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Abstract: 27 

The evolution of model-based cloud top brightness temperatures (BT) associated with convective 28 

initiation (CI) are assessed for three bulk cloud microphysics schemes in the Weather Research 29 

and Forecasting model. Using a composite-based analysis, cloud objects derived from high-30 

resolution (500 m) model simulations are compared to 5-min GOES-16 imagery for a case study 31 

day located near the Alabama/Mississippi border. Observed and simulated cloud characteristics 32 

for clouds reaching CI are examined by utilizing infrared BTs commonly used in satellite-based 33 

CI nowcasting methods. The results demonstrate the ability of object-based verification methods 34 

with satellite observations to evaluate the evolution of model cloud characteristics, and the BT 35 

comparison provides insight into a known issue of model simulations producing too many 36 

convective cells reaching CI. The timing of CI from the different microphysical schemes is 37 

dependent on the production of ice in the upper levels of the cloud, which typically occurs near 38 

the time of maximum cloud growth. In particular, large differences in precipitation formation 39 

drive differences in the amount of cloud water able to reach upper layers of the cloud, which 40 

impacts cloud-top glaciation. Larger cloud mixing ratios are found in clouds with sustained 41 

growth leading to more cloud water lofted to the upper levels of the cloud and the formation of 42 

ice. Clouds unable to sustain growth lack the necessary cloud water needed to form ice and grow 43 

into cumulonimbus. Clouds with slower growth rates display similar BT trends as clouds 44 

exhibiting growth, which suggests that forecasting CI using geostationary satellites might require 45 

additional information beyond those derived at cloud top. 46 

47 
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Significance Statement: 48 

 49 

Several studies have used weather satellites to examine storm properties, however, they do not 50 

provide information about processes occurring within clouds. To address this limitation, we used 51 

numerical weather prediction model simulations and an object-based analysis method to learn 52 

more about in-cloud processes that influence the evolution of thunderstorms in the southeastern 53 

United States. The model and satellite comparison helped demonstrate that differences in the 54 

timing of rainfall formation can impact the amount of ice reaching the upper portion of the cloud. 55 

When ice forms, the cloud begins to grow rapidly and is more likely to become a long-lived 56 

thunderstorm. The results highlight the importance of using satellite data sensitive to clouds to 57 

evaluate the conditions under which cumulus clouds transition into severe storms. 58 

  59 
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1. Introduction 60 

In the southeastern United States, the quick onset of isolated thunderstorms with heavy 61 

rainfall is commonly observed (Rickenbach at al. 2015). Accurate prediction of the onset time, 62 

location, and evolution of convection continues to be a difficult problem for observational and 63 

numerical weather prediction (NWP) models (e.g. Kain et al. 2013; Mecikalski et al. 2015; 64 

Lawson et al. 2018; Cintineo et al. 2020). When tracking growing cumulus clouds using radar 65 

and satellite observations, convective initiation (CI) is commonly referred to as the time during 66 

which growing convection contains a radar reflectivity ≥35 dBZ because that threshold is highly 67 

correlated to convection that eventually develops into a mature cumulonimbus cloud (Roberts 68 

and Rutledge 2003; Mecikalski et al. 2006). CI in the southeastern United States, particularly 69 

during the spring and summer months, can be complicated to forecast as cumulus clouds are 70 

often more isolated, and driven primarily by strong surface heating (Gambill and Mecikalski 71 

2011; Miller and Mote 2017; Kirshbaum et al. 2016; Rickenbach et al. 2020). Such isolated 72 

weakly-forced thunderstorms can also can be initiated by subtle variations in surface heating and 73 

evaporation caused by land-use variations and topography (Gambill and Mecikalski 2011) and 74 

by small lakes (Asefi-Najafabady et al. 2012). Once convection begins, subsequent isolated 75 

convective cells typically are initiated by outflow boundaries from the surrounding convection 76 

(Goggins et al. 2010).  77 

To help mitigate difficulties in forecasting the onset of CI, several methodologies have been 78 

developed to make use of geostationary satellite platforms to improve CI nowcasting lead times 79 

(Roberts and Rutledge 2003; Mecikalski and Bedka 2006; Mecikalski et al. 2010; Sieglaff et al. 80 

2011; Walker at al. 2012). Along with these tracking methods, implementing combinations of the 81 
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satellite brightness temperature (BTs) and their tendencies, or so-called satellite-based interest 82 

fields, have been developed to aid the prediction of CI and the onset of heavy precipitation and 83 

lightning (e.g. Mecikalski and Bedka 2006; Harris et al. 2010). However, even when using 84 

auxiliary information about the environmental conditions, false positive detection remains an 85 

issue (Mecikalski et al. 2015). The higher spatial and temporal resolution available from the 86 

current generation of geostationary satellites have demonstrated improvements in describing the 87 

evolution of cloud characteristics associated with intense convection (e.g., Senf and Deneke 88 

2017; Apke et al. 2018). Senf and Deneke (2017) and Patou et al. (2018) demonstrated that 89 

tracking cloud-top cooling and cloud-top hydrometeor phase are important factors when 90 

identifying clouds that will likely transition to heavy precipitation. Patou et al. (2018) and 91 

Mecikalski et a. (2015) demonstrated that connecting tracked-cloud features in satellite 92 

observations with output from NWP model forecasts has the potential to improve our 93 

understanding of the trigger mechanisms leading to CI.  94 

The main motivation for this study was to increase understanding of the processes leading to 95 

CI in weakly forced environments through application of object-based CI composites commonly 96 

used in CI satellite nowcasting studies. Application of the satellite-based techniques provides a 97 

novel method to evaluate high-resolution models using established satellite-based metrics. NWP 98 

models allow in-cloud processes to be resolved, but as NWP resolution has increased the 99 

representation of CI location and timing has thus far shown limited improvement (Kain et al. 100 

2008; Schwartz et al. 2009; Langhans et al. 2013; Burghardt et al. 2014). Evaluating model 101 

performance using standard point-by-point methods is difficult at higher resolutions because 102 

small positioning errors in the forecast may be penalized for not forecasting the event at the 103 
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observation point even though qualitatively it may be a better forecast. Improvements in CI 104 

forecasting have been demonstrated when assimilating surface observations (Liu and Xue 2008; 105 

Sobash and Stensrud 2015); however, forecasting on the meso–a storm scale (2.5-25 km) 106 

requires a high-density network of surface (Madaus and Hakim 2016, 2017) or satellite 107 

observations (e.g. Yussouf et al. 2016; Zhang et al. 2019; Jones et al. 2020). Further, forecasts 108 

from model simulations can drastically change in relation to the assumptions in the model setup 109 

(e.g. Otkin and Greenwald 2008; Cintineo et al. 2014; Griffin et al. 2017), and the accuracy of 110 

storm location and timing remains an issue (Weisman at al. 2008; Mittermaier at al. 2013; 111 

Shrestha at al. 2013; Bytheway and Kummerow 2015, 2018). Because satellite and radar 112 

observations alone are unable to fully resolve CI, additional insight concerning processes 113 

occurring within the cloud are needed to improve forecast accuracy. This can be accomplished 114 

using high-resolution NWP simulations that provide information about in-cloud microphysical 115 

processes. In order to apply knowledge gained from simulated cloud properties to observations, 116 

however, we must ensure that the forecasted cloud properties are representative of the convection 117 

reaching CI. Convection produced in weakly forced environments, that commonly occur in the 118 

Southeastern United States, therefore provides the opportunity to evaluate CI processes driven 119 

largely by cloud microphysics in conditions devoid of large synoptic forcing.  120 

Linking output from NWP models to geostationary satellite observations has been 121 

accomplished by previous studies through the use of radiative transfer models to simulate 122 

satellite BTs (e.g. Tselioudis and Jakob 2002; Lopez et al. 2003; Grasso and Greenwald, 2004; 123 

Otkin and Greenwald 2008; Otkin et al. 2009; Cintineo et al. 2014; Lee et al. 2014; Thompson et 124 

al. 2016; Griffin et al; 2017; Bytheway et al. 2017; Griffin et al. 2020; Kim et al. 2020). These 125 
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studies track and compare mean characteristics of clouds as a whole, yet lack an ability to 126 

evaluate cloud morphology. Work is therefore needed in order to track specific processes driving 127 

individual convective cells evolving from shallow cumulus to clouds that deepen and produce 128 

heavy precipitation within an environment with little to no mesoscale or synoptic-scale 129 

variability. Comparing the observed and simulated BTs can be challenging due to timing and 130 

location errors in the forecast cloud objects, which makes point-to-point comparisons with 131 

traditional verification methods difficult (Griffin et al. 2017).  Object-based analysis can improve 132 

these comparisons by accounting for spatial displacement errors (e.g. Burghardt et al. 2014; 133 

Griffin et al. 2017; Bytheway and Kummerow 2018). This study will build upon prior work that 134 

has primarily focused on larger cloud systems by examining the evolution of individual 135 

convective cells in a weakly forced environment. 136 

The high-temporal resolution data from the GOES-16 Advanced Baseline Imager (ABI; 137 

Schmit et al. 2017) provides an ideal dataset to track the life cycle of convection because the 138 

temporal resolution of 1-5 mins is more in line with the timescales of cumulus cloud growth 139 

(Gravelle et al. 2016). For this study, individual convective cells produced by high-resolution 140 

Weather Research and Forecasting (WRF) model simulations will be tracked and evaluated using 141 

geostationary-derived CI interest fields to understand how bulk microphysical parameterization 142 

schemes represent the formation and development of hydrometeor species, cloud growth, and 143 

precipitation processes. We present a strategy to evaluate the evolution of simulated convection 144 

using recent observation-based tracking techniques in parallel with recent methods used to 145 

describe CI in observational-based studies (e.g., Harris et al. 2010; Mecikalski et al. 2011; 146 

Mecikalski et al. 2016; Senf and Deneke, 2017). Mecikalski et al. (2011) demonstrated that 147 
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satellite BT CI interest fields describing cloud growth are most beneficial when nowcasting CI 148 

using geostationary satellites, specifically using Meteosat Second Generation data, which mimics 149 

those from GOES-16. These CI interest fields will be computed using GOES-16 ABI observed 150 

and simulated model BT imagery, and then compared in lag-based composites of cloud objects 151 

as a function of the timing of CI. This composite-based method focuses the evaluation on the 152 

model ability to simulate the evolution of convection independent of the cloud location and time. 153 

The evaluation will also be applied to gain greater understanding of the cloud processes 154 

occurring within the clouds that lead to various cloud-top signatures depicted in satellite infrared 155 

(IR) imagery. Going forward, the paper is structured as follows: The case analysis, model setup, 156 

and observational data are described in Section 2, and the cloud tracking technique and methods 157 

are described in Section 3; analysis of the WRF simulations and discussion of the results are 158 

shown in Section 4, with a summary of the overall findings provided in Section 5. 159 

 160 

2. Data and Model Setup 161 

a) Geostationary data 162 

This analysis will employ observations from the GOES-16 ABI sensor (Schmit et al. 2017). 163 

Individual and combinations of ABI bands will be assessed that together provide a detailed 164 

depiction of the cloud properties in different parts of the troposphere (Fig. 2 in Schmit et al. 165 

2017). The ABI IR BTs from spectral window regions are highly sensitive to cloud particles in 166 

the uppermost portion of a cloud and therefore provide valuable information about the horizontal 167 

and vertical extent of the clouds. The emphasis on IR channels in this work ensures continuous 168 

day–night cloud observations. The 2 km resolution IR channels on the ABI sensor also allow for 169 



 9 

a more accurate discrimination of liquid and ice clouds that are crucial to evaluate the various 170 

mixed-phase and ice processes in a bulk microphysics parameterization scheme, as found by 171 

Mecikalski et al. (2010), Mecikalski et al. (2015) and Senf and Deneke (2017). BT-derived 172 

forecast factors used in this study include the evolution in cloud-top height (10.35 µm channel), 173 

cloud growth tendencies (10.35 µm BT tendency every 5 mins), and channel differences 174 

providing cloud-top glaciation estimates (8.4–10.35 µm BT difference). These GOES-16 ABI 175 

channels are available over CONUS every 5 mins, which permits more frequent comparisons 176 

with the WRF output compared to previous satellite sensors. This in turn supports a more 177 

detailed comparison of clouds evolving in CI events, particularly the early stages of convection 178 

that may have been missed previously due to limited temporal resolution (Mecikalski et al. 179 

2008).  180 

 181 

b) Ground radar data 182 

Ground-based NEXRAD S-band radar data for three radar sites located in Alabama and 183 

Mississippi (KBMX-Birmingham, KGWX-Columbus, and KDGX-Jackson) are used in this 184 

analysis. The spatial coverage of these radars is shown by the blue circles in Fig. 1. The 185 

NEXRAD data comes from Doppler weather radars that operate at S-band (10 cm) and Level 2 186 

data is collected for the vertically resolved radar reflectivity. Volume scan data for the three 187 

radar sites are converted to a 1 km horizontal and vertical cartesian grid using the open-source 188 

Python Atmospheric Radiation Measurement Radar Toolkit (Helmus and Collis, 2016). 189 

Composite reflectivity data are created from the gridded data using the maximum reflectivity at 190 

each grid point and then the four closest reflectivity data points are matched to the closest 2 km 191 
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GOES-16 IR observation. Radar scanning intervals are not constant due to changes in radar 192 

volume coverage for a particular scan; therefore, we collocate the radar data to the nearest 5 min 193 

GOES-16 observations. Application of the radar reflectivities to CI identification is described in 194 

Section 3. 195 

 196 

c) WRF model setup and simulated brightness temperatures 197 

The WRF-ARW model (version 3.9.1.1) is used to simulate a case study from 20 May 2018 198 

that was characterized by weakly-forced deep convection across Alabama and Mississippi during 199 

the afternoon and evening. A ridge over the domain brought a typical summer weather pattern to 200 

the Mississippi and Alabama region that is devoid of major synoptic forcing mechanisms and 201 

wind shear, yet with moderate afternoon instability. High pressure located off the eastern coast of 202 

the United States provided the region with abundant moisture from the Gulf of Mexico. The 203 

0000 UTC 21 May BMX sounding (not shown) indicates a freezing level near 4000 m and a 204 

warm layer near 5800 m. CAPE was above 1500 Jkg-1 and surface temperatures exceeded 90 °F, 205 

but moderate convective inhibition is observed with CIN near –40 Jkg-1. Convection able to 206 

surpass this warm lid would be able to grow towards deep convection across the entire region 207 

during the afternoon and evening hours. Multiple slow-moving isolated convective cells with 208 

damaging wind gusts and hail occurred across the region according to storm reports from the 209 

Storm Prediction Center. Slow-moving convective features such as these are common in late 210 

spring and summer across this region and allow for easier tracking with satellite and radar 211 

observations. To capture the fine-scale convective features associated with this event, three two-212 

way feedback permitted WRF model domains are used with nests possessing 12.5 km, 2.5 km, 213 
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and 500 m resolution, respectively, centered over Alabama and Mississippi (Fig. 1). The initial 214 

and lateral boundary conditions are provided every 6 h by the National Center for Environmental 215 

Prediction final (NCEP FNL) analyses on a 0.25° latitude/longitude grid. The WRF model 216 

simulations contain 53 sigma levels, with the model top set to 25 hPa.  217 

Three commonly used bulk microphysics schemes are examined in this study: the Thompson 218 

et al. (2008), Morrison (Morrison et al. 2005, 2009), and WRF double-moment 6-class (WDM6; 219 

Lim and Hong, 2010) schemes. All of these microphysics schemes predict mass mixing ratios of 220 

cloud water, rainwater, cloud ice, snow, and graupel. The Thompson and WDM6 are mixed- 221 

moment schemes, where WDM6 predicts two-moments (mixing ratio and number concentration) 222 

in warm rain processes and the Thompson scheme predicts two-moments of cloud water and ice. 223 

The two-moment Morrison scheme predicts mixing ratios for all cloud hydrometeor categories 224 

and number concentrations are also predicted for cloud ice, snow, rain, and graupel. Each 225 

microphysics scheme allows output of a radar reflectivity factor based on the Rayleigh 226 

approximation, which is very similar to the S-band wavelength observations of our ground-based 227 

radar data. 228 

All WRF simulations use an identical model configuration, apart from the microphysics 229 

scheme. Simulations are initialized at 1200 UTC, which allows sufficient model spin-up as the 230 

first CI case occurs near 1700 UTC. Physics options included are the Rapid Radiative Transfer 231 

Model for Global Climate Models (RRTMG; Iacono et al. 2008), the nonlocal-mixing Yonsei 232 

University (YSU; Hong et al. 2006; Hong 2010) planetary boundary layer scheme, and the Noah-233 

MP land surface model (Niu et al. 2011). No cumulus parameterization is used on the higher 234 
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resolution 2.5 km and 500 m domains, whereas the Tiedtke (Tiedtke 1989; Zhang et al. 2011) 235 

scheme is used on the outermost 12.5 km domain.  236 

The evolution of CI events will be assessed on the high-resolution 500 m innermost domain. 237 

Data were output every 5 mins to be consistent with the temporal resolution of CONUS GOES-238 

16 ABI data. Following Griffin et al. (2017), the Community Radiative Transfer Model version 239 

2.1 (CRTM; Ding et al. 2011) was used to convert the WRF model output into simulated GOES-240 

16 ABI IR BT data. The CRTM provides all-sky top-of-atmosphere BTs that incorporate the 241 

GOES-16 viewing geometry for channels 7-16 of the ABI (3.9–13.3 µm). Top-of-atmosphere 242 

BTs in clear-sky scenes are generated using surface emissivity provided by the University of 243 

Wisconsin High Spectral Resolution Emissivity Algorithm (Borbas et al. 2007), and WRF model 244 

predicted surface skin temperature, 10-m wind speed, and vertical profiles of temperature, 245 

pressure, and water vapor mixing ratio. Cloudy scenes use the above information, as well as 246 

derived cloud properties (i.e. effective particle radius, cloud water content) consistent with the 247 

assumptions made by each cloud microphysics parameterization scheme used (e.g. Otkin et al. 248 

2007; Thompson et al. 2016; Griffin et al. 2017). Cloud properties were derived individually for 249 

each cloud species and input into the CRTM to compute the cloud optical properties (i.e. single 250 

scatter albedo, asymmetry parameter, and full scattering phase function) for each model grid 251 

point and vertical layer. Finally, the combined set of hydrometeor optical properties were used to 252 

compute the top-of-atmosphere BT data for each IR band measured by the ABI. 253 

 254 

3. Cloud object identification and CI compositing 255 

a) Cloud object and CI identification 256 
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Cloud tracking and detection methods are applied identically for the observed and simulated 257 

BT datasets. Cloud tracking is based on 10.35 µm BTs because radar observations may not be 258 

available during the entire cloud lifecycle (Mecikalski et al. 2006). Cloud objects are identified 259 

based on the Tracking Of Organized Convection Algorithm through 3-D segmentation 260 

(TOOCAN; Fiolleau and Roca, 2013) algorithm and tracked through time when overlapping 261 

areas occur in successive images of cloud objects (e.g. Vila et al. 2008). This tracking scheme 262 

takes advantage of the fact that IR BTs are sensitive to cloud particles (their size, phase, and 263 

amount) in the upper portion of the cloud giving extensive information on the horizontal and 264 

vertical extents of cloud tops, which helps separate cloud clusters through time. Using this 265 

iterative method of tracking clouds using the IR channels has been shown to be effective tracking 266 

intense convection (e.g. Wall and Hartmann 2018; Cancelada et al. 2020). 267 

To maintain consistency with the ABI observations, model gridded BTs are averaged to 2-km 268 

grid spacing when identifying objects. Inspection of the BT imagery showed that the coldest 269 

cloud tops during the observation period have BT < 210 K. Thus, cloud boundaries are first 270 

searched for using BT < 210 K and then iteratively increasing by 2.5 K to detect cloud 271 

boundaries (Fig. 2), where the warmest cloud boundaries within this case study are defined as 272 

where the 10.35 µm BTs are < 285 K. This warm cloud boundary threshold helps capture cloud 273 

growth before CI is detected, but also ensures that possible surface BT contamination is 274 

excluded. Fiolleau and Roca (2013) describe the cloud detection as iteratively growing cloud 275 

“seeds” from colder to warmer BTs. In this work, clouds are identified using the TOOCAN 276 

methodology by detecting initial boundaries using a low BT threshold of 210 K. For each 277 

identified object, pixels are added to the cold cloud top object using a 2.5 K warmer BT 278 
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threshold to identify the edge of the new boundary. The warmer BT threshold is also applied to 279 

detect new cloud object “seeds”. This iterative process of extending the cloud boundary by 2.5 K 280 

is repeated until each of the grid boxes within a cloud object are colder than 285 K or if cloud 281 

overlap is detected with a neighboring object. Once cloud objects are identified for each 5-min 282 

timestep from the observations and simulations, the SciPy data package (Virtanen et al. 2020) is 283 

used to detect and track the cloud object overlap between timesteps. To be consistent with 284 

previous observational studies (e.g. Roberts and Rutledge 2003; Mecikalski et at 2006; 285 

Weckwerth and Parsons 2006), a cloud object from the GOES-16 ABI and WRF simulations will 286 

be defined as CI when radar reflectivity > 35 dBZ occurs in a cloud object. This threshold is 287 

common in thunderstorm nowcasting studies where CI is exclusively defined using a radar 288 

precipitation echo intensity criteria of ≥30–40 dBZ (Browning and Atlas 1965; Marshall and 289 

Radhakant 1978; Schreiber 1986; Wilson and Schreiber 1986; Wilson et al. 1992; Wilson and 290 

Mueller 1993; Mueller et al. 2003; Walker et al 2012; Lee et al. 2016; Han et al. 2019). The 35 291 

dBZ threshold signifies convective precipitation near the surface of ~8 mm h-1. Clouds reaching 292 

this threshold typically produce significant precipitation, but it does not guarantee that the CI 293 

events will lead to long-lived convective storms (Mecikalski et al. 2015). To mitigate vertical 294 

resolution differences between NEXRAD and the model vertical grid we define CI when the 295 

maximum reflectivity in the cloud column exceeds 35 dBZ (e.g. Matthee et al. 2014; Senf and 296 

Deneke, 2017). 297 

 298 

b) Composite analysis methodology 299 
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Several physical cloud characteristics from observed and simulated cloud objects reaching CI 300 

are tracked and compared using lag-composite analysis. When the radar reflectivity within a 301 

cloud object surpasses the 35 dBZ threshold, that timestep is labeled time lag zero and the data 302 

before, during, and after this CI timestep are composited to describe the evolution of the cloud 303 

objects. Objects reaching CI are examined and compared when the cloud persists longer than 35 304 

mins to track the cloud evolution 15 mins before and 15 mins after the 5-min period in which CI 305 

is detected.  Composited data includes the CI forecast interest fields described in Section 2a, 306 

cloud area (defined using the number of grid boxes in the cloud object), and model-based 307 

properties from profiles of mixing ratios for each of the hydrometer types. After cloud objects 308 

are identified for each time lag, the cloud characteristics and CI forecast interest fields are 309 

derived. For GOES-16 ABI data, the BT interest fields described in Section 2.1 are derived using 310 

the grid boxes containing the two coldest 10.35 µm BTs within the cloud object (e.g. Mecikalski 311 

et al. 2010). For the WRF simulations, the coldest two grid boxes that were averaged to 2 km 312 

within each cloud object are used to derive the CI forecast interest fields, which is 32 grid boxes 313 

at 500 m grid spacing. If cloud objects are smaller than the grid boxes required for averaging the 314 

observed or modeled cloud objects, then all cloudy grid boxes are used with the cloud object 315 

boundaries.  316 

4. Results 317 

a) Comparison of domain-based characteristics 318 

Cloud objects are compared over a 3-hour period beginning at 1700 UTC, which is near the 319 

time the first CI object was observed in GOES-16. Table 1 provides a summary of the total cloud 320 

objects and CI cases tracked, and the time of first CI occurrence. This 3-hour period is chosen to 321 
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provide a sufficient number of objects, but also to limit new CI events that originate under larger 322 

cloud anvil regions where passive satellite observations cannot accurately discriminate multi-323 

layer cloud structures (Mace and Wrenn 2013). Model and observed cloud objects are first 324 

compared using domain-wide statistics to understand the characteristics of the cloud objects 325 

without considering the stage of the cloud lifecycle. The first observed GOES-16 CI event occurs 326 

at 1655 UTC, with the first CI occurring at 1645 UTC, 1640 UTC, and 1700 UTC for the 327 

Thompson, Morrison, and WDM6 schemes, respectively. Overall, the Thompson and Morrison 328 

schemes produce more CI objects than was observed in GOES-16 data, whereas the WDM6 329 

simulation more accurately represents the number of observed CI objects.  330 

CI cases over the 3-hour period and their occurrence, fractional coverage, and cloud object 331 

areas are illustrated in Fig. 3. In Fig. 3a and Fig. 3b the number of CI cases that are active at each 332 

timestep are represented by the solid lines and in Fig. 3c the range of CI cloud object areas are 333 

represented by the box-and-whisker diagrams. The data are plotted at 15-min intervals starting at 334 

1700 UTC.  The number of CI cases in the Morrison scheme quickly increases 30 mins after the 335 

start of the observation period; however, the WDM6 scheme has a delay in occurrence compared 336 

to the other simulations and observations. Overall, the observations and simulations show an 337 

increase in cloud object area over time. When compared to the observations (grey bars) the 338 

ranges in active CI cloud sizes from the simulations display a general agreement in median cloud 339 

object area throughout the three-hour period where the ranges in object size are close to the 340 

GOES-16 observations.  341 

The fractional coverage of active cloud objects (Fig. 3b) is similar to the pattern of CI 342 

occurrence (Fig. 3a) for each configuration, with the Thompson and Morrison schemes 343 
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producing more objects covering a larger fractional than the WDM6 scheme. From 1700 UTC to 344 

around 1900 UTC, the Thompson and Morrison cloud object size interquartile range (IQR) 345 

shown in Fig. 3c is similar to observations, but the simulations contain more active cloud objects 346 

leading to a higher fraction of domain coverage (Fig. 3b). As clouds get larger towards the end of 347 

the observed period the fractional coverage for all simulations merge towards the observations, 348 

but the Morrison simulation contains more objects (Fig. 3a) and the Thompson cloud object size 349 

IQR is smaller than indicated by the GOES-16 observations at 1945 UTC (Fig 3c). This suggests 350 

that the Thompson and Morrison simulations produce too many small cloud objects compared to 351 

observations. The WDM6 simulation has a delay in occurrence, which leads to a lower fractional 352 

coverage throughout most of the observed period (Fig 3b). The WDM6 simulation contains a 353 

higher cloud object size IQR starting around 1800 UTC, where CI cloud growth becomes more 354 

rapid than the other two microphysics schemes and cloud object occurrence and fractional 355 

coverage begins to move closer to the GOES-16 observations. Further insight into microphysical 356 

reasonings leading to this delay in CI development for the WDM6 scheme will be provided in 357 

Section 4b. 358 

To investigate how the cloud height evolves within the cloud objects, Fig. 4 displays 359 

normalized frequency distributions of 10.35 µm BT for four different times in the WRF forecasts 360 

for all objects in a timestep. Figure 5 shows the 10.35 µm BTs at 1900 UTC for the observations 361 

and model simulations. Inspection of Fig. 4 shows that there is a shift from shallow convection at 362 

1700 UTC (mostly warmer BTs) towards a mix of shallow, congestus, and deep convection from 363 

1800–1900 UTC (higher percentage of colder BTs), and predominantly deep convection with 364 

anvil regions at 2000 UTC. In the Morrison simulation, a higher fraction of convection occurs at 365 
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1800 UTC for BT near 260 K, whereas the WDM6 and Thompson schemes simulate a higher 366 

fraction of cloud tops colder than what was observed by the GOES-16 ABI. Quantitively, this 367 

bias is found in the coldest cloud objects, which are compared using the coldest 10th percentile of 368 

10.35 µm BT (Table 2) derived using a cumulative distribution function sorted by cloud-top 369 

temperature. Cold biases are largest in the Morrison scheme at 1700 UTC and continue through 370 

1800 UTC. Starting at 1800 UTC evidence of a cold bias from deeper convection is found in the 371 

Thompson scheme and becomes more pronounced at 1900 UTC where BT < 240K are more 372 

frequent. This bias pattern continues to the 2000 UTC timestep. Griffin et al. (2017) found 373 

similar behavior when assessing output from the High-Resolution Rapid Refresh model. 374 

 375 

b) Composite-based evaluation of CI  376 

The differences in Figs. 3 and 4 begin to scratch the surface on possible organizational 377 

differences in the spatial cloud coverage between the observations and microphysical schemes. 378 

Previous studies have investigated cloud-top BT biases through matching cloud objects spatially 379 

and temporally to verify CI forecasts (e.g. Burghardt et al. 2014) or by implementing object-380 

based analysis to track cloud systems to assess characteristics beyond point-by-point analysis 381 

(e.g. Griffin et al. 2017). However, these evaluations lack validation of the model representation 382 

of the cloud evolution characteristics leading to CI itself. The differences in Fig. 3 illustrate a 383 

direct overestimate of CI frequency during the model forecasts, but it is difficult to distinguish 384 

the mechanisms leading to this from domain-based or system-based statistics alone. Evaluation 385 

of CI processes based on the cloud life cycle is possible using composite strategies and allows 386 

investigation of simulated CI characteristics without the need to match with the observations in 387 
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space and time. While this does not provide the same dichotomous validation when model 388 

objects are matched with observations in space and time, it allows evaluation of the full breadth 389 

of CI characteristics exhibited by the simulations. 390 

To understand how clouds leading to CI evolve through time, the evolution of three satellite-391 

based cloud-top interest fields will be described to characterize the changes in cloud-top growth 392 

and microphysical state. The 5-min temporal information content from the ABI sensor provides 393 

the opportunity for observing growth closer to cloud scales (e.g., Gravelle et al. 2016; Senf and 394 

Deneke, 2017) when evaluating the model simulations. The satellite-based interest fields are 395 

derived using three BT-based methods that represent the cloud-top height using the 10.35 µm 396 

BT, 10.35 µm BTs cloud growth tendency at 5-min intervals, and cloud-top glaciation using 8.4 397 

µm–10.35 µm BT differences. Figures 6 and 7 provide box and whisker plots for cloud growth 398 

CI interest fields that detail the distribution of cloud-top BTs for timesteps 15 mins before and 399 

after CI is observed (time lag = 0 at CI).   400 

Similar to clouds observed in Mecikalski et al. (2013), the 10.35 µm BTs begin near 270 K 401 

15 min before CI occurs and continually cool (grow vertically) throughout the period (Fig. 6). 402 

For the Thompson and Morrison schemes, clouds 15 mins before CI are warmer (shallower) 403 

compared to the ABI observed ranges. The median BTs from the Thompson and Morrison 404 

schemes move towards the GOES-16 ABI median values over time resulting in increased cooling 405 

rates before CI occurrence (Fig. 7). In Fig. 7, the growth rates exhibit similar characteristics to 406 

the 5-min analysis in Senf and Deneke (2017), where the maximum cooling rates occur near CI 407 

and then the cloud top cooling rate decreases afterwards. The Morrison scheme displays faster 408 

growth rates 10 to 15 min before CI and the Thompson scheme exhibit a larger increase in cloud 409 
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growth 5-mins before CI. Further, all of the WRF model simulations exhibit large ranges in BTs 410 

compared to the observed ABI clouds particularly after CI occurs. The model simulations 411 

produce a higher fraction of clouds that begin to warm, or slow in growth, after CI is detected 412 

(Fig. 7), suggesting cloud growth has ceased. When tracking the clouds through time, the CI 413 

cases from the Morrison simulation last no more than 20 min 42% of the time after CI was 414 

detected, whereas 35% of the CI cases in the Thompson simulation last 20 min or less, which  415 

suggests a higher number of congestus clouds compared to longer-lived deep cumulonimbus 416 

clouds in the Thompson and Morrison simulations. Mean values for the observed and simulated 417 

values are shown in Table 3 using the IQR, defined as the 25–75% quartiles of the data in Figs. 6 418 

and 7. The differences described above are also evident in Table 3, where higher growth rates 419 

before CI and a switch towards positive (warming) after CI are found in the Thompson and 420 

Morrison schemes. 421 

There is a clear disconnect in the cloud development in the WDM6 microphysics that leads 422 

to a delay in CI detection resulting in colder cloud tops (Fig. 6; light green bars). While the 423 

WDM6 cloud growth rates in Fig. 7 exhibit a similar pattern as the Thompson and Morrison 424 

schemes, cloud heights in Fig. 6 are higher (colder), demonstrating that CI is detected later in the 425 

cloud life cycle compared to the other simulations. To further investigate cloud growth in the 426 

WDM6 simulation, the cloud evolution is plotted starting an additional 30 min before CI was 427 

detected (hatched bars in Figs. 6 and 7), which is the timestep the median WDM6 10.35 µm BTs 428 

best match the ABI observations. The 30-min lagged WDM6 10.35 µm BTs in Fig. 6 more 429 

closely resemble the ABI observations, but the growth rates in Fig. 7 no longer exhibit the 430 

maximum cooling at timestep zero originally found in both the GOES-16 observations and 431 
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simulated clouds. Instead, the lagged WDM6 evolution is more linear. The WDM6 scheme 432 

typically produces rain drop sizes that are too small (Morrison et al. 2015; Johnson et al. 2016; 433 

Lei et al. 2020). Radar reflectivity is proportional to the sum of the sixth power of the diameter; 434 

therefore, smaller drop size distributions will lead to lower reflectivities in the growing 435 

convection. Further, previous research describes the need for a glaciation-driven latent heat boost 436 

within clouds to elevate them towards CI (e.g., Zipser 2003; Mecikalski et al. 2016; Senf and 437 

Deneke, 2017). The results from the cloud-top BTs indicate that the WDM6 scheme likely has a 438 

lag in rain growth and cloud glaciation that produces the added mid-tropospheric latent heating 439 

needed to reach CI, and subsequent large enough hydrometeors to produce a radar echo greater 440 

than 35 dBZ.  441 

Direct comparison of BT channels sensitive to cloud top microphysical changes and 442 

glaciation help shed light on how accurately the microphysics schemes handle ice processes in 443 

the top levels of the cloud (e.g. Mecikalski et al. 2010; Senf and Deneke 2017).  Figure 8 444 

displays box and whisker plots for the observed and simulated 8.4 µm–10.35 µm BT differences. 445 

Due to the different optical properties between liquid and ice, the BT difference switches from 446 

negative (below –2 K) for optically thick liquid clouds towards positive when the cloud top 447 

becomes fully glaciated (Baum et al. 2000). The observed BT difference from GOES-16 shows 448 

that the clouds start as fully liquid 15 min before CI and then the BT difference trends towards 449 

less negative values thereafter, plateauing near –1 K.  Baum et al. (2000) describe how positive 450 

trends in this BT difference field are driven by the presence of larger ice and liquid particles at 451 

cloud top. The larger particle size leads to smaller BT differences, and suggests that a mixed 452 
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phase state is possible at cloud top in the GOES-16 observations after CI is detected. Some 453 

clouds do exhibit positive BT differences; however, they are beyond the box and whisker ranges.  454 

The three WRF bulk microphysical schemes are characterized by different evolutions of 455 

cloud-top glaciation BT differences (Fig. 8). The Thompson scheme has the closest pattern to 456 

observations with clouds starting around –2 K 15 mins before CI and converging to a BT 457 

difference near –0.5 K at CI. The majority of cloud tops contain a negative BT difference in the 458 

Thompson simulation with a few switching to positive 15-mins after CI detection.  The Morrison 459 

scheme more efficiently converts from liquid to ice phases, and the glaciation trend increases 460 

monotonically before and after CI.  Cloud-top glaciation is found in clouds starting at time-lag 461 

zero and the amount of cloud tops with positive BT differences increases monotonically until the 462 

majority of clouds are glaciated 15 min after CI. Similar to the observations and the Thompson 463 

scheme, the WDM6 simulation BT differences plateau after CI, but due to the delay in CI 464 

detection, clouds exhibit ice glaciation before CI detection. Using the 30-min lagged WDM6 465 

BTs described above, the glaciation BT differences resemble the Thompson and observed 466 

GOES-16 trend but continues to grow linearly. The presence of ice likely demonstrates that 467 

larger liquid precipitation hydrometeors are absent in the early WDM6 development, thereby 468 

delaying the detection of CI.  469 

To examine differences in the evolution of in-cloud microphysics, Fig. 9 presents vertical 470 

profiles of liquid and frozen cloud mixing ratios for each simulation from 5 min before until 10 471 

min after CI is detected. To provide additional insight into the behavior of the WDM6 scheme, 472 

the bottom row shows vertical profiles for the cloud mixing ratios from 25 to 10 min preceding 473 

CI. For all of the microphysics schemes, CI detection is coincident with the emergence of a 474 
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precipitating core near 4–5 km and the formation of graupel near the cloud top. The WDM6 475 

simulation contains a similar rain mixing ratio profile 5 min before CI when compared to the 476 

Thompson and Morrison simulations. In the WDM6 simulation, the delay in CI detection leads 477 

to more cloud water lofted to the upper levels along with higher mixing ratios for frozen 478 

hydrometers. For WDM6, the emergence of rain mixing ratios does not occur until 10 mins 479 

before CI detection. Starting 25 min before CI cloud mixing ratios are still located well above the 480 

freezing level. Near 15 min before CI, small amounts of cloud ice and snow occur before the 481 

emergence of rain in the WDM6 simulation and the cloud continues to grow with cloud mixing 482 

ratios located as high as 10 km above the surface. This is consistent with the large cold biases in 483 

10.35 µm BTs in Fig. 6 and Table 3. Both the WDM6 and Morrison schemes produce larger 484 

amounts of graupel and snow after CI leading to the positive BT difference bias shown in Fig. 8. 485 

The Thompson scheme still produces graupel in the upper levels of the cloud but is more 486 

efficient at producing rain at the surface. This leads to less ice aloft and the development of a 487 

plateau in the 8.4–10.35 µm BT differences after CI in the Thompson simulation and GOES-16 488 

observations; the 8.4–10.35 µm BT differences plateau in the Thompson simulation centered on 489 

–1, verifying the lack of cloud-top glaciation. 490 

 491 

c) CI processes related to cloud growth 492 

The WRF simulations contain more CI cloud objects than observed, where the Thompson 493 

and Morrison simulations have the most cloud objects reaching CI. As shown in Fig. 7, after CI 494 

is detected, the simulated clouds have a large spread in growth rates. The GOES-16 observed BT 495 

histograms presented in Fig. 4 are characterized by 10.35 µm BT peaks near 260 K and 220 K 496 
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signifying that the CI cloud objects are subset into shallower precipitating congestus clouds with 497 

warmer cloud tops and clouds that continue to grow into deep cumulonimbus clouds. The 35 498 

dBZ threshold used to define CI in this case study captures precipitating clouds within the 10.35 499 

µm 260 K and 220 K cloud subsets. These clouds all reach CI and likely produce significant 500 

precipitation; however, combining the two subsets of cloud growth can lead to ambiguity when 501 

comparing the model and observational differences.  502 

To investigate the cloud characteristics associated with the varying life cycles of cloud 503 

growth, the CI definition is modified to discriminate both sets of clouds. The cloud evaluation 504 

will partition CI cloud objects into those reaching 10.35 µm BTs < 250 K at some point in their 505 

lifecycle and those with cloud-top BTs remaining warmer than 250 K. The 250 K threshold was 506 

chosen using the BT histograms in Fig. 4, and since the clouds observed by GOES-16 reaching 507 

250 K demonstrate continuous growth after CI. For convenience, we will refer to cloud objects 508 

reaching the 250 K threshold as the “cold-CI cloud” category and cloud objects remaining 509 

warmer than 250 K as the “warm-CI cloud” category. The 250 K threshold will be applied to the 510 

observed and simulated CI cloud objects. The warm- and cold-CI clouds from the WRF 511 

simulations will be further subset by the top 50% of cloud objects in each category that most 512 

closely match the observed GOES-16 observed growth rates after CI is detected. Cloud objects 513 

outside the top 50% best matching GOES-16 growth rates illustrate simulated cloud objects 514 

where growth is outside the ranges measured by the GOES-16 observations. Because the 515 

temporal delay for CI events in the WDM6 simulation leads to a limited amount of cases where 516 

cloud-top BTs remain warmer than 250 K, this analysis will focus on the Thompson and 517 

Morrison simulations only.  518 
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Table 4 provides a summary of the total CI cloud objects tracked when CI clouds are 519 

separated into warm-CI and cold-CI cloud cases. It is evident that the overestimation of 520 

simulated cloud objects reaching 35 dBZ is due to an increase in warm-CI clouds with 21, 75, 521 

and 84 warm-CI clouds from GOES-16 observations, Thompson and Morrison, respectively. The 522 

Thompson and Morrison schemes produce 46 and 54 cloud objects reaching 250 K, respectively. 523 

Though this is still higher than the 31 objects observed by GOES-16, it does lead to a better 524 

match than when using the 35 dBZ CI definition alone. 525 

The resulting 10.35 µm cloud-top BTs and BT growth rate tendencies using the warm- and 526 

cold-CI cloud categories are displayed in Figs. 10 and 11. Separating the CI cloud objects into 527 

warm and cold categories leads to a clear difference in the 10.35 µm cloud-top heights in Fig. 10. 528 

Near the time CI is detected, the observed and simulated warm-CI cloud growth halts and the 529 

10.35 µm BTs remain nearly constant (Fig. 10a). This is consistent with the warm-CI clouds BT 530 

tendency where most clouds observed by GOES-16 display zero tendency and both sets of 531 

simulations warm after CI detection resulting in positive BT tendencies (Fig 11a). On the other 532 

hand, there is a clear deepening in the cold-CI clouds after CI as the 10.35 µm BT continues to 533 

decrease (Fig. 10b). The cloud-top BTs for cold-CI clouds are well below the freezing level of 534 

273 K at the time CI is detected. The cloud-top BTs in Fig. 10 and tendencies in Fig. 11 for the 535 

cold-CI cases resemble cloud-top BT trends described in Matthee and Mecikalski (2013) who 536 

demonstrated that rapidly growing convection (growth rates ~10°C/15 mins) are more likely to 537 

produce heavy rain and lightning compared to CI cases with slower growth. 538 

Comparing the top 50% of simulated cloud objects most closely matching the observed 539 

GOES-16 growth rates for warm and cold-CI clouds naturally leads to improvement for both 540 
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cloud height and growth rates within the best matched cases. For these clouds, median cloud 541 

growth rates become closer to observations and the spread in 10.35 µm BT and BT growth rates 542 

(Fig. 10c-d and Fig. 11c-d) after CI detection are greatly reduced. The 10.35 µm cloud-top BTs 543 

in the simulations remain consistently warmer than GOES-16 before CI detection leading to the 544 

same pattern of increased growth rates for Thompson cloud objects shown previously in Fig. 7. 545 

The Morrison cloud objects display increased growth rates 10 min before CI in the warm-CI 546 

cases in Fig. 11a, but growth rates closer to GOES-16 occur afterwards. The simulated warm-CI 547 

cloud cases outside the top 50% best matching GOES-16 observed growth in Fig. 10e and Fig. 548 

11e show signs of decay quickly after CI is detected where cloud growth trends are warmer than 549 

the observations, whereas the simulated cold-CI cloud cases in Fig. 10f and Fig. 11f display 550 

rapid growth at CI detection and 5-min after CI. It is interesting to note that the warm-CI cloud 551 

objects contain cloud growth rates that are similar to the cold-CI clouds before and at CI 552 

detection. This suggests that in the early stages of CI, the BT interest fields used to forecast CI 553 

might not be able to differentiate clouds with sustained growth from those that decay. This 554 

scenario could lead to false positives in geostationary satellite-based severe storm nowcasting 555 

algorithms since early cumulus cloud growth signatures are not always associated with CI events 556 

in the coming 30-45 min (Mecikalski and Bedka 2006). 557 

Figure 12 uses 8.4 µm–10.35 µm BT differences to evaluate signals in cloud-top glaciation in 558 

the warm-CI and cold-CI cloud categories. For warm-CI clouds, the WRF simulated BT 559 

differences closely track the observations, where the clouds start as fully liquid 15 min before CI 560 

and then the BT difference trends towards less negative values thereafter, plateauing just above –561 

2 K. For the cold-CI clouds, the GOES-16 observed BT difference are closer to zero; however, 562 
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negative values before and after CI indicate a cloud top that is not fully glaciated. A slight 563 

positive trend occurs in observed cold-CI cloud BT differences proving evidence that cloud-top 564 

microphysics contain larger hydrometeor sizes or ice after CI, which does not occur in warm-CI 565 

clouds.  A larger number of outliers occur above zero for the observations and simulations 566 

indicating that more clouds have reached a fully glaciated state in the cold-CI category. For both 567 

microphysics schemes, the simulated cloud BT differences are nearly constant until 5 min before 568 

CI, thereby demonstrating a possible delay in the presence of ice or larger liquid hydrometeors 569 

near the cloud top compared to observations. At CI detection, BT differences for both 570 

microphysics schemes begin to quickly move toward more positive values and display evidence 571 

of a glaciated cloud top 15 min after CI. This positive BT difference also exists in the Morrison 572 

scheme for warm-CI clouds, providing further evidence of an overestimation of cloud ice after 573 

CI. 574 

Figure 13 compares mean mixing ratio profiles for the warm- and cold-CI cloud categories. 575 

Differences are evident at the time when CI is detected, where the Thompson scheme more 576 

efficiently produces rain hydrometeors than the Morrison scheme. There is also a discernable 577 

difference between the warm-CI and cold-CI clouds, where mixing ratios from the cold-CI 578 

clouds are consistently larger than occurred during the warm-CI cloud objects. For example, 579 

profile maxima in cloud water mixing ratios remain higher in the cold-CI clouds. This sustained 580 

cloud water source likely aids the creation of rain, graupel, and other ice hydrometeors, but it is 581 

difficult to fully evaluate how the mixing ratios are impacting growth due to the differences in 582 

mixing ratios between the microphysics schemes.  583 
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Figure 14 displays cloud mixing ratio tendency profiles for cloud objects in the warm-CI and 584 

cold-CI cloud categories. Cold-CI cloud objects are further separated into the best matched cloud 585 

objects and cloud objects that experience more rapid growth described in Fig. 10. All warm-CI 586 

cloud objects are combined as the tendency profiles are similar. The tendency profiles were 587 

created by differencing each 5-min interval with the timestep before it for each cloud object and 588 

then averaged. The tendency profiles exhibit better agreement between the microphysics 589 

schemes and are able to describe how changes in cloud microphysics could impact the growth of 590 

the cloud. The mixing ratio tendency profiles for the warm-CI and cold-CI cloud categories are 591 

similar before CI is detected, particularly in the Thompson scheme. In Fig. 13, increases in rain 592 

mixing ratios in the simulated clouds develop near 4 km in the time step before CI detection. 593 

This increase of rain hydrometeors leads to CI detection five minutes later. Five minutes before 594 

CI, there is an discernable difference in the cloud water fluxed from the lower-levels of the cloud 595 

to the upper levels, where the best-matched and rapid-growth cold-CI clouds lose less cloud 596 

water compared to the warm-CI clouds. Cloud water is gained near 4 km for the warm-CI clouds, 597 

best-matched cold-CI clouds, and rapid-growth cold-CI clouds, but less cloud water is lost below 598 

3 km where a smaller negative cloud water tendency occurs in cold-CI cloud categories. This 599 

tendency occurs at the CI timestep as well. 600 

At time-lag zero when CI is detected, both microphysics schemes show increases in rain 601 

water mixing ratios throughout the depth of the cloud, which monotonically increases as a 602 

function of growth and the development of graupel occurs between 6–8 km. Five minutes after 603 

CI is detected, the sustained cloud water in the lower levels of the cloud leads to higher rain 604 

mixing ratios and a monotonic increase in graupel from warm-CI clouds to the cold-CI clouds, 605 
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which is found in both of the microphysics schemes.  This helps confirm previous geostationary-606 

based assessments (e.g. Mecikalski et. al. 2016a,b; Senf and Deneke, 2017) that suggest growth 607 

related to CI is aided by latent heat release from ice formation near and below cloud top. Figure 608 

13 also shows that the process requires sustained latent heating in the lower levels from 609 

condensation, which was also shown to be the case when 1-min resolution GOES-14 data were 610 

used to analyzing cumulus clouds undergoing the CI process (Mecikalski et al. 2016b). For the 611 

warm-CI clouds in Fig. 13, the larger loss of cloud water in the lower levels of the clouds leads 612 

to lower rain and graupel mixing ratios with negative tendencies for all cloud species above 4 km 613 

10 min after CI was detected. Thus, clouds lacking the sustained source of low-level cloud water 614 

are unable to sustain their growth over time. 615 

Due to the warm and moist boundary layer found in the southeastern United States the warm 616 

(>0°C) portion of the cloud is 3–4 km deep (Fig. 9), and accurate representation of warm rain 617 

processes are essential for CI in weakly forced environments over this region. Combined radar 618 

and geostationary satellite studies have demonstrated that heavily raining convection with similar 619 

glaciation BT differences found in Fig. 8 and Fig 12 typically contain weaker updrafts and lower 620 

ice contents at the cloud top (e.g. Mecikalski et al. 2013; Matthee et al. 2014; Senf and Deneke; 621 

2017) compared to lightning producing storms; therefore, warm rain processes are a likely 622 

pathway to make a 35 dBZ echo for both the warm-CI clouds and cold-CI clouds. Early rain 623 

formation dictated by the auto-conversion process varies between the microphysics schemes 624 

resulting in the differences found in Fig. 13 and resulting ice aloft in the cloud (e.g. Bao et al. 625 

2019). The ABI comparisons in Figs. 10 and 11 help demonstrate that the simulations can 626 

replicate the evolution in CI BT signatures. The comparisons of the BT differences associated 627 
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with cloud phase provide evidence that the Morrison scheme produces too much graupel in the 628 

best-matched cases (Fig. 14). While the Thompson scheme best matches the observed 8.4 µm–629 

10.35 µm BT difference for this case study for both warm- and cold-CI clouds, further evaluation 630 

assessing the sensitivity of the CI processes with land surface models and planetary boundary 631 

layer schemes will be needed. 632 

 633 

5. Discussion and Conclusions 634 

In this study, the characteristics of simulated convection leading to CI from different bulk 635 

cloud microphysics schemes are assessed using version 3.9.1.1 of the WRF model. The study 636 

examined the evolution of cloud objects associated with CI for a case study from 20 May 2018 637 

where weakly forced convection occurred over parts of Mississippi and Alabama that eventually 638 

lead to multiple reports of high wind and hail.  Evaluating in this environment provides analysis 639 

where microphysics are the primary driver in pushing convection towards heavily precipitating 640 

convection. Three model sensitivity experiments employing 500-m horizontal grid spacing were 641 

completed where all model components were identical except for the cloud microphysics 642 

scheme. GOES-16 ABI infrared BTs were simulated for each model experiment using the CRTM 643 

and then directly compared to GOES-16 observed BTs using a lag-composite analysis, where 644 

time zero was defined as the time CI was detected. CI for the model and observations is defined 645 

as the first time a 35 dBZ radar echo occurred in the cloud column. Three BT-derived fields 646 

commonly used in CI nowcasting applications were compared between the models and 647 

observations to understand changes in cloud-top height, cloud growth rate, and hydrometeor 648 

phases over time. 649 
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In general, the WRF simulations were able to capture the general trend in cloud growth rates 650 

and cloud top area over time when maximum cooling occurred near the time CI was detected. 651 

The simulations contain a larger spread of 10.35 µm BTs after the detection of CI. Furthermore, 652 

the amount of clouds reaching CI is too frequent in all simulations due to a large number of 653 

convective cases reaching CI and then quickly decaying afterwards. This pattern was most 654 

pronounced when using the Morrison scheme. For the Thompson scheme, around 35% of CI 655 

cases sustain 20 mins or less after CI, whereas this increases to 42% in the Morrison scheme. 656 

Too frequent convection could lead to issues when forecasting CI due to the prevalence of 657 

convection formation in raining outflow boundaries in the southeastern United States (Goggins et 658 

al. 2010). Delays in rain hydrometeor formation occur in the WDM6 bulk microphysics scheme, 659 

which led to a delay in the detection of CI compared to the GOES-16 observations. This then 660 

caused a cold bias in the simulated 10.35 µm BTs > 20 K throughout the CI process when this 661 

scheme was used. Lagging the WDM6 BT timeseries by 30 min improved comparisons with the 662 

10.35 µm cloud-top BTs, but cloud growth rates no longer exhibited the maximum growth at CI, 663 

likely due to the absence of ice growth at these timesteps and thus lacking the upper level latent 664 

heating needed to support cloud growth. 665 

Evaluating the simulated clouds using BTs demonstrates the benefits of using high-resolution 666 

satellite observations to examine cloud processes using model simulations. It also provides a 667 

platform to deconstruct cloud properties leading to trends in CI properties. When partitioning the 668 

results into warm-CI and cold-CI clouds the simulated CI cases produce a range of 10.35 µm 669 

cloud-top BTs more akin to the GOES-16 observations. Although differences in microphysical 670 

processes are evident, comparison of the tendencies in mixing ratio profiles from these two 671 
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microphysics schemes reveals agreement in the tendency of in-cloud mixing rations related to 672 

convection initiation and cloud growth. Cold-CI clouds are characterized by an increase in cloud 673 

water at lower levels near the time of CI that is then lofted to the upper portion of the cloud, 674 

whereas warm-CI clouds contain less cloud water at CI. Increased cloud water in the upper levels 675 

contributes to an increase in graupel formation near cloud top, which corresponds to the times of 676 

maximum growth and helps confirm that ice formation is a necessary component in CI and cloud 677 

growth leading to longer lasting storms. This also indicates that sustained condensation in the 678 

lower levels of the cloud is necessary to provide sustained sources of cloud water to be lofted 679 

into the upper portion of the convective clouds. 680 

Using the 8.4 µm–10.35 µm BT differences, observed changes in GOES-16 cloud top phase 681 

in CI events yield a positive BT difference trend that plateaus shortly after CI. The observed 682 

GOES-16 BT does not reach full cloud top glaciation (BT differences remain < 0), but the 683 

positive trend provides evidence of the onset of ice and larger hydrometers at the cloud top. The 684 

CI cases from the Thompson microphysics scheme yield a similar result, whereas the Morrison 685 

and WDM6 schemes are too efficient at creating cloud ice particles (specifically graupel) and a 686 

glaciated cloud top (8.4 µm–10.35 µm BT difference switches to positive). Inspection of in-cloud 687 

mixing ratio profiles reveals that the Thompson scheme more readily converts cloud water to 688 

precipitation, whereas the Morrison scheme is able to loft more cloud water to higher levels, 689 

leading to increased graupel formation. When comparing cold-CI and warm-CI clouds, the cold 690 

bias from the Morrison scheme remains providing further evidence that it is producing too much 691 

graupel near the cloud top. 692 
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The application of observation-based CI techniques present a novel methodology to evaluate 693 

high-resolution models with satellite data and examine the processes leading to CI development. 694 

The results from this study illustrate that the model simulations are able represent cloud 695 

evolution, but warm-CI clouds are too frequent. Previous radar-based studies that demonstrate 696 

cloud tops with lower ice contents, such as those observed in the GOES-16 ABI BT signatures 697 

(Fig. 8), contain weaker updrafts (e.g. Matthee et al. 2014; Senf and Deneke 2017), which 698 

suggests radar reflectivity due to warm rain. The lower level condensational growth and warm 699 

rain processes are important for CI as early rain water partitioning in bulk microphysics can 700 

impact downstream graupel production. Further, small rain hydrometeors have been found in 701 

WDM6 using dual-polarized radar comparisons (e.g. Johnson et al. 2016; Lei et al. 2020), which 702 

affects timing of CI detection. Bao et al. (2019) illustrate that differences in auto-conversion 703 

parameterizations early in warm rain development can lead to downstream differences in graupel 704 

production. The delay in rain formation in the WDM6 simulation and the increased graupel 705 

formation when using the Morrison scheme suggests that insight into differences within auto-706 

conversion parameterizations could help sort differences in cloud evolution. Further analysis 707 

comparing simulated cloud growth with clouds best matching GOES-16 observations could help 708 

refine which auto-conversion rates are accurate in the cloud microphysics schemes. The 709 

Thompson scheme most accurately describes the ice mixing ratios reaching cloud top at the time 710 

of CI, but all of the parameterization schemes generally produce cloud tops that are too warm 711 

early in development, thereby leading to higher growth rates before CI. 712 

This is a single case study so additional case studies using satellite BTs and objected-based 713 

methods to evaluate the characteristics of CI may be necessary to reinforce these findings. 714 
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Before CI was detected, IR BTs at cloud top were similar between warm-CI and cold-CI clouds 715 

in the WRF model simulations. This suggests that information content from cloud-top properties 716 

alone, such as ones utilized in geostationary-based CI forecasting, may be insufficient when 717 

forecasting CI during the early stages of cloud development when the convection is weakly 718 

forced. Additional simulations shedding light on other factors controlling the growth of 719 

simulated convection will be useful to aid in understanding the conditions optimal for CI growth 720 

in weakly forced cases. Future studies could concentrate on how the use of land surface models 721 

and planetary boundary layer schemes impact convective growth, updraft characteristics, and 722 

latent heating leading to CI. Finally, utilizing observations from ground-based active sensors that 723 

provide high resolution vertical profiles of hydrometeors and updrafts will be key in constraining 724 

model-based evaluations of convection. Such modeling studies are planned as well as 725 

observational analysis evaluating convective evolution using data from the Atmospheric 726 

Radiation Measurement (ARM) program matched to observed GOES-16 CI cases. 727 
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Tables and Figures 1075 
 1076 
 1077 

 Total Cloud 
Objects 

BT <285K # CI Tracked Time First CI 
GOES-16 546 52 1655 UTC 

Thompson 1853 121 1645 UTC 

Morrison 2160 136 1650 UTC 

WDM6 1946 67 1700 UTC 

 1078 
Table 1. Number of total cloud objects colder than 285 K, number of CI objects tracked, and 1079 
time of first tracked CI cloud in the GOES-16 observations and the Thompson, Morrison, and 1080 
WDM6 simulations. 1081 
 1082 
 1083 
 1084 
 1085 
 1086 

Time [UTC] 1700 1800 1900 2000 
GOES-16 257.6 241.2 228.6 217.5 

Thompson 256.3 237.8 223.1 214.8 

Morrison 254.5 240.3 229.6 216.5 

WDM6 260.1 241.5 227.8 218.4 

 1087 
Table 2. The 10th percentile of the 10.3 µm BT distributions for the GOES-16 observations and 1088 
Thompson, Morrison, and WDM6 simulations at 1700 UTC, 1800 UTC, 1900 UTC, and 2000 1089 
UTC. 1090 
 1091 
  1092 
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 1093 
 Time-lag 

from CI 
[mins] Thompson Morrison WDM6 

WDM6-
lagged 

10.35 µm –15 3.45 3.28 –16.23 –1.51 
 –10 2.78 2.03 –16.31 –3.81 
 –5 0.34 –1.1 –20.02 –3.73 
 0 –3.48 –1.98 –19.93 –2.41 
 +5 –2.65 –2.61 –20.67 –0.61 
 +10 –1.33 –1.95 –23.52 –2.91 
 +15 –0.35 –1.13 –24.02 –2.52 
 Time-lag 

from CI 
[mins] Thompson Morrison WDM6 

WDM6-
lagged 

10.35 µm 
tendency –10 –1.16 –1.65 –2.65 –2.12 
 –5 –1.66 –2.39 0.55 –2.41 
 0 –3.96 –0.95 1.11 –1.72 
 +5 –0.88 –1.45 –0.14 –0.65 
 +10 1.75 0.75 –1.63 –1.04 
 +15 0.47 1.76 1.39 0.14 

 1094 
Table 3. Differences of the mean BT (Model–Obs) of the (top) 10.35 µm BT and (bottom) 8.4–1095 
10.35 µm BT tendency computed using the mean of the interquartile range. Differences are given 1096 
for timesteps before and after CI is detected. All units are [K]. 1097 
 1098 
 1099 
 1100 
 1101 
 1102 
 1103 

 Total Cloud 
Objects 

BT < 285K 
Cloud objects with 

dBZ ≥ 35 
Cloud objects 

reaching 250 K 

Cloud objects 
that do not 

reach 250 K 
GOES-16 546 52 31 21 

Thompson 1853 121 46 75 

Morrison 2160 136 52 84 

 1104 
Table 4. Number of total cloud objects with 10.35 µm brightness temperature < 285 K, number 1105 
of CI cloud objects meeting the 35 dBZ criterion, number of CI cloud objects meeting the 35 1106 
dBZ and 250 K criterion, and the number of CI cloud objects meeting the 35 dBZ criterion but 1107 
not the 250 K criterion. Results are shown for the GOES-16 observations and the Thompson and 1108 
Morrison simulations. 1109 
 1110 
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 1111 

 1112 
 1113 
 1114 
 1115 
 1116 

 1117 
Figure 1. Illustration of the three WRF model domains. Convective initiation is assessed within 1118 
the inner domain (D03) using GOES-16 observations and data from three WSR-88D radar sites 1119 
(blue circles). 1120 
 1121 
  1122 
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 1123 

 1124 
 1125 

Figure 2. An example of (left) 1900 UTC GOES-16 ABI 10.35 µm brightness temperatures [K] 1126 
within the inner domain region. (right) Derived cloud objects from this timestep. 1127 
 1128 
 1129 
 1130 
  1131 
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 1132 

 1133 
 1134 
Figure 3. The (a) occurrence of active CI cloud objects containing a reflectivity higher than 35 1135 
dBZ at each timestep (b) fractional coverage of active CI cloud objects, and (c) sizes of CI cloud 1136 
objects for GOES-16 (grey) observations and Thompson (blue), Morrison (green), and WDM6 1137 
(light green) simulations. Occurrence is shown by the solid lines and the spread of cloud object 1138 
sizes is shown using the box and whisker diagrams.  1139 
 1140 
 1141 
 1142 
  1143 
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 1144 
 1145 
Figure 4. Normalized ABI 10.35 µm brightness temperature probability density functions at (a) 1146 
1700 UTC (b) 1800 UTC (c) 1900 UTC and (d) 2000 UTC. Brightness temperatures are binned 1147 
every 2 K for GOES-16 (grey) observations and Thompson (blue), Morrison (green), and WDM6 1148 
(light green) simulations 1149 
 1150 
  1151 
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 1152 

 1153 
 1154 
Figure 5. Observed and simulated ABI 10.35 µm brightness temperatures [K] at 1900 UTC for 1155 
(a) GOES-16, (b) Thompson, (c) Morrison, and (d) WDM6. 1156 
 1157 
 1158 
  1159 
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 1162 

 1163 
 1164 
Figure 6. Box and Whisker plots of ABI 10.35 µm brightness temperatures [K] for GOES-16 1165 
(grey), Thompson (blue), Morrison (green), WDM6 (light green), and WDM6 lagged 30 minutes 1166 
(hatched). Bars are spaced at 5-minute intervals with time = 0 defined as the time CI was 1167 
detected.   1168 
 1169 
 1170 
  1171 



 51 

 1172 
 1173 
Figure 7. Box and Whisker plots for the ABI 10.35 µm brightness temperature growth tendency 1174 
field for GOES-16 (grey), Thompson (blue), Morrison (green), WDM6 (light green), and WDM6 1175 
lagged 30 minutes (hatched). Bars are spaced at 5-minute intervals with Time = 0 defined as the 1176 
time CI was detected. Each tendency is the change in BT between the listed time-step and 1177 
timestep before. 1178 
 1179 
  1180 
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 1181 
 1182 

 1183 
 1184 
Figure 8. Same as Figure 6 except for showing ABI 8.4–10.35 µm brightness temperature 1185 
differences [K]. 1186 
 1187 
 1188 
  1189 
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 1190 
 1191 

Figure 9. Evolution of mean profiles for ice, snow, graupel, cloud water, and rain water mixing 1192 
ratios from 5 min before CI until 10 min after CI was identified. Profiles are shown for 1193 
Thompson (first row), Morrison (second row), and WDM6 (bottom rows) bulk microphysics 1194 
schemes. The bottom row contains WDM6 profiles lagged an additional 20 mins. 1195 
  1196 
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 1197 
 1198 
Figure 10. Same as Fig. 6, but for cases subset into warm-CI clouds and cold-CI clouds. (left) 1199 
warm-CI clouds for (a) all cases, (c) top 50% best-matched cases, and (e) cases outside 50% 1200 
best-matched. (left) cold-CI clouds for (b) all cases, (d) top 50% best-matched cases, and (f) 1201 
cases outside 50% best-matched. Results are shown for the Thompson (blue) and Morrison 1202 
(green) simulations. 1203 
 1204 
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 1205 
 1206 
Figure 11. Same as Figure 7, but for cases subset into warm-CI clouds and cold-CI clouds. (left) 1207 
warm-CI clouds for (a) all cases, (c) top 50% best-matched cases, and (e) cases outside 50% 1208 
best-matched. (left) cold-CI clouds for (b) all cases, (d) top 50% best-matched cases, and (f) 1209 
cases outside 50% best-matched. Results are shown for the Thompson (blue) and Morrison 1210 
(green) simulations. 1211 
 1212 
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 1213 

 1214 
 1215 
Figure 12. The ABI 8.4–10.3 µm BT difference to evaluate cloud top glaciation for cases subset 1216 
into (left) warm-CI clouds and (right) cold-CI clouds. Results are shown for the Thompson 1217 
(blue) and Morrison (green) simulations. 1218 
 1219 
  1220 
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 1221 
 1222 
Figure 13. Evolution of mean profiles for ice, snow, graupel, cloud water, and rainwater mixing 1223 
ratios from 5 min before CI until 10 min after CI was identified. Profiles are shown for 1224 
Thompson (top row) and Morrison (bottom row) simulations for cold-CI clouds (solid lines) and 1225 
warm-CI clouds (dotted lines). 1226 
 1227 
  1228 
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 1229 
 1230 
Figure 14. Evolution of mean in cloud tendency profiles of ice, snow, graupel, cloud water, and 1231 
rainwater mixing ratios from 5 min before CI until 10 min after CI was observed. Profiles are 1232 
shown for the Thompson (top row), and Morrison (bottom row) simulations. The growth 1233 
categories are shown for warm-CI clouds (dotted lines), best-matched cases cold-CI clouds (solid 1234 
lines), and growth cold-CI clouds (dashed line). 1235 
 1236 
 1237 
 1238 
 1239 
 1240 


