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ABSTRACT
The universe of protein structures contains many dark regions be-
yond the reach of experimental techniques. Yet, knowledge of the
tertiary structure(s) that a protein employs to interact with partners
in the cell is critical to understanding its biological function(s) and
dysfunction(s). Great progress has been made in silico by methods
that generate structures as part of an optimization. Recently, gen-
erative models based on neural networks are being debuted for
generating protein structures. There is typically limited to show-
ing that some generated structures are credible. In this paper, we
go beyond this objective. We design variational autoencoders and
evaluate whether they can replace existing, established methods.
We evaluate various architectures via rigorous metrics in compari-
son with the popular Rosetta framework. The presented results are
promising and show that once seeded with sufficient, physically-
realistic structures, variational autoencoders are efficient models
for generating realistic tertiary structures.
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1 INTRODUCTION
The protein universe contains many dark regions. Analysis of
546, 000 Swiss-Prot proteins estimates that 44–54% of these proteins
in eukaryotes and viruses are beyond the reach of experimental
techniques or homology modeling [25]; that is, not only do we not
know what three-dimensional/tertiary structures these proteins
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employ to interact with other molecular partners in the cell, but
such determination is challenging for wet and dry laboratories.

Knowledge of the biologically-active/native tertiary structure(s)
of a protein molecule is critical towards understanding its array of
biological functions as well as possible dysfunction in the living
cell [19]. Shining a light on the dark proteome is a great motivation
for computational approaches to tackle the problem of template-
free protein structure prediction (PSP) necessitated by the dark
proteome. In this problem, the only direct information about a
target protein is its amino-acid sequence.

Great progress has been made in template-free PSP. A detailed
review is beyond the scope of this paper, but we note a key charac-
teristic shared by popular methods and software platforms, such
as Rosetta [15], Quark [32], and others [24, 33]. These methods
operate under the umbrella of stochastic optimization. They gener-
ate tertiary structures of a given amino-acid sequence as part of a
process that seeks local optima of a given objective function. The
latter is also referred to as an energy/scoring function, as it sums
up the interactions among atoms in a given tertiary structure to
provide an energy or score with each tertiary structure. The end
result is that a distribution of low-scoring (near-optimal) tertiary
structures are generated for a given amino-acid sequence. The most
successful methods so far have relied on generating structures by
assembling them from shorter structural fragments compiled a pri-
ori in fragment libraries extracted from known native structures in
the Protein Data Bank (PDB) [4].

Fundamental challenges remain in optimization-based methods
on how to balance between exploration and exploitation; explo-
ration refers to exploring more of the structure space so as not to
miss novel structures, and exploitation refers to improving struc-
tures so as to reach local optima of the scoring function. Meth-
ods driven by the optimization of an energy/scoring function do
not learn not to generate structures that are unfit according to
the scoring function. Related efforts have been made via adap-
tive search/active learning [29], but it remains challenging how to
connect the structure generation mechanism with structure evalua-
tion [19].

A machine learning (ML) framework would provide a natural
setting, and ML models are increasingly showing promise. In Sec-
tion 1.1 we summarize growing efforts in generative models. In
particular, buoyed by advances in neural network (NN) research,
NN-based models are increasingly being debuted for generating
protein structures. However, their evaluation is typically limited to
showing that some generated structures are protein-like.

In this paper, we go beyond this objective and evaluate the poten-
tial of generative models for PSP. Specifically, we evaluate whether
variational autoencoders (VAEs) can replace existing, established
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methods after being seeded with sufficient physically-realistic pro-
tein structures. We evaluate various VAE models via rigorous met-
rics in comparison with the popular Rosetta framework. The pre-
sented results are promising and show that once seeded with suffi-
cient, physically-realistic structures, VAEs are efficient models for
generating realistic tertiary structures.

1.1 Related Work
The employment of deep NNs has now a decade-long history in pro-
tein modeling. The earliest efforts saw the potential in deep NNs to
learn from existing, experimentally-available protein sequences and
structures deposited in biological databases to evaluate the quality
of given tertiary structures. The bulk of the work, which presents a
steadily-advancing thrust of research to this day, leverages repre-
sentations of protein structures, such as pairwise distance maps or
contact maps. The former records the pairwise distances between
central atoms in each amino acid in a given tertiary structure. The
latter adds a threshold-based filter and turns the distances into a
contact/1 (distance is no higher than the threshold) or no contact/0.

Earlywork in [14] employed bidirectional recursive NNs (BRNNs).
RaptorX-Contact introduced residual convolutional NNs (CNNs) [31],
and DNNCON2 leveraged a two-stage CNN [1]. DeepContact in-
troduced a 9-layer residual CNN with 32 filters [18]. DeepCOV
reduced the amount of evolutionary information needed in the
features [12]. PconsC4 further limited input features and improved
prediction time [21]. SPOT-Contact extended RaptorX-Contact by
adding a 2D-RNN stage downstream of the CNN [10]. TripletRes
trained four CNNs end-to-end [17].

The performance of these models varies [30], but it is important
to note that these methods do not, in current form, present alterna-
tives to established platforms, such as Rosetta [15], Quark [32], and
others, for the problem of generating credible tertiary structures
given the amino-acid sequence. An important contribution in this
regard was made by the recent AlphaFold method [28]. A deep NN
in AlphaFold is used to predict a pairwise distance matrix for a
given amino-acid sequence. Predicted distances are encapsulated
in a penalty scoring function to bias a gradient descent-based op-
timization algorithm assembling short structural fragments into
tertiary structures [28]. The fragments are enriched with novel
ones generated by a generative NN.

While it remains more challenging to directly generate a distri-
bution of tertiary structures via generative models, notable efforts
have been made [11, 22, 23, 27]. Work in [11] does not provide an
end-to-end NN-based framework for PSP, but composes a neural
energy function with a Langevin dynamics-based simulator and is
able to predict more than one type of structure for a given protein
sequence. A body of recent works [22, 23, 27] represent the state-of-
the-art on generative NN-based frameworks for problems related to
PSP. However, these methods, based on the generative adversarial
network (GAN) framework, generate structural fragments of an
a-priori determined length (32, 64, or 128) that do not in themselves
constitute tertiary structures of a given amino-acid sequence. That
is, the model has to be retrained with the desired length, or one
has to resort to methods that assemble fragments to stitch together
tertiary structures for a desired amino-acid sequence. This body

of work has also been content so far with showing that generated
fragments seem protein-like, i.e., structurally-credible.

As laid out in Section 1, we are driven by the PSP problem in
this work, and our objective is to generate a distribution of tertiary
structures given an amino-acid sequence. We investigate VAEs of
various architectures and evaluate them via several metrics. More
importantly, our evaluation is driven by the question of whether
VAEs can be as effective as Rosetta and Quark, which take a very
different approach to PSP.

In Section 2, we relate details regarding our experimental setup,
the architectures we design, the training process, the training data,
and the evaluation metrics and protocols. The results are related in
Section 3. Section 4 concludes the paper with a summary and an
exposition of further directions of research.

2 METHODS
2.1 Experimental Setup
Let us delay details regarding the VAE framework and the various
VAE models that we investigate in this paper for their utility in PSP
in the interest of laying out the experimental setup. Let us broadly
assume that we have a generative model "NewGenModel" that we
are debuting for PSP. The model needs to learn from a given distri-
bution of tertiary structures. In this paper, due to our experience
with the publicly-available Rosetta platform, we generate 𝑁 tertiary
structures with the Rosetta AbInitio protocol. The protocol takes as
input the amino-acid sequence for a given protein, as well as two
libraries, one of structural fragments of 3 amino acids in length,
and another of structural fragments of 9 amino acids, which are
generated a priori for the given sequence via the Rosetta server. So,
we train our "NewGenModel" over the 𝑁 structures and then use it
to generate 𝑁 new structures.

The experimental setup investigates three basic questions:
(1) Did "NewGenModel" learn the input distribution? This is a

basic property for a well-trained generative model. So, our first
objective is to demonstrate that "NewGenModel" has learned the
latent space and is generating tertiary structures that "resemble"
the tertiary structures in the training dataset. We carry this out via
various metrics that allow comparing two distributions.

(2) What is the quality of the tertiary structures generated by
"NewGenModel"? This question needs exploring beyond the vi-
sualization of some generated structures and showing that they
"look like" structures of proteins. While there can be many ways
of evaluating the quality of a tertiary structure, often dependent
on the application of interest, since our interest here is in the util-
ity of generative models for PSP, we use the distance of a tertiary
structure from the native structure as a proxy of its quality. We
realize that this is a coarse proxy, but it is nonetheless informative
and allows obtaining an aggregate view of the quality of structures
generated by a model.

(3) Does "NewGenModel" have a sufficient-size training dataset
to learn the latent space and to generate tertiary structures of good
quality? This question effectively necessitates re-addressing the
above questions as a function of increasing 𝑁 . In the evaluation
related in Section 3, we address this question at 𝑁 = 10, 000 and
𝑁 = 20, 000 tertiary structures.
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(4) Even if the answers to (1) -(3) are satisfactory, a relevant ques-
tion is what would be the motivation to adopt a generative model,
which requires the additional burden of training over structures
generated with an existing and established method. The answer
to this question can be best addressed via a cost-benefit analysis.
Methods such as Rosetta and others that assemble fragments to
generate structures and seek local minima of an increasingly so-
phisticated energy function are expensive. They can take many
minutes to generate one all-atom structure, and the time increases
at least quadratically with the number of amino acids (mainly due
to the cost of the energy function). After considering the genera-
tion of the training dataset as a form of pre-processing cost, a new
generative model would only be useful if the cost to then generate
a tertiary structure with it is lower than the cost to generate a ter-
tiary structure with an energy function-minimizing method, while
the quality of structures does not suffer. Therefore, an important
evaluation is to compare the cost and the quality of 𝑁 additional
structures generated by "NewGenModel" with the cost and quality
of 𝑁 additional structures generated by Rosetta (or, more broadly,
by an energy minimization-based method).

These four questions guide and structure our evaluation in Sec-
tion 3. We now provide more details on the metrics used to compare
two distributions, the overall VAE framework, the various models
we evaluate, the training process and parameters, and the datasets
employed for evaluation.

2.2 Metrics to Compare Two Distributions
As related above, it is important to assess whether the model has
learned the input distribution by comparing the training to the
generated/testing distribution. Since tertiary structures are multi-
dimensional objects and one needs to additionally consider the
issue of representation, we employ the root-mean-square-deviation
(RMSD) as a proxy variable summarizing a tertiary structure.

RMSD is a common metric used in PSP to compare the distance
of a tertiary structure to the native structure for a protein target.
The metric is a version of the Euclidean distance averaged over
the number of atoms considered after the two structures are super-
imposed optimally over each-other to remove differences due to
rigid-body motions in SE3 (whole-body translation and rotation in
three dimensions [20]. We utilize the RMSD distributions of two
sets of structures, beyond the training and the generated dataset, as
detailed in Section 3, as a means of comparing two sets of interest.

We make use of several metrics to compare two distributions,
such as the Maximum Mean Discrepancy (MMD), the Bhattacharya
distance (BD), and the Earthmover Distance (EMD), which we
briefly summarize below.

Maximum Mean Discrepancy (MMD). The MMD metric allows
measuring the distance between two distributions 𝑝 (𝑥) and 𝑞(𝑦)
and is based on kernel embedding of the distributions. Briefly, MMD
is defined as the squared distance between the embedding in a repro-
ducing kernel Hilbert space (RKHS): MMD(𝑝, 𝑞) = |𝜇𝑥 − 𝜇𝑦 |2H [9].
MMD has been recently used in training generative adversarial
models [7, 16] to measure the distance of generated samples to
some reference target set. Here, we follow work in [5] to use MMD
for model selection, so we can distinguish between different VAE

models. Specifically, rather than train a model using the MMD dis-
tance to a reference distribution (as opposed to KL divergence, for
instance), we use MMD to evaluate the relative performance of vari-
ous VAEmodels and findmodels that generate samples significantly
closer to the reference/training distribution.

Bhattacharya Distance (BD). BD [13] measures the distance be-
tween two distributions 𝑝 (𝑥) and 𝑞(𝑥) defined over the same do-
main𝑋 . It is defined as𝐷𝐵(𝑝, 𝑞) = − ln(𝐵𝐶 (𝑝, 𝑞). The Bhattcharaya
coefficient 𝐵𝐶 (𝑝, 𝑞)=∑𝑥 ∈𝑋

√
𝑝 (𝑥)𝑞(𝑥). BC varies from 0 to 1. BD

varies from 0 to ∞.

Earth Mover’s Distance (EMD). EMD [26] is also known as the
Wasserstein metric. EMDmeasures the distance between two proba-
bility distributions over a domain. If the distributions are interpreted
as two different ways of piling up a certain amount of dirt over
the domain, EMD returns the minimum cost of turning one pile
into the other. The cost is assumed to be the amount of dirt moved
times the distance by which it is moved. EMD can be computed
by solving an instance of the transportation problem, using any
algorithm for minimum cost flow problem, such as the network
simplex algorithm [26].

2.3 Summary of the VAE Architecture
We have recently published work showing the ability of autoen-
coders (AEs) to learn low-dimensional representations of protein
tertiary structures [2, 3]. In summary, an AE is composed of an
encoder and a decoder. Each contain one or more layers of neu-
rons/units. The encoder maps the input layer 𝑥 to its output layer 𝑦.
The decoder mirrors the encoder, mapping the same layer 𝑦 to its
output layer 𝑧. The learned code/representation consists of the layer
𝑦. When dealing with real values (such as Cartesian coordinates
of atoms), training an AE involves optimizing the reconstruction
error | |𝑥 − 𝑧 | |2.

A VAE is similar to an AE in that it consists of an encoder and
decoder, but the training process in a VAE is regularized to avoid
overfitting and so ensure that the latent space has the properties
needed to enable generating data via the decoder [8]. In order
to introduce the regularization of the latent space, the encoding-
decoding process is modified. The input is encoded as a distribution
over the latent space. A point from the latent space is sampled from
that distribution. The sampled point is decoded, and the reconstruc-
tion error is computed. The reconstruction error is back-propagated
as usual.

VAEs assume that the input distribution is Gaussian so that the
encoder can be trained to return the mean and the covariance ma-
trix. This assumption allows expressing very naturally the latent
space regularization. The distribution returned by the encoder is
also enforced to be close to Gaussian. To achieve this, loss function
is modified to contain in addition to the reconstruction error a
regularization term. The latter uses the Kullback-Leibler (KL) di-
vergence between the returned distribution and a Gaussian; the KL
divergence between two Gaussian distributions has a closed form
expressed in terms of the means and the covariance matrices of the
distribution. Specifically, the encoder assumes that 𝑥 ∼ 𝑁 (𝜇𝑥 , 𝜎𝑥 )
and tries to learn the parameters 𝜇𝑥 and 𝜎𝑥 of the input distribution.
The latent representation 𝑧 is also assumed to be Gaussian; that is,
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𝑧 ∼ 𝑁 (𝜇𝑥 ,𝑥 ). The loss function 𝐿 = |𝑥−𝑦 |2+𝐾𝐿(𝑁 (𝜇𝑥 ,𝑥 )−𝑁 (0, 𝐼 )).
This loss function reflects the fact that to avoid having a VAE be-
have like an AE, one has to regularize both the covariance matrix
and the mean of the distribution returned by the encoder. This is
achieved by enforcing the distribution to be close to a standard
normal distribution (centered and reduced). So, as the loss function
shows, the covariance matrix is forced to be close to the identity,
and the mean to be close to 0.

2.4 Designed VAE Models
What one controls in the architecture of a VAE is the number of
layers, neurons per layer, and activation functions. With guidance
from our previous work on AEs for learning low-dimensional em-
bedding of tertiary structures [2], we investigate seven different
models, as listed in Table 1. The notation summarizes a layer with
the number of units/dimensions in it. For instance, in VAE2, there
are 𝑚 input units in the encoder that are then connected to the
hidden layer of 2 units, which contains the latent encoding. The
decoder is a mirror image of the encoder, overlapping with the
encoder in the latent layer and then feeding the information to the
output layer of 2 units in the VAE2 model.

VAE1 𝑚 → 250 → 125 → 2
VAE2 𝑚 → 2
VAE3 𝑚 → 10
VAE4 𝑚 → 20
VAE5 𝑚 → 30
VAE6 𝑚 → 30 → 20 → 10 → 2
VAE7 𝑚 →𝑚

Table 1: VAE models listed here show the dimensionality of
the layers. The decoder is a mirror image of the encoder.

The architectures are shown in Table 1 reflect some of the lessons
learned in our prior, detailed evaluation of AEs on protein tertiary
structures [3]. One of the lessons is that deep architectures (with
many layers in the encoder) result in hundreds of thousands or
more parameters that necessitate very large datasets to avoid over-
fitting. The first model, VAE1, is an example of a deep model whose
architecture we included in our analysis of AEs in prior work. The
other models are much shallower. The last model carries no dimen-
sionality reduction but serves as a baseline that allows evaluating
whether the assumption that the input and learned distributions are
normal is a valid one when dealing with protein tertiary structures.

Finally, based on our prior work on AEs, we do not expand here
on trying out various activation functions. We use a rectified linear
unit in all layers of the encoder and decoder except for the last layer
of the decoder, where we use a linear activation function.

2.5 Training and Training Datasets
We experiment with 18 proteins of different lengths and folds that
are benchmark targets used in algorithm development for PSP [24,
34]. These proteins are listed in Table 2. In an abuse of notation but
in the interest of space, we identify each protein not by its name
but by the four-letter id of the entry where a representative native
structure for it is stored in the PDB. This is referred to as PDB ID in

Column 1 in Table 2. The fifth letter shown in parentheses refers to
the chain selected for a multi-chain protein molecule. Column 2 in
Table 2 shows the fold of the native structure, and Column 3 shows
the length (in terms of the number of amino acids), confirming that
the targets are diverse in fold and length.

Table 2: Training datasets (* denotes a predominant 𝛽 fold
with a short helix). The chain extracted from a multi-chain
PDB entry (in Column 1) to be used as the native structure
is shown in parentheses. The fold of the known native struc-
ture is shown in Column 2. The length of the protein se-
quence (number of amino acids) is shown in Column 3.

PDB ID Fold Length

1. 1bq9 𝛽 53
2. 1dtd(B) 𝛼 + 𝛽 61
3. 1isu(A) 𝑐𝑜𝑖𝑙 62
4. 1hz6(A) 𝛼 + 𝛽 64
5. 1c8c(A) 𝛽∗ 64
6. 2ci2 𝛼 + 𝛽 65
7. 1sap 𝛽 66
8. 1wap(A) 𝛽 68
9. 1fwp 𝛼 + 𝛽 69
10. 1ail 𝛼 70
11. 1dtj(A) 𝛼 + 𝛽 74
12. 1aoy 𝛼 78
13. 1cc5 𝛼 83
14. 1tig 𝛼 + 𝛽 88
15. 2ezk 𝛼 93
16. 1hhp 𝛽∗ 99
17. 2h5n(D) 𝛼 123
18. 1aly 𝛽 146

While the tertiary structures obtained from the Rosetta AbInitio
protocol are all-atom, we only retain the coordinates of the central
carbon atom (also known as the CA atom) in each amino acid. The
input layer of 𝑚 units in all the VAE models implemented here
reflects the fact that the protein targets are of different lengths.
Once the tertiary structures of a given protein target are reduced
to their CA atoms, they are then superimposed/aligned over/to the
first structure obtained in order to remove differences due to rigid-
body motions (whole-body rotation and translation). The resulting
coordinates for a structure are then passed to the input neurons.
In this manner, the decoder in our VAE models samples Cartesian
coordinates for the CA atoms of a given protein target.

2.6 Implementation Details
We use Keras [6] to implement, train and evaluate the various VAE
models. Keras is an open-source neural-network library written in
Python. Each of the investigated VAEs is trained for a total of 100
epochswith a batch size of 256. A learning rate of 0.0005 is employed
to prevent premature convergence to local optima. Training times
vary from 566.479 to 1136.575 seconds depending on the size of the
training dataset.
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3 RESULTS
3.1 Comparing the Learned to the Input

Distribution across All VAE Models
We evaluate whether the generated tertiary structures from the
learned distribution follow that of the training structures. We do
so for each of the 7 VAE models described in Section 2 in order
to determine a few top models in this regard. As described in Sec-
tion 2, we make use of three metrics, MMD, BD, and EMD. Since the
distributions are multi-dimensional, we indirectly compare them
via their respective distribution of RMSDs from the correspond-
ing native structure of a protein target. We do so over 1/3 of the
benchmark set (6 targets) in order to narrow down our focus on a
few top models. This evaluation is repeated at 𝑁 = 10, 000 and at
𝑁 = 20, 000 to possibly observe an impact by the size of the training
dataset; a model is trained on 𝑁 Rosetta-generated structures, then
used to generate 𝑁 more structures, and the evaluation compares
the distribution of the training dataset (the Rosetta dataset) to the
VAE-generated dataset. Tables 3-5 relate the comparisons.

MMD-based Comparison
ID 𝑁 V1 V2 V3 V4 V5 V6 v7

1hz6(A) 10K 0.0233 0.0588 0.0206 0.0189 0.0185 0.0259 0.0183
20K 0.0240 0.0610 0.0212 0.0193 0.0189 0.0268 0.0187

1c8c(A) 10K 0.0073 0.0479 0.0022 0.0008 0.00050.0104 0.0005
20K 0.0073 0.0480 0.0023 0.0008 0.00050.0104 0.0006

1ail 10K 0.0132 0.0790 0.0181 0.0138 0.0131 0.0369 0.0121
20K 0.0132 0.0790 0.0183 0.0140 0.0132 0.0370 0.0122

1dtj(A) 10K 0.0110 0.0338 0.0050 0.0029 0.00260.0104 0.0032
20K 0.011 0.0347 0.0051 0.0029 0.00270.0105 0.0033

1aoy 10K 0.0130 0.0642 0.0038 0.0008 0.0005 0.0166 0.0002
20K 0.0130 0.0639 0.0039 0.0009 0.00040.0166 0.0004

1aly 10K 0.0790 0.1381 0.0291 0.0063 0.0017 0.0859 0.0001
20K 0.0790 0.1385 0.0291 0.0063 0.0018 0.0858 0.0001

Table 3: The training and generated distributions are com-
pared via MMD. Lowest values are in bold font. PDB ID is
abbreviated as PID. VAE1-7 are abbreviated as V1-7.

The above tables indicate that the lowest distances between the
training and the generated datasets are achieved by VAE5 and VAE7.
The results suggest that VAE5 and VAE7 are the top twomodels that
mimick the input distribution best (in terms of RMSD from a given
native structure) in the generated distribution. It is worth noting
that the performance of VAE7, where there is no dimensionality
reduction, suggests that the normal assumption is reasonable.

3.2 Comparing the Learned to the Input
Distribution for top VAE models over All
Targets

The rest of the evaluation focuses on VAE5 and VAE7. Figure 1
expands the above analysis to all 18 proteins, at the two settings
of 𝑁 = 10, 000 or 𝑁 = 20, 000 tertiary structures in the training
dataset. Specifically, for each target, we show the ratio of a distance
metric achieved by VAE7 over the corresponding metric achieved

BD-based Comparison
ID 𝑁 V1 V2 V3 V4 V5 V6 v7

1hz6(A) 10K 0.0524 0.4134 0.0339 0.00610.0066 0.0922 0.0131
20K 0.0431 0.3960 0.0438 0.0147 0.0099 0.100 0.0112

1c8c(A) 10K 0.0415 0.2339 0.0357 0.0066 0.0002 0.0744 0.0011
20K 0.0646 0.2801 0.0605 0.0154 0.0054 0.1083 0.0037

1ail 10K 0.0143 0.1110 0.0170 0.0124 0.0045 0.0555 0.0076
20K 0.1393 0.1131 0.0140 0.0099 0.0030 0.0566 0.0040

1dtj(A) 10K 0.0401 0.1411 0.0407 0.0094 0.0037 0.1090 0.0090
20K 0.2416 0.1319 0.0420 0.0093 0.0034 0.1000 0.0041

1aoy 10K 0.0263 0.2588 0.0238 0.0002 0.0013 0.0844 0.0078
20K 0.1815 0.10750.1925 0.3347 0.3382 0.1561 0.3378

1aly 10K 0.0803 0.2980 0.0585 0.0241 0.0004 0.1072 0.0037
20K 0.2367 0.3847 0.2507 0.0744 0.0018 0.1497 0.0131

Table 4: The training and generated distributions are com-
pared via BD. Lowest values are in bold font. PDB ID is ab-
breviated as PID. VAE1-7 are abbreviated as V1-7.

EMD-based Comparison
ID 𝑁 V1 V2 V3 V4 V5 V6 v7

1hz6(A) 20K 0.4240 1.1763 0.2668 0.1535 0.1240 0.4161 0.1533
20K 0.4248 1.1796 0.2696 0.1533 0.1231 0.4224 0.1521

1c8c(A) 10K 0.4957 0.5936 0.4281 0.2037 0.0792 0.5871 0.1201
20K 0.490050.5934 0.4225 0.2019 0.1098 0.5821 0.0800

1ail 10K 1.1030 1.2332 0.4320 0.1961 0.1909 0.8063 0.2542
20K 1.0985 1.2331 0.4306 0.1953 0.1915 0.8073 0.2546

1dtj(A) 10K 0.7014 1.4431 0.4689 0.1867 0.1236 0.6692 0.1701
20K 0.6727 1.4403 0.4646 0.1857 0.1243 0.6687 0.1690

1aoy 10K 0.6769 1.5131 0.5493 0.2138 0.1082 0.9331 0.0900
20K 3.8124 2.8833 3.3388 3.6763 2.7802 2.9811 3.8005

1aly 10K 3.0111 3.3354 2.2717 1.250 0.7155 3.180 0.130
20K 2.9924 3.3333 2.2649 1.2454 0.7135 3.177 0.1308

Table 5: The training and generated distributions are com-
pared via EMD. Lowest values are in bold font. PDB ID is
abbreviated as PID. VAE1-7 are abbreviated as V1-7.

by VAE5. Cases, where VAE5 achieves a lower distance metric, are
easily identifiable as ratios above 1.

The left panel in Figure 1, which relates the comparison at 𝑁 =

10, 000, shows that VAE5 achieves no higher MMD values than
VAE7 on 8/18 of the targets, no higher BD values on 14/18 of the
targets, and no higher EMD values on 11/18 of the targets. The
right panel in Figure 1, which relates the comparison at 𝑁 = 20, 000,
shows that VAE5 achieves no higher MMD values than VAE7 on
9/18 of the targets, no higher BD values on 13/18 of the targets,
and no higher EMD values on 11/18 of the targets.

Altogether, the above analysis suggests that VAE5 is a better
model and warrants conducting further detailed analysis of its
performance. It is worth noting that VAE5 is also more appealing
than VAE7, as it forces the model to learn a 30-dimensional latent
space, which is then used to reconstruct tertiary structures at their
original dimensions. We make use of the lower dimensionality to
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� = 10, 000 � = 20, 000

Figure 1: For each of the 18 targets, the plots show the ratio of the distance (according to the MMD, BD, and EMD metrics,
respectively) between the training distribution and the distribution generated by VAE7 over the distance (according to the
MMD, BD, and EMD metrics) between the training distribution and the distribution generated by VAE5.

visualize the latent space in some of the visualization-based analysis
later in this section.

3.3 Evaluating the Quality of VAE5-generated
Structures

We evaluate in greater detail the quality of the tertiary structures
generated by VAE5 by comparing summary metrics of the RMSD
distributions corresponding to training and learned/generated ter-
tiary structures. We recall that we use RMSD as a proxy of the
relevance of a tertiary structure, as it measures the distance from a
known native structure. Again, we conduct this comparison at the
two settings � = 10, 000 structures and � = 20, 000 structures.

In Figures 2(a)-(c), we show scatterplots that juxtapose a sum-
mary metric of the RMSD distribution of the generated distribution
versus the same summary metric on the training distribution for
each of the targets at � = 10, 000. The top left panel in Figure 2 does
so for the minimum RMSD and utilizes the size of disks to show
the minimum RMSD in the generated distribution. Disks below the
identity line correspond to targets where the generated distribu-
tion achieves a lower minimum RMSD. The Pearson correlation
coefficient (PCC) between the minimum RMSDs over all targets is
shown to be higher than 0.9, which confirms that the generated
distributions are of as high quality as the training dataset in this
regard.

Figure 2 reveals similar information on the mean and median
RMSDs, respectively. An additional interesting observation related
by these plots is that the generated distributions have the lower
mean and median RMSDs than the training distributions. Similar
observations are drawn from the bottom panel that relates the
setting of � = 20, 000, which again informs on the high quality of
the generated datasets, as well as on � ∈ {10, 000, 20, 000} being
sufficient for VAE5 to learn the latent space.

Figure 3 provides some more detail by showing the distribution
of RMSDs of the training versus the generated datasets for three
selected proteins. These are representative of the full benchmark
set, as they show a case (top panel) where the generated distribution
covers well and improves overall (in terms of minimum, mean, and
median) RMSD upon the training distribution, a case (middle panel)
where the generated distribution has the same mean and median

RMSD but slightly higher minimum RMSD than the training distri-
bution, and a case (bottom panel) where the generated distribution
is overall shifted to the right of the training distribution.

The comparison of the input versus the generated distribution
can also be conducted visually, by utilizing the 30 latent coordinates
via which VAE5 encodes tertiary structures. We utilize t-SNE to
additionally project the 30-dimensional embedding of the input
and latent space onto 2 dimensions. Figure 4 overlays the two-
dimensional embedding and shows overall similarity between them.

3.4 Cost-Benefit Evaluation of VAE5 versus
Rosetta

Altogether, the above analyses above suggest that VAE and, in par-
ticular, VAE5, is a good generative model that performs as well
as Rosetta, an established method for template-PSP. However, the
caveat, as related in Section 2 is that generative models need to
seeded with relevant structures. So, we now provide a cost-benefit
analysis detailed in Section 2 to warrant any employment of VAE5
as a generative model. Specifically, we consider now the follow-
ing setting. After training VAE5 with � Rosetta-generated ter-
tiary structures, we determine whether one should continue using
Rosetta for an additional batch of � tertiary structures or whether
one should switch to using VAE5 instead.

We compare the VAE5-generated dataset of � structures with
� new, additional structures generated by Rosetta; note that the
latter is not the training dataset, but new structures. We relate
this comparison in two ways. First, we compare the corresponding
RMSD distributions (RMSDs to the native structure) via distance
metrics. We limit to MMD and EMD in the interest of space. Then,
we relate the minimum, mean, and median of the corresponding
RMSD distributions. We do so in two regimes, at � = 10, 000 and
� = 20, 000. Note that at a particular � , the VAE has been trained
with � Rosetta-generated structures, has been used to generate �
more structures which are here compared to � new structures (not
in the training dataset) generated with Rosetta.

Table 6 relates the MMD and EMD comparison.
Table 6 shows that the MMD values between the two settings

of � = 10, 000 and � = 20, 000 are similar; no higher MMD values
obtained on 10/18 of the targets when � is 20, 000 compared to
when � = 10, 000. EMD values are also similar; no higher EMD
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� = 10, 000

� = 20, 000

Figure 2: Comparison of summarymetrics of the RMSD distribution of the generated distribution versus the training distribu-
tion for each of the targets at � = 10, 000. The size of a disk relates the minimum RMSD in the generated dataset. The identity
line is shown in green. The regression line is in red. The Pearson correlation is also shown.

values are obtained on 11/18 of the targets when � = 20, 000
than when � = 10, 000. This suggests that this range of number
of structures is sufficient. In the interest of space, the rest of our
analysis focuses on � = 20, 000 structures.

We now compare summary metrics of the RMSD distributions.
Figure 5 shows scatter plots that juxtapose a summary metric of
the RMSD distribution of the VAE5-generated distribution versus
the same summary metric on the Rosetta-generated distribution for
each of the targets at � = 20, 000� . The left panel shows the mini-
mum RMSD, the middle panel shows the mean RMSD, and the right
panel shows the median RMSD. The size of disks shows the mini-
mum RMSDs in the Rosetta-generated distributions. Disks below
the identity line correspond to targets where the VAE5-generated
distribution achieves a lower minimum RMSD. The Pearson cor-
relation coefficient (PCC) is also shown. The plots and the PCC
show that the minimum RMSDs are comparable, and there is strong
agreement on the median RMSDs. The means are generally higher
on the VAE5-generated dataset, pointing to the existence of outlier
structures.

3.4.1 Structure Visualization. The three proteins we have selected
above to show more details into the distribution of tertiary struc-
tures are used once again for the purpose of visualizing some struc-
tures. In Figure 6 we draw the best (lowest RMSD from the native
structure) tertiary structure generated by VAE5 over the best ter-
tiary structure generated by Rosetta; as in the experiment above, we
use Rosetta to sample 20, 000 more structures, and the one with the
lowest RMSD among them from the native structure is recorded and
drawn below. Figure 6 shows that the VAE5- and Rosetta-generated
structures are very similar, with RMSDs ranging from 0.5Åto 1.7Å;
even the higher RMSD of 1.7Åis distributed mainly in the flexible
loops connecting the secondary structure elements.

3.4.2 VAE or Rosetta? The above analysis shows that using VAE5
comes at no cost to data quality. Indeed, all the comparisons show
that the tertiary structures generated by VAE5 are of as high struc-
tural quality and near-nativeness as the ones generated by a top
platform, such as Rosetta.

The question remains on whether there is any benefit? We now
look at computational cost to answer this question. The time to
generate 20, 000 tertiary structures with VAE5 varies from 314.041
to 500.802 seconds depending on protein length. It is an average of
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(a) 1sap

(b) 1dtja

(c) 1tig

Figure 3: RMSD distributions of the training dataset (in or-
ange) and the VAE-generated dataset (in blue) for three se-
lected proteins at � = 20, 000.

15.70205ms to 25.0401ms per tertiary structure. We note that this
average time is to produce structures at the CA-atom detail. A direct
time comparison with Rosetta is not possible; Rosetta (and methods,
such as Quark, and others) does not generate CA coordinates first,
but instead includes backbone atoms and a centroid pseudo-atom for
each amino-acid side chain. However, our experience with Rosetta
is that each of the stages in it, which gradually add more energetic
penalties, takes more time on average than the average time for
VAE5 to generate one CA-atom resolution structure.

Figure 4: t-SNE is applied to the 30-dimensional learned em-
bedding of VAE of the input structures and the generated
structures. The two-dimensional projections are drawn on
top of each-other to visualize the structure space for a se-
lected protein with native structure under PDB id 1dtj(A).

4 CONCLUSION
In this study, we design and evaluate VAEs on whether they can
be as useful as existing, established methods for template-free PSP.
Our evaluation shows that once seeded with sufficient, physically-
realistic structures, these generative models are effective at gener-
ating realistic and near-native tertiary structures.

The presented results are encouraging. However, we caution
that generative models for protein structure modeling are in their
nascent stage. In particular, such models are still a long way from
supplanting established platforms that generate tertiary structures
as a process of optimizing an energy/scoring function. The detailed
evaluation in this paper suggests that generative models are useful
but they require physically-realistic structures for training.

Further research needs to investigate extensions of deep genera-
tive models that allow utilizing experimentally-available structures.
Issues such as different lengths and amino-acid sequences need to
be addressed. Another direction can investigate complementary
frameworks, such as generative adversarial networks, though these
present more challenges in training then VAEs. More studies are
also needed on how to further diversify generated structures to
potentially explore a broader structure space, as well as how to
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Figure 5: Comparison of summary metrics of the RMSD distribution of the VAE5-generated distribution versus the Rosetta-
generated distribution for each of the targets at � = 20, 000. The size of the disks relates the minimum RMSD in the Rosetta
dataset. The identity line is shown in green. The regression line is in red. The Pearson correlation is also shown.

CA RMSD = 0.5Å CA RMSD = 0.55Å CA RMSD = 1.7Å
Figure 6: The lowest-RMSD Rosetta-generated structure is drawn in transparent blue. Its CA atoms are connected with a tube
drawn in the same color in opaque. The lowest-RMSD VAE5-generated structure is superimposed on top and is drawn in
opaque magenta, with its CA atoms connected with a tube. The structures are rendered with VMD /citevmd96. This is done
for three selected proteins with PDB IDs 1sap (top panel), 1dtja (middle panel), and 1tig (bottom panel).

add more structural detail beyond the CA-atom representation em-
ployed here in an end-to-end framework that generates all-atom
detail tertiary structures.
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