucd- and µ-contributions to the local en-
ergy do not change in these processes, the corresponding
excitation energies E(2, 1)−E(1, 2) are U−3J + 3

2∆ = 14,
U − 2J + 3

2∆ = 16 and U + 3
2∆ = 20, which upon

subtraction of |Ecore| yields the observed peak positions.
The excitation of a core electron to a triplon state pro-
duces a change in the Ucd contribution, and the cor-
responding excitation energy E(4, 1) − E(3, 2) becomes
3U − 5J − 2Ucd + 3

2∆ = 24. Hence, these excitations
explain the prominent peak at ωin,out− |Ecore| ≈ 4, which
partially overlaps with the peak at ≈ 3 corresponding to
excitations to doublon states. The latter is substantially
weaker in the photo-doped system than in equilibrium,
because the high-spin doublon states no longer dominate.
There is also a small density of empty sites in the photo-
doped state, which results in a weak quasi-elastic feature
near E(1, 1)−E(0, 2) = 13, i.e., ωin,out− |Ecore| ≈ −7. We
summarize the different quasi-elastic features in the half-
filled equilibrium and photo-doped systems in table 1.

The weaker RIXS features on the ωloss > 0 side (lower-
right triangle) can be associated with processes involv-
ing the neighboring sites. For example the small peak at
ωin − |Ecore| ≈ −4, ωout − |Ecore| ≈ −6 can be explained
by a process where a singlon is converted into a low-spin
doublon with interaction energy U−2J , which is then (via
a second-order hopping process) flipped into a high-spin
doublon with energy U − 3J , before an electron decays to
fill the core hole: (|0, ↓⟩| ↑↓⟩)

ωin−−→ (|↑, ↓⟩|↓⟩)
ex
−→ (|↑, ↑⟩|↓⟩)

ωout−−−→ (|0, ↑⟩|↑↓⟩), where the configurations (|d⟩|c⟩) indi-
cate the valence (|d⟩) and core (|c⟩) configurations on the
probe site. The energy loss ωloss ≈ J is either converted
into a local spin excitation on the neighboring site, or
converted into kinetic energy. Similarly, the feature at
ωin − |Ecore| ≈ 0, ωout − |Ecore| ≈ −6 corresponds to
an intermediate state with energy U (doublon with both

Table 1: Energies ωin,out−|Ecore| of the quasi-elastic features in
the half-filled and quarter-filled system. The left (right) num-
ber in the brackets indicates the filling of the d (c) orbital. 2h

denotes the high-spin doublon state, and 2 the three different
types of doublons.

Relevant transitions Half-filled Quarter-filled

Equilibrium:
(2h, 2)↔ (3, 1) 3
(1, 2)↔ (2, 1) −1, 1, 5

Photo-doped:
(0, 2)↔ (1, 1) −7 −2
(1, 2)↔ (2, 1) −6,−4, 0 −1, 1, 5
(2, 2)↔ (3, 1) −3, 1, 3 2, 6, 8
(3, 2)↔ (4, 1) 4 9

electrons in the same orbital). The much weaker feature
at ωin − |Ecore| ≈ 0, ωout − |Ecore| ≈ −4 indicates that
the states involved in the corresponding second-order pro-
cesses are less populated or characterized by weaker ex-
change couplings.

d-d excitation peaks at ωin − |Ecore| ≈ 3 are related
to excitations of a core electron to a high-spin doublon
state (see table 1). The resulting triplon can hop to a
neighboring site, leaving behind doublons in various con-
figurations. The decay to a singlon plus filled core hole
then produces photons at ωout − |Ecore| ≈ 0, −4, −6. In
the photo-doped state, the intermediate step (hopping of
triplon) is aided by the presence of low-spin doublons on
neighboring sites, which reduces the amount of kinetic en-
ergy that needs to be absorbed or emitted. Alternatively,
the triplon can change its configuration in a second-order
process and then decay to a low-spin doublon plus a filled
core hole. In this case, the emitted energy peaks around
ωout − |Ecore| ≈ 3 − J = 1 and ≈ 3 − 3J = −3, while the
intermediate step is again aided by the presence of neigh-
boring low-spin doublons. The superposition of these two
series of peaks explains the observed loss features. Note
that the peak at ωout−|Ecore| = −9, which appeared in the
equilibrium spectrum, becomes very weak in the photo-
doped state. This is because pairs of neighboring high-spin
doublons are unlikely in the photo-doped system.

We next turn our attention to the features in the
upper-left triangle, corresponding to ωloss < 0. In a
photo-doped system, energy can be gained in processes
involving singlon-triplon recombination or local state tran-
sitions. The gain features at ωin − |Ecore| ≈ −6 and
ωout − |Ecore| ≈ −4, 0, as well as ωin − |Ecore| ≈ −4 and
ωout − |Ecore| ≈ 0 can be explained as energy absorptions
of J , 2J and 3J from local state transitions in second-
order hoppings between neighboring doublons. These
become possible because low-spin doublons are already
present before the RIXS pulse. The strong feature near
ωout − |Ecore| ≈ 3 and ωin − |Ecore| between −4 and −3

57005-p4



Nonequilibrium-DMFT based RIXS investigation of the two-orbital Hubbard model

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-30 -20 -10  0  10  20

A
(ω

)

ω

d orbitals
c level

-6 -4 -2  0  2  4  6  8  10

ωin - |Ecore|

-6

-4

-2

 0

 2

 4

 6

 8

 10

ω
o

u
t -

 |
E

co
re

|

 0

 0.5

 1

 1.5

 2

-6 -4 -2  0  2  4  6  8  10

ωin - |Ecore|

-6

-4

-2

 0

 2

 4

 6

 8

 10

ω
o
u
t -

 |
E

co
re

|

 0

 0.2

 0.4

 0.6

 0.8

 1

Fig. 3: Left panel: equilibrium spectral functions of the quarter-filled model with U = 10, J = 2, Ucd = 3, Ecore = −20. The
coupling to a fermion bath with box-shaped DOS from −25 to −15 (black lines) and coupling strength vbath = 1 [20] leads to a
broadening of the c-DOS. The lower Hubbard band (singly occupied sites) in the d-DOS is at −2, while the upper Hubbard band
(doubly occupied sites) has three subbands at energies 2, 4 and 6. The middle panel shows the local equilibrium RIXS response,
normalized by E2

probe, and the right panel the normalized local RIXS signal of the photo-doped system with ωpump = 10 and
tprobe − tpump ≈ 2.

originates from emission processes that leave behind a
high-spin doublon state. The initial state is either a dou-
blon with local energy U (ωin− |Ecore| ≈ −3) or a singlon.
In the latter case, the doublon state after the RIXS excita-
tion has local energy U−2J (hence ωin−|Ecore| ≈ −4), and
before the de-excitation, a triplon hops in from a neigh-

boring site: (|0, ↓⟩|↑↓⟩)
ωin−−→ (|↑, ↓⟩|↓⟩)

hop
−−→ (|↑↓, ↑⟩|↓⟩)

ωout−−−→ (|↓, ↓⟩|↑↓⟩). Again, such processes become possible
because singlons and triplons are present with high prob-
ability in the photo-doped system.

Quarter-filled system. As a second example, we con-
sider the quarter-filled two-band model with U = 10,
J = 2, Ucd = 3, Ecore = −20, which has a very differ-
ent equilibrium DOS, as illustrated in the left panel of
fig. 3. Here, in order to place the core level at −20, and
the highest energy subband of the upper Hubbard band
at 8, we choose the electron removal and addition energies
as −µ+Ucd−∆ ≡ −20 and −µ+2Ucd+U + ∆

2 ≡ 8, which
gives ∆ = 10 and µ = 13. With this choice, the lower Hub-
bard band (representing singly occupied states) is centered
at ≈ −2, and the subbands of the upper Hubbard band
(corresponding to high-spin and low-spin doublon states)
at ≈ 2, 4, and 8, see left panel of fig. 3. In the atomic
limit, the energy of creating a high-spin doublon becomes
E(2, 1)−E(1, 2) = U−3J + 3

2∆ = 19, and that of creating
a low-spin doublon with electrons in different orbitals (the
same orbital) U − 2J + 3

2∆ = 21 (U + 3
2∆ = 25). Hence,

in the equilibrium RIXS spectrum we expect dominant
features around ωin/out − |Ecore| ≈ −1, 1, 5, which are
associated with the creation and decay of these different
types of doublons. This is indeed approximately the case,
as shown in the middle panel of fig. 3. Again, the horizon-
tal elongation of these dominant features indicates energy
loss through scattering within a given Hubbard-subband,
and hence a fluorescence-like behavior.

Because the energy gaps are smaller than in the half-
filled case, prominent d-d excitation peaks are visible

already in the equilibrium RIXS spectrum. These en-
ergy loss features appear near ωout − |Ecore| ≈ −2 and
−1. The signal at −2 can be associated with the transi-
tion from a singly occupied d site with core hole to an
empty d site with filled core hole. This type of emis-
sion occurs in processes that leave behind a doublon-hole
pair in the singly occupied background: (1, 2)(1, 2)

ωin−−→

(2, 1)(1, 2)
hop
−−→ (1, 1)(2, 2)

ωout−−−→ (0, 2)(2, 2). Here, the
two brackets correspond to neighboring sites, the first en-
try to the d occupation and the second entry to the c
occupation. The first arrow represents the excitation by
the probe pulse, the last arrow the de-excitation, and the
middle arrow a hopping process, which costs an energy
∆E = Ucd−nJ , where n depends on the specific doublon
configuration. In the case of the signal at−2, this energy is
absorbed from the system (e.g., from the kinetic energy of
the carriers) and does not show up in ωout. If on the other
hand, we combine the last two processes above into a sin-
gle “hopping plus emission” process, the energy ∆E must
be subtracted from ωout, which explains the weaker signals
at ≈ −2 − Ucd = −5 and −2− (Ucd − J) = −3. Photons
with ωout − |Ecore| ≈ −1 are emitted by the de-excitation
of a high-spin doublon. For example, the peak around
ωin− |Ecore| ≈ 5 and ωout− |Ecore| ≈ −1 originates from a
RIXS process where the incoming pulse creates a low-spin
doublon with interaction energy U , which in an interme-
diate step is converted into a high-spin doublon. This in-
termediate step releases an energy ∆E = 3J = 6, which is
converted into kinetic energy or additional doublon-holon
excitations via the Hund-excitation analogue of impact
ionization [27].

The right-hand panel of fig. 3 shows the RIXS spec-
trum after a photo-doping pulse. Here, we use the same
set-up as illustrated in fig. 2, but with a pump pulse fre-
quency ωpump = U . As in the case of the half-filled system,
the photo-doping results in additional peaks on the diag-
onal (quasi-elastic processes), as well as new gain and loss

57005-p5



Philipp Werner et al.

 0

 0.03

 0.06

 0.09

 0.12

 0.15

 0  2  4  6  8  10
t

p(doublon,U)
p(doublon,U-2J)
p(doublon,U-3J)

p(triplon)

-6 -4 -2  0  2  4  6  8  10

ωin - |Ecore|

-6

-4

-2

 0

 2

 4

 6

 8

 10

ω
o
u
t -

 |
E

co
re

|

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

-6 -4 -2  0  2  4  6  8  10

ωin - |Ecore|

-6

-4

-2

 0

 2

 4

 6

 8

 10

ω
o
u
t -

 |
E

co
re

|

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

Fig. 4: Top panel: time evolution of the doublon and triplon
probabilities in the photo-doped quarter-filled system. Here,
we label the type of doublon by the corresponding local energy.
Bottom panels: time-dependent change in IRIXS/E2

probe. The
left panel shows the difference for probe pulses centered at
tprobe = 4.5 and 3.5 and the right panel the difference for probe
pulses centered at tprobe = 5.5 and 4.5.

features in the upper-left and lower-right triangle. The
most prominent new peak appears at ωin,out ≈ −2. This
feature corresponds to the excitation of a core electron
to an initially empty site, and the decay of this electron
back to the core. Indeed, the corresponding excitation
energy is E(1, 1) − E(0, 2) = Ucd + 3

2∆ = 18, so that
ωin,out − |Ecore| = −2. There are also doublons in the ini-
tial photo-doped state. Electron addition to a high-spin
doublon yields E(3, 1)−E(2, 2) = 2U − 2J −Ucd + 3

2∆ =
28. Hence, three features on the diagonal at energies
ωin,out− |Ecore| ≈ 8, 8− 2J = 6, 8− 3J = 2 can be associ-
ated with the creation and decay of triplons (table 1). The
prominent peak near ωin,out − |Ecore| ≈ 9 has a different
origin: it can be associated with the creation and decay
of quadruplons (addition of a core electron to a triplon),
since E(4, 2)− E(3, 2) = 3U − 5J − 2Ucd + 3

2∆ = 29. In-
deed, our photo-doping pulse is strong enough that it not
only creates doublons, but also a non-negligible density of
triplons, see the top panel of fig. 4.

The features associated with d-d excitations (ωloss > 0)
in the equilibrium spectrum get weaker in the photo-doped
state, because the corresponding initial states (singlons)
are less probable, and the production of doublon-hole pairs
is suppressed if there is already a high density of doublons
and holons in the system. A closer inspection further re-
veals that the dominant loss peak near ωin − |Ecore| ≈ 1
seems to have shifted to a lower energy. We interpret this
peak as a holon-assisted feature. The RIXS pulse creates
a low-energy doublon, which is converted into a singlon
with the help of a neighboring holon. In this case, the in-
termediate step releases ∆E = Ucd−(U−3J) = −3, which
can be converted into kinetic energy or Hund excitations.

The filling of the core hole from a singlon then emits light
with ωout − |Ecore| ≈ −2.

Gain features with ωloss < 0 can be associated with dou-
blon or triplon assisted intermediate processes. For exam-
ple, the peak at ωin − |Ecore| ≈ −2 and ωout − |Ecore| ≈ 5
corresponds to the creation of a singlon on an empty site
by the RIXS pulse. This singlon is then converted into a
low-spin same-orbital doublon through electron exchange
with a neighboring doublon. This doublon subsequently
decays into a singlon by filling the core hole. Energy is
gained in this process from the recombination of a pump-
induced doublon-hole pair. There are additional signals
at the same ωout from processes with ωin − |Ecore| ≈ −1
and 1 (one of them overlapping with the former peak).
Here, a high-spin or low-spin (two-orbital) doublon is cre-
ated by the RIXS pulse and converted into a same-orbital
doublon via a second-order hopping process with a neigh-
boring doublon. In this case, energy is gained from local
state transitions (Hund de-excitations) of photo-induced
doublons. The gain features with ωout − |Ecore| ≈ 8 on
the one hand originate from triplon assisted processes. In
this case, a doublon is created by the RIXS pulse near
ωin ≈ −1, 1, 5 and converted into a triplon by the hopping
of a neighboring triplon. On the other hand, RIXS pulses
can produce triplons from low-spin doublons at ωin ≈ 2,
6. The decay of the triplon into a high-spin doublon
plus filled core hole emits radiation at ωout − |Ecore| ≈ 8.
Note that there are no apparent gain features associ-
ated with the peak at ωout − |Ecore| ≈ 9. Such features
would require the generation of quadruplons as intermedi-

ate states, (2, 2)
ωin−−→ (3, 1)

hop
−−→ (4, 1)

ωout−−−→ (3, 2), which is
very unlikely if the density of photo-doped quadruplons is
small.

Finally, we illustrate in the bottom panels of fig. 4 the
ultrafast evolution of the RIXS signal after the photo-
doping pulse in the quarter-filled system. The left panel
shows the difference between the signals measured with
probe pulses centered at tprobe = 4.5 and 3.5, and the right
panel the difference of the signals for tprobe = 5.5 and 4.5.
We see that the quasi-elastic signals at ωin,out ≈ −2 and
9 increase, which indicates that the probability of holes
and triplons in the system continues to increase after the
pump at least until t ≈ 4.5. This is directly confirmed
in the top panel, which plots the evolution of the triplon
population (the population of holes similarly increases).
Also the quasi-elastic features associated with high-spin
(U − 3J) and low-spin both orbital (U − 2J) doublons at
ωin,out ≈ 8 and 6 gain some weight. This observation is
again consistent with the direct measurement of the corre-
sponding doublon populations in the upper panel. On the
other hand, the quasi-elastic signal and the gain and loss
features near ωin ≈ 2 are suppressed, which indicates that
RIXS processes involving low-spin same-orbital (U) dou-
blons become less likely with increasing pump-probe delay.
Indeed, these are the doublons created predominantly by
the resonant pump pulse with ωpump = U , and they decay
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into the lower-energy doublons through scattering events
(see red line in the upper panel). This example shows how
the analysis of the time-resolved RIXS signal allows to ex-
tract information on the evolution of the different local
state populations during and after the photo-excitation.

Conclusions. – We have calculated the equilib-
rium and nonequilibrium RIXS spectra of the half-filled
and quarter-filled two-orbital Hubbard model using a
nonequilibrium-DMFT based formalism. The main idea
behind this scheme is to avoid the computation and
storage of four-time correlation functions by explicitly
simulating the RIXS excitation pulse and measuring the
self-energy of the emitted photons. This paper provides
a proof of principle and demonstrates the feasibility of
this approach in a multi-orbital context. We showed that
our method captures d-d excitations as well as fluores-
cent lines in equilibrium, similar to the DMFT based
studies employing a configuration-interaction solver and
the Kramers-Heisenberg formalism [16,17]. After a strong
photo-excitation, we observed additional peaks in the
RIXS signal associated with the presence of photo-doped
charge carriers, as well as new or modified gain and loss
features connected to intermediate states and transitions
involving these photo-carriers. We furthermore demon-
strated how time-dependent changes in the RIXS spec-
trum can be tracked by shifting the probe pulse relative
to the pump and how they reveal the evolution of different
local states.

Our current implementation lacks momentum resolu-
tion and involves a certain number of approximations. For
example, the core-hole lifetime is controlled by an elec-
tron bath coupled to the core level. As shown in ref. [20],
this is essentially equivalent to the use of the life-time
parameter Γ in previous equilibrium [16,17] and nonequi-
librium [14,19] RIXS studies. Potentially more severe is
the use of the NCA in the solution of the DMFT impu-
rity model and the calculation of the photon self-energy.
While qualitatively correct results can be expected in the
Mott regime [20], systematic tests with beyond-NCA ap-
proaches will be needed to fully understand the implica-
tions of this approximation on the RIXS signal. It is also
important to point out that while we have used here an
implementation with explicit core level and classical light,
there also exist alternative nonequilibrium DMFT imple-
mentations where the core level is shifted to Ecore = −∞,
or where the outgoing photons are treated quantum me-
chanically [20]. Testing these alternative implementations
on multi-orbital Hubbard models will be an interesting
topic for future investigations.
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