Blow-up Solutions for
a Mean Field Equation on a Flat Torus

ZE CHENG, CHANGFENG GUI ¢ YEYAO HU

ABSTRACT. We prove the existence of a family of blow-up so-
lutions of a mean field equation on a flat torus. The solutions
blow up at two points where the critical values (modulo transla-
tions) of Green$ function are attained. Moreover, the solutions
we build are evenly symmetric about both axes.

1. INTRODUCTION

In this paper, we consider a mean field equation on the flat Torus T? with funda-
mental domain [—%, %] X [—%, %], that is,

u

e
eu
T2

This equation arises from Onsager’s vortex theory. Also, it appears as a limiting
case of the Chern-Simons gauge theory (see [21]).

One may consider the more general form of the equation on a compact Rie-
mannian surface M without boundary:

(1.1) Au+p

-1|=0.

he 1

1.2 Au + -
(1.2) p Jhe” M
M

=0,

where h € C® (M) is a positive potential function and [M ]| is the total area of the
surface M.
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Equations of type (1.2) have been broadly studied by various authors. For
details, see [2,4,8,10, 16, 18,20] and the references therein. Most recently, the
second author and Moradifam in [13] proved the one-dimensional symmetry of
the solutions if the problem is considered on the torus T, with fundamental do-
main [—%, é] X [—%, %] provided that p < 8. They developed a brand new
tool named “the sphere covering inequality” (see [12]) to study mean field equa-
tions and related problems. In particular, if we consider the case of T2 with the
fundamental domain being a square (the case when we take € = 1), the solution
must be a constant. They also proved the even symmetry of the solution if the po-
tential & is evenly symmetric when p < 8. The even symmetry of the solutions
can be extended to the case p < 167 when we assume further that the solution
has critical points at the origin and the diagonal point (—1/(2¢), %).

It is well known that the solution set of equation (1.2) is compact if p + 8TTN.
Brezis and Merle in [3] first showed that the sequence of the solutions of the
precribed Gauss curvature problem, that is,

—Au = he* inQ c R?,
u=0 on 0Q),

is bounded locally or goes to —co uniformly over compact subsets, or there exists
a blow-up set which consists of discrete points such that the solution goes to + oo
in the blow-up set and goes to —co otherwise. Moreover, in the latter case, it is
shown that hye¥r — > ™, «;8,,. Later, Li and Shaftrir in [15] obtained the exact
value of o, that is, «; = 8. Below, we cite a theorem in [14] concerning the
blow-up solutions of equation (1.1).

Proposition 1.1. Let Wy be a blow-up sequence of solutions of the equations

AUy + pn

M

where pn — 8Ttm with m € N. Assume thar max |un| — co. Then, after passing ro

a subsequence, there exist m distinct points ay, Qy, . .., Am, and M sequences of points
al' — ai, 1 < i <m, such that the following hold:
(@) up — —oo uniformly on any compact subset of M\ {ai,as, ..., am}.

(b) un(al’) — +oo foreach1 <i <m.
(C) In Cl%)C(M \ {alvaZ,"'ia’m}))

m
Un _u_n — 81 z G('Jai)i
i=1
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where Wy, is the average of Wy on M and G(x,y) is Greens function of the
Laplace-Beltrami operator of the manifold M; that is, G(x,y) satisfies the

equation
- AxG(x,y) =06 —L in M
X ;y y |M| )
J G(x,y)dx =0 forall y € M.
M
Consequently,
Pn

m
———e"n — 87T > 54, in the sense of measure.
J etn i=1
M

In this paper, we construct blow-up solutions whose behavior is predicted by
Proposition 1.1. In particular, we consider the solutions which are evenly symmet-
ric about the x1 and x; axes and blow up at exactly two points §; and &, provided
that p,, — 167, that is, the case when m = 2. The blow-up pair (&1, &) is fixed
to be one of the following three choices:

£=0,0, &=(30);

>
£=00, &=(03);
&1 =1(0,0), &= (%, %) .

Let us also mention about the case m = 1, that is, when we have only one
blow-up point. Lin and Lucia in [17] proved the following result.

Proposition 1.2. Let T? be the flat torus whose fundamental domain is the unit
square. For any sequence (pn, Un) with

Un

J eun
T2

and un # 0 for alln, and pyn ~ 81, we have

liminf|| Vuyllr2 = oo.
pn—8TT

The existence of nontrivial solutions of equation (1.1) is proved by Struwe
and Tarantello [24] using the mountain pass argument when p € (87,412).



456 ZE CHENG, CHANFENG GUI ¢ YEYAO HU

Combining their result with Proposition 1.2, we can conclude that the mountain
pass solutions must blow up as p — 87. Ricciardi and Tarantello in [23] showed
that the nontrivial one-dimensional solutions of (1.1) exist if and only if p > 4772,
Note that the construction approach also works for m = 1. If we fix the blow-
up point at the origin and assume that the solutions are symmetric about both
x1 and x; axes, the same type of blow-up solutions can be obtained using the
Lyapunov-type reduction as in this paper.

The construction of blow-up solutions is partially motivated by the work of
Chen and Lin (see [5]). They first built a class of approximate solutions by gluing
the standard solutions (also called the bubbles) and Green’s function together.
The locations of the bubbles are given by the critical points of a function relating
h and Green’s function. They also discovered the equations that govern the scales
of these bubbles. Furthermore, they proved that all possible blow-up solutions
should belong to the above mentioned class. Finally, they were able to compute
the topological degree of equation (1.2) which turns out to be a quantity that is
only dependent on the topological index of the Riemann surface M. However, in
their paper they made an essential assumption, that the function

fu(P1, P2, pm) = X[ logh(p)) + 4TR(pj) + Y. 87G(pj, p0) |,

J l+j

where (p1,p2,...,Pm) € M™ and R(x) denotes the diagonal of the regular part
of Green’s function, is a Morse function while proving the existence of the blow-up
solutions. In the case of T2 and h = 1, fj is no longer a Morse function because
of the translation invariance of Green’s function. Thus, the existence in this case
is not clear solely by the result of Chen and Lin. Esposito and Figueroa in [10]
successfully generalized Chen and Lin’s existence result to “stable” critical points
of fin. In their notion, a critical set D of fj, is stable if any C! perturbation of fj
still admits a critical point in a neighborhood of D. Not surprisingly, the critical
set of G(x,y) is not stable if we consider the Green’s function as a function on
T2 x T2

This paper is organized as follows. In Section 2, we state the main result and
some preliminaries. In Section 3, we construct an approximate solution and get
some useful estimates. Section 4 is devoted to the proof of the invertibility of the
linearized operator. In Section 5, we reduce the problem to one of finding the
scale of bubbles. In Section 6, we solve the reduced problem, that is, find the scale
A in terms of the parameter p.

2. MAIN RESULT AND PRELIMINARIES

Before we state the main result, let us first introduce Green’s function G(x,y) of
—Aon TZ%:

AxG(x,y) =08y —1 inT?
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and

J G(x,y)dx =0 forall y € T%
TZ

We also define the regular part of Green’s function to be

1
R(x,y) =G(x,y) + %loglx -l

and abuse the notation a little bit to define R(x) = R(x,x) as the diagonal of
R(x,y).

Actually, Green’s function of T? is sometimes written as G(z) where z =
x — . Here, we consider x,y,z as complex numbers. We cite the explicit
formula of G(z) in terms of the doubly periodic function from Chen and Oshita’s
paper [7], as follows.

Lemma 2.1. Green’s function G(z) on T? is given as follows:

_ |z2-2> =z i
G(Z)._Im( i —2+12

- %‘(1 —e(z)) x l_[(l —emi+2z2)(1—-eni-2z))|,

n=1

where e(z) = ez,
Furthermore, we also have a formula for the regular part R(z):

1 22z i\l-e(2
R(Z)'__znlog‘e<4i_2+12> z
|zI?

x [T(1-emi+2)1 —e(ni—z))‘ -
n=1

Chen, Lin, and Wang [6] obtained some significant information on the criti-
cal points of G(z), and we also calculate the second derivatives of R(z) at z = 0,
as follows.

Lemma 2.2. Green’s function G(z) has three non-degenerate critical points: z =
2,2 =1/2, and z = § + /2. Among them, the first two critical points are saddle
points, and the third one is a minimum.

Furthermore, we also calculate the second derivatives of the regular part R(z) of
Greens function, that is,

11 1
VZR(Z)| — 2 _ 12
z=0 0 l 1 ’
2
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where
—21TNn

Z=: (1 — e 21'm)2

Remark 2.3. Chen, Lin, and Wang [6] also showed that Green’s function
G(z) is evenly symmetric about the x; and x; axes, and so also is the regular part
R(z). Thus, we have VR(2)|;—0 = 0

We seek for blow-up solutions that are evenly symmetric about x; and x; axes
as p — 16m.

Theorem 2.4. Let £ € (0, Eo)for some &y > 0 small enoug/J. Letp = 16T + &.

Assume that €1 = (0,0) and &) = (2, 0) or (0, 2) 0r( ). Then, for each &, there
exista A > 0 and a solution wy to equation (1.1) such t/mt the following hold:

€= (1281T2+0(1))2\21n%,
ur(§j) - o0 forj=1,2,
ur(x) - —o forall x € T?\ {£, &} as € — 0,

and
ux(x1,x2) = ua(=x1,x2) = ua(xi, —xz).

Moreover, we have

J P e'r — 81 (dg, + 0g,) inasense of measure, as € — 0.
el
TZ

Remark 2.5. Note that the blow-up solutions we found in the case of &, =
(3,0) have the following property:

1
U (xl + §,X2> = ua(x1, x2).
In other words, the solutions become solutions of the mean field equation on the
flat torus with fundamental domain [—%, %] X [—%, %], which blow up only at the
origin. The same thing happens when &, = (0, %). When we take &, = (%, %), the
solutions we constructed also correspond to the one-point blow-up solutions on a

flat torus whose fundamental domain is a tilted square with length \V2/2, since in
this case we have

ur(x1,x2) =u <x +lx +1>
A 1,X2) = A 1 212 2 .

Remark 2.6. The same type of construction will also work for T¢ where ¢ is
arbitrarily given. Much as in Remark 2.5, one can show the existence of the one-
point blow-up solutions to (1.1) when T? is replaced by any rhombus torus (i.e.,
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flat torus with its fundamental domain being a rhombus) as p — 8. We also
would like to mention that Lin and Wang in [19] established the existence and
uniqueness of solutions to a mean field equation with singular source on rhombus
tori.

The proof of Theorem 2.4 relies on a Lyapunov-type reduction. We first
construct an approximate solution which behaves like the standard bubble near
the blow-up points &; and &, and behaves like Green’s function away from these
two points. Then, we carry out a finite dimensional variational reduction for
which the main ingredient is an analysis, of independent interest, of bounded
invertibility up to the dilations of the linearized operator in suitable L*-weighted
spaces with certain symmetries. This method consequently reduces the original
problem to a problem of finding an appropriate scale A of the bubbles.

3. AN APPROXIMATE SOLUTION

In this section, we will construct an approximate solution of equation (1.1) and
obtain some estimates of this approximate solution. Let Ry > 0 be a fixed number
such that Ry < %. Let n be a standard cut-off function such that

nis)=1 fors < 1;
nis)=0 for s > 2;
0<n(s)y<1l forl<s<2.

We further assume that [n’(s)| < 2. Let

dist(x, §)>

(3.1) NRy,e(X) =1 ( Rq

where dist(x, &) denotes the geodesic distance between x and &.
Given € € (0, &9), we choose A > 0 such that

(3.2) G4TT2A? ln% <& <2562A2In %
In other words, the above inequality can also be written as

A1(g) <A < Az(e),

where one can solve A1 (€) and A, (&) from (3.2).
Let wy,1 be the solution of the following equation:

8A2
(AZ + (dist(x, &1))2)2 NRy, &

J w1 =0,
TZ

—Awy = - mu,
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where
m _J 8A2
P ) (A2 (dist(x, £1))2)2 TReEr

Let wy,» be the solution of the following equation:

8A2
(AZ + (dist(x, &))2)2 NRy,&

J wa =0,
TZ

—Awyp = - My,

where
m _J 8A2
27 i (A2 1 (dist(x, £))2)2 TRoEe

By simple calculations, one can obtain the so-called “masses” of w1 and wj 2,
that is,
my; = my =81 + O(AZ)

We introduce w; to be the sum of wy ; and w ;, that is, Wy = w1 + wa 2,
and a constant related to A

wa =2InA +1n8 — 8TR(E, E) — 8WG(E1,5)).

Then, we are ready to provide an ansatz for solutions of equation (1.1):
namely, wy = wx + wy.
We then calculate the values of w1 and wy, at the blow-up points &; and &;:

8A2
A2+ |y -&11?)

(3.3) war1(&) = Lz G(&1,Y) [ 3Ry E (V) — m1} dy

1 82
= —5—In|y|+R(0, ]7d + 02
JB(O,RO)[ 7r P11+ RO, y) A2+ 1y ™Y (A%)

1 1 8

= —>—InA - —1 z+RAz]7dz+O?\2

JB(O,RO/A) [ 21 n 21T n|z| (Az) (1+ |Z|2)2 (A%)
4A%InA 1 8ln|z|

A2+ R5 21 JoRryn) (1+1212)2

+ 2J 4(zV*R(2)|,_2")
B(0,Ro/A) (1+1z]2)?

= —4InA + 8TR(0) — 4TTA%In A + O(A2).

= —4lnA+ dz + 81TR(0)

dz + O(A?)
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For |z| < Rg/A, we have

(3.4) wr1(&1+Az) —wa1(81)

2
- [ 16+ Az - 6E )

AT+ Ty =g 22 s
8

1
——[Ilnlz=Z|-In|Z'|]| ————=—=dZ’
[B(O,RO/A) 27T[ al [ =Iniz"l] (1+12'12)2

' — — ! L ’ 3
! JB<0.RO/A>[R(MZ 2) ~ Rz )](1 +|2']2)2 dz' + O(A’[z])

dy

=In (lemz) +2mA%(z3 + 23) — 41A? G - % + 41Tq> (z} - 23)

+ 03 z2) + O(AlnAlz]) + O(A3|z]).

For |z| = 2Ro/A, that is, |x| = 2R, we have

’ 8A2 ’
(3.5) wai(x) = LZ G(x,x )mfmo,gl dx

8
(1+1z'1)?

G(x,& +AzZ") dz’ + A% f1(x)

JB(O,Ro/)\)
B JB(O,Ro/A)
. A2(Z'V2G (& —x)z’T)] 8

2 (1+]z2'|2)2

[G(& CX) FAVG(E —x) - 2

dz’ + A2 f1(x)

S dr + A% f1(x)

Ro/A r
= 8mG (& — x) + 41TA? JO Tr(V2G(E, - x))m

= 8TG (& — x) — 4TA2InA + A2f(x),

where f1(x) isa C! function.
In particular, we can get

wa1(&2) = 8TG (&1 — &) — 4mA%InA + O(A?).

Combining (3.3) and (3.4), we have for |z| < Ro/A

(3.6) wai(E1+Az) = —4InA +1n ( + 8TTR(0) + 2TA% 2|2

)
(1+]z]2)2
_ 4mra (% - 41Tq> (22 — 22) — 47T A2 In A
+ O3z +0A3)z]) + O(A3InAlz)).
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Similarly, we can obtain the same result for wj > when |z| < Ro/A if we now
shift the center of the coordinate system to &;:

- _ I 21512
wan(& +Az) = —4lnA +1n ((1 = |Z|2)2> + 8TR(0) + 21TA*|Z|
— 47T A? <% - % +41Tq> (22— 2%) —4mA%InA

+ 03 z12) + O(A3|z]) + O(A3InAlz]).
We also have a result similar to (3.5) for wj > when dist(x, &) > 2Ry,
(3.7) waz(x) = 8G(E;, — x) —4mA% InA + A2fa (x),

where f>(x) isa C! function when dist(x, &) = 2R,.
In particular, we have wa»(&1) = wa1(&2).
Thus, we obtain the following lemma concerning the values of w near the

blow-up points &; and &.

Lemma 3.1. We have an inner approximation

wa (Ex + A2) =ln( )+2m2|z|2

AZ(1 + |z[2)2
1 m

_ 2
41TA (2 c
+ 4TA2(zV2G (&, — E1)zT) — 8mA%lnA

+O0A3z]P) + O(A°InAlz]) + O(A3|z]),

+ 41Tq> (z2 -2z

of Wi inside the ball z € B(0,Ro/]), and the above equation holds for both blow-up
points if we set the center to E fork = 1,2.

Remark 3.2. Note that here we have
Tr(V2G(E - &) = AG(E - &) = 1.

We then give an outer approximation, as follows.
Lemma 3.3. When min (dist(x, &), dist(x, &)) = 2Ry, we have

wa(x) =2InA +1n8 — 8mR(0) — 8G (&) — &) + 8WG (& — x)
+8TG(E; — x) — 8A* InA + A (f1(x) + f2(x)).
Comparing the approximate solution with the function constructed by gluing

the inner approximation and the outer approximation together using an “interme-
diate layer” (a cut-off function such as na« for some & € (0, 1)), we can estimate
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the approximate solution when Ry < dist(x, Ek) < 2R as well as e*2. (For details,
see Lemma 3.1 in [11].) In particular, we have

2

y 82
e = 2 s (e, By L )

where 6, has the property that for some constant C > 0,

2 .
02(0) | <CA S [M +1).
k=1

More precisely, when |z| < Ro/A, we have

8
wa(Ex+Az) _ 2 2
(3.8) e N GENEDE [1+2Tr2\ |z|
— 41TA? (% i 4Trq> (z} - 2%

+ 4TA2(zV2G(E, — E1)zT) — 8mA%InA
+OA3zPP) + O(AInAlzl) + 0(A3|z|)].
When dist(x, &) = R for k = 1,2, we have
(3.9) e X = 0(A?).

Let us then estimate the error of the approximate solution by inserting the
ansats w, into equation (1.1).

Lemma 3.4. Let

u

Sp(u) =Au+p | —— -1
J, e
T2
Then, there exists a constant C > 0 such that
1 In(1/A) |z|?
21h =
ISp (wa) (Ek + Az2)] SC[A lnA+ (1+1z12)2 " (1 +|z1)2 |’

for |zl <Ro/X and k = 1,2,

1S, (W) (x)| < C’Azln%,

for dist(x, &) = Ro and k = 1,2.
Furthermore, we have that S, (W) is evenly symmetric about both axes.
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Proof. We first use (3.8) and (3.9) to estimate the integral of e, that is,

(3.10) J er =2 e +J ea
T? B(&1,Ro) T2\ (B(&1,Ro)UB(&2,R0))

8
=2J 7[1+2n2\222
B(O,Ry/A) (1 +12]2)2 2]

1 m
4N (2T
4ma (2 6
+41A%(zV2G(E - £1)zT) = 8mA%InA + O(A3|z)?)

+dma) (2} - )

+ 0323 + O(A3lnAlz]) + 0(2\2)]

ewr

+
JTZ\(B(EI,RO)UB(ELRO))
=2(81 — 128T2A%In A + O(A?)),

where we use Remark 2.3 and Remark 3.2.
When |z| < Rg/A, we have

Sp(wa) (& +A2)

\ . oW (Ek+Az) 1

= Awx (& + Z)+p<16n_256n22\21n2\+0(?\2) - )
8

— 2y —

—167T+O(A ) A2(1+|Z|2)2

(1677 + &) (ErA2)
T 161 = 256m2A2InA + O(A2)
€ + 2561222 In A + O(A?) 8
167 — 25612A2InA + O(A2)  AZ(1 + |z|2)2

In(1/A) E
+O(u+m%ﬂ+o<u+mag'
We know from (3.2) that € = O(A%2In A); then, we have

> 1 In(1/A) |z|?
[Sp(wa) (& +Az)| < C [/\ ln)\ + TEDEAREEBE

— (1611 + ¢)

=—e+0(A%) +

for |z| < Rg/Aand k = 1,2.
Similarly, using (3.10) we can estimate the outer error:

1671 + ¢
16T + O(A21nA)

since (3.9) holds for all dist(x, &) = Rgand k = 1, 2.
The rest of the lemma follows from the last identity.

Sp(wa)(x) = — + O(A?) + 0(A?)
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Equation (1.1) has a variational structure; that is, critical points of the energy

functional
Jp(u)=lj IVuIZ—plnq e”)+pj u
2 T2 T2

correspond to the solutions of equation (1.1). Our next goal is to estimate the
energy functional of the approximate solution wj.

Lemma 3.5. The energy of w is

Jp(wp) = —641?[R(0) + G(& — &)] — 161 In(21)
— 161 + 2elnA + 128222 In A
— [ln(21) — 8TTR(0) — 8WG (& — &)1 + O(A?).

Proof. From (3.10), we can compute

(3.11) —pln(J ew)=—(16n+e)ln(wn—256n2;\21n;\+0(;\2>)
T2

= —16w(In(167) — 16A%In A + O(A?))
— &(In(161) = 16TA%In A + O(A?)).

Also, we can easily compute

(3.12) pJ wy = (1671 + &)w,
T2

= 16m(2InA +1n8 — 8TR(0) — 8TG(E1 — &)
+&2InA +1In8 — 87TR(0) — 8TTG (&, — &)).

Then, the only term remaining is the following:

1 1 1 _
(3.13) 3 LZ IVwal? = 5(—Aw;\,w;\) = 5(—Aw;\,w;\)

1 8A2 8A2
[( ] (wa,1 +wap)dy

== +
2|y g T sy g2

_[ 8A2 - +J 8A2 nwa, d
A2+ y-&n2" MGy A2+ y-&n2" A2 Gy

=J1 +J2,

where we denote ng, g, as Nk for simplicity, k = 1, 2.
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Let us use (3.6) to compute J; first:

8wy, 1(&1 +Az)

= dz + O(A?
JB(O,RO/A) (1+1z]2)2 (%)

8
=[—4lnA + 8TR(0) — 4wA%ln A + O(A? J —dz
[=4ln © B (A%)] B(O,R/A) (1 + 12]2)2

8|z|2
+ 21TA J dz
Bk (1 + [2]2)2

8
—ZJ In(1 + |z|*)—————dz + O(A?
B(0,Re/A) n(1+1zl )(1+|Z|2)2 (A%

= —32mIn A + 641T*R(0) — 167 — G4TT*A% In A + O(A?).
Then, we use (3.7) to compute J3:

. J 8wyo (81 +A2)
7 Jporgny (1 +1212)2
J 88TG(&E — & — Az) —4Tr?\21n2\+?\2f2(§1 +Az2)
B(0,Re/A) (1+1z]?)?
8
= 8mGE — &) JB(O,Ro/A) T+ 1z %2
8(zV2G(& — &)zT)
4 A2J
AT B(0,Ry/A) (14 z]2)2
= G4TT2G (&2 — §1) — G4TT2A% InA + O(A2).

dz +0(A?)

dz + O(A?)

dz = 3212A%InA + O(A?)

Therefore, by (3.11), (3.12), and (3.13) we have

Jp(wa) = =641 [R(0) + G(& — &)] — 161 In(271)
— 161 +2¢lnA + 1282A%In A
— &[In(21) — 8TR(0) — 8G (&, — &)1 + O(A?). 0O

4. THE LINEARIZED OPERATOR

In this section, we will establish a solvability theory for the linearized operator
under a suitable orthogonality condition.
Let us introduce an operator

L(u) =AM+ —+——
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The above operator is connected with the linearized operator of S, through
the following:
J e \u
T2

ewa
TZ

L(u) = A2L(u).

Sywa)(u) =L|u -~

Let

If we shift the center of the coordinate system to &k and blow up the torus
T? by the scale A to TZ, then the linearized operator £ scaled by A% formally
approaches a linear operator L in R, that is,

L(u) =Azu+ 7(1 n |Z|2)2u,

where z = (x — &) /A.

The operator L can be obtained by linearizing the equation Au + e* = 0 at
the radial solution v(z) = In(8/(1 + |z|%)2). An important fact we are going to
exploit in developing the solvability theory is the non-degeneracy of v modulo the
invariance of the equations under translations and dilations, that is,

C—~v(z-0C); s~v <§> —2lIns.
Thus, we set

Pu2) = 50z + Olgo k=12

o= 2[o(2) 2w

s=1
Direct computation shows that
—4Zk
Qi Tz fork=1,2
and
~2(lz12-1)
Po= Tz

It is shown that the only bounded solutions of L(u) = 0 in R? are precisely
the linear combinations of the @y, k = 0, 1,2 (see Baraket and Pacard’s paper [1]
for a detailed proof). Let us define

o .(X—é‘a')
Qiji= Qi by




468 ZE CHENG, CHANFENG GUI ¢ YEYAO HU

as a function on T§ without ambiguity, i = 0,1,2 and j = 1,2.
Moreover, let us pick a large but fixed number R; > 0. We introduce another
type of cut-off function:

Xr(s) =1 fors <R,
Xgr(s) =0 fors =R +1,
0<xg<1l forR<s<R+1.

We further assume that
IXg($)] < 2.

Let Xz g(2) = Xg(I1z = &|). Denote §;/A as E} for short.

Next, let us introduce some functional set-ups of the problem.
Let

CEMN(T) = {u € CRN(TY) | u(z1,22) = u(z1,-22) = u(-21,22)},
where k is any positive integer and o € (0, 1), and one can also define L?(Tf),

1 < p < oo, respectively.
We consider the following norms:

lWllew = sup l@(2)],

2
zeTy

2 —
l@lls = sup (3 (1+dist(z, )73 +22) (2],
j=1

zeT}
Let

C={uel™(T}) | u(z1,22) = u(z1,-22) = u(-z1,22), llulx < oo},
and
Co = {u € L™(T) | u(z1,22) = u(z1,-22) = u(-21,22),
lulls < 00, U L @oXp, g -

Given h € C, we consider the linear problem of finding a function ¢ € Cx
and scalars ¢, j = 1,2 such that

2
(4.1 L(p)=h+ chthg}(po,j in T3.
j=1

We observe that the orthogonality condition in the definition of Cy is only with
respect to the approximate kernel generated by dilation. Furthermore, we can eas-
ily find that the elements in Cy are also perpendicular to the approximate kernels
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that are generated by translations, that is,

u L Pi X, g foralli=0,1,1and j = 1,2, u € Cy.

The main result in this section shows the solvability of (4.1) and an a priori
estimate which is uniform in small A in the functional settings of the enlarged flat
torus T3,

Proposition 4.1. There exist positive constants Ao and C, such that, for any
A € (0,A¢), there is a unique solution to problem (4.1). Moreover, if h € C"‘(Tf)
then

(4.2) Pl < CliRlx.

The proof of this result consists of two steps. The first step is to establish
a uniform & priori estimate for the problem (4.1) under the additional orthogo-
nality conditions of ¢ generated by translations. More precisely, we consider the
problem

(4.3) L(p)=h in T3,

(4.4) J Xe g @i =0 foralli=0,1,2, j=1,2.
T3 e

Lemma 4.2. Assume that h € C*(T3). Then, there exist positive numbers Ag
and C, such that for any A € (0, o) and any solution to (4.3)—(4.4), one has

[Pl < CllRllx.

Proof- We will adopt the same technique introduced by del Pino, Kowalczyk,
and Musso in their paper [22] to prove the invertibility of the linearized opera-
tor of the mean field equation in bounded domain but with Dirichlet boundary
condition.

We prove this lemma by contradiction. Assume then there exist sequences
An = 0, hy, with [|hyllx — 0 and [|[pnlle = 1 such that

L(¢pn) = hy in T3,

;X @iibn =0 foralli=0,1,2,7 = 1,2.

The contradiction is obtained via several major steps. The key step is to con-
struct a positive supersolution in order to show that the operator L satisfies the
maximum principle in T} outside large balls centered at the points EJ Let us
introduce a sort of “projection” of the radial solution fo(r) = (¥> = 1)/(r? + 1)
in R? of g

Mo+ Tz

fo =0,
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onto a proper functional space on T)%, that is, to some function f(z) such that

_ 8
(1+122)

| Feaz=o,
7

—Af = follz) = A%m,

8
m= | ———>—follz])dz,
Lg a1z
where z = x/A € Tf.
One can estimate the mass m by direct computations

8
“3 JB(O,I/(Z)\)) meUZDdZ
8

=m= ——— follz]) dz.
JB(o.ﬂ/uA)) (1+ IZI2)2fO

Then, it can be easily seen from (4.5) that m < 0 and m = O(A?).
To construct a positive supersolution, we need to show that the function f(z)
is uniformly bounded. Let us transfer the function back into a function on T?2.

Using the same notation here without ambiguity, we know that the function f(x)
satisfies the equations

82 Ix/APR-1

— _ : 2
Terxm? waper ot

~ A f
and

sz(x) dx = 0.

Then, for any x € T?, we can compute the value off(x):

8A2 Ly /A2 -1
A2+ 1y12)2  y/AR +1
T2 21T (AZ+|y12)2 |y/AIZ+1

82 |yAPR-1
¥ LzR(X’y)(AZ PP R DYy YR
=L +1.

foo = Gy dy

For the estimation of I, we know that R(x,y) and (|v/A|2 = 1)/(|y /A2 + 1)
are both uniformly bounded for all x, y € T?. Therefore, we have

8A2

T
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However, it is a little more technical to estimate I:

1 8A2 |y/2\|2—1
47) I :J 1
@7 hi= | e T2 P YIS T e

v SRRV VTR L 71
\BOR) 27T Y+ 22 Iy + 1

We know that the latter part in (4.7) can be bounded by CA? for some constant
C, since the singularity of singular part of Green’s function is somewhat mild, and
the integral

[ Tt yilay

is uniformly bounded for any x € T2.
Thus, the only remaining part we need to estimate is the first part in Iy, that

1 8A2 ly/AI2 -1
4.8) I =J —~—lIn|x - : +0(A?
@8 hi= | w2 M YT Iy AR (A9
T e 2w M YR D v Ar A1
8A2 |y /A2 =1
+ X — . dy + O(A?
J{RZ\B(O,RO 217 n| y'(?\2+ly|2)2 |V /A2 +1 Y (A

= 11‘1 + 11,2 + O(Az)

Let us first compute I;,;. More precisely, if we consider I;,; as a function of
X, one can easily check that I ; is a radial function. Furthermore, we have

82 |x/AR-1
A2+ [x[2)? " x/A+ 1

-AlL =

We also know from direct computations that

~ 1 8A2 ly/AR-1 .
h1.1(0) = J{RZ R A2+ |y|2)2  |y/AlZ+1 dy = -2

It is easy to check that

_A( -2 )_ 8A? Clx/AP -1
IX/ARZ+1) A2+ |x|2)2 |x/AR+1°

Since any radial harmonic function in R? is constant, we can conclude that

-2

(4.9) Ii1(x) = m
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For I 2, we notice that

8A2 A2
<C

(A2 + [y[?)? |y |4
and

1 y/Al2-1

5 < AT <1 for|y| > Ro.

Then, we have
(4.10) Iy < CAZJ Hnlx=yIl 4, < a2
R2\B(0,Ro) 4!

for a uniform C' > 0 with respect to any x € T?.
Finally, combining (4.6), (4.8), (4.9), and (4.10), we have

Ifl<cC

for some uniform C > 0. 5
Now, we let 7(z) = f(z) + C, such that 7 > % forall z € T)%. We are ready

to define a comparison function in Ty,

2
V(z) =Y v(alz-§jl) forzeTy.
Jj=1

We observe that

2 8a%(a?|z - E}Iz -1)

~AV = . —a*A*m,
; (1+a?z- §j|2)3
so that for |z — E;.I > 10/a for j = 1,2,
a? e
—AV 22 —z —.
_ _ 4
i (1+a?z §j|2)2 i 1z - &l
On the other hand, in the same region,
2 1
ey < C Z —_—
_ 4
j=1 |Z §J|

Hence, if a is a fixed small constant and Rj > 0 is chosen sufficiently large de-
pending on the choice of a, then we have L(V) < 0in Tf = Tf \ U§=1 B(E}, R)).
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Here, we are able to find a positive supersolution V on T7. Then, we conclude
that the operator L satisfies the maximum principle, that is, if L(1) < 0 in Tf and
u > 0on an, then u = 0 in Tf.

Let us fix such a number R > 0, which we may take larger whenever it is
needed; that is, we can take R5 = R, /A for some positive R,. Now, let us consider
the “inner norm”

lplli = sup [Pl

U2, B(E;.R))

Then, the second step in this proof is to show the following claim is true:
there is a constant C such that if L(¢p) = h in T)% then

Pl < ClliPlli + IRl

We need suitable barrier functions to prove the above claim.
Let g be the solution of the problem

2 ’
“Ag = B +2A% forz € T# \ B(0,R)),

g(z) =0 on dB(0,R}).

If we introduce Green’s function G(x,y) of the manifold T2\ B(0,R,) with
Dirichlet boundary condition, that is,

~AxG(x,¥) =8y, x € T?\B(0,Ry),
G(x,¥) =0, x € 0B(0,Ry),

then we can show the uniform boundedness of the function g(z) by applying
the same technique as in the proof of the uniform boundedness of the function

f(z), with G(x, ) being replaced by G(x,y). Furthermore, we define two more
auxiliary functions using g:

9j(z) =g(z=&), forj=12.
Let us introduce a barrier

2
B(2) = 2091V (2) + 11l D g;(2).

j=1

Then, it is easy to check that L((ﬁ) <hin Tf and (ﬁ > ¢ on af)%. Hence, we have

¢ < ¢in TZ. Similarly, one can also show that ¢ > —¢ in 7%, and the claim
follows.
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In the last step, we go back to the contradiction argument. The claim in the
second step shows that for some k > 0, we have ||yl = K since [[Pnlle = 1. Let

us set c]gn(z) = qbn(g;. + z) where the index j is such that Sup\z—g;.kR; |pnl = K.
Without loss of generality, we can assume the index j is the same for all n. Elliptic
estimates readily imply that ¢, converges uniformly over any compact subset to
a bounded solution ¢ # 0 of a problem in R?

__ 8
(1+12[2)2

A + ¢ =0.

This implies that 4) is a linear combination of the functions @y, k = 0,1, 2.

However, the orthogonal conditions that all ¢, satisfy imply that ¢ = 0. The
result of the lemma then follows from the contradiction. O

We are now ready to provide a complete proof of the main result of this sec-
tion.

Proof of Proposition 4.1. We first establish the validity of the « priori estimate
(4.2). Lemma 4.2 yields

2
(4.11) Iplle < C[IRI + D 1es1],
j=1

so it suffices to estimate the values of the constants |c;|. Let us consider the cutoff
function NR;E, introduced in (3.1) where R; = R3/A for some R3 > 0. We

multiply equation (4.1) by the test function @g,;n R},€» and integrate

(4.12) (L(b), Mg @0.1) = (B My Pog) + € Lg X,z |90,
On the other hand, we have

(4.13) (L(P), nry g Po,j) = (b, LnrsygjPo,j))-
Now, we have
L(nryg,®o.i) = ANgy g Po,j + 2VNr, g, VPo,j
Ao (G5m) o (qem) |
withr = |z — EJ'-I. Since

Angg = O(A%),  Vingyg = 0(A)
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and @ = O(1), V@, = O(r—3), we have
N 2 4 1
(@19 Ligeo) = 0O +A]0 ((1 +r2>2> +o ((1 +72)2>] '
Therefore, we have
|<¢1L(’7Ré,§}(p0,j)>| < CAlP|leo-
Combining this above estimate with (4.11), (4.12), and (4.13), we obtain
lcjl < CllIhll« + Alekl] forj = k.

It follows that |cj| < Cllhllx. Furthermore, from (4.11) we know that (4.2)
is true.

It only remains to verify the solvability assertion. The Fredholm alternative
tells us that problem (4.1) has a unique solution if and only the associated homoge-
neous problem has only trivial solution. The homogeneous problem is equivalent
to equation (4.1) with h = 0. From the « priori estimate we just proved, we know
that the homegeneous problem only admits a trivial solution. This finishes the
proof. O

If we add another orthogonal condition to ¢ and consider the problem

2

(4.15) L(¢p) =h+ chle,g;_(po,j-‘rco in T3,
Jj=1 ‘

(4.16) ¢ L P0,jXR,

(4.17) ¢ L e,

where h € C, then we have the following corollary.

Corollary 4.3. Assume the conditions in Proposition 4.1 hold; then, problem
(4.15)—(4.17) has a unique solution. Also, if h € C“(Tf) then ||Plleo < Cllh]l 4.

Proof. Following the same argument as in the proof of Proposition 4.1, we
test (4.15) with Po.iNR;,E):

(4.18)  (L(e), Ny, ®0,i)

— e . . 12 .
= (h, NRy g @o,j) +C; LAZ Xr, g |®o,jl” + co Lg XR, g, P0.j-

Integrating (4.15), we have

2
. L G _
(4.19) JTAZ h+ ng JT)% CiXR, g, Po.j + A2 0.
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Combining (4.18) and (4.19) with Proposition 4.1, we can obtain

C
'A—‘;' < Clhll..
Hence, we have
C
Il sc[||h||*+A—g] < Clhll.. o

The result of Corollary 4.3 implies that the unique solution ¢ = T'(h) of the
problem (4.15)—(4.17) defines a continuous linear map from Banach space C to
L2 (T3).

5. REDUCE TO A ONE-DIMENSIONAL PROBLEM
In this section, we reduce the infinite-dimensional problem of finding ¢ for

(5.1) Sp(wa+¢) =0

to a one-dimensional problem of finding appropriate scale A while p is given.
We now expand S, (wx + ¢) as

er
Sp(wa+ @) =Sp(wr) + L | b~ JJTZ + N(¢),
ewa
where T
[ons
(5.2) N(¢p) = P b P |2 |]|ew,

eWat¢d eWa eWa
T2 T2 T2

Since the lefthand side of equation (5.1) is invariant if we add a constant to

¢, we can further assume that [ e ¢ = 0.
T2

We abuse the notation here to denote ¢ as a function in Cx. Moreover, we
consider problem (5.1) in the dilated coordinates; that is, wa, S, (wa) and N(¢)
are now considered to be functions on T}.

To exploit the reduction procedure, we solve the following nonlinear interme-
diate problem first:

2
(5.3) L(¢p) = —A*[Sp(wn) + N(p)1 + > CiXR, g Poj+Co in T3,
j=1

(5.5) JTZ erp = 0.

A
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We will use the solvability theory just established in the previous section to show
an existence result to (5.3)—(5.5). We assume that the conditions in Proposi-

tion 4.1 hold.

Lemma 5.1. The problem (5.3)—(5.5) has a unique solution ¢ which satisfies
lplle < CA.

Proof. We first rewrite (5.3)—(5.5) into a fixed point form:
¢ =TA[Sp(wr) + N(P)]) = A().
For some constant C' > 0 sufficiently large, let us consider the region
F=ldpelildpLe [dllo <CAL
From Corollary 4.3, we have
TA() oo < CA*[1ISp (W) + IN() 1]

By Lemma 3.4, we have the following estimate:

1
1S, (wa)lls < CX'

Also, the definition of N in (5.2) immediately implies that

AN ()l = CA2 ln%.

It is also immediate that N satisfies the contraction condition

AIN(p1) = N(p) s < Clipt — P3lleo + CAllp1 — P2llo < CAllP1 — P2l oo

Hence, we get

IA(P)llw < CA,
[A(P1) — A(P2)llw = CAllp1 — P2lleo,

for sufficiently small A.

Therefore, the operator A is a contraction mapping of F if A € (0,Aq) where
Ao is a constant small enough. The existence of a unique fixed point is guaranteed.
This concludes the proof. O

Lemma 5.2. For all ¢ found in Lemma 5.1, we have that ¢, = ¢, and ¢y =
—2A2Acy, where the ci, i = 1,2 are coefficients in (5.3) and A = J 2)(Rl(po(z).
R



478 ZE CHENG, CHANFENG GUI & YEYAO HU
Proof. By integrating equation (5.3), we have

(5.6) Ac +¢) = —%.

Since the problem (5.3)—(5.5) is invariant if we switch the center of the coor-
dinate system to &, we have

(5.7) (L(p), gy g, Po,1) = (L(P), Nry g, Po,2)-

Then, the lemma follows if we combine (5.6) and (5.7). O

We also need to estimate the dependence of ¢ as a function on T2 on the
parameter A.

Lemma 5.3. The fixed point ¢ found in Lemma 5.1 satisfies || =|| =< C.

Proof- We study the problem (5.3)—(5.5) on the original flat torus T2:

2

L() = ~[Sy(wa) + N(d)] + Z ijszl ¢ (§> Po (X— EJ) ;&

A A A2’
X x—&;
- PXr, (X) Po ( R ) =0,

J erp =0,
TZ

and ¢ is symmetric about both axes. We differentiate the above equation with
respect to A:

0 P e
¢ J e
Y 12
= < oA ) * R ¢

3Sp(wa)  IN(P)] . < 0¢) x x -
:_[ Nt a ]*Z ANRE (A)""’( A J)

2 —_ . — .

sxa () (B e (5

X—EJ'
8<po( A ) ac,
+

& oA oA’
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where CJ'- =cj/A% for j=0,1,2.

Again, we scale the torus to Tf; then, we have

0 P pwn
w)
%>__ 2 JTze 0Sp(wa)  ON(¢p) 9cg
658 1(5) =2 A Pt a TTa T a

’ |X_§|
—|x—§1|)XR1< 3 - )%,j
2 /
JXng 3?\ Z oA XR1§(p0J1

—,
Il
—_

+
™M
g.ﬁ

+ > A%

M

~
Il
—_

and

o
JTAZ ﬁXRlyg}(po,]

Ix =&l _, (lx—&l 0o,
_JTAZ(I)[(_ A2 XR, A Poj *XrE oA |

Exploiting the same argument as in the proof of Proposition 4.1, we have

lejl <CA,  forj=1,2.

Therefore, by integrating (5.8), we have

acg oc;| ¢
G-9) | =C ‘ A | = Az
with again j = 1,2.
Furthermore, direct calculations lead to
0 P pw
J et 35, (wy)

2 2 2 (|92 A)

(5.10) A A P|| =C, 3N . <C.
*
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The derivation of the above two estimates needs a careful check on the as-
ymptotic behavior of 0w)/0A. One can proceed as in the way we calculate the
asymptotic behavior of the approximate solution wj in Section 3. We omit the
detailed calculations here.

It is also easy to check that

< C.

- &l < I,
Z ¢ (=2)x; ( - )Q%J + 2 CXrE .
j=1
We now use the orthogonal condition

J e¥rp =0
T3

together with (3.8) and (5.10) to derive that

pow RLELI A

ES

Set b; as follows:

. 12
b] JT/\Z XRI,E} |(p0,J |

Ix-&l\ ., (Ix-&l 090,
:JTAz"’[(_ a2 )X\ T ) P T XReg T |

We can easily verify that |bj| < C. Define I as follows:

0 p eWa
= A2 L‘Z e b + 0S,(wy) N ON(¢p) 0Ocg
B oA oA oA oA

+
M
gﬁ

~Ix ~ &g, ('x f”) Po.s

aCPo
2.7 vY¥o.j
A CJ'XRI,E‘;-

.
Il
—

_l’_
M

Z b]L(nR3§ (p0])

.
Il
—
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If  is the unique solution to the problem

2
((I/) =h+ z JXRl,g}Q?o,j,
j=1
(II L XRI’E}(pO,j! (I} € C*!

then we can express 0¢p/0A in terms of (, that is,

2
Z J1R;, € Po,j-

\%’

(5.11)

Finally, combining (5.9)—(5.11) and (4.14) and applying Lemma 4.2, we have

< C. |

‘ﬁ N
6. SOLVING THE REDUCED PROBLEM

In this section, we shall solve S, (wa + ¢) =0
Lemma 6.1. The energy of the wy + ¢ satisfies

Jo(wa + @) = Jp(wp) + O(A?),
where ¢ is found through the fixed point argument in Section 5.
Proof. Expanding J, (wx + ¢) yields

Jp(wy + P) = Jo(wa) — <Sp(w2\ +0¢), P12,

for some 0 € (0,1).
Let us try to estimate S, (wj + 6¢):

©6.1) Sy (wa + 0) = Sp(wa) + OAD + O(Ae™).
By the fact that [|¢ |l < CA and Lemma 3.4, we have
(Sp(wp), P12 = 0(A?).

It is easy to check that

J le¥Ap| < CA.
TZ
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We only need to estimate the inner product of ¢ and the remaining term in

(6.1):

(AP, 12| = <£(qb>,qr>>rz—J P (ewrgp, )r
e
TZ

= {L(P), d)r2| + O(A?)

2

5 il (255 )ou(£55).0), i, o] w0

j=1
= 0(A?).

Therefore, we have
Jo(wa + ) = Jp(wa) + O(A?). O

If we consider J,(wx + ¢) as a function of A, then Lemma 3.5 and Lemma
6.1 imply that

Jp(wp + @) = =642 [R(0) + G(&; — &)] — 167 In(271) — 167 + 2€ln A
+ 128m?A%InA — g[ln(21) — 8TR(0) — 8TTG(E; — &) ] + O(A?).

By the standard degree theory, we have the following lemma concerning the critical
point of J, (wa + ¢).

Lemma 6.2. The energy function J,(wa + ) isa C 1 function with respect to A
or A € (A1, N2), and hence it has a local maximum point Ay.. Furthermore, we have
4

s=(128n2+o(1))AilnAi, as € — 0,
*
where p = 16T + € and € € (0, &).

Finally, we finish the proof of Theorem 2.4 by showing the following lemma.
Lemma 6.3. When A = Ay, we have | = ¢ = ¢ = 0, where

2 J— . —_ .
Sp(wr + @) = Z C;XRI ('X A§J|> ®o <XT§J) + ¢}
j=1

Proof. Since Ay is a critical point of the function J, (wj + ¢), we have

a.]p(w)\ + )

. . = 0.

A=Ay

o(wy + <I>)>
oA T2

= <Sp(w)\ + ),
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Computations show that

o(wy + ¢)>
oA T2

[ S e (P o () ) (B )
(<P0,j(2)
A

(p(wn + ),

+O(1)) dz

2 .
+eo Lz Xr, z, (")0';(2) + om) dz
A

, 2
+COJ <—+O(1)) dx
T2\(B(%,R0))UB(E,,Rp)) \A

483

2 _ 2
- (% + 0(1)) > ¢+ (ﬂ + 0(1)) co+ (w + O(l)) <o
j=1

A A

where B is the constant
_ 2
B | X0
We know from Lemma 5.2 and the above calculations that

(g _ 2A(1 - 21Ry)

3 3 +O(1)) c =0.

It is easy to see that by choosing R; sufficiently large, we have

B—-2A(1 - 2mR}) *# 0.

Therefore, we have ¢; = ¢; = ¢y = 0. Finally, we obtain ¢ associated with Ay

such that S, (wa, + ¢«) = 0.

The exact blow-up solution w;, + ¢« of equation (1.1) is thus constructed. 0
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