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Abstract:

The evolution of model-based cloud top brightness temperatures (BT) associated with convective
initiation (CI) are assessed for three bulk cloud microphysics schemes in the Weather Research
and Forecasting model. Using a composite-based analysis, cloud objects derived from high-
resolution (500 m) model simulations are compared to 5-min GOES-16 imagery for a case study
day located near the Alabama/Mississippi border. Observed and simulated cloud characteristics
for clouds reaching CI are examined by utilizing infrared BTs commonly used in satellite-based
CI nowcasting methods. The results demonstrate the ability of object-based verification methods
with satellite observations to evaluate the evolution of model cloud characteristics, and the BT
comparison provides insight into a known issue of model simulations producing too many
convective cells reaching CI. The timing of CI from the different microphysical schemes is
dependent on the production of ice in the upper levels of the cloud, which typically occurs near
the time of maximum cloud growth. In particular, large differences in precipitation formation
drive differences in the amount of cloud water able to reach upper layers of the cloud, which
impacts cloud-top glaciation. Larger cloud mixing ratios are found in clouds with sustained
growth leading to more cloud water lofted to the upper levels of the cloud and the formation of
ice. Clouds unable to sustain growth lack the necessary cloud water needed to form ice and grow
into cumulonimbus. Clouds with slower growth rates display similar BT trends as clouds
exhibiting growth, which suggests that forecasting CI using geostationary satellites might require

additional information beyond those derived at cloud top.
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Significance Statement:

Several studies have used weather satellites to examine storm properties, however, they do not
provide information about processes occurring within clouds. To address this limitation, we used
numerical weather prediction model simulations and an object-based analysis method to learn
more about in-cloud processes that influence the evolution of thunderstorms in the southeastern
United States. The model and satellite comparison helped demonstrate that differences in the
timing of rainfall formation can impact the amount of ice reaching the upper portion of the cloud.
When ice forms, the cloud begins to grow rapidly and is more likely to become a long-lived
thunderstorm. The results highlight the importance of using satellite data sensitive to clouds to

evaluate the conditions under which cumulus clouds transition into severe storms.
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1. Introduction

In the southeastern United States, the quick onset of isolated thunderstorms with heavy
rainfall is commonly observed (Rickenbach at al. 2015). Accurate prediction of the onset time,
location, and evolution of convection continues to be a difficult problem for observational and
numerical weather prediction (NWP) models (e.g. Kain et al. 2013; Mecikalski et al. 2015;
Lawson et al. 2018; Cintineo et al. 2020). When tracking growing cumulus clouds using radar
and satellite observations, convective initiation (CI) is commonly referred to as the time during
which growing convection contains a radar reflectivity >35 dBZ because that threshold is highly
correlated to convection that eventually develops into a mature cumulonimbus cloud (Roberts
and Rutledge 2003; Mecikalski et al. 2006). CI in the southeastern United States, particularly
during the spring and summer months, can be complicated to forecast as cumulus clouds are
often more isolated, and driven primarily by strong surface heating (Gambill and Mecikalski
2011; Miller and Mote 2017; Kirshbaum et al. 2016; Rickenbach et al. 2020). Such isolated
weakly-forced thunderstorms can also can be initiated by subtle variations in surface heating and
evaporation caused by land-use variations and topography (Gambill and Mecikalski 2011) and
by small lakes (Asefi-Najafabady et al. 2012). Once convection begins, subsequent isolated
convective cells typically are initiated by outflow boundaries from the surrounding convection
(Goggins et al. 2010).

To help mitigate difficulties in forecasting the onset of CI, several methodologies have been
developed to make use of geostationary satellite platforms to improve CI nowcasting lead times
(Roberts and Rutledge 2003; Mecikalski and Bedka 2006; Mecikalski et al. 2010; Sieglaff et al.

2011; Walker at al. 2012). Along with these tracking methods, implementing combinations of the
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satellite brightness temperature (BTs) and their tendencies, or so-called satellite-based interest
fields, have been developed to aid the prediction of CI and the onset of heavy precipitation and
lightning (e.g. Mecikalski and Bedka 2006; Harris et al. 2010). However, even when using
auxiliary information about the environmental conditions, false positive detection remains an
issue (Mecikalski et al. 2015). The higher spatial and temporal resolution available from the
current generation of geostationary satellites have demonstrated improvements in describing the
evolution of cloud characteristics associated with intense convection (e.g., Senf and Deneke
2017; Apke et al. 2018). Senf and Deneke (2017) and Patou et al. (2018) demonstrated that
tracking cloud-top cooling and cloud-top hydrometeor phase are important factors when
identifying clouds that will likely transition to heavy precipitation. Patou et al. (2018) and
Mecikalski et a. (2015) demonstrated that connecting tracked-cloud features in satellite
observations with output from NWP model forecasts has the potential to improve our
understanding of the trigger mechanisms leading to CI.

The main motivation for this study was to increase understanding of the processes leading to
CI in weakly forced environments through application of object-based CI composites commonly
used in CI satellite nowcasting studies. Application of the satellite-based techniques provides a
novel method to evaluate high-resolution models using established satellite-based metrics. NWP
models allow in-cloud processes to be resolved, but as NWP resolution has increased the
representation of CI location and timing has thus far shown limited improvement (Kain et al.
2008; Schwartz et al. 2009; Langhans et al. 2013; Burghardt et al. 2014). Evaluating model
performance using standard point-by-point methods is difficult at higher resolutions because

small positioning errors in the forecast may be penalized for not forecasting the event at the
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observation point even though qualitatively it may be a better forecast. Improvements in CI
forecasting have been demonstrated when assimilating surface observations (Liu and Xue 2008;
Sobash and Stensrud 2015); however, forecasting on the meso—c storm scale (2.5-25 km)
requires a high-density network of surface (Madaus and Hakim 2016, 2017) or satellite
observations (e.g. Yussouf et al. 2016; Zhang et al. 2019; Jones et al. 2020). Further, forecasts
from model simulations can drastically change in relation to the assumptions in the model setup
(e.g. Otkin and Greenwald 2008; Cintineo et al. 2014; Griffin et al. 2017), and the accuracy of
storm location and timing remains an issue (Weisman at al. 2008; Mittermaier at al. 2013;
Shrestha at al. 2013; Bytheway and Kummerow 2015, 2018). Because satellite and radar
observations alone are unable to fully resolve CI, additional insight concerning processes
occurring within the cloud are needed to improve forecast accuracy. This can be accomplished
using high-resolution NWP simulations that provide information about in-cloud microphysical
processes. In order to apply knowledge gained from simulated cloud properties to observations,
however, we must ensure that the forecasted cloud properties are representative of the convection
reaching CI. Convection produced in weakly forced environments, that commonly occur in the
Southeastern United States, therefore provides the opportunity to evaluate CI processes driven
largely by cloud microphysics in conditions devoid of large synoptic forcing.

Linking output from NWP models to geostationary satellite observations has been
accomplished by previous studies through the use of radiative transfer models to simulate
satellite BTs (e.g. Tselioudis and Jakob 2002; Lopez et al. 2003; Grasso and Greenwald, 2004;
Otkin and Greenwald 2008; Otkin et al. 2009; Cintineo et al. 2014; Lee et al. 2014; Thompson et

al. 2016; Griffin et al; 2017; Bytheway et al. 2017; Griffin et al. 2020; Kim et al. 2020). These
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studies track and compare mean characteristics of clouds as a whole, yet lack an ability to
evaluate cloud morphology. Work is therefore needed in order to track specific processes driving
individual convective cells evolving from shallow cumulus to clouds that deepen and produce
heavy precipitation within an environment with little to no mesoscale or synoptic-scale
variability. Comparing the observed and simulated BTs can be challenging due to timing and
location errors in the forecast cloud objects, which makes point-to-point comparisons with
traditional verification methods difficult (Griffin et al. 2017). Object-based analysis can improve
these comparisons by accounting for spatial displacement errors (e.g. Burghardt et al. 2014;
Griffin et al. 2017; Bytheway and Kummerow 2018). This study will build upon prior work that
has primarily focused on larger cloud systems by examining the evolution of individual
convective cells in a weakly forced environment.

The high-temporal resolution data from the GOES-16 Advanced Baseline Imager (ABI;
Schmit et al. 2017) provides an ideal dataset to track the life cycle of convection because the
temporal resolution of 1-5 mins is more in line with the timescales of cumulus cloud growth
(Gravelle et al. 2016). For this study, individual convective cells produced by high-resolution
Weather Research and Forecasting (WRF) model simulations will be tracked and evaluated using
geostationary-derived CI interest fields to understand how bulk microphysical parameterization
schemes represent the formation and development of hydrometeor species, cloud growth, and
precipitation processes. We present a strategy to evaluate the evolution of simulated convection
using recent observation-based tracking techniques in parallel with recent methods used to
describe CI in observational-based studies (e.g., Harris et al. 2010; Mecikalski et al. 2011;

Mecikalski et al. 2016; Senf and Deneke, 2017). Mecikalski et al. (2011) demonstrated that
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satellite BT CI interest fields describing cloud growth are most beneficial when nowcasting CI
using geostationary satellites, specifically using Meteosat Second Generation data, which mimics
those from GOES-16. These CI interest fields will be computed using GOES-16 ABI observed
and simulated model BT imagery, and then compared in lag-based composites of cloud objects
as a function of the timing of CI. This composite-based method focuses the evaluation on the
model ability to simulate the evolution of convection independent of the cloud location and time.
The evaluation will also be applied to gain greater understanding of the cloud processes
occurring within the clouds that lead to various cloud-top signatures depicted in satellite infrared
(IR) imagery. Going forward, the paper is structured as follows: The case analysis, model setup,
and observational data are described in Section 2, and the cloud tracking technique and methods
are described in Section 3; analysis of the WRF simulations and discussion of the results are

shown in Section 4, with a summary of the overall findings provided in Section 5.

2. Data and Model Setup
a) Geostationary data

This analysis will employ observations from the GOES-16 ABI sensor (Schmit et al. 2017).
Individual and combinations of ABI bands will be assessed that together provide a detailed
depiction of the cloud properties in different parts of the troposphere (Fig. 2 in Schmit et al.
2017). The ABI IR BTs from spectral window regions are highly sensitive to cloud particles in
the uppermost portion of a cloud and therefore provide valuable information about the horizontal
and vertical extent of the clouds. The emphasis on IR channels in this work ensures continuous

day-night cloud observations. The 2 km resolution IR channels on the ABI sensor also allow for
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a more accurate discrimination of liquid and ice clouds that are crucial to evaluate the various
mixed-phase and ice processes in a bulk microphysics parameterization scheme, as found by
Mecikalski et al. (2010), Mecikalski et al. (2015) and Senf and Deneke (2017). BT-derived
forecast factors used in this study include the evolution in cloud-top height (10.35 pm channel),
cloud growth tendencies (10.35 um BT tendency every 5 mins), and channel differences
providing cloud-top glaciation estimates (8.4—10.35 um BT difference). These GOES-16 ABI
channels are available over CONUS every 5 mins, which permits more frequent comparisons
with the WRF output compared to previous satellite sensors. This in turn supports a more
detailed comparison of clouds evolving in CI events, particularly the early stages of convection
that may have been missed previously due to limited temporal resolution (Mecikalski et al.

2008).

b) Ground radar data

Ground-based NEXRAD S-band radar data for three radar sites located in Alabama and
Mississippi (KBMX-Birmingham, KGWX-Columbus, and KDGX-Jackson) are used in this
analysis. The spatial coverage of these radars is shown by the blue circles in Fig. 1. The
NEXRAD data comes from Doppler weather radars that operate at S-band (10 cm) and Level 2
data is collected for the vertically resolved radar reflectivity. Volume scan data for the three
radar sites are converted to a 1 km horizontal and vertical cartesian grid using the open-source
Python Atmospheric Radiation Measurement Radar Toolkit (Helmus and Collis, 2016).
Composite reflectivity data are created from the gridded data using the maximum reflectivity at

each grid point and then the four closest reflectivity data points are matched to the closest 2 km
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GOES-16 IR observation. Radar scanning intervals are not constant due to changes in radar
volume coverage for a particular scan; therefore, we collocate the radar data to the nearest 5 min
GOES-16 observations. Application of the radar reflectivities to CI identification is described in

Section 3.

¢) WRF model setup and simulated brightness temperatures

The WRF-ARW model (version 3.9.1.1) is used to simulate a case study from 20 May 2018
that was characterized by weakly-forced deep convection across Alabama and Mississippi during
the afternoon and evening. A ridge over the domain brought a typical summer weather pattern to
the Mississippi and Alabama region that is devoid of major synoptic forcing mechanisms and
wind shear, yet with moderate afternoon instability. High pressure located off the eastern coast of
the United States provided the region with abundant moisture from the Gulf of Mexico. The
0000 UTC 21 May BMX sounding (not shown) indicates a freezing level near 4000 m and a
warm layer near 5800 m. CAPE was above 1500 Jkg™! and surface temperatures exceeded 90 °F,
but moderate convective inhibition is observed with CIN near —40 Jkg!. Convection able to
surpass this warm lid would be able to grow towards deep convection across the entire region
during the afternoon and evening hours. Multiple slow-moving isolated convective cells with
damaging wind gusts and hail occurred across the region according to storm reports from the
Storm Prediction Center. Slow-moving convective features such as these are common in late
spring and summer across this region and allow for easier tracking with satellite and radar
observations. To capture the fine-scale convective features associated with this event, three two-

way feedback permitted WRF model domains are used with nests possessing 12.5 km, 2.5 km,

10



214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

and 500 m resolution, respectively, centered over Alabama and Mississippi (Fig. 1). The initial
and lateral boundary conditions are provided every 6 h by the National Center for Environmental
Prediction final (NCEP FNL) analyses on a 0.25° latitude/longitude grid. The WRF model

simulations contain 53 sigma levels, with the model top set to 25 hPa.

Three commonly used bulk microphysics schemes are examined in this study: the Thompson
et al. (2008), Morrison (Morrison et al. 2005, 2009), and WRF double-moment 6-class (WDM®6;
Lim and Hong, 2010) schemes. All of these microphysics schemes predict mass mixing ratios of
cloud water, rainwater, cloud ice, snow, and graupel. The Thompson and WDM#6 are mixed-
moment schemes, where WDM®6 predicts two-moments (mixing ratio and number concentration)
in warm rain processes and the Thompson scheme predicts two-moments of cloud water and ice.
The two-moment Morrison scheme predicts mixing ratios for all cloud hydrometeor categories
and number concentrations are also predicted for cloud ice, snow, rain, and graupel. Each
microphysics scheme allows output of a radar reflectivity factor based on the Rayleigh
approximation, which is very similar to the S-band wavelength observations of our ground-based

radar data.

All WRF simulations use an identical model configuration, apart from the microphysics
scheme. Simulations are initialized at 1200 UTC, which allows sufficient model spin-up as the
first CI case occurs near 1700 UTC. Physics options included are the Rapid Radiative Transfer
Model for Global Climate Models (RRTMG; Iacono et al. 2008), the nonlocal-mixing Y onsei
University (YSU; Hong et al. 2006; Hong 2010) planetary boundary layer scheme, and the Noah-

MP land surface model (Niu et al. 2011). No cumulus parameterization is used on the higher

11
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resolution 2.5 km and 500 m domains, whereas the Tiedtke (Tiedtke 1989; Zhang et al. 2011)
scheme is used on the outermost 12.5 km domain.

The evolution of CI events will be assessed on the high-resolution 500 m innermost domain.
Data were output every 5 mins to be consistent with the temporal resolution of CONUS GOES-
16 ABI data. Following Griffin et al. (2017), the Community Radiative Transfer Model version
2.1 (CRTM; Ding et al. 2011) was used to convert the WRF model output into simulated GOES-
16 ABI IR BT data. The CRTM provides all-sky top-of-atmosphere BTs that incorporate the
GOES-16 viewing geometry for channels 7-16 of the ABI (3.9—13.3 pum). Top-of-atmosphere
BTs in clear-sky scenes are generated using surface emissivity provided by the University of
Wisconsin High Spectral Resolution Emissivity Algorithm (Borbas et al. 2007), and WRF model
predicted surface skin temperature, 10-m wind speed, and vertical profiles of temperature,
pressure, and water vapor mixing ratio. Cloudy scenes use the above information, as well as
derived cloud properties (i.e. effective particle radius, cloud water content) consistent with the
assumptions made by each cloud microphysics parameterization scheme used (e.g. Otkin et al.
2007; Thompson et al. 2016; Griffin et al. 2017). Cloud properties were derived individually for
each cloud species and input into the CRTM to compute the cloud optical properties (i.e. single
scatter albedo, asymmetry parameter, and full scattering phase function) for each model grid
point and vertical layer. Finally, the combined set of hydrometeor optical properties were used to

compute the top-of-atmosphere BT data for each IR band measured by the ABI.

3. Cloud object identification and CI compositing

a) Cloud object and ClI identification

12
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Cloud tracking and detection methods are applied identically for the observed and simulated
BT datasets. Cloud tracking is based on 10.35 um BTs because radar observations may not be
available during the entire cloud lifecycle (Mecikalski et al. 2006). Cloud objects are identified
based on the Tracking Of Organized Convection Algorithm through 3-D segmentation
(TOOCAN; Fiolleau and Roca, 2013) algorithm and tracked through time when overlapping
areas occur in successive images of cloud objects (e.g. Vila et al. 2008). This tracking scheme
takes advantage of the fact that IR BTs are sensitive to cloud particles (their size, phase, and
amount) in the upper portion of the cloud giving extensive information on the horizontal and
vertical extents of cloud tops, which helps separate cloud clusters through time. Using this
iterative method of tracking clouds using the IR channels has been shown to be effective tracking
intense convection (e.g. Wall and Hartmann 2018; Cancelada et al. 2020).

To maintain consistency with the ABI observations, model gridded BTs are averaged to 2-km
grid spacing when identifying objects. Inspection of the BT imagery showed that the coldest
cloud tops during the observation period have BT < 210 K. Thus, cloud boundaries are first
searched for using BT < 210 K and then iteratively increasing by 2.5 K to detect cloud
boundaries (Fig. 2), where the warmest cloud boundaries within this case study are defined as
where the 10.35 um BTs are <285 K. This warm cloud boundary threshold helps capture cloud
growth before CI is detected, but also ensures that possible surface BT contamination is
excluded. Fiolleau and Roca (2013) describe the cloud detection as iteratively growing cloud
“seeds” from colder to warmer BTs. In this work, clouds are identified using the TOOCAN
methodology by detecting initial boundaries using a low BT threshold of 210 K. For each

identified object, pixels are added to the cold cloud top object using a 2.5 K warmer BT
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threshold to identify the edge of the new boundary. The warmer BT threshold is also applied to
detect new cloud object “seeds”. This iterative process of extending the cloud boundary by 2.5 K
is repeated until each of the grid boxes within a cloud object are colder than 285 K or if cloud
overlap is detected with a neighboring object. Once cloud objects are identified for each 5-min
timestep from the observations and simulations, the SciPy data package (Virtanen et al. 2020) is
used to detect and track the cloud object overlap between timesteps. To be consistent with
previous observational studies (e.g. Roberts and Rutledge 2003; Mecikalski et at 2006;
Weckwerth and Parsons 2006), a cloud object from the GOES-16 ABI and WRF simulations will
be defined as CI when radar reflectivity > 35 dBZ occurs in a cloud object. This threshold is
common in thunderstorm nowcasting studies where CI is exclusively defined using a radar
precipitation echo intensity criteria of >30—40 dBZ (Browning and Atlas 1965; Marshall and
Radhakant 1978; Schreiber 1986; Wilson and Schreiber 1986; Wilson et al. 1992; Wilson and
Mueller 1993; Mueller et al. 2003; Walker et al 2012; Lee et al. 2016; Han et al. 2019). The 35
dBZ threshold signifies convective precipitation near the surface of ~8 mm h'. Clouds reaching
this threshold typically produce significant precipitation, but it does not guarantee that the CI
events will lead to long-lived convective storms (Mecikalski et al. 2015). To mitigate vertical
resolution differences between NEXRAD and the model vertical grid we define CI when the
maximum reflectivity in the cloud column exceeds 35 dBZ (e.g. Matthee et al. 2014; Senf and

Deneke, 2017).

b) Composite analysis methodology

14



300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

Several physical cloud characteristics from observed and simulated cloud objects reaching CI
are tracked and compared using lag-composite analysis. When the radar reflectivity within a
cloud object surpasses the 35 dBZ threshold, that timestep is labeled time lag zero and the data
before, during, and after this CI timestep are composited to describe the evolution of the cloud
objects. Objects reaching CI are examined and compared when the cloud persists longer than 35
mins to track the cloud evolution 15 mins before and 15 mins after the 5-min period in which CI
is detected. Composited data includes the CI forecast interest fields described in Section 2a,
cloud area (defined using the number of grid boxes in the cloud object), and model-based
properties from profiles of mixing ratios for each of the hydrometer types. After cloud objects
are identified for each time lag, the cloud characteristics and CI forecast interest fields are
derived. For GOES-16 ABI data, the BT interest fields described in Section 2.1 are derived using
the grid boxes containing the two coldest 10.35 um BTs within the cloud object (e.g. Mecikalski
et al. 2010). For the WRF simulations, the coldest two grid boxes that were averaged to 2 km
within each cloud object are used to derive the CI forecast interest fields, which is 32 grid boxes
at 500 m grid spacing. If cloud objects are smaller than the grid boxes required for averaging the
observed or modeled cloud objects, then all cloudy grid boxes are used with the cloud object

boundaries.

4. Results
a) Comparison of domain-based characteristics

Cloud objects are compared over a 3-hour period beginning at 1700 UTC, which is near the
time the first CI object was observed in GOES-16. Table 1 provides a summary of the total cloud

objects and CI cases tracked, and the time of first CI occurrence. This 3-hour period is chosen to
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provide a sufficient number of objects, but also to limit new CI events that originate under larger
cloud anvil regions where passive satellite observations cannot accurately discriminate multi-
layer cloud structures (Mace and Wrenn 2013). Model and observed cloud objects are first
compared using domain-wide statistics to understand the characteristics of the cloud objects
without considering the stage of the cloud lifecycle. The first observed GOES-16 CI event occurs
at 1655 UTC, with the first CI occurring at 1645 UTC, 1640 UTC, and 1700 UTC for the
Thompson, Morrison, and WDM6 schemes, respectively. Overall, the Thompson and Morrison
schemes produce more CI objects than was observed in GOES-16 data, whereas the WDM6
simulation more accurately represents the number of observed CI objects.

CI cases over the 3-hour period and their occurrence, fractional coverage, and cloud object
areas are illustrated in Fig. 3. In Fig. 3a and Fig. 3b the number of CI cases that are active at each
timestep are represented by the solid lines and in Fig. 3¢ the range of CI cloud object areas are
represented by the box-and-whisker diagrams. The data are plotted at 15-min intervals starting at
1700 UTC. The number of CI cases in the Morrison scheme quickly increases 30 mins after the
start of the observation period; however, the WDM6 scheme has a delay in occurrence compared
to the other simulations and observations. Overall, the observations and simulations show an
increase in cloud object area over time. When compared to the observations (grey bars) the
ranges in active CI cloud sizes from the simulations display a general agreement in median cloud
object area throughout the three-hour period where the ranges in object size are close to the
GOES-16 observations.

The fractional coverage of active cloud objects (Fig. 3b) is similar to the pattern of CI

occurrence (Fig. 3a) for each configuration, with the Thompson and Morrison schemes
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producing more objects covering a larger fractional than the WDM6 scheme. From 1700 UTC to
around 1900 UTC, the Thompson and Morrison cloud object size interquartile range (IQR)
shown in Fig. 3c is similar to observations, but the simulations contain more active cloud objects
leading to a higher fraction of domain coverage (Fig. 3b). As clouds get larger towards the end of
the observed period the fractional coverage for all simulations merge towards the observations,
but the Morrison simulation contains more objects (Fig. 3a) and the Thompson cloud object size
IQR is smaller than indicated by the GOES-16 observations at 1945 UTC (Fig 3c). This suggests
that the Thompson and Morrison simulations produce too many small cloud objects compared to
observations. The WDM®6 simulation has a delay in occurrence, which leads to a lower fractional
coverage throughout most of the observed period (Fig 3b). The WDM6 simulation contains a
higher cloud object size IQR starting around 1800 UTC, where CI cloud growth becomes more
rapid than the other two microphysics schemes and cloud object occurrence and fractional
coverage begins to move closer to the GOES-16 observations. Further insight into microphysical
reasonings leading to this delay in CI development for the WDM6 scheme will be provided in
Section 4b.

To investigate how the cloud height evolves within the cloud objects, Fig. 4 displays
normalized frequency distributions of 10.35 um BT for four different times in the WRF forecasts
for all objects in a timestep. Figure 5 shows the 10.35 um BTs at 1900 UTC for the observations
and model simulations. Inspection of Fig. 4 shows that there is a shift from shallow convection at
1700 UTC (mostly warmer BTs) towards a mix of shallow, congestus, and deep convection from
1800-1900 UTC (higher percentage of colder BTs), and predominantly deep convection with

anvil regions at 2000 UTC. In the Morrison simulation, a higher fraction of convection occurs at
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1800 UTC for BT near 260 K, whereas the WDM6 and Thompson schemes simulate a higher
fraction of cloud tops colder than what was observed by the GOES-16 ABI. Quantitively, this
bias is found in the coldest cloud objects, which are compared using the coldest 10™ percentile of
10.35 um BT (Table 2) derived using a cumulative distribution function sorted by cloud-top
temperature. Cold biases are largest in the Morrison scheme at 1700 UTC and continue through
1800 UTC. Starting at 1800 UTC evidence of a cold bias from deeper convection is found in the
Thompson scheme and becomes more pronounced at 1900 UTC where BT < 240K are more
frequent. This bias pattern continues to the 2000 UTC timestep. Griffin et al. (2017) found

similar behavior when assessing output from the High-Resolution Rapid Refresh model.

b) Composite-based evaluation of CI

The differences in Figs. 3 and 4 begin to scratch the surface on possible organizational
differences in the spatial cloud coverage between the observations and microphysical schemes.
Previous studies have investigated cloud-top BT biases through matching cloud objects spatially
and temporally to verify CI forecasts (e.g. Burghardt et al. 2014) or by implementing object-
based analysis to track cloud systems to assess characteristics beyond point-by-point analysis
(e.g. Griffin et al. 2017). However, these evaluations lack validation of the model representation
of the cloud evolution characteristics leading to CI itself. The differences in Fig. 3 illustrate a
direct overestimate of CI frequency during the model forecasts, but it is difficult to distinguish
the mechanisms leading to this from domain-based or system-based statistics alone. Evaluation
of CI processes based on the cloud life cycle is possible using composite strategies and allows

investigation of simulated CI characteristics without the need to match with the observations in

18



388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

space and time. While this does not provide the same dichotomous validation when model
objects are matched with observations in space and time, it allows evaluation of the full breadth
of CI characteristics exhibited by the simulations.

To understand how clouds leading to CI evolve through time, the evolution of three satellite-
based cloud-top interest fields will be described to characterize the changes in cloud-top growth
and microphysical state. The 5-min temporal information content from the ABI sensor provides
the opportunity for observing growth closer to cloud scales (e.g., Gravelle et al. 2016; Senf and
Deneke, 2017) when evaluating the model simulations. The satellite-based interest fields are
derived using three BT-based methods that represent the cloud-top height using the 10.35 pm
BT, 10.35 um BTs cloud growth tendency at 5-min intervals, and cloud-top glaciation using 8.4
um—10.35 um BT differences. Figures 6 and 7 provide box and whisker plots for cloud growth
CI interest fields that detail the distribution of cloud-top BTs for timesteps 15 mins before and
after CI is observed (time lag = 0 at CI).

Similar to clouds observed in Mecikalski et al. (2013), the 10.35 pm BTs begin near 270 K
15 min before CI occurs and continually cool (grow vertically) throughout the period (Fig. 6).
For the Thompson and Morrison schemes, clouds 15 mins before CI are warmer (shallower)
compared to the ABI observed ranges. The median BTs from the Thompson and Morrison
schemes move towards the GOES-16 ABI median values over time resulting in increased cooling
rates before CI occurrence (Fig. 7). In Fig. 7, the growth rates exhibit similar characteristics to
the 5-min analysis in Senf and Deneke (2017), where the maximum cooling rates occur near CI
and then the cloud top cooling rate decreases afterwards. The Morrison scheme displays faster

growth rates 10 to 15 min before CI and the Thompson scheme exhibit a larger increase in cloud
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growth 5-mins before CI. Further, all of the WRF model simulations exhibit large ranges in BTs
compared to the observed ABI clouds particularly after CI occurs. The model simulations
produce a higher fraction of clouds that begin to warm, or slow in growth, after CI is detected
(Fig. 7), suggesting cloud growth has ceased. When tracking the clouds through time, the CI
cases from the Morrison simulation last no more than 20 min 42% of the time after CI was
detected, whereas 35% of the CI cases in the Thompson simulation last 20 min or less, which
suggests a higher number of congestus clouds compared to longer-lived deep cumulonimbus
clouds in the Thompson and Morrison simulations. Mean values for the observed and simulated
values are shown in Table 3 using the IQR, defined as the 25-75% quartiles of the data in Figs. 6
and 7. The differences described above are also evident in Table 3, where higher growth rates
before CI and a switch towards positive (warming) after CI are found in the Thompson and
Morrison schemes.

There is a clear disconnect in the cloud development in the WDM6 microphysics that leads
to a delay in CI detection resulting in colder cloud tops (Fig. 6; light green bars). While the
WDMG6 cloud growth rates in Fig. 7 exhibit a similar pattern as the Thompson and Morrison
schemes, cloud heights in Fig. 6 are higher (colder), demonstrating that CI is detected later in the
cloud life cycle compared to the other simulations. To further investigate cloud growth in the
WDMB6 simulation, the cloud evolution is plotted starting an additional 30 min before CI was
detected (hatched bars in Figs. 6 and 7), which is the timestep the median WDM6 10.35 pm BTs
best match the ABI observations. The 30-min lagged WDM6 10.35 pum BTs in Fig. 6 more
closely resemble the ABI observations, but the growth rates in Fig. 7 no longer exhibit the

maximum cooling at timestep zero originally found in both the GOES-16 observations and
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simulated clouds. Instead, the lagged WDM®6 evolution is more linear. The WDM6 scheme
typically produces rain drop sizes that are too small (Morrison et al. 2015; Johnson et al. 2016;
Lei et al. 2020). Radar reflectivity is proportional to the sum of the sixth power of the diameter;
therefore, smaller drop size distributions will lead to lower reflectivities in the growing
convection. Further, previous research describes the need for a glaciation-driven latent heat boost
within clouds to elevate them towards CI (e.g., Zipser 2003; Mecikalski et al. 2016; Senf and
Deneke, 2017). The results from the cloud-top BTs indicate that the WDM6 scheme likely has a
lag in rain growth and cloud glaciation that produces the added mid-tropospheric latent heating
needed to reach CI, and subsequent large enough hydrometeors to produce a radar echo greater
than 35 dBZ.

Direct comparison of BT channels sensitive to cloud top microphysical changes and
glaciation help shed light on how accurately the microphysics schemes handle ice processes in
the top levels of the cloud (e.g. Mecikalski et al. 2010; Senf and Deneke 2017). Figure 8
displays box and whisker plots for the observed and simulated 8.4 um—10.35 um BT differences.
Due to the different optical properties between liquid and ice, the BT difference switches from
negative (below —2 K) for optically thick liquid clouds towards positive when the cloud top
becomes fully glaciated (Baum et al. 2000). The observed BT difference from GOES-16 shows
that the clouds start as fully liquid 15 min before CI and then the BT difference trends towards
less negative values thereafter, plateauing near —1 K. Baum et al. (2000) describe how positive
trends in this BT difference field are driven by the presence of larger ice and liquid particles at

cloud top. The larger particle size leads to smaller BT differences, and suggests that a mixed
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phase state is possible at cloud top in the GOES-16 observations after CI is detected. Some
clouds do exhibit positive BT differences; however, they are beyond the box and whisker ranges.

The three WRF bulk microphysical schemes are characterized by different evolutions of
cloud-top glaciation BT differences (Fig. 8). The Thompson scheme has the closest pattern to
observations with clouds starting around —2 K 15 mins before CI and converging to a BT
difference near —0.5 K at CI. The majority of cloud tops contain a negative BT difference in the
Thompson simulation with a few switching to positive 15-mins after CI detection. The Morrison
scheme more efficiently converts from liquid to ice phases, and the glaciation trend increases
monotonically before and after CI. Cloud-top glaciation is found in clouds starting at time-lag
zero and the amount of cloud tops with positive BT differences increases monotonically until the
majority of clouds are glaciated 15 min after CI. Similar to the observations and the Thompson
scheme, the WDM®6 simulation BT differences plateau after CI, but due to the delay in CI
detection, clouds exhibit ice glaciation before CI detection. Using the 30-min lagged WDM6
BTs described above, the glaciation BT differences resemble the Thompson and observed
GOES-16 trend but continues to grow linearly. The presence of ice likely demonstrates that
larger liquid precipitation hydrometeors are absent in the early WDM6 development, thereby
delaying the detection of CI.

To examine differences in the evolution of in-cloud microphysics, Fig. 9 presents vertical
profiles of liquid and frozen cloud mixing ratios for each simulation from 5 min before until 10
min after CI is detected. To provide additional insight into the behavior of the WDM®6 scheme,
the bottom row shows vertical profiles for the cloud mixing ratios from 25 to 10 min preceding

CL. For all of the microphysics schemes, CI detection is coincident with the emergence of a
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precipitating core near 45 km and the formation of graupel near the cloud top. The WDM®6
simulation contains a similar rain mixing ratio profile 5 min before CI when compared to the
Thompson and Morrison simulations. In the WDM6 simulation, the delay in CI detection leads
to more cloud water lofted to the upper levels along with higher mixing ratios for frozen
hydrometers. For WDM®6, the emergence of rain mixing ratios does not occur until 10 mins
before CI detection. Starting 25 min before CI cloud mixing ratios are still located well above the
freezing level. Near 15 min before CI, small amounts of cloud ice and snow occur before the
emergence of rain in the WDM®6 simulation and the cloud continues to grow with cloud mixing
ratios located as high as 10 km above the surface. This is consistent with the large cold biases in
10.35 um BTs in Fig. 6 and Table 3. Both the WDM6 and Morrison schemes produce larger
amounts of graupel and snow after CI leading to the positive BT difference bias shown in Fig. 8.
The Thompson scheme still produces graupel in the upper levels of the cloud but is more
efficient at producing rain at the surface. This leads to less ice aloft and the development of a
plateau in the 8.4—10.35 pm BT differences after CI in the Thompson simulation and GOES-16
observations; the 8.4-10.35 pm BT differences plateau in the Thompson simulation centered on

—1, verifying the lack of cloud-top glaciation.

¢) CI processes related to cloud growth

The WRF simulations contain more CI cloud objects than observed, where the Thompson
and Morrison simulations have the most cloud objects reaching CI. As shown in Fig. 7, after CI
is detected, the simulated clouds have a large spread in growth rates. The GOES-16 observed BT

histograms presented in Fig. 4 are characterized by 10.35 um BT peaks near 260 K and 220 K
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signifying that the CI cloud objects are subset into shallower precipitating congestus clouds with
warmer cloud tops and clouds that continue to grow into deep cumulonimbus clouds. The 35
dBZ threshold used to define CI in this case study captures precipitating clouds within the 10.35
um 260 K and 220 K cloud subsets. These clouds all reach CI and likely produce significant
precipitation; however, combining the two subsets of cloud growth can lead to ambiguity when
comparing the model and observational differences.

To investigate the cloud characteristics associated with the varying life cycles of cloud
growth, the CI definition is modified to discriminate both sets of clouds. The cloud evaluation
will partition CI cloud objects into those reaching 10.35 um BTs < 250 K at some point in their
lifecycle and those with cloud-top BTs remaining warmer than 250 K. The 250 K threshold was
chosen using the BT histograms in Fig. 4, and since the clouds observed by GOES-16 reaching
250 K demonstrate continuous growth after CI. For convenience, we will refer to cloud objects
reaching the 250 K threshold as the “cold-CI cloud” category and cloud objects remaining
warmer than 250 K as the “warm-CI cloud” category. The 250 K threshold will be applied to the
observed and simulated CI cloud objects. The warm- and cold-CI clouds from the WRF
simulations will be further subset by the top 50% of cloud objects in each category that most
closely match the observed GOES-16 observed growth rates after CI is detected. Cloud objects
outside the top 50% best matching GOES-16 growth rates illustrate simulated cloud objects
where growth is outside the ranges measured by the GOES-16 observations. Because the
temporal delay for CI events in the WDM6 simulation leads to a limited amount of cases where
cloud-top BTs remain warmer than 250 K, this analysis will focus on the Thompson and

Morrison simulations only.
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Table 4 provides a summary of the total CI cloud objects tracked when CI clouds are
separated into warm-CI and cold-CI cloud cases. It is evident that the overestimation of
simulated cloud objects reaching 35 dBZ is due to an increase in warm-CI clouds with 21, 75,
and 84 warm-CI clouds from GOES-16 observations, Thompson and Morrison, respectively. The
Thompson and Morrison schemes produce 46 and 54 cloud objects reaching 250 K, respectively.
Though this is still higher than the 31 objects observed by GOES-16, it does lead to a better
match than when using the 35 dBZ CI definition alone.

The resulting 10.35 um cloud-top BTs and BT growth rate tendencies using the warm- and
cold-CI cloud categories are displayed in Figs. 10 and 11. Separating the CI cloud objects into
warm and cold categories leads to a clear difference in the 10.35 um cloud-top heights in Fig. 10.
Near the time CI is detected, the observed and simulated warm-CI cloud growth halts and the
10.35 um BTs remain nearly constant (Fig. 10a). This is consistent with the warm-CI clouds BT
tendency where most clouds observed by GOES-16 display zero tendency and both sets of
simulations warm after CI detection resulting in positive BT tendencies (Fig 11a). On the other
hand, there is a clear deepening in the cold-CI clouds after CI as the 10.35 um BT continues to
decrease (Fig. 10b). The cloud-top BTs for cold-CI clouds are well below the freezing level of
273 K at the time CI is detected. The cloud-top BTs in Fig. 10 and tendencies in Fig. 11 for the
cold-CI cases resemble cloud-top BT trends described in Matthee and Mecikalski (2013) who
demonstrated that rapidly growing convection (growth rates ~10°C/15 mins) are more likely to
produce heavy rain and lightning compared to CI cases with slower growth.

Comparing the top 50% of simulated cloud objects most closely matching the observed

GOES-16 growth rates for warm and cold-CI clouds naturally leads to improvement for both
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cloud height and growth rates within the best matched cases. For these clouds, median cloud
growth rates become closer to observations and the spread in 10.35 um BT and BT growth rates
(Fig. 10c-d and Fig. 11c-d) after CI detection are greatly reduced. The 10.35 pm cloud-top BTs
in the simulations remain consistently warmer than GOES-16 before CI detection leading to the
same pattern of increased growth rates for Thompson cloud objects shown previously in Fig. 7.
The Morrison cloud objects display increased growth rates 10 min before CI in the warm-CI
cases in Fig. 11a, but growth rates closer to GOES-16 occur afterwards. The simulated warm-CI
cloud cases outside the top 50% best matching GOES-16 observed growth in Fig. 10e and Fig.
11e show signs of decay quickly after CI is detected where cloud growth trends are warmer than
the observations, whereas the simulated cold-CI cloud cases in Fig. 10f and Fig. 11f display
rapid growth at CI detection and 5-min after CI. It is interesting to note that the warm-CI cloud
objects contain cloud growth rates that are similar to the cold-CI clouds before and at CI
detection. This suggests that in the early stages of CI, the BT interest fields used to forecast CI
might not be able to differentiate clouds with sustained growth from those that decay. This
scenario could lead to false positives in geostationary satellite-based severe storm nowcasting
algorithms since early cumulus cloud growth signatures are not always associated with CI events
in the coming 30-45 min (Mecikalski and Bedka 2006).

Figure 12 uses 8.4 um—10.35 um BT differences to evaluate signals in cloud-top glaciation in
the warm-CI and cold-CI cloud categories. For warm-CI clouds, the WRF simulated BT
differences closely track the observations, where the clouds start as fully liquid 15 min before CI
and then the BT difference trends towards less negative values thereafter, plateauing just above —

2 K. For the cold-CI clouds, the GOES-16 observed BT difference are closer to zero; however,
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negative values before and after CI indicate a cloud top that is not fully glaciated. A slight
positive trend occurs in observed cold-CI cloud BT differences proving evidence that cloud-top
microphysics contain larger hydrometeor sizes or ice after CI, which does not occur in warm-CI
clouds. A larger number of outliers occur above zero for the observations and simulations
indicating that more clouds have reached a fully glaciated state in the cold-CI category. For both
microphysics schemes, the simulated cloud BT differences are nearly constant until 5 min before
CI, thereby demonstrating a possible delay in the presence of ice or larger liquid hydrometeors
near the cloud top compared to observations. At CI detection, BT differences for both
microphysics schemes begin to quickly move toward more positive values and display evidence
of a glaciated cloud top 15 min after CI. This positive BT difference also exists in the Morrison
scheme for warm-CI clouds, providing further evidence of an overestimation of cloud ice after
CL

Figure 13 compares mean mixing ratio profiles for the warm- and cold-CI cloud categories.
Differences are evident at the time when CI is detected, where the Thompson scheme more
efficiently produces rain hydrometeors than the Morrison scheme. There is also a discernable
difference between the warm-CI and cold-CI clouds, where mixing ratios from the cold-CI
clouds are consistently larger than occurred during the warm-CI cloud objects. For example,
profile maxima in cloud water mixing ratios remain higher in the cold-CI clouds. This sustained
cloud water source likely aids the creation of rain, graupel, and other ice hydrometeors, but it is
difficult to fully evaluate how the mixing ratios are impacting growth due to the differences in

mixing ratios between the microphysics schemes.
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Figure 14 displays cloud mixing ratio tendency profiles for cloud objects in the warm-CI and
cold-CI cloud categories. Cold-CI cloud objects are further separated into the best matched cloud
objects and cloud objects that experience more rapid growth described in Fig. 10. All warm-CI
cloud objects are combined as the tendency profiles are similar. The tendency profiles were
created by differencing each 5-min interval with the timestep before it for each cloud object and
then averaged. The tendency profiles exhibit better agreement between the microphysics
schemes and are able to describe how changes in cloud microphysics could impact the growth of
the cloud. The mixing ratio tendency profiles for the warm-CI and cold-CI cloud categories are
similar before CI is detected, particularly in the Thompson scheme. In Fig. 13, increases in rain
mixing ratios in the simulated clouds develop near 4 km in the time step before CI detection.
This increase of rain hydrometeors leads to CI detection five minutes later. Five minutes before
CI, there is an discernable difference in the cloud water fluxed from the lower-levels of the cloud
to the upper levels, where the best-matched and rapid-growth cold-CI clouds lose less cloud
water compared to the warm-CI clouds. Cloud water is gained near 4 km for the warm-CI clouds,
best-matched cold-CI clouds, and rapid-growth cold-CI clouds, but less cloud water is lost below
3 km where a smaller negative cloud water tendency occurs in cold-CI cloud categories. This
tendency occurs at the CI timestep as well.

At time-lag zero when CI is detected, both microphysics schemes show increases in rain
water mixing ratios throughout the depth of the cloud, which monotonically increases as a
function of growth and the development of graupel occurs between 6—8 km. Five minutes after
CI is detected, the sustained cloud water in the lower levels of the cloud leads to higher rain

mixing ratios and a monotonic increase in graupel from warm-CI clouds to the cold-CI clouds,
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which is found in both of the microphysics schemes. This helps confirm previous geostationary-
based assessments (e.g. Mecikalski et. al. 2016a,b; Senf and Deneke, 2017) that suggest growth
related to CI is aided by latent heat release from ice formation near and below cloud top. Figure
13 also shows that the process requires sustained latent heating in the lower levels from
condensation, which was also shown to be the case when 1-min resolution GOES-14 data were
used to analyzing cumulus clouds undergoing the CI process (Mecikalski et al. 2016b). For the
warm-CI clouds in Fig. 13, the larger loss of cloud water in the lower levels of the clouds leads
to lower rain and graupel mixing ratios with negative tendencies for all cloud species above 4 km
10 min after CI was detected. Thus, clouds lacking the sustained source of low-level cloud water
are unable to sustain their growth over time.

Due to the warm and moist boundary layer found in the southeastern United States the warm
(>0°C) portion of the cloud is 3—4 km deep (Fig. 9), and accurate representation of warm rain
processes are essential for CI in weakly forced environments over this region. Combined radar
and geostationary satellite studies have demonstrated that heavily raining convection with similar
glaciation BT differences found in Fig. 8 and Fig 12 typically contain weaker updrafts and lower
ice contents at the cloud top (e.g. Mecikalski et al. 2013; Matthee et al. 2014; Senf and Deneke;
2017) compared to lightning producing storms; therefore, warm rain processes are a likely
pathway to make a 35 dBZ echo for both the warm-CI clouds and cold-CI clouds. Early rain
formation dictated by the auto-conversion process varies between the microphysics schemes
resulting in the differences found in Fig. 13 and resulting ice aloft in the cloud (e.g. Bao et al.
2019). The ABI comparisons in Figs. 10 and 11 help demonstrate that the simulations can

replicate the evolution in CI BT signatures. The comparisons of the BT differences associated

29



628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

with cloud phase provide evidence that the Morrison scheme produces too much graupel in the
best-matched cases (Fig. 14). While the Thompson scheme best matches the observed 8.4 um—
10.35 um BT difference for this case study for both warm- and cold-CI clouds, further evaluation
assessing the sensitivity of the CI processes with land surface models and planetary boundary

layer schemes will be needed.

S. Discussion and Conclusions

In this study, the characteristics of simulated convection leading to CI from different bulk
cloud microphysics schemes are assessed using version 3.9.1.1 of the WRF model. The study
examined the evolution of cloud objects associated with CI for a case study from 20 May 2018
where weakly forced convection occurred over parts of Mississippi and Alabama that eventually
lead to multiple reports of high wind and hail. Evaluating in this environment provides analysis
where microphysics are the primary driver in pushing convection towards heavily precipitating
convection. Three model sensitivity experiments employing 500-m horizontal grid spacing were
completed where all model components were identical except for the cloud microphysics
scheme. GOES-16 ABI infrared BTs were simulated for each model experiment using the CRTM
and then directly compared to GOES-16 observed BTs using a lag-composite analysis, where
time zero was defined as the time CI was detected. CI for the model and observations is defined
as the first time a 35 dBZ radar echo occurred in the cloud column. Three BT-derived fields
commonly used in CI nowcasting applications were compared between the models and
observations to understand changes in cloud-top height, cloud growth rate, and hydrometeor

phases over time.
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In general, the WRF simulations were able to capture the general trend in cloud growth rates
and cloud top area over time when maximum cooling occurred near the time CI was detected.
The simulations contain a larger spread of 10.35 um BTs after the detection of CI. Furthermore,
the amount of clouds reaching CI is too frequent in all simulations due to a large number of
convective cases reaching CI and then quickly decaying afterwards. This pattern was most
pronounced when using the Morrison scheme. For the Thompson scheme, around 35% of CI
cases sustain 20 mins or less after CI, whereas this increases to 42% in the Morrison scheme.
Too frequent convection could lead to issues when forecasting CI due to the prevalence of
convection formation in raining outflow boundaries in the southeastern United States (Goggins et
al. 2010). Delays in rain hydrometeor formation occur in the WDM®6 bulk microphysics scheme,
which led to a delay in the detection of CI compared to the GOES-16 observations. This then
caused a cold bias in the simulated 10.35 pm BTs > 20 K throughout the CI process when this
scheme was used. Lagging the WDM6 BT timeseries by 30 min improved comparisons with the
10.35 um cloud-top BTs, but cloud growth rates no longer exhibited the maximum growth at CI,
likely due to the absence of ice growth at these timesteps and thus lacking the upper level latent
heating needed to support cloud growth.

Evaluating the simulated clouds using BTs demonstrates the benefits of using high-resolution
satellite observations to examine cloud processes using model simulations. It also provides a
platform to deconstruct cloud properties leading to trends in CI properties. When partitioning the
results into warm-CI and cold-CI clouds the simulated CI cases produce a range of 10.35 pm
cloud-top BTs more akin to the GOES-16 observations. Although differences in microphysical

processes are evident, comparison of the tendencies in mixing ratio profiles from these two
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microphysics schemes reveals agreement in the tendency of in-cloud mixing rations related to
convection initiation and cloud growth. Cold-CI clouds are characterized by an increase in cloud
water at lower levels near the time of CI that is then lofted to the upper portion of the cloud,
whereas warm-CI clouds contain less cloud water at CI. Increased cloud water in the upper levels
contributes to an increase in graupel formation near cloud top, which corresponds to the times of
maximum growth and helps confirm that ice formation is a necessary component in CI and cloud
growth leading to longer lasting storms. This also indicates that sustained condensation in the
lower levels of the cloud is necessary to provide sustained sources of cloud water to be lofted
into the upper portion of the convective clouds.

Using the 8.4 um—10.35 um BT differences, observed changes in GOES-16 cloud top phase
in CI events yield a positive BT difference trend that plateaus shortly after CI. The observed
GOES-16 BT does not reach full cloud top glaciation (BT differences remain < 0), but the
positive trend provides evidence of the onset of ice and larger hydrometers at the cloud top. The
CI cases from the Thompson microphysics scheme yield a similar result, whereas the Morrison
and WDM®6 schemes are too efficient at creating cloud ice particles (specifically graupel) and a
glaciated cloud top (8.4 um—10.35 um BT difference switches to positive). Inspection of in-cloud
mixing ratio profiles reveals that the Thompson scheme more readily converts cloud water to
precipitation, whereas the Morrison scheme is able to loft more cloud water to higher levels,
leading to increased graupel formation. When comparing cold-CI and warm-CI clouds, the cold
bias from the Morrison scheme remains providing further evidence that it is producing too much

graupel near the cloud top.
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The application of observation-based CI techniques present a novel methodology to evaluate
high-resolution models with satellite data and examine the processes leading to CI development.
The results from this study illustrate that the model simulations are able represent cloud
evolution, but warm-CI clouds are too frequent. Previous radar-based studies that demonstrate
cloud tops with lower ice contents, such as those observed in the GOES-16 ABI BT signatures
(Fig. 8), contain weaker updrafts (e.g. Matthee et al. 2014; Senf and Deneke 2017), which
suggests radar reflectivity due to warm rain. The lower level condensational growth and warm
rain processes are important for CI as early rain water partitioning in bulk microphysics can
impact downstream graupel production. Further, small rain hydrometeors have been found in
WDM6 using dual-polarized radar comparisons (e.g. Johnson et al. 2016; Lei et al. 2020), which
affects timing of CI detection. Bao et al. (2019) illustrate that differences in auto-conversion
parameterizations early in warm rain development can lead to downstream differences in graupel
production. The delay in rain formation in the WDM6 simulation and the increased graupel
formation when using the Morrison scheme suggests that insight into differences within auto-
conversion parameterizations could help sort differences in cloud evolution. Further analysis
comparing simulated cloud growth with clouds best matching GOES-16 observations could help
refine which auto-conversion rates are accurate in the cloud microphysics schemes. The
Thompson scheme most accurately describes the ice mixing ratios reaching cloud top at the time
of CI, but all of the parameterization schemes generally produce cloud tops that are too warm
early in development, thereby leading to higher growth rates before CI.

This is a single case study so additional case studies using satellite BTs and objected-based

methods to evaluate the characteristics of CI may be necessary to reinforce these findings.
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Before CI was detected, IR BTs at cloud top were similar between warm-CI and cold-CI clouds
in the WRF model simulations. This suggests that information content from cloud-top properties
alone, such as ones utilized in geostationary-based CI forecasting, may be insufficient when
forecasting CI during the early stages of cloud development when the convection is weakly
forced. Additional simulations shedding light on other factors controlling the growth of
simulated convection will be useful to aid in understanding the conditions optimal for CI growth
in weakly forced cases. Future studies could concentrate on how the use of land surface models
and planetary boundary layer schemes impact convective growth, updraft characteristics, and
latent heating leading to CI. Finally, utilizing observations from ground-based active sensors that
provide high resolution vertical profiles of hydrometeors and updrafts will be key in constraining
model-based evaluations of convection. Such modeling studies are planned as well as
observational analysis evaluating convective evolution using data from the Atmospheric

Radiation Measurement (ARM) program matched to observed GOES-16 CI cases.
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Tables and Figures

Total Cloud
Objects
BT <285K # CI Tracked Time First CI
GOES-16 546 52 1655 UTC
Thompson 1853 121 1645 UTC
Morrison 2160 136 1650 UTC
WDM6 1946 67 1700 UTC

Table 1. Number of total cloud objects colder than 285 K, number of CI objects tracked, and
time of first tracked CI cloud in the GOES-16 observations and the Thompson, Morrison, and
WDM6 simulations.

Time [UTC] 1700 1800 1900 2000
GOES-16 257.6 241.2 228.6 217.5
Thompson 256.3 237.8 223.1 214.8
Morrison 254.5 240.3 229.6 216.5
WDM6 260.1 241.5 227.8 218.4

Table 2. The 10" percentile of the 10.3 um BT distributions for the GOES-16 observations and
Thompson, Morrison, and WDM6 simulations at 1700 UTC, 1800 UTC, 1900 UTC, and 2000
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1104
1105
1106
1107
1108

1109
1110

Time-lag
from CI WDMG6-
[mins] Thompson Morrison WDM6 lagged
10.35 pm —15 3.45 3.28 -16.23 -1.51
—-10 2.78 2.03 -16.31 -3.81
-5 0.34 -1.1 —20.02 -3.73
0 —3.48 —-1.98 —-19.93 —2.41
+5 —-2.65 -2.61 —20.67 —0.61
+10 -1.33 -1.95 —23.52 -2.91
+15 —0.35 -1.13 —24.02 —2.52
Time-lag
from CI WDMG6-
[mins] Thompson Morrison WDM6 lagged
10.35 pm
tendency —-10 -1.16 -1.65 —2.65 -2.12
-5 -1.66 —-2.39 0.55 —2.41
0 -3.96 —0.95 1.11 -1.72
+5 —0.88 -1.45 —0.14 —0.65
+10 1.75 0.75 -1.63 -1.04
+15 0.47 1.76 1.39 0.14

Table 3. Differences of the mean BT (Model-Obs) of the (top) 10.35 pm BT and (bottom) 8.4—
10.35 pum BT tendency computed using the mean of the interquartile range. Differences are given

for timesteps before and after CI is detected. All units are [K].

Total Cloud Cloud objects
Objects Cloud objects with | Cloud objects that do not
BT < 285K dBZ > 35 reaching 250 K | reach 250 K
GOES-16 546 52 31 21
Thompson 1853 121 46 75
Morrison 2160 136 52 84

Table 4. Number of total cloud objects with 10.35 um brightness temperature < 285 K, number
of CI cloud objects meeting the 35 dBZ criterion, number of CI cloud objects meeting the 35
dBZ and 250 K criterion, and the number of CI cloud objects meeting the 35 dBZ criterion but
not the 250 K criterion. Results are shown for the GOES-16 observations and the Thompson and
Morrison simulations.
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Figure 1. Illustration of the three WRF model domains. Convective initiation is assessed within
the inner domain (D03) using GOES-16 observations and data from three WSR-88D radar sites

(blue circles).
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Figure 2. An example of (left) 1900 UTC GOES-16 ABI 10.35 um brightness temperatures [K]

within the inner domain region. (right) Derived cloud objects from this timestep.
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Figure 3. The (a) occurrence of active CI cloud objects containing a reflectivity higher than 35
dBZ at each timestep (b) fractional coverage of active CI cloud objects, and (c) sizes of CI cloud
objects for GOES-16 (grey) observations and Thompson (blue), Morrison (green), and WDM6
(light green) simulations. Occurrence is shown by the solid lines and the spread of cloud object
sizes is shown using the box and whisker diagrams.
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Figure 4. Normalized ABI 10.35 um brightness temperature probability density functions at (a)
1700 UTC (b) 1800 UTC (c) 1900 UTC and (d) 2000 UTC. Brightness temperatures are binned
every 2 K for GOES-16 (grey) observations and Thompson (blue), Morrison (green), and WDM6
(light green) simulations
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Figure 5. Observed and simulated ABI 10.35 pm brightness temperatures [K] at 1900 UTC for
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Figure 6. Box and Whisker plots of ABI 10.35 um brightness temperatures [K] for GOES-16
(grey), Thompson (blue), Morrison (green), WDM6 (light green), and WDMG6 lagged 30 minutes
(hatched). Bars are spaced at 5-minute intervals with time = 0 defined as the time CI was
detected.
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Figure 7. Box and Whisker plots for the ABI 10.35 um brightness temperature growth tendency
field for GOES-16 (grey), Thompson (blue), Morrison (green), WDM6 (light green), and WDM6
lagged 30 minutes (hatched). Bars are spaced at 5-minute intervals with Time = 0 defined as the
time CI was detected. Each tendency is the change in BT between the listed time-step and
timestep before.
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Figure 9. Evolution of mean profiles for ice, snow, graupel, cloud water, and rain water mixing
ratios from 5 min before CI until 10 min after CI was identified. Profiles are shown for
Thompson (first row), Morrison (second row), and WDM6 (bottom rows) bulk microphysics
schemes. The bottom row contains WDMG6 profiles lagged an additional 20 mins.
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Figure 10. Same as Fig. 6, but for cases subset into warm-CI clouds and cold-CI clouds. (left)
warm-CI clouds for (a) all cases, (c) top 50% best-matched cases, and (e) cases outside 50%
best-matched. (left) cold-CI clouds for (b) all cases, (d) top 50% best-matched cases, and (f)
cases outside 50% best-matched. Results are shown for the Thompson (blue) and Morrison
(green) simulations.
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Figure 11. Same as Figure 7, but for cases subset into warm-CI clouds and cold-CI clouds. (left)
warm-CI clouds for (a) all cases, (c) top 50% best-matched cases, and (e) cases outside 50%
best-matched. (left) cold-CI clouds for (b) all cases, (d) top 50% best-matched cases, and (f)
cases outside 50% best-matched. Results are shown for the Thompson (blue) and Morrison
(green) simulations.
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Figure 13. Evolution of mean profiles for ice, snow, graupel, cloud water, and rainwater mixing
ratios from 5 min before CI until 10 min after CI was identified. Profiles are shown for
Thompson (top row) and Morrison (bottom row) simulations for cold-CI clouds (solid lines) and
warm-CI clouds (dotted lines).
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Figure 14. Evolution of mean in cloud tendency profiles of ice, snow, graupel, cloud water, and
rainwater mixing ratios from 5 min before CI until 10 min after CI was observed. Profiles are
shown for the Thompson (top row), and Morrison (bottom row) simulations. The growth
categories are shown for warm-CI clouds (dotted lines), best-matched cases cold-CI clouds (solid
lines), and growth cold-CI clouds (dashed line).
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