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ABSTRACT. We prove the existence of a family of blow-up so-
lutions of a mean field equation on a flat torus. The solutions
blow up at two points where the critical values (modulo transla-
tions) of Greenś function are attained. Moreover, the solutions
we build are evenly symmetric about both axes.

1. INTRODUCTION

In this paper, we consider a mean field equation on the flat Torus T 2 with funda-
mental domain [− 1

2 ,
1
2]× [−

1
2 ,

1
2], that is,

(1.1) ∆u+ ρ




eu∫

T 2
eu
− 1


 = 0.

This equation arises from Onsager’s vortex theory. Also, it appears as a limiting
case of the Chern-Simons gauge theory (see [21]).

One may consider the more general form of the equation on a compact Rie-
mannian surface M without boundary:

(1.2) ∆u+ ρ




heu∫

M
heu

− 1
|M|


 = 0,

where h ∈ C∞(M) is a positive potential function and |M| is the total area of the
surface M .
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Equations of type (1.2) have been broadly studied by various authors. For
details, see [2, 4, 8, 10, 16, 18, 20] and the references therein. Most recently, the
second author and Moradifam in [13] proved the one-dimensional symmetry of
the solutions if the problem is considered on the torus Tε with fundamental do-
main [− 1

2ε ,
1
2ε ] × [−

1
2 ,

1
2] provided that ρ ≤ 8π . They developed a brand new

tool named “the sphere covering inequality” (see [12]) to study mean field equa-
tions and related problems. In particular, if we consider the case of T 2 with the
fundamental domain being a square (the case when we take ε = 1), the solution
must be a constant. They also proved the even symmetry of the solution if the po-
tential h is evenly symmetric when ρ ≤ 8π . The even symmetry of the solutions
can be extended to the case ρ ≤ 16π when we assume further that the solution
has critical points at the origin and the diagonal point (−1/(2ε), 1

2).
It is well known that the solution set of equation (1.2) is compact if ρ ≠ 8πN.

Brezis and Merle in [3] first showed that the sequence of the solutions of the
precribed Gauss curvature problem, that is,

−∆u = heu in Ω ⊂ R2,

u = 0 on ∂Ω,

is bounded locally or goes to −∞ uniformly over compact subsets, or there exists
a blow-up set which consists of discrete points such that the solution goes to +∞
in the blow-up set and goes to −∞ otherwise. Moreover, in the latter case, it is
shown that hneun →

∑m
i=1αiδai . Later, Li and Shafrir in [15] obtained the exact

value of αi, that is, αi = 8π . Below, we cite a theorem in [14] concerning the
blow-up solutions of equation (1.1).

Proposition 1.1. Let un be a blow-up sequence of solutions of the equations

∆un + ρn




eun∫

M
eun

− 1
|M|


 = 0,

∫

M
eun = 1.

where ρn → 8πm with m ∈ N. Assume that max
M
|un| → ∞. Then, after passing to

a subsequence, there existm distinct points a1, a2, . . . , am, andm sequences of points
ani → ai, 1 ≤ i ≤m, such that the following hold:

(a) un → −∞ uniformly on any compact subset of M \ {a1, a2, . . . , am}.
(b) un(a

n
i )→ +∞ for each 1 ≤ i ≤m.

(c) In C
2
loc(M \ {a1, a2, . . . , am}),

un −un → 8π
m∑

i=1

G(·, ai),
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where un is the average of un on M and G(x,y) is Green’s function of the
Laplace-Beltrami operator of the manifold M ; that is, G(x,y) satisfies the
equation

−∆xG(x,y) = δy −
1
|M| in M,

∫

M
G(x,y)dx = 0 for all y ∈ M.

Consequently,

ρn∫

M
eun

eun → 8π
m∑

i=1

δai in the sense of measure.

In this paper, we construct blow-up solutions whose behavior is predicted by
Proposition 1.1. In particular, we consider the solutions which are evenly symmet-
ric about the x1 and x2 axes and blow up at exactly two points ξ1 and ξ2 provided
that ρn → 16π , that is, the case when m = 2. The blow-up pair (ξ1, ξ2) is fixed
to be one of the following three choices:

ξ1 = (0,0), ξ2 =
(

1
2
,0
)

;

ξ1 = (0,0), ξ2 =
(

0,
1
2

)
;

ξ1 = (0,0), ξ2 =
(

1
2
,
1
2

)
.

Let us also mention about the case m = 1, that is, when we have only one
blow-up point. Lin and Lucia in [17] proved the following result.

Proposition 1.2. Let T 2 be the flat torus whose fundamental domain is the unit
square. For any sequence (ρn, un) with

∆un + ρn




eun∫

T 2
eun

− 1


 = 0,

and un 6≡ 0 for all n, and ρn ց 8π , we have

lim inf
ρn→8π

‖∇un‖L2 = ∞.

The existence of nontrivial solutions of equation (1.1) is proved by Struwe
and Tarantello [24] using the mountain pass argument when ρ ∈ (8π,4π2).
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Combining their result with Proposition 1.2, we can conclude that the mountain
pass solutions must blow up as ρ → 8π . Ricciardi and Tarantello in [23] showed
that the nontrivial one-dimensional solutions of (1.1) exist if and only if ρ > 4π2.
Note that the construction approach also works for m = 1. If we fix the blow-
up point at the origin and assume that the solutions are symmetric about both
x1 and x2 axes, the same type of blow-up solutions can be obtained using the
Lyapunov-type reduction as in this paper.

The construction of blow-up solutions is partially motivated by the work of
Chen and Lin (see [5]). They first built a class of approximate solutions by gluing
the standard solutions (also called the bubbles) and Green’s function together.
The locations of the bubbles are given by the critical points of a function relating
h and Green’s function. They also discovered the equations that govern the scales
of these bubbles. Furthermore, they proved that all possible blow-up solutions
should belong to the above mentioned class. Finally, they were able to compute
the topological degree of equation (1.2) which turns out to be a quantity that is
only dependent on the topological index of the Riemann surface M . However, in
their paper they made an essential assumption, that the function

fh(p1, p2, . . . , pm) =
∑

j

[
logh(pj)+ 4πR(pj)+

∑

l≠j

8πG(pj , pl)
]
,

where (p1, p2, . . . , pm) ∈ Mm and R(x) denotes the diagonal of the regular part
of Green’s function, is a Morse function while proving the existence of the blow-up
solutions. In the case of T 2 and h ≡ 1, fh is no longer a Morse function because
of the translation invariance of Green’s function. Thus, the existence in this case
is not clear solely by the result of Chen and Lin. Esposito and Figueroa in [10]
successfully generalized Chen and Lin’s existence result to “stable” critical points
of fh. In their notion, a critical set D of fh is stable if any C1 perturbation of fh
still admits a critical point in a neighborhood of D. Not surprisingly, the critical
set of G(x,y) is not stable if we consider the Green’s function as a function on
T 2 × T 2.

This paper is organized as follows. In Section 2, we state the main result and
some preliminaries. In Section 3, we construct an approximate solution and get
some useful estimates. Section 4 is devoted to the proof of the invertibility of the
linearized operator. In Section 5, we reduce the problem to one of finding the
scale of bubbles. In Section 6, we solve the reduced problem, that is, find the scale
λ in terms of the parameter ρ.

2. MAIN RESULT AND PRELIMINARIES

Before we state the main result, let us first introduce Green’s function G(x,y) of
−∆ on T 2:

∆xG(x,y) = δy − 1 in T 2,
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and ∫

T 2
G(x,y)dx = 0 for all y ∈ T 2.

We also define the regular part of Green’s function to be

R(x,y) = G(x,y)+ 1
2π

log |x − y|,

and abuse the notation a little bit to define R(x) = R(x,x) as the diagonal of
R(x,y).

Actually, Green’s function of T 2 is sometimes written as G(z) where z =
x − y . Here, we consider x,y, z as complex numbers. We cite the explicit
formula of G(z) in terms of the doubly periodic function from Chen and Oshita’s
paper [7], as follows.

Lemma 2.1. Green’s function G(z) on T 2 is given as follows:

G(z) := Im

(
|z|2 − z2

−4i
− z

2
+ i

12

)

− 1
2π

∣∣∣(1− e(z))×
∞∏

n=1

(1− e(ni+ z))(1− e(ni− z))
∣∣∣,

where e(z) = e2πiz.
Furthermore, we also have a formula for the regular part R(z):

R(z) := − 1
2π

log
∣∣∣∣e
(
z2

4i
− z

2
+ i

12

)
1− e(z)

z

×
∞∏

n=1

(1− e(ni+ z))(1− e(ni− z))
∣∣∣∣+

|z|2
4
.

Chen, Lin, and Wang [6] obtained some significant information on the criti-
cal points of G(z), and we also calculate the second derivatives of R(z) at z = 0,
as follows.

Lemma 2.2. Green’s function G(z) has three non-degenerate critical points: z =
1
2 , z = i/2, and z = 1

2 + i/2. Among them, the first two critical points are saddle
points, and the third one is a minimum.

Furthermore, we also calculate the second derivatives of the regular part R(z) of
Green’s function, that is,

∇2R(z)
∣∣
z=0 =




1
2

0

0
1
2


−




1
2
− π

6
+ 4πq 0

0 −1
2
+ π

6
− 4πq


 ,
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where

q =
∞∑

n=1

e−2πn

(1− e−2πn)2
.

Remark 2.3. Chen, Lin, and Wang [6] also showed that Green’s function
G(z) is evenly symmetric about the x1 and x2 axes, and so also is the regular part
R(z). Thus, we have ∇R(z)|z=0 = 0.

We seek for blow-up solutions that are evenly symmetric about x1 and x2 axes
as ρ → 16π .

Theorem 2.4. Let ε ∈ (0, ε0) for some ε0 > 0 small enough. Let ρ = 16π + ε.
Assume that ξ1 = (0,0) and ξ2 = ( 1

2 ,0) or (0, 1
2) or ( 1

2 ,
1
2). Then, for each ε, there

exist a λ > 0 and a solution uλ to equation (1.1) such that the following hold:

ε = (128π2 + o(1))λ2 ln
1
λ
,

uλ(ξj)→∞ for j = 1,2,

uλ(x)→ −∞ for all x ∈ T 2 \ {ξ1, ξ2} as ε → 0,

and

uλ(x1, x2) = uλ(−x1, x2) = uλ(x1,−x2).

Moreover, we have

ρ∫

T 2
euλ

euλ → 8π(δξ1
+ δξ2

) in a sense of measure, as ε → 0.

Remark 2.5. Note that the blow-up solutions we found in the case of ξ2 =
( 1

2 ,0) have the following property:

uλ

(
x1 +

1
2
, x2

)
= uλ(x1, x2).

In other words, the solutions become solutions of the mean field equation on the
flat torus with fundamental domain [− 1

4 ,
1
4]× [−

1
2 ,

1
2], which blow up only at the

origin. The same thing happens when ξ2 = (0, 1
2). When we take ξ2 = ( 1

2 ,
1
2), the

solutions we constructed also correspond to the one-point blow-up solutions on a
flat torus whose fundamental domain is a tilted square with length

√
2/2, since in

this case we have

uλ(x1, x2) = uλ
(
x1 +

1
2
, x2 +

1
2

)
.

Remark 2.6. The same type of construction will also work for Tε where ε is
arbitrarily given. Much as in Remark 2.5, one can show the existence of the one-
point blow-up solutions to (1.1) when T 2 is replaced by any rhombus torus (i.e.,



Blow-up Solutions for a Mean Field Equation on a Flat Torus 459

flat torus with its fundamental domain being a rhombus) as ρ → 8π . We also
would like to mention that Lin and Wang in [19] established the existence and
uniqueness of solutions to a mean field equation with singular source on rhombus
tori.

The proof of Theorem 2.4 relies on a Lyapunov-type reduction. We first
construct an approximate solution which behaves like the standard bubble near
the blow-up points ξ1 and ξ2 and behaves like Green’s function away from these
two points. Then, we carry out a finite dimensional variational reduction for
which the main ingredient is an analysis, of independent interest, of bounded
invertibility up to the dilations of the linearized operator in suitable L∞-weighted
spaces with certain symmetries. This method consequently reduces the original
problem to a problem of finding an appropriate scale λ of the bubbles.

3. AN APPROXIMATE SOLUTION

In this section, we will construct an approximate solution of equation (1.1) and
obtain some estimates of this approximate solution. Let R0 > 0 be a fixed number
such that R0 <

1
8 . Let η be a standard cut-off function such that

η(s) = 1 for s ≤ 1;

η(s) = 0 for s ≥ 2;

0 < η(s) < 1 for 1 < s < 2.

We further assume that |η′(s)| ≤ 2. Let

(3.1) ηR0,ξ(x) = η
(

dist(x, ξ)
R0

)

where dist(x, ξ) denotes the geodesic distance between x and ξ.
Given ε ∈ (0, ε0), we choose λ > 0 such that

(3.2) 64π2λ2 ln
1
λ
< ε < 256π2λ2 ln

1
λ
.

In other words, the above inequality can also be written as

λ1(ε) < λ < λ2(ε),

where one can solve λ1(ε) and λ2(ε) from (3.2).
Let wλ,1 be the solution of the following equation:

−∆wλ,1 =
8λ2

(λ2 + (dist(x, ξ1))2)2
ηR0,ξ1

−m1,

∫

T 2
wλ,1 = 0,
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where

m1 =
∫

T 2

8λ2

(λ2 + (dist(x, ξ1))2)2
ηR0,ξ1

.

Let wλ,2 be the solution of the following equation:

−∆wλ,2 =
8λ2

(λ2 + (dist(x, ξ2))2)2
ηR0,ξ2

−m2,

∫

T 2
wλ,2 = 0,

where

m2 =
∫

T 2

8λ2

(λ2 + (dist(x, ξ2))2)2
ηR0,ξ2

.

By simple calculations, one can obtain the so-called “masses” ofwλ,1 andwλ,2,
that is,

m1 =m2 = 8π +O(λ2).

We introduce w̃λ to be the sum of wλ,1 and wλ,2, that is, w̃λ = wλ,1 +wλ,2,
and a constant related to λ

w̄λ = 2 lnλ+ ln 8− 8πR(ξ, ξ)− 8πG(ξ1, ξ2).

Then, we are ready to provide an ansatz for solutions of equation (1.1):
namely, wλ = w̃λ + w̄λ.

We then calculate the values ofwλ,1 andwλ2 at the blow-up points ξ1 and ξ2:

(3.3) wλ,1(ξ1) =
∫

T 2
G(ξ1, y)

[
8λ2

(λ2 + |y − ξ1|2)2
ηR0,ξ1

(y)−m1

]
dy

=
∫

B(0,R0)

[
− 1

2π
ln |y| + R(0, y)

]
8λ2

(λ2 + |y|2)2
dy +O(λ2)

=
∫

B(0,R0/λ)

[
− 1

2π
lnλ− 1

2π
ln |z| + R(λz)

]
8

(1+ |z|2)2
dz +O(λ2)

= −4 lnλ+ 4λ2 lnλ

λ2 + R2
0

− 1
2π

∫

B(0,R0/λ)

8 ln |z|
(1+ |z|2)2

dz + 8πR(0)

+ λ2
∫

B(0,R0/λ)

4
(
z∇2R(z)

∣∣
z=0z

T
)

(1+ |z|2)2
dz +O(λ2)

= −4 lnλ+ 8πR(0)− 4πλ2 lnλ+O(λ2).
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For |z| < R0/λ, we have

(3.4) wλ,1(ξ1 + λz)−wλ,1(ξ1)

=
∫

T 2
[G(ξ1 + λz,y)−G(ξ1, y)]

8λ2

(λ2 + |y − ξ1|2)2
ηR0,ξ1

dy

=
∫

B(0,R0/λ)
− 1

2π

[
ln |z − z′| − ln |z′|

] 8
(1+ |z′|2)2

dz′

+
∫

B(0,R0/λ)
[R(λ(z′ − z))− R(λz′)] 8

(1+ |z′|2)2
dz′ +O(λ3|z|)

= ln
(

1
(1+ |z|2)2

)
+ 2πλ2(z2

1 + z2
2)− 4πλ2

(
1
2
− π

6
+ 4πq

)
(z2

1 − z2
2)

+ O(λ3|z|3)+O(λ3 lnλ|z|) +O(λ3|z|).

For |z| ≥ 2R0/λ, that is, |x| ≥ 2R0, we have

(3.5) wλ,1(x) =
∫

T 2
G(x,x′)

8λ2

(λ2 + |x′|2)2
ηR0,ξ1

dx′

=
∫

B(0,R0/λ)
G(x, ξ1 + λz′)

8
(1+ |z′|)2

dz′ + λ2f1(x)

=
∫

B(0,R0/λ)

[
G(ξ1 − x)+ λ∇G(ξ1 − x) · z′

+ λ2(z′∇2G(ξ1 − x)z′T )
2

]
8

(1+ |z′|2)2
dz′ + λ2f1(x)

= 8πG(ξ1 − x)+ 4πλ2
∫ R0/λ

0
Tr(∇2G(ξ1 − x))

r 3

(1+ r 2)2
dr + λ2f1(x)

= 8πG(ξ1 − x)− 4πλ2 lnλ+ λ2f1(x),

where f1(x) is a C1 function.
In particular, we can get

wλ,1(ξ2) = 8πG(ξ1 − ξ2)− 4πλ2 lnλ+O(λ2).

Combining (3.3) and (3.4), we have for |z| < R0/λ

wλ,1(ξ1 + λz) = −4 lnλ+ ln
(

1
(1+ |z|2)2

)
+ 8πR(0)+ 2πλ2|z|2(3.6)

− 4πλ2
(

1
2
− π

6
+ 4πq

)
(z2

1 − z2
2)− 4πλ2 lnλ

+ O(λ3|z|3)+O(λ3|z|) +O(λ3 lnλ|z|).
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Similarly, we can obtain the same result for wλ,2 when |z| < R0/λ if we now
shift the center of the coordinate system to ξ2:

wλ,2(ξ2 + λz) = −4 lnλ+ ln
(

1
(1+ |z|2)2

)
+ 8πR(0)+ 2πλ2|z|2

− 4πλ2
(

1
2
− π

6
+ 4πq

)
(z2

1 − z2
2)− 4πλ2 lnλ

+ O(λ3|z|3)+O(λ3|z|) +O(λ3 lnλ|z|).

We also have a result similar to (3.5) for wλ,2 when dist(x, ξ2) ≥ 2R0,

(3.7) wλ,2(x) = 8πG(ξ2 − x)− 4πλ2 lnλ+ λ2f2(x),

where f2(x) is a C1 function when dist(x, ξ2) ≥ 2R0.
In particular, we have wλ,2(ξ1) = wλ,1(ξ2).
Thus, we obtain the following lemma concerning the values of wλ near the

blow-up points ξ1 and ξ2.

Lemma 3.1. We have an inner approximation

wλ(ξk + λz) = ln
(

8
λ2(1+ |z|2)2

)
+ 2πλ2|z|2

− 4πλ2
(

1
2
− π

6
+ 4πq

)
(z2

1 − z2
2)

+ 4πλ2(z∇2G(ξ2 − ξ1)z
T )− 8πλ2 lnλ

+ O(λ3|z|3)+O(λ3 lnλ|z|)+O(λ3|z|),

of wλ inside the ball z ∈ B(0, R0/λ), and the above equation holds for both blow-up
points if we set the center to ξk for k = 1,2.

Remark 3.2. Note that here we have

Tr(∇2G(ξ2 − ξ1)) = ∆G(ξ2 − ξ1) = 1.

We then give an outer approximation, as follows.

Lemma 3.3. When min (dist(x, ξ1),dist(x, ξ2)) ≥ 2R0, we have

wλ(x) = 2 lnλ+ ln 8− 8πR(0)− 8πG(ξ1 − ξ2)+ 8πG(ξ1 − x)
+ 8πG(ξ2 − x)− 8πλ2 lnλ+ λ2(f1(x)+ f2(x)).

Comparing the approximate solution with the function constructed by gluing
the inner approximation and the outer approximation together using an “interme-
diate layer” (a cut-off function such as ηλα for some α ∈ (0,1)), we can estimate
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the approximate solution when R0 < dist(x, ξk) < 2R0 as well as ewλ . (For details,
see Lemma 3.1 in [11].) In particular, we have

ewλ ≤
2∑

k=1

8λ2

(λ2 + (dist(x, ξk))2)2
[1+ θλ(x)],

where θλ has the property that for some constant C > 0,

|θλ(x)| ≤ Cλ

2∑

k=1

[
dist(x, ξk)

λ
+ 1

]
.

More precisely, when |z| < R0/λ, we have

ewλ(ξk+λz) = 8
λ2(1+ |z|2)2

[
1+ 2πλ2|z|2(3.8)

− 4πλ2
(

1
2
− π

6
+ 4πq

)
(z2

1 − z2
2)

+ 4πλ2(z∇2G(ξ2 − ξ1)z
T )− 8πλ2 lnλ

+ O(λ3|z|3)+O(λ3 lnλ|z|)+O(λ3|z|)
]
.

When dist(x, ξk) ≥ R0 for k = 1,2, we have

(3.9) ewλ(x) = O(λ2).

Let us then estimate the error of the approximate solution by inserting the
ansats wλ into equation (1.1).

Lemma 3.4. Let

Sρ(u) = ∆u+ ρ




eu∫

T 2
eu
− 1


 .

Then, there exists a constant C > 0 such that

|Sρ(wλ)(ξk + λz)| ≤ C

[
λ2 ln

1
λ
+ ln(1/λ)
(1+ |z|2)2

+ |z|2
(1+ |z|2)2

]
,

for |z| < R0/λ and k = 1,2,

|Sρ(wλ)(x)| ≤ Cλ2 ln
1
λ
,

for dist(x, ξk) ≥ R0 and k = 1,2.
Furthermore, we have that Sρ(wλ) is evenly symmetric about both axes.
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Proof. We first use (3.8) and (3.9) to estimate the integral of ewλ , that is,
∫

T 2
ewλ = 2

∫

B(ξ1,R0)
ewλ +

∫

T 2\(B(ξ1 ,R0)∪B(ξ2,R0))
ewλ(3.10)

= 2
∫

B(0,R0/λ)

8
(1+ |z|2)2

[
1+ 2πλ2|z|2

− 4πλ2
(

1
2
− π

6
+ 4πq

)
(z2

1 − z2
2)

+ 4πλ2(z∇2G(ξ2 − ξ1)z
T )− 8πλ2 lnλ+O(λ3|z|3)

+ O(λ3|z|3)+O(λ3 lnλ|z|) +O(λ2)

]

+
∫

T 2\(B(ξ1,R0)∪B(ξ2,R0))
ewλ

= 2(8π − 128π2λ2 lnλ+O(λ2)),

where we use Remark 2.3 and Remark 3.2.
When |z| < R0/λ, we have

Sρ(wλ)(ξk + λz)

= ∆wλ(ξk + λz)+ ρ
(

ewλ(ξk+λz)

16π − 256π2λ2 lnλ+O(λ2)
− 1

)

= 16π +O(λ2)− 8
λ2(1+ |z|2)2

+ (16π + ε)ewλ(ξk+λz)
16π − 256π2λ2 lnλ+O(λ2)

− (16π + ε)

= −ε +O(λ2)+ ε + 256π2λ2 lnλ+O(λ2)

16π − 256π2λ2 lnλ+O(λ2)
· 8
λ2(1+ |z|2)2

+ O
(

ln(1/λ)
(1+ |z|2)2

)
+O

(
|z|2

(1+ |z|2)2

)
.

We know from (3.2) that ε = O(λ2 lnλ); then, we have

|Sρ(wλ)(ξk + λz)| ≤ C

[
λ2 ln

1
λ
+ ln(1/λ)
(1+ |z|2)2

+ |z|2
(1+ |z|2)2

]

for |z| < R0/λ and k = 1,2.
Similarly, using (3.10) we can estimate the outer error:

Sρ(wλ)(x) = −ε +O(λ2)+ 16π + ε
16π +O(λ2 lnλ)

O(λ2)

since (3.9) holds for all dist(x, ξk) ≥ R0 and k = 1,2.
The rest of the lemma follows from the last identity. ❐
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Equation (1.1) has a variational structure; that is, critical points of the energy
functional

Jρ(u) =
1
2

∫

T 2
|∇u|2 − ρ ln

(∫

T 2
eu
)
+ ρ

∫

T 2
u

correspond to the solutions of equation (1.1). Our next goal is to estimate the
energy functional of the approximate solution wλ.

Lemma 3.5. The energy of wλ is

Jρ(wλ) = −64π2[R(0)+G(ξ1 − ξ2)]− 16π ln(2π)

− 16π + 2ε lnλ+ 128π2λ2 lnλ

− ε[ln(2π)− 8πR(0)− 8πG(ξ1 − ξ2)]+O(λ2).

Proof. From (3.10), we can compute

−ρ ln
(∫

T 2
ewλ

)
= −(16π + ε) ln(16π − 256π2λ2 lnλ+O(λ2))(3.11)

= −16π(ln(16π)− 16πλ2 lnλ+O(λ2))

− ε(ln(16π)− 16πλ2 lnλ+O(λ2)).

Also, we can easily compute

ρ

∫

T 2
wλ = (16π + ε)w̄λ(3.12)

= 16π(2 lnλ+ ln 8− 8πR(0)− 8πG(ξ1 − ξ2))

+ ε(2 lnλ+ ln 8− 8πR(0)− 8πG(ξ1 − ξ2)).

Then, the only term remaining is the following:

(3.13)
1
2

∫

T 2
|∇wλ|2 =

1
2
〈−∆wλ,wλ〉 =

1
2
〈−∆wλ, w̃λ〉

= 1
2

∫

T 2

[
8λ2

(λ2 + |y − ξ1|2)2
η1 +

8λ2

(λ2 + |y − ξ2|)2
η2

]
(wλ,1 +wλ,2)dy

=
∫

T 2

8λ2

(λ2 + |y − ξ1|)2
η1wλ,1 dy +

∫

T 2

8λ2

(λ2 + |y − ξ1|)2
η1wλ,2 dy

= J1 + J2,

where we denote ηR0,ξk as ηk for simplicity, k = 1,2.
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Let us use (3.6) to compute J1 first:

J1 =
∫

B(0,R0/λ)

8wλ,1(ξ1 + λz)
(1+ |z|2)2

dz +O(λ2)

= [−4 lnλ+ 8πR(0)− 4πλ2 lnλ+O(λ2)]

∫

B(0,R0/λ)

8
(1+ |z|2)2

dz

+ 2πλ2
∫

B(0,R0/λ)

8|z|2
(1+ |z|2)2

dz

− 2
∫

B(0,R0/λ)
ln(1+ |z|2) 8

(1+ |z|2)2
dz +O(λ2)

= −32π lnλ+ 64π2R(0)− 16π − 64π2λ2 lnλ+O(λ2).

Then, we use (3.7) to compute J2:

J2 =
∫

B(0,R0/λ)

8wλ,2(ξ1 + λz)
(1+ |z|2)2

dz +O(λ2)

=
∫

B(0,R0/λ)

8(8πG(ξ2 − ξ1 − λz)− 4πλ2 lnλ+ λ2f2(ξ1 + λz)
(1+ |z|2)2

dz +O(λ2)

= 8πG(ξ2 − ξ1)

∫

B(0,R0/λ)

8
(1+ |z|2)2

dz

+ 4πλ2
∫

B(0,R0/λ)

8(z∇2G(ξ2 − ξ1)z
T )

(1+ |z|2)2
dz − 32π2λ2 lnλ+O(λ2)

= 64π2G(ξ2 − ξ1)− 64π2λ2 lnλ+O(λ2).

Therefore, by (3.11), (3.12), and (3.13) we have

Jρ(wλ) = −64π2[R(0)+G(ξ1 − ξ2)]− 16π ln(2π)

− 16π + 2ε lnλ+ 128π2λ2 lnλ

− ε[ln(2π)− 8πR(0)− 8πG(ξ1 − ξ2)]+O(λ2). ❐

4. THE LINEARIZED OPERATOR

In this section, we will establish a solvability theory for the linearized operator
under a suitable orthogonality condition.

Let us introduce an operator

L(u) = ∆u+ ρ∫

T 2
ewλ

ewλu.
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The above operator is connected with the linearized operator of Sρ through
the following:

S′ρ(wλ)(u) = L


u−

∫

T 2
ewλu

∫

T 2
ewλ


 .

Let
L(u) = λ2L(u).

If we shift the center of the coordinate system to ξk and blow up the torus
T 2 by the scale λ to T 2

λ , then the linearized operator L scaled by λ2 formally
approaches a linear operator L̃ in R2, that is,

L̃(u) = ∆zu+
8

(1+ |z|2)2
u,

where z = (x − ξk)/λ.
The operator L̃ can be obtained by linearizing the equation ∆u + eu = 0 at

the radial solution v(z) = ln(8/(1 + |z|2)2). An important fact we are going to
exploit in developing the solvability theory is the non-degeneracy of v modulo the
invariance of the equations under translations and dilations, that is,

ζ ֏ v(z − ζ); s ֏ v

(
z

s

)
− 2 ln s.

Thus, we set

ϕk(z) =
∂

∂ζk
v(z + ζ)

∣∣
ζ=0, k = 1,2,

ϕ0(z) =
∂

∂s

[
v

(
z

s

)
− 2 ln s

]∣∣∣∣
s=1
.

Direct computation shows that

ϕk =
−4zk

1+ |z|2 , for k = 1,2

and

ϕ0 =
2(|z|2 − 1)

1+ |z|2 .

It is shown that the only bounded solutions of L̃(u) = 0 in R2 are precisely
the linear combinations of the ϕk, k = 0,1,2 (see Baraket and Pacard’s paper [1]
for a detailed proof ). Let us define

ϕi,j :=ϕi

(
x − ξj
λ

)
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as a function on T 2
λ without ambiguity, i = 0,1,2 and j = 1,2.

Moreover, let us pick a large but fixed number R1 > 0. We introduce another
type of cut-off function:

χR(s) = 1 for s ≤ R,
χR(s) = 0 for s ≥ R + 1,

0 < χR < 1 for R < s < R + 1.

We further assume that
|χ′
R
(s)| ≤ 2.

Let χR,ξ(z) = χR(|z − ξ|). Denote ξj/λ as ξ
′
j for short.

Next, let us introduce some functional set-ups of the problem.
Let

C
k,α
s (T 2

λ) = {u ∈ C
k,α(T 2

λ) | u(z1, z2) = u(z1,−z2) = u(−z1, z2)},

where k is any positive integer and α ∈ (0,1), and one can also define L
p
s (T

2
λ),

1 ≤ p ≤ ∞, respectively.
We consider the following norms:

‖ψ‖∞ = sup
z∈T 2

λ

|ψ(z)|,

‖ψ‖∗ = sup
z∈T 2

λ

( 2∑

j=1

(1+ dist(z, ξ′j))
−3 + λ2

)−1
|ψ(z)|.

Let

C = {u ∈ L∞(T 2
λ) | u(z1, z2) = u(z1,−z2) = u(−z1, z2), ‖u‖∗ < ∞},

and

C∗ =
{
u ∈ L∞(T 2

λ) | u(z1, z2) = u(z1,−z2) = u(−z1, z2),

‖u‖∗ <∞, u ⊥ ϕ0,jχR1,ξ
′
j

}
.

Given h ∈ C, we consider the linear problem of finding a function φ ∈ C∗
and scalars cj , j = 1,2 such that

(4.1) L(φ) = h+
2∑

j=1

cjχR1,ξ
′
j
ϕ0,j in T 2

λ .

We observe that the orthogonality condition in the definition of C∗ is only with
respect to the approximate kernel generated by dilation. Furthermore, we can eas-
ily find that the elements in C∗ are also perpendicular to the approximate kernels
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that are generated by translations, that is,

u ⊥ϕi,jχR1,ξ
′
j
, for all i = 0,1,1 and j = 1,2, u ∈ C∗.

The main result in this section shows the solvability of (4.1) and an a priori
estimate which is uniform in small λ in the functional settings of the enlarged flat
torus T 2

λ .

Proposition 4.1. There exist positive constants λ0 and C, such that, for any
λ ∈ (0, λ0), there is a unique solution to problem (4.1). Moreover, if h ∈ Cα(T 2

λ)

then

(4.2) ‖φ‖∞ ≤ C‖h‖∗.

The proof of this result consists of two steps. The first step is to establish
a uniform a priori estimate for the problem (4.1) under the additional orthogo-
nality conditions of φ generated by translations. More precisely, we consider the
problem

L(φ) = h in T 2
λ ,(4.3)

∫

T 2
λ

χR1,ξ
′
j
ϕi,jφ = 0 for all i = 0,1,2, j = 1,2.(4.4)

Lemma 4.2. Assume that h ∈ Cα(T 2
λ). Then, there exist positive numbers λ0

and C, such that for any λ ∈ (0, λ0) and any solution to (4.3)–(4.4), one has

‖φ‖∞ ≤ C‖h‖∗.

Proof. We will adopt the same technique introduced by del Pino, Kowalczyk,
and Musso in their paper [22] to prove the invertibility of the linearized opera-
tor of the mean field equation in bounded domain but with Dirichlet boundary
condition.

We prove this lemma by contradiction. Assume then there exist sequences
λn → 0, hn with ‖hn‖∗ → 0 and ‖φn‖∞ = 1 such that

L(φn) = hn in T 2
λ ,∫

T 2
λn

χR1,ξ
′
j
ϕi,jφn = 0 for all i = 0,1,2, j = 1,2.

The contradiction is obtained via several major steps. The key step is to con-
struct a positive supersolution in order to show that the operator L satisfies the
maximum principle in T 2

λ outside large balls centered at the points ξ
′
j . Let us

introduce a sort of “projection” of the radial solution f0(r) = (r 2 − 1)/(r 2 + 1)
in R2 of

∆f0 +
8

(1+ r 2)2
f0 = 0,
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onto a proper functional space on T 2
λ , that is, to some function f̃ (z) such that

−∆zf̃ =
8

(1+ |z|2)2
f0(|z|)− λ2m,

∫

T 2
λ

f̃ (z)dz = 0,

m =
∫

T 2
λ

8
(1+ |z|2)2

f0(|z|)dz,

where z = x/λ ∈ T 2
λ .

One can estimate the mass m by direct computations
∫

B(0,1/(2λ))

8
(1+ |z|2)2

f0(|z|)dz(4.5)

≤m ≤
∫

B(0,
√

2/(2λ))

8
(1+ |z|2)2

f0(|z|)dz.

Then, it can be easily seen from (4.5) that m< 0 and m = O(λ2).

To construct a positive supersolution, we need to show that the function f̃ (z)
is uniformly bounded. Let us transfer the function back into a function on T 2.

Using the same notation here without ambiguity, we know that the function f̃ (x)
satisfies the equations

−∆xf̃ =
8λ2

(λ2 + |x|2)2
· |x/λ|

2 − 1
|x/λ|2 + 1

−m in T 2

and ∫

T 2
f̃ (x)dx = 0.

Then, for any x ∈ T 2, we can compute the value of f̃ (x):

f̃ (x) =
∫

T 2
G(x,y)

8λ2

(λ2 + |y|2)2
· |y/λ|

2 − 1
|y/λ|2 + 1

dy

=
∫

T 2
− 1

2π
ln |x −y| 8λ2

(λ2 + |y|2)2
· |y/λ|

2 − 1
|y/λ|2 + 1

dy

+
∫

T 2
R(x,y)

8λ2

(λ2 + |y|2)2
· |y/λ|

2 − 1
|y/λ|2 + 1

dy

= I1 + I2.

For the estimation of I2, we know that R(x,y) and (|y/λ|2 − 1)/(|y/λ|2 + 1)
are both uniformly bounded for all x,y ∈ T 2. Therefore, we have

(4.6) |I2| ≤ C

∫

T 2

8λ2

(λ2 + |y|2)2
dy ≤ C.
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However, it is a little more technical to estimate I1:

I1 =
∫

B(0,R0)
− 1

2π
ln |x −y| 8λ2

(λ2 + |y|2)2
· |y/λ|

2 − 1
|y/λ|2 + 1

dy(4.7)

+
∫

T 2\B(0,R0)
− 1

2π
ln |x −y| 8λ2

(λ2 + |y|2)2
· |y/λ|

2 − 1
|y/λ|2 + 1

dy.

We know that the latter part in (4.7) can be bounded by Cλ2 for some constant
C, since the singularity of singular part of Green’s function is somewhat mild, and
the integral ∫

T 2

∣∣ ln |x − y|
∣∣dy

is uniformly bounded for any x ∈ T 2.
Thus, the only remaining part we need to estimate is the first part in I1, that

is,

(4.8) I1 =
∫

B(0,R0)
− 1

2π
ln |x − y| 8λ2

(λ2 + |y|2)2
· |y/λ|

2 − 1
|y/λ|2 + 1

dy +O(λ2)

=
∫

R2
− 1

2π
ln |x −y| 8λ2

(λ2 + |y|2)2
· |y/λ|

2 − 1
|y/λ|2 + 1

dy

+
∫

R2\B(0,R0)

1
2π

ln |x −y| 8λ2

(λ2 + |y|2)2
· |y/λ|

2 − 1
|y/λ|2 + 1

dy +O(λ2)

= I1,1 + I1,2 +O(λ2).

Let us first compute I1,1. More precisely, if we consider I1,1 as a function of
x, one can easily check that I1,1 is a radial function. Furthermore, we have

−∆I1,1 =
8λ2

(λ2 + |x|2)2
· |x/λ|

2 − 1
|x/λ|2 + 1

.

We also know from direct computations that

I1,1(0) =
∫

R2
− 1

2π
ln |y| 8λ2

(λ2 + |y|2)2
· |y/λ|

2 − 1
|y/λ|2 + 1

dy = −2.

It is easy to check that

−∆
( −2
|x/λ|2 + 1

)
= 8λ2

(λ2 + |x|2)2
· |x/λ|

2 − 1
|x/λ|2 + 1

.

Since any radial harmonic function in R2 is constant, we can conclude that

(4.9) I1,1(x) =
−2

|x/λ|2 + 1
.
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For I1,2, we notice that

8λ2

(λ2 + |y|2)2
≤ C

λ2

|y|4
and

1
2
≤ |y/λ|2 − 1
|y/λ|2 + 1

≤ 1 for |y| > R0.

Then, we have

(4.10) I1,2 ≤ Cλ2
∫

R2\B(0,R0)

∣∣ ln |x −y|
∣∣

|y|4 dy ≤ Cλ2

for a uniform C > 0 with respect to any x ∈ T 2.
Finally, combining (4.6), (4.8), (4.9), and (4.10), we have

|f̃ | ≤ C

for some uniform C > 0.
Now, we let ṽ(z) = f̃ (z) + C, such that ṽ > 1

2 for all z ∈ T 2
λ . We are ready

to define a comparison function in T 2
λ ,

V(z) =
2∑

j=1

ṽ(a|z − ξ′j|) for z ∈ T 2
λ .

We observe that

−∆V =
2∑

j=1

8a2(a2|z − ξ′j|2 − 1)

(1+ a2|z − ξ′j|2)3
− a2λ2m,

so that for |z − ξ′j| > 10/a for j = 1,2,

−∆V ≥ 2
2∑

j=1

a2

(1+ a2|z − ξ′j|2)2
≥

2∑

j=1

a−2

|z − ξ′j|4
.

On the other hand, in the same region,

ewλV ≤ C

2∑

j=1

1

|z − ξ′j|4
.

Hence, if a is a fixed small constant and R′2 > 0 is chosen sufficiently large de-

pending on the choice of a, then we have L(V) < 0 in T̃ 2
λ := T 2

λ \
⋃2
j=1 B(ξ

′
j, R

′
2).
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Here, we are able to find a positive supersolution V on T̃ 2
λ . Then, we conclude

that the operator L satisfies the maximum principle, that is, if L(u) ≤ 0 in T̃ 2
λ and

u ≥ 0 on ∂T̃ 2
λ , then u ≥ 0 in T̃ 2

λ .
Let us fix such a number R′2 > 0, which we may take larger whenever it is

needed; that is, we can take R′2 = R2/λ for some positive R2. Now, let us consider
the “inner norm”

‖φ‖i = sup
⋃2
j=1 B(ξ

′
j ,R

′
2)

|φ|.

Then, the second step in this proof is to show the following claim is true:
there is a constant C such that if L(φ) = h in T 2

λ then

‖φ‖∞ ≤ C
[
‖φ‖i + ‖h‖∗

]
.

We need suitable barrier functions to prove the above claim.
Let g be the solution of the problem

−∆g = 2
|z|3 + 2λ2 for z ∈ T 2

λ \ B(0, R′2),

g(z) = 0 on ∂B(0, R′2).

If we introduce Green’s function G̃(x,y) of the manifold T 2 \ B(0, R2) with
Dirichlet boundary condition, that is,

−∆xG̃(x,y) = δy , x ∈ T 2 \ B(0, R2),

G̃(x,y) = 0, x ∈ ∂B(0, R2),

then we can show the uniform boundedness of the function g(z) by applying
the same technique as in the proof of the uniform boundedness of the function

f̃ (z), withG(x,y) being replaced by G̃(x,y). Furthermore, we define two more
auxiliary functions using g:

gj(z) = g(z − ξ′j), for j = 1,2.

Let us introduce a barrier

φ̃(z) = 2‖φ‖iV(z)+ ‖h‖∗
2∑

j=1

gj(z).

Then, it is easy to check that L(φ̃) ≤ h in T̃ 2
λ and φ̃ ≥ φ on ∂T̃ 2

λ . Hence, we have

φ ≤ φ̃ in T̃ 2
λ . Similarly, one can also show that φ ≥ −φ̃ in T̃ 2

λ , and the claim
follows.
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In the last step, we go back to the contradiction argument. The claim in the
second step shows that for some κ > 0, we have ‖φn‖i ≥ κ since ‖φn‖∞ = 1. Let

us set φ̂n(z) = φn(ξ
′
j + z) where the index j is such that sup|z−ξ′j|<R′2

|φn| ≥ κ.

Without loss of generality, we can assume the index j is the same for all n. Elliptic

estimates readily imply that φ̂n converges uniformly over any compact subset to

a bounded solution φ̂ ≠ 0 of a problem in R2

∆φ+ 8
(1+ |z|2)2

φ = 0.

This implies that φ̂ is a linear combination of the functions ϕk, k = 0,1,2.

However, the orthogonal conditions that all φn satisfy imply that φ̂ ≡ 0. The
result of the lemma then follows from the contradiction. ❐

We are now ready to provide a complete proof of the main result of this sec-
tion.

Proof of Proposition 4.1. We first establish the validity of the a priori estimate
(4.2). Lemma 4.2 yields

(4.11) ‖φ‖∞ ≤ C

[
‖h‖∗ +

2∑

j=1

|cj|
]
,

so it suffices to estimate the values of the constants |cj|. Let us consider the cutoff

function ηR′3,ξ′j introduced in (3.1) where R′3 = R3/λ for some R3 > 0. We

multiply equation (4.1) by the test function ϕ0,jηR′3,ξ′j , and integrate

〈L(φ), ηR′3,ξ′jϕ0,j〉 = 〈h,ηR′3,ξ′jϕ0,j〉 + cj
∫

T 2
λ

χR1,ξ
′
j
|ϕ0,j|2.(4.12)

On the other hand, we have

〈L(φ), ηR′3,ξ′jϕ0,j〉 = 〈φ,L(ηR′3,ξ′jϕ0,j)〉.(4.13)

Now, we have

L(ηR′3,ξ′jϕ0,j) = ∆ηR′3,ξ′jϕ0,j + 2∇ηR′3,ξ′j∇ϕ0,j

+ λ
[
O

(
r

(1+ r 2)2

)
+O

(
1

(1+ r 2)2

)]
,

with r = |z − ξ′j|. Since

∆ηR′3,ξ′j = O(λ
2), ∇ηR′3,ξ′j = O(λ)
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and ϕ0,j = O(1), ∇ϕ0,j = O(r−3), we have

(4.14) L(ηR′3,ξ′jϕ0,j) = O(λ2)+ λ
[
O

(
r

(1+ r 2)2

)
+O

(
1

(1+ r 2)2

)]
.

Therefore, we have

|〈φ,L(ηR′3,ξ′jϕ0,j)〉| ≤ Cλ‖φ‖∞.

Combining this above estimate with (4.11), (4.12), and (4.13), we obtain

|cj| ≤ C
[
‖h‖∗ + λ|ck|

]
for j ≠ k.

It follows that |cj| ≤ C‖h‖∗. Furthermore, from (4.11) we know that (4.2)
is true.

It only remains to verify the solvability assertion. The Fredholm alternative
tells us that problem (4.1) has a unique solution if and only the associated homoge-
neous problem has only trivial solution. The homogeneous problem is equivalent
to equation (4.1) with h = 0. From the a priori estimate we just proved, we know
that the homegeneous problem only admits a trivial solution. This finishes the
proof. ❐

If we add another orthogonal condition to φ and consider the problem

L(φ) = h+
2∑

j=1

cjχR1,ξ
′
j
ϕ0,j + c0 in T 2

λ ,(4.15)

φ ⊥ϕ0,jχR1,ξ
′
j
,(4.16)

φ ⊥ ewλ ,(4.17)

where h ∈ C, then we have the following corollary.

Corollary 4.3. Assume the conditions in Proposition 4.1 hold; then, problem
(4.15)–(4.17) has a unique solution. Also, if h ∈ Cα(T 2

λ) then ‖φ‖∞ ≤ C‖h‖∗.

Proof. Following the same argument as in the proof of Proposition 4.1, we
test (4.15) with ϕ0,jηR′3,ξ′j :

〈L(φ), ηR′3,ξ′jϕ0,j〉(4.18)

= 〈h,ηR′3,ξ′jϕ0,j〉 + cj
∫

T 2
λ

χR1,ξ
′
j
|ϕ0,j|2 + c0

∫

T 2
λ

χR1,ξ
′
j
ϕ0,j .

Integrating (4.15), we have

(4.19)
∫

T 2
λ

h+
2∑

j=1

∫

T 2
λ

cjχR1,ξ
′
j
ϕ0,j +

c0

λ2
= 0.
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Combining (4.18) and (4.19) with Proposition 4.1, we can obtain

|c0|
λ2

≤ C‖h‖∗.

Hence, we have

‖φ‖ ≤ C

[
‖h‖∗ +

c0

λ2

]
≤ C‖h‖∗. ❐

The result of Corollary 4.3 implies that the unique solution φ = T(h) of the
problem (4.15)–(4.17) defines a continuous linear map from Banach space C to
L∞s (T

2
λ).

5. REDUCE TO A ONE-DIMENSIONAL PROBLEM

In this section, we reduce the infinite-dimensional problem of finding φ for

(5.1) Sρ(wλ +φ) = 0

to a one-dimensional problem of finding appropriate scale λ while ρ is given.
We now expand Sρ(wλ +φ) as

Sρ(wλ +φ) = Sρ(wλ)+L


φ−

∫

T 2
ewλφ

∫

T 2
ewλ


+N(φ),

where

(5.2) N(φ) =




ρ∫

T 2
ewλ+φ

eφ − ρ∫

T 2
ewλ

−


φ−

∫

T 2
ewλφ

∫

T 2
ewλ





 ewλ .

Since the lefthand side of equation (5.1) is invariant if we add a constant to

φ, we can further assume that
∫

T 2
ewλφ = 0.

We abuse the notation here to denote φ as a function in C∗. Moreover, we
consider problem (5.1) in the dilated coordinates; that is, wλ, Sρ(wλ) and N(φ)
are now considered to be functions on T 2

λ .
To exploit the reduction procedure, we solve the following nonlinear interme-

diate problem first:

L(φ) = −λ2[Sρ(wλ)+N(φ)]+
2∑

j=1

cjχR1,ξ
′
j
ϕ0,j + c0 in T 2

λ ,(5.3)

φ ∈ C∗,(5.4)
∫

T 2
λ

ewλφ = 0.(5.5)
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We will use the solvability theory just established in the previous section to show
an existence result to (5.3)–(5.5). We assume that the conditions in Proposi-
tion 4.1 hold.

Lemma 5.1. The problem (5.3)–(5.5) has a unique solution φ which satisfies
‖φ‖∞ ≤ Cλ.

Proof. We first rewrite (5.3)–(5.5) into a fixed point form:

φ = T(−λ2[Sρ(wλ)+N(φ)]) ≡ A(φ).

For some constant C > 0 sufficiently large, let us consider the region

F ≡ {φ ∈ C∗ | φ ⊥ ewλ , ‖φ‖∞ ≤ Cλ}.

From Corollary 4.3, we have

‖A(φ)‖∞ ≤ Cλ2
[
‖Sρ(wλ)‖∗ + ‖N(φ)‖∗

]
.

By Lemma 3.4, we have the following estimate:

‖Sρ(wλ)‖∗ ≤ C
1
λ
.

Also, the definition of N in (5.2) immediately implies that

λ2‖N(φ)‖∗ ≤ Cλ2 ln
1
λ
.

It is also immediate that N satisfies the contraction condition

λ2‖N(φ1)−N(φ2)‖∗ ≤ C‖φ2
1 −φ2

2‖∞ +Cλ‖φ1 −φ2‖∞ ≤ Cλ‖φ1 −φ2‖∞.

Hence, we get

‖A(φ)‖∞ ≤ Cλ,

‖A(φ1)−A(φ2)‖∞ ≤ Cλ‖φ1 −φ2‖∞,

for sufficiently small λ.
Therefore, the operator A is a contraction mapping of F if λ ∈ (0, λ0) where

λ0 is a constant small enough. The existence of a unique fixed point is guaranteed.
This concludes the proof. ❐

Lemma 5.2. For all φ found in Lemma 5.1, we have that c1 = c2 and c0 =
−2λ2Ac1, where the ci, i = 1,2 are coefficients in (5.3) and A=

∫

R2
χR1
ϕ0(z).
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Proof. By integrating equation (5.3), we have

(5.6) A(c1 + c2) = −
c0

λ2
.

Since the problem (5.3)–(5.5) is invariant if we switch the center of the coor-
dinate system to ξ2, we have

(5.7) 〈L(φ), ηR′3,ξ′1ϕ0,1〉 = 〈L(φ), ηR′3,ξ′2ϕ0,2〉.

Then, the lemma follows if we combine (5.6) and (5.7). ❐

We also need to estimate the dependence of φ as a function on T 2 on the
parameter λ.

Lemma 5.3. The fixed point φ found in Lemma 5.1 satisfies
∥∥∥∥
∂φ

∂λ

∥∥∥∥∞
≤ C.

Proof. We study the problem (5.3)–(5.5) on the original flat torus T 2:

L(φ) = −[Sρ(wλ)+N(φ)]+
2∑

j=1

cj

λ2
χR1,ξ

′
j

(
x

λ

)
ϕ0

(
x − ξj
λ

)
+ c0

λ2
,

∫

T 2
φχR1,ξ

′
j

(
x

λ

)
ϕ0

(
x − ξj
λ

)
= 0,

∫

T 2
ewλφ = 0,

and φ is symmetric about both axes. We differentiate the above equation with
respect to λ:

L
(
∂φ

∂λ

)
+

∂




ρ∫

T 2
ewλ

ewλ




∂λ
φ

= −
[
∂Sρ(wλ)

∂λ
+ ∂N(φ)

∂λ

]
+

2∑

j=1

∂c′j
∂λ
χR1,ξ

′
j

(
x

λ

)
ϕ0

(
x − ξj
λ

)

+
2∑

j=1

c′j

(
−|x − ξj|

λ2

)
χ′
R1

(
|x − ξj|
λ

)
ϕ0

(
x − ξj
λ

)

+
2∑

j=1

c′jχR1,ξ
′
j

∂ϕ0

(
x − ξj
λ

)

∂λ
+ ∂c

′
0

∂λ
,
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where c′j = cj/λ2 for j = 0,1,2.

Again, we scale the torus to T 2
λ ; then, we have

L

(
∂φ

∂λ

)
= −λ2




∂




ρ∫

T 2
ewλ

ewλ




∂λ
φ+ ∂Sρ(wλ)

∂λ
+ ∂N(φ)

∂λ
− ∂c

′
0

∂λ




(5.8)

+
2∑

j=1

c′j(−|x − ξj|)χ′R1

(
|x − ξj|
λ

)
ϕ0,j

+
2∑

j=1

λ2c′jχR1,ξ
′
j

∂ϕ0,j

∂λ
+

2∑

j=1

λ2
∂c′j
∂λ
χR1,ξ

′
j
ϕ0,j ,

and
∫

T 2
λ

∂φ

∂λ
χR1,ξ

′
j
ϕ0,j

−
∫

T 2
λ

φ

[(
−|x − ξj|

λ2

)
χ′
R1

(
|x − ξj|
λ

)
ϕ0,j + χR1,ξ

′
j

∂ϕ0,j

∂λ

]
.

Exploiting the same argument as in the proof of Proposition 4.1, we have

|cj| ≤ Cλ, for j = 1,2.

Therefore, by integrating (5.8), we have

(5.9)

∣∣∣∣∣
∂c′0
∂λ

∣∣∣∣∣ ≤ C,

∣∣∣∣∣
∂c′j
∂λ

∣∣∣∣∣ ≤
C

λ2
,

with again j = 1,2.
Furthermore, direct calculations lead to

(5.10) λ2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∂




ρ∫

T 2
ewλ

ewλ




∂λ
φ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∗

≤ C, λ2
∥∥∥∥
∂Sρ(wλ)

∂λ

∥∥∥∥∗
≤ C.
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The derivation of the above two estimates needs a careful check on the as-
ymptotic behavior of ∂wλ/∂λ. One can proceed as in the way we calculate the
asymptotic behavior of the approximate solution wλ in Section 3. We omit the
detailed calculations here.

It is also easy to check that

∥∥∥∥
2∑

j=1

c′j(−x)χ′R1

( |x − ξj|
λ

)
ϕ0,j +

2∑

j=1

cjχR1,ξ
′
j

∂ϕ0,j

∂λ

∥∥∥∥
∗
≤ C.

We now use the orthogonal condition

∫

T 2
λ

ewλφ = 0

together with (3.8) and (5.10) to derive that

λ2
∥∥∥∥
∂N(φ)

∂λ

∥∥∥∥∗
≤ C +Cλ

∥∥∥∥
∂φ

∂λ

∥∥∥∥∞.

Set bj as follows:

bj

∫

T 2
λ

χR1,ξ
′
j
|ϕ0,j|2

=
∫

T 2
λ

φ

[(
−|x − ξj|

λ2

)
χ′
R1

(
|x − ξj|
λ

)
ϕ0,j + χR1,ξ

′
j

∂ϕ0,j

∂λ

]
.

We can easily verify that |bj| ≤ C. Define h̃ as follows:

h̃ = −λ2




∂




ρ∫

T 2
ewλ

ewλ




∂λ
φ+ ∂Sρ(wλ)

∂λ
+ ∂N(φ)

∂λ
− ∂c

′
0

∂λ




+
2∑

j=1

c′j(−|x − ξj|)χ′R1

(
|x − ξj|
λ

)
ϕ0,j

+
2∑

j=1

λ2c′jχR1,ξ
′
j

∂ϕ0,j

∂λ
−

2∑

j=1

bjL(ηR′3,ξ′jϕ0,j).
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If ψ̃ is the unique solution to the problem

L(ψ̃) = h̃+
2∑

j=1

djχR1,ξ
′
j
ϕ0,j ,

ψ̃ ⊥ χR1,ξ
′
j
ϕ0,j , ψ̃ ∈ C∗,

then we can express ∂φ/∂λ in terms of ψ̃, that is,

(5.11)
∂φ

∂λ
= ψ̃+

2∑

j=1

bjηR′3,ξ′jϕ0,j .

Finally, combining (5.9)–(5.11) and (4.14) and applying Lemma 4.2, we have

∥∥∥∥
∂φ

∂λ

∥∥∥∥∞
≤ C. ❐

6. SOLVING THE REDUCED PROBLEM

In this section, we shall solve Sρ(wλ +φ) = 0.

Lemma 6.1. The energy of the wλ +φ satisfies

Jρ(wλ +φ) = Jρ(wλ)+O(λ2),

where φ is found through the fixed point argument in Section 5.

Proof. Expanding Jρ(wλ +φ) yields

Jρ(wλ +φ) = Jρ(wλ)− 〈Sρ(wλ + θφ),φ〉T 2 ,

for some θ ∈ (0,1).
Let us try to estimate Sρ(wλ + θφ):

(6.1) Sρ(wλ + θφ) = Sρ(wλ)+ θ∆φ+O(λewλ).

By the fact that ‖φ‖∞ ≤ Cλ and Lemma 3.4, we have

〈Sρ(wλ),φ〉T 2 = o(λ2).

It is easy to check that ∫

T 2
|ewλφ| ≤ Cλ.
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We only need to estimate the inner product of φ and the remaining term in
(6.1):

|〈∆φ,φ〉T 2 | =

∣∣∣∣∣∣∣∣
〈L(φ),φ〉T 2 − ρ∫

T 2
ewλ

〈ewλφ,φ〉T 2

∣∣∣∣∣∣∣∣

= |〈L(φ),φ〉T 2 | +O(λ2)

=
∣∣∣∣

2∑

j=1

c′j

〈
χR1

( |x − ξj|
λ

)
ϕ0

(
x − ξj
λ

)
,φ

�

T 2
+ c′0

∫

T 2
φ

∣∣∣∣+O(λ2)

= O(λ2).

Therefore, we have
Jρ(wλ +φ) = Jρ(wλ)+O(λ2). ❐

If we consider Jρ(wλ +φ) as a function of λ, then Lemma 3.5 and Lemma
6.1 imply that

Jρ(wλ +φ) = −64π2[R(0)+G(ξ1 − ξ2)]− 16π ln(2π)− 16π + 2ε lnλ

+ 128π2λ2 lnλ− ε[ln(2π)− 8πR(0)− 8πG(ξ1 − ξ2)]+O(λ2).

By the standard degree theory, we have the following lemma concerning the critical
point of Jρ(wλ +φ).

Lemma 6.2. The energy function Jρ(wλ+φ) is a C1 function with respect to λ
for λ ∈ (λ1, λ2), and hence it has a local maximum point λ∗. Furthermore, we have

ε = (128π2 + o(1))λ2
∗ ln

1
λ∗
, as ε → 0,

where ρ = 16π + ε and ε ∈ (0, ε0).

Finally, we finish the proof of Theorem 2.4 by showing the following lemma.

Lemma 6.3. When λ = λ∗, we have c′1 = c′2 = c′0 = 0, where

Sρ(wλ +φ) =
2∑

j=1

c′jχR1

(
|x − ξj|
λ

)
ϕ0

(
x − ξj
λ

)
+ c′0.

Proof. Since λ∗ is a critical point of the function Jρ(wλ +φ), we have

∂Jρ(wλ +φ)
∂λ

∣∣∣∣
λ=λ∗

=
〈
Sρ(wλ +φ),

∂(wλ +φ)
∂λ

�

T 2

∣∣∣∣
λ=λ∗

= 0.
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Computations show that

〈
Sρ(wλ +φ),

∂(wλ +φ)
∂λ

�

T 2

=
∫

T 2

[ 2∑

j=1

c′jχR1

( |x − ξj|
λ

)
ϕ0

(
x − ξj
λ

)
+ c′0

](
∂wλ

∂λ
+ ∂φ
∂λ

)

=
2∑

j=1

cj

∫

T 2
λ

χR1,ξ
′
j
ϕ0,j(z)

(
ϕ0,j(z)

λ
+O(1)

)
dz

+ c0

2∑

j=1

∫

T 2
λ

χR1,ξ
′
j

(
ϕ0,j(z)

λ
+O(1)

)
dz

+ c′0
∫

T 2\(B(ξ1,R0))∪B(ξ2 ,R0))

(
2
λ
+O(1)

)
dx

=
(B
λ
+O(1)

) 2∑

j=1

cj +
(A
λ
+O(1)

)
c0 +

(
2(1− 2πR2

0)

λ
+O(1)

)
c′0,

where B is the constant

B =
∫

R2
χR1
|ϕ0(z)|2.

We know from Lemma 5.2 and the above calculations that
(
B
λ
− 2A(1− 2πR2

0)

λ
+O(1)

)
c1 = 0.

It is easy to see that by choosing R1 sufficiently large, we have

B− 2A(1− 2πR2
0) ≠ 0.

Therefore, we have c1 = c2 = c0 = 0. Finally, we obtain φ∗ associated with λ∗
such that Sρ(wλ∗ +φ∗) = 0.

The exact blow-up solutionwλ∗+φ∗ of equation (1.1) is thus constructed. ❐
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