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ABSTRACT

A recently discovered post-translational modification of histone proteins is the irreversible
proteolytic clipping of the histone N-terminal tail domains. This modification is involved in
regulation of various biological process, including the DNA damage response. In this work, we
use chemical footprinting to characterize the structural alterations to nucleosome core particles
(NCPs) that result from lack of the histone H2B or H3 tails. We also examine the influence of
these histone tails on excision of the mutagenic lesion 1,N®-ethenoadenine (¢A) by the repair
enzyme alkyladenine DNA glycosylase (AAG). We found that absence of the H2B or H3 tail
results in altered DNA periodicity relative to native NCPs. We correlated these structural
alterations to €A excision by utilizing a global analysis of 21 €A sites in NCPs and unincorporated
duplex DNA. In comparison to native NCPs, there is enhanced excision of €A in tailless H2B
NCPs in regions which undergo DNA unwrapping. This enhanced excision is not observed for
tailless H3 NCPs, rather, excision is inhibited in more static areas of the NCP not prone to
unwrapping. Our results support in vivo observations of alkylation damage profiles and the
potential role of tail clipping as a mechanism to overcome physical obstructions caused by
packaging in NCPs, but also reveal potential inhibition of repair by tail clipping in some locations.
Taken together these results further our understanding of how base excision repair can be
facilitated or diminished by histone tail removal and contributes to understanding the underlying

mechanism that lead to mutational hotspots.



INTRODUCTION

In most eukaryotic organisms, DNA is organized into chromatin. The base unit of
packaging in chromatin is the nucleosome core particle (NCP). The NCP is comprised of 145-147
base pairs of DNA wrapped approximately 1.7 times around a histone protein core.! The histone
core is formed by two copies of each of the proteins H2A, H2B, H3, and H4.2 Each histone contains
a highly structured globular core and an N-terminal disordered tail.! There is also a 2-fold
rotational axis of pseudosymmetry in the NCP known as the dyad axis. Notably, an NCP is not a
static structure but rather a dynamic one where DNA is transiently exposed through unwrapping
at the entry/exit points,> * histone variants can be exchanged for the canonical versions,’ and
histones undergo posttranslational modifications (PTMs).> 7 Besides reversible PTMs such as
methylation, phosphorylation, and acetylation, proteolytic clipping of the histone tails has been
identified as an irreversible modification.?

Clipping of the histone tails, particularly H2B and H3, alters the NCP structure and DNA
accessibility. It has been shown that the absence of the H3 tail promotes DNA unwrapping and
H2A/H2B dimer eviction.!® ! Absence of the H2B tail has also been demonstrated to promote
DNA unwrapping,'® putatively via elimination of interactions between the H2B and H3 tails that
inhibit unwrapping.'? Trypsin catalyzed removal of histone tails enhances binding of the GAL4
transcription factor and DNA digestion by restriction enzymes,'? demonstrating an increase in
physical accessibility of DNA in the absence of histone tails. Furthermore, tail removal has been
shown to alter the translational positioning of DNA, even when removal was conducted after NCP
assembly.!> 14

By altering chromatin structure and DNA accessibility, histone tails can play key roles in
regulating biological processes. One result of tail clipping is the erasure of PTMs. Moreover,

histone clipping itself serves to activate gene expression in yeast,'> promote cell differentiation,'®



increase the rate of transcriptional elongation by RNA polymerase,'” alleviate pausing at promoter
regions,'® and serves as an epigenetic marker.!” H3 clipping has also been shown to occur under
DNA damaging conditions, implicating histone clipping in the DNA damage response.?’

Single- and double-strand breaks, inter- and intra-strand crosslinks, abasic sites, and
modification of the bases are all potential consequences of DNA damaging agents.?! These various
forms of damage are repaired by different pathways. Modified bases, referred to here as lesions,
are repaired by the base excision repair (BER) pathway. One mutagenic lesion repaired by the

BER pathway is 1,N-ethenoadenine (gA, Figure 1).?> 2 gA is generated both as a byproduct of

24, 25

endogenous lipid peroxidation and exogenous exposure to vinyl chloride. €A levels are

elevated in tissues from individuals with chronic inflammatory diseases associated with
carcinogenesis as well as cancerous tissues.*
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Figure 1. Base excision repair of 1,N®-ethenoadenine (¢A). The €A lesion is shown
in pink along with the four steps of the repair catalyzed by AAG, APEI, pol B, and
DNA ligase, respectively.

The BER pathway is comprised of several enzymes that catalyze the excision of a lesion
and subsequent insertion of an unmodified nucleotide. Alkyladenine glycosylase (AAG) is
responsible for excision of alkylated bases, including £A.?” Excision of €A by AAG results in an

apurinic/apyrimidinic (AP) site. This AP site is then incised by AP endonuclease 1 (APEI),



creating a nick with 3'-OH and 5'-deoxyribose phosphate (5'-dRP) termini. Polymerase 3 (pol B)
removes the 5'-dRP and incorporates the correct nucleotide at the 3'-OH. Finally, a DNA ligase

completes the repair by sealing the nick in the backbone.?!
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Figure 2. Global distribution of €A lesions in the NCP. The image was created by merging the
crystal structure of a 601 NCP lacking histone tails (PDB: 31z0) with one including tails but
with a different DNA sequence (PDB: 1kx5). The location of €A lesions are highlighted in
pink. The globular domains of the histones are in gray. The N-terminal tails of each histone are
highlighted: H2A (yellow), H2B (red), H3 (blue) and H4 (green). On the left is a top-down
view of the NCP with the dyad axis indicated with a dashed line. On the right is a side view
after rotating the NCP 90°. Rotational position of bases is shown with examples of IN, MID,
and OUT bases provided.

When considering the activity of BER enzymes in an NCP, unlike unpackaged duplex
DNA, the geometric positioning of the lesion is important. The dyad axis acts as a reference point
in defining the translational position of a lesion (Figure 2). Besides translational positioning, a
lesion can be defined by its rotational orientation which can be described as outwards towards

solution (OUT), inwards towards the histone core (IN), or somewhere in between (MID). Further



microenvironments are created by the DNA superhelices, histone tails, and areas of transient
unwrapping of DNA from the histone core.

In this work, we use chemical footprinting techniques to show that NCPs lacking either the
H2B or H3 tail have structures distinct from NCPs with intact tails. We also demonstrate that these
structural differences manifest in differential excision of €A by AAG. Excision is enhanced in the
entry/exit regions of NCPs lacking H2B tails, but inhibition is seen in less dynamic areas of the
NCPs lacking H3 tails. Taken together, these results implicate tail removal as a potential modulator

of BER initiation in chromatin.

MATERIALS AND METHODS
Oligonucleotide Synthesis and Purification

All oligonucleotides used in this study were synthesized on a MerMade 4 DNA synthesizer
(BioAutomation). We used the 145 bp Widom 601 nucleosome positioning sequence (Scheme S1)
as the unincorporated duplex control and to assemble NCPs. Synthesis of the 145 mer
oligonucleotide containing €A was conducted on 1,400 A controlled pore glass beads
(BioAutomation) using phosphoramidites with ultramild protecting groups (Glen Research).
Deprotection was performed according to the manufacturer’s specifications. €A substitution for A
throughout the “I” strand was conducted utilizing a Poisson distribution, as described in recent
reports.?®3% The molar ratio determined by the Poisson distribution (A= 0.355) was used to
determine the correct mixture of A and €A phosphoramidites. This synthetic strategy yields a DNA
population containing either 0 or 1 €A lesion per 145 mer oligonucleotide while minimizing strands
containing two or more lesions to 5% of the population. Numbering starts with the first base of the

5'-end of the “I” strand. The final trityl group was removed on the synthesizer, and the DNA



cleaved from the solid support by incubation in NH4OH at room temperature for 2 h. The DNA
was then purified via the crush and soak method utilizing 8% denaturing polyacrylamide gel
electrophoresis (PAGE).

A ligation strategy was utilized to prepare the complementary 145 mer (Scheme S2). The
component oligonucleotides for ligation were synthesized using standard phosphoramidite
protecting groups with the final trityl group retained. Reverse-phase HPLC purification at 90 °C
was used to purify the oligonucleotides (Agilent PLRP-S column, 250 mm x 4.6 mm; A = 100
mM triethylammonium acetate [TEAA] in 5% aqueous MeCN, B = 100 mM TEAA in MeCN;
5:95 to 35:65 A:B over 30 min, 35:65 to 5:95 A:B over 5 min at 1 mL/min). Removal of the trityl
group was accomplished by incubation in 20% v/v aqueous glacial acetic acid for 1 h at room
temperature. Subsequently, a second HPLC purification at 90 °C was performed (Agilent PLRP-
S column, 250 mm X 4.6 mm; A = 100 mM triethylammonium acetate [TEAA] in 5% aqueous
MeCN, B = 100 mM TEAA in MeCN; 0:100 to 15:85 A:B over 35 min, 15:85 to 35:65 A:B over
5 min at 1 mL/min). Electrospray ionization mass spectrometry was used to verify the identity of
the component oligonucleotides. Five nmol of each component oligonucleotide J2 and J3 were 5'-
phosphorylated using 2 mM ATP and T4 kinase (New England Biolabs). These phosphorylated
components were then combined in equal molar amounts with component J1 and 10% excess of
two scaffolding oligonucleotides, JS12 and JS23, and annealed by heating to 95 °C for 5 min and
cooling at 1°C per min in 50 mM NaCl and 20 mM Tris (pH 8.0). These annealed oligonucleotides
were then ligated at room temperature overnight using 4,800 units T4 DNA ligase in buffer (50
mM Tris-HCI, 10 mM NaCl, 10 mM MgClz, 10 mM DTT, 1 mM ATP, pH: 7.5). The product of

the ligation reaction was then purified using 8% denaturing PAGE.



For normalization of AAG glycosylase excision data (vide infra), a 23 mer and a 92 mer
were designed as internal standards such that they would not co-migrate with any €A cleavage
product. They were synthesized as described above and purified by 12% and 8% denaturing
PAGE, respectively.

Reconstitution of Global ¢A Nucleosome Core Particles

Recombinant Xenopus laevis histones were expressed and purified individually before
assembly into octamers.*"3? The globular X. laevis H2B protein (residues 24-122) and H3 protein
(residues 38-135) were purchased from The Histone Source (Colorado State University). NCPs
were reconstituted as described previously®! via salt gradient dialysis of the radiolabeled eA-
containing duplex population and histone octamer. Briefly, a molar excess of histone octamer was
added to €A containing 145 bp duplex with a **P radiolabel attached at the 5'-end (10.05 pmol
octamer to 10.00 pmol DNA for gH3 NCP, 10.10:10.00 pmol for native NCP, and 10.15:10.00
pmol for gH2B NCP) in buffer (10 mM Tris-HCI [pH 7.5], 1 mM EDTA, 1 mM dithiothreitol
[DTT], 2 M NacCl, 500 pg/mL BSA) in a Slide-a-Lyzer dialysis device (0.1 mL capacity, 3.5 kDa
MWCO; Thermo Fisher Scientific). The dialysis device started in a buffer of 10 mM Tris-HCI (pH
7.5), 1 mM EDTA, 1mM dithiothreitol (DTT), 2 M NaCl at 4 °C before transfer to buffers
containing decreasing concentrations of NaCl (1.2 M, 1.0 M, 0.6 M, 0 M) at hourly intervals. The
final dialysis in 0 M buffer was conducted for 3 h and then the NCPs were filtered with a 0.45 um
cellulose acetate centrifuge tube filter (Corning Costar) to remove insoluble particles. NCP
formation and relative purity were analyzed using a 7% native PAGE (60:1 acrylamide:
bisacrylamide; 0.25X TBE) run for 3 h at 160 V in 4 °C (Figure S1). Only NCPs containing < 5%

duplex were used in these studies.



Hydroxyl Radical Footprinting

To determine the rotational orientation of bases in the NCPs we utilized hydroxyl radical
footprinting. To ensure single hit conditions we used a modified version of the method of Tullius.>*
34 Briefly, 7.5 pL of each 1 mM Fe(II)-EDTA, 10 mM sodium ascorbate, and 0.12% w/v aqueous
hydrogen peroxide were combined with 5 pmol NCPs in a total of 52.5 puL buffer (10 mM Tris-
HCI [pH 7.5], 1 mM EDTA). This mixture was incubated in the dark at room temperature for 10
min and then quenched with 16 pL 1 mM EDTA in 25% v/v glycerol and immediately loaded onto
a 7% native PAGE (60:1 acrylamide: bisacrylamide; 0.25x TBE) which was run for 3 h at 155 V
at 4 °C. The gel bands containing NCPs were excised and eluted into buffer (0.3 M NaOAc, 1 mM
Tris-HCI [pH 8.0], 1 mM EDTA) for 18-24 h at 37°C with gentle shaking (60 rpm). The eluent
was then concentrated using a centrifugal concentrator (Sartorius Viaspin Turbo 15, 5 kDa
MWCO) and filtered using a 0.22 pum cellulose acetate syringe filter. The samples were extracted
with equal volume addition of 25:24:1 phenol:chloroform:isoamyl alcohol (PCI) and the aqueous
layer was concentrated by SpeedVac evaporation. Following the addition of 40 puL co-precipitation
agent (0.5 mg/mL tRNA in 300 mM NaOAc [pH 8.0], ] mM EDTA), samples were desalted with
ethanol precipitation. Samples were resuspended in a 1:1 mixture of formamide and water for
denaturing PAGE. Cleavage fragments were resolved by 8% denaturing PAGE (Figure S2) and
quantitated using SAFA*® gel analysis software. The highest band intensity within a helical turn
was used to normalize the data and correct for loss of smaller DNA fragments during workup. To
accomplish this normalization, the band intensities were plotted against base position to identify
the maxima and minima corresponding to OUT and IN locations, respectively. The five bases
flanking to each side of a maximum were divided by the maximum band intensity to normalize the

values within each helical turn. A three point smooth was then applied and MATLAB used for a



single term Fourier fitting of bases 20-80 for each NCP to the following general equation: f(x) =
a0 + al * cos(x * w) + b1 = sin (x * w) where a0, al,and b1 are the Fourier coefficients and
w is the fundamental frequency, w. Only fits with an R squared value of > 0.7 were used for period
determination. The period was determined using the following equation: T = 27 /w.
Enzymatic Reactions

Human AAG was purchased from New England Biolabs, and the total enzyme
concentration determined by Bradford assay using y-globulin standards (Bio-Rad Laboratories).
AAG excision was assessed by mixing 1 pmol substrate (either duplex DNA or native, gH2B, or
gH3 NCPs) with 40 pmol AAG in a total volume of 20 pL of the reaction buffer (20 mM Tris, 50
mM NaCl, 150 mM KCI, 1 mM DTT, 100 ng/mL BSA) and incubated for 1 h at 37 °C along with
anegative control sample (no enzyme). After 1 h, samples were quenched with 20 uLL of IM NaOH
which had been spiked with the radiolabeled internal standards and heated to at 90 °C for 3 min.
PCI extraction separated the DNA from protein and the aqueous layer was supplemented with 40
uL co-precipitation agent (0.5 mg/mL tRNA in 300 mM NaOAc [pH 8.0], | mM EDTA) and 600
uL of ethanol before being placed on dry ice for 30 min. The ethanol was then separated from the
DNA via centrifugation, removed with a pipette, and all samples were resuspended in 50% v/v
formamide:water, split in half, and loaded onto an 0.6 mm, 8% PAGE gel (Figure S3). One half
of the samples were loaded to resolve bands 19-64, run 2 h at 80 W. The other half of the samples
were loaded to resolve of bands 89-123, run 4 h at 80 W.

After phosphorimaging of the gels, SAFA software was used to quantitate band intensity.
The internal standards were used for band normalization, sites 19-64 with the 23 mer standard and
sites 89-123 with the 92 mer standard. The no enzyme control was used to subtract background

from enzyme-treated samples. For each site, the ratio of corrected band intensity in the NCPs to



the duplex was used to determine the NCP/Duplex (NCP/DUP) ratio for AAG activity. An
NCP/DUP value of 1 indicates excision that is comparable to duplex, while a value below one
indicates lower excision in NCPs relative to duplex. The standard error (SE) of NCP/DUP was
calculated using SE = 0/\/ (n), where o is the standard deviation of the population and n is the
sample size. For all NCPs n=3. A two-tailed Welch’s ¢ test (a=0.05) was performed to obtain the
p value at each €A site for NCP/DUP for each tailless NCP in comparison to native NCP/DUP. All

statistical analyses were conducted using R. We considered p < 0.05 to be significant.

RESULTS
Preparation of NCPs Containing Globally Substituted €A Lesions

To examine the effects of H2B and H3 tail deletion on the excision activity of AAG, NCPs
were assembled using the Widom 601 DNA sequence and recombinant histones.*® The NCPs had
three combinations of histones: all full length histones (native NCP); native H2A, H3, H4 and
globular (tailless) H2B domain (gH2B NCP); or native H2A, H2B, H4 and globular (tailless) H3
domain (gH3 NCP). Using the 601 DNA creates a homogenous population of NCPs as a substrate
for biochemical studies, since it is a strong positioning sequence that reproducibly binds the histone
octamer in a single translational and rotational position.*® Furthermore, crystal structures of 601
NCPs, albeit without histone tails, are available for reference.

€A lesions were incorporated throughout the “I”” strand of the Widom 601 sequence to
create a population of DNA containing €A:T base pairs, utilizing methods we reported
previously.?83%37 (The “I” strand designation is based on nomenclature used in the reported crystal
structure of the 601 NCP.>®) Briefly, a Poisson distribution was used to determine the molar ratio

of A to €A phosphoramidite building blocks used during chemical synthesis such that 95% of the



synthesized DNA contain no more than a single ¢A. Overall, we examined excision of €A from 21
sites to define the repair fingerprint of AAG in native, gH2B, and gH3 NCPs.
HRF Reveals Structural Differences in Native NCPs Compared to gH2B and gH3 NCPs

We utilized hydroxyl radical footprinting (HRF) to establish the rotational orientation of
each base and determine the periodicity of DNA in the NCPs.** When DNA is packaged in an
NCP, an oscillatory pattern of high and low reactivity towards hydroxyl radicals is observed. This
pattern emerges from the preferential abstraction of C5' hydrogens of the sugar-phosphate
backbone facing away from the histone core,*® while C5' hydrogens facing towards the histone
core are shielded and protected from hydroxyl radicals.

Quantitation of the HRF for each NCP confirms varying levels of solution accessibility
throughout the DNA and establishes the rotational orientation of each base (Figure 3, Figure S2,
Table S1). OUT sites, defined here as a maximum in the HRF profile, demonstrate the highest
HREF reactivity. IN sites, defined here as a minimum in the HRF profile, exhibit the lowest HRF
reactivity. MID sites, defined here as a being between a minimum and maximum in the HRF
profile, demonstrate intermediate HRF reactivity. The distribution of rotational orientation of €A

lesions varied and we examined AAG activity at 5 OUT, 5 MID, and 11 IN lesion sites (Table 1).



Table 1. Translational position, rotational orientation, and AAG excision activity for native,
gH2B, and gH3 NCPs. Statistical significance (p < 0.05) of €A excision relative to native
NCP is indicated by *.

Translational | Rotational AAG Excision Activity
Base Position | Orientation (NCP/DUP)
Native NCP gH2B NCP gH3 NCP
19 IN 0.21 0.21 0.02*
28 IN 0.03 0.08* 0.03
29 IN 0.07 0.07 0.02
38 IN 0.06 0.02 0.02
40 MID 0.19 0.01 0.03
42 ouT 1.02 0.91 0.63
48 IN 0.00 0.01 0.02
51 MID 0.47 0.55 0.12%*
58 IN 0.00 0.04* 0.02
59 IN 0.00 0.03 0.04
60 IN 0.00 0.02 0.08
64 ouT 0.84 1.04* 0.67
89 IN 0.02 0.05 0.00
90 IN 0.00 0.01 0.00
96 OouT 1.02 0.78 0.33%*
97 ouT 0.37 0.17 0.13
102 MID 0.04 0.27 0.12
105 MID 1.11 1.00 0.62
112 MID 0.02 0.44* 0.25
119 IN 0.13 0.61* 0.40
123 OUT 0.77 0.81 0.95
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Figure 3. HRF profiles for native (black), gH2B (red), and gH3 (blue) NCPs with dashed
vertical lines indicating maximum locations. The yellow highlighting indicates DNA near the
entry/exit region in the NCP. Gray highlighting indicates the dyad region. The average
periodicity (T) from bases 20-80 for each NCP is indicated.

Comparison of the HRF profiles of the native (black), gH2B (red), and gH3 (blue) NCPs
reveals structural differences (Figure 3). The profiles of all three NCPs exhibit the expected
oscillatory pattern. However, there are differences in locations of the maxima and minima for
many helical turns. For example, the native NCP has a maximum at position 33 (vertical black
dashed line) while gH2B (red dashed) is at 32 and gH3 (blue dashed) at 34. Differences in locations
of maxima and minima can be seen throughout the NCP, with the only shared maxima for all three
NCPs at 54. Other shared maxima can be seen for gH2B and gH3 NCPs at 107; gH2B and native
NCPs at 65; and gH3 and native NCPs at 97. Differences in the location of maxima and minima

indicate differential stretching and compaction of the DNA in these NCPs.



Alterations to the shape of the HRF profiles are observed near the dyad axis (Figure 3, gray
shaded region). The native NCP has a broad maximum while the gH2B and gH3 NCPs display
narrower peaks. The broader maximum indicates an area facing OUT that is underwound in the
native NCP relative to the gH2B and gH3 NCPs. Changes continue towards the 3'-end for all
NCPs. A Fourier fit of bases 20-80 reveals that the average periodicity, the number of base pairs
per helical turn, differs between the three NCPs: 10.6 bp/turn for native NCP, 10.1 bp/turn for
gH2B NCP, and 10.4 bp/turn for the gH3 NCP. Poor fits for bases 90-130 and lack of data for
gH2B NCPs beyond base 115 prevented a periodicity analysis for the 3'-end.

Excision of €A from Native NCPs Correlates with Rotational Orientation

AAG is known to remove €A from duplex DNA not packaged into NCPs (unincorporated
duplex).?3% 4 To determine the effects of incorporation into an NCP on €A excision we compared
excision from each NCP as a ratio relative to unincorporated duplex (NCP/DUP). A ratio of 1
indicates that excision from NCPs is comparable to unincorporated duplex, while a ratio less than
1 indicates inhibition of excision from NCPs.

The repair fingerprint of native NCPs demonstrates a strong correlation between rotational
orientation and AAG excision (Figure 4, black bars; Table 1). Low AAG excision (NCP/DUP
<0.2) is observed for IN sites. In contrast, high excision (NCP/DUP >0.6) is observed for most
OUT sites with the notable exception being site 97 (Figure 5, black bars), with NCP/DUP of <0.4.
MID sites demonstrate much more variability, with most NCP/DUP ranging between 0.1-0.6,
except site 105 which reaches 1. This correlation between rotational orientation and excision is in

agreement with previous reports. 37
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Figure 4. AAG excision activity for native (black), gH2B (red), and gH3 (blue) NCPs.
Stars indicate rotational orientation: OUT (blue), MID (purple) and IN (dark red) as
determined by HRF. The yellow highlighting indicates the region outside of the central
DNA in the NCP.
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Figure 5. Location of €A sites 96 and 97 in the NCP compared to their excision activity. (Top)
The side perspective (left) and down barrel perspective (right) of €A sites 96 and 97 are
highlighted in the NCP. (Bottom) The AAG excision activity are shown for each NCP: native
(black), gH2B (red), and gH3 (blue).



Excision of €A from gH2B

For the majority of €A lesions, excision is comparable or enhanced in gH2B compared to
native NCPs (Figure 4, red bars; Table 1). Enhancement is particularly notable in the DNA
entry/exit region (Figure 4, yellow shaded region). Like the native NCPs, there is a general
correlation between rotational position and €A excision in the central region of the NCP (bases 19-
97), with OUT sites exhibiting generally higher NCP/DUP values than IN or MID sites. There is
a small, but significant enhancement of €A excision at OUT site 64 and IN sites 28 and 58 in the
gH2B NCP. However, in contrast to native NCPs, the IN and MID sites located towards the 3'-end
of the sequence (112 and 119) show 5-22 fold enhancement in excision (Figure 6, red bars). Sites
42,48, and 51 are on the same DNA superhelix but on the opposite side of the H2B tail but do not
exhibit similar enhancement of excision. There are no sites that show significant inhibition in the
gH2B NCP compared to native NCP.
Excision of €A from gH3 NCPs

Unlike the gH2B NCPs, which show a few sites of enhanced excision compared to native
NCPs, gH3 NCPs show no significant enhancement at any site (Figure 4, blue bars; Table 1). In
contrast, the AAG repair profile for gH3 NCPs displays inhibitory effects in the central part of the
NCP compared to native NCPs (Figure 4, blue bars). Excision at IN (19), MID (51), and OUT (96;
Figure 5) sites is inhibited and varies from 3 to 10-fold.
DISCUSSION

In this work, we compare the global repair profiles of AAG on €A lesions distributed
throughout native NCPs or those lacking H2B or H3 tails. As observed previously, ¢A removal by
AAG is highly correlated with rotational orientation in the central region of the DNA in native

NCPs.? 37 We also reported a similar trend for the glycosylases 8-oxo-7,8-dihydroguanine
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Figure 6. Location and excision of selected €A sites. (Top) The location of selected €A sites and
histone tails are highlighted. (Bottom) The AAG excision activity for each NCP: native (black),
gH2B (red), and gH3 (blue).

glycosylases (OGG1),** #! yracil DNA glycosylase (UDG),? #! and thymine DNA glycosylase
(TDG).*? A correlation between rotational orientation of a lesion and glycosylase activity has also
been reported by other groups.*¢

There have been limited studies of the effects of histone tails on BER. Digestion of histone
tails by trypsin had a minimal effect on UDG activity.* ¥ APE! incision activity was also not
affected.*® When a portion of the H2B tail, known as the histone H2B repression (HBR) domain,
is deleted, enhanced UDG and pol P activity are observed in the entry/exit regions.* This enhanced
activity was attributed to DNA unwrapping in the absence of the HBR domain. Finally, DNA

ligase 1 activity was reported to be enhanced in the dyad region following trypsin digestion of the

histone tails.>°



Examination of BER of alkylation damage in yeast with H2A or H3 tail deletions
demonstrated the roles of the tails in the regulation of glycosylase expression, DNA damage
signaling, and post replicative repair.’! The removal of tails resulted in diminished cell survival
upon treatment with alkylating agents, even when the glycosylase responsible for excision of
alkylation damage in yeast, Magl (the homolog of AAG), was overexpressed.

When interpreting the repair fingerprint of AAG activity on native, gH2B, and gH3 NCPs
we considered that removal of the H2B or H3 could eliminate a steric block and lead to increased
accessibility of nearby lesions. Sites 42, 48, 51, 102, 112, and 119 are located near the H2B tail
(Figure 6) and distributed both in the central region of the DNA as well as the DNA entry/exit
region. No significant enhancement in excision of lesions in the central region of the DNA was
observed in the absence of the H2B or H3 tails. In fact, gH3 NCPs demonstrate inhibited €A
excision relative to native NCPs at site 51. While the lesions near the DNA entry/exit region exhibit
enhanced excision by AAG in gH2B NCPs, we do not ascribe this increase to removal of a steric
block caused by the tail, but rather altered DNA structure and dynamics as discussed below.

Changes in the DNA periodicity in the absence of histone tails may affect eA excision. The
excision at site 51 in the native NCP compared to the gH3 NCP demonstrates this potential effect.
Despite being a MID site in both NCPs, there is significant inhibition of €A excision in the gH3
NCP. There are no tails in the crystal structure that interact with directly this position, so it is
unlikely to be a steric effect from tail removal. The underwinding of the DNA helix in the gH3
NCP relative to the native NCP within this helical turn may help explain this result. The altered
periodicity may be inhibitory to binding or substrate recognition by AAG. This effect of altered
periodicity of the DNA in the central part of the NCP may, in part, explain more broadly the

inhibitory effects of tail removal in this region.



While the DNA in the central part of the NCP does not unwrap, the DNA located in the
entry/exit region of native NCPs is known to unwrap transiently and spontaneously to expose sites
that would be otherwise occluded. For the Widom 601 “I” strand it has been shown that the 3'-end
preferentially unwraps.>® We have reported previously that glycosylase activity, including AAG,
does not correlate with rotational orientation in certain translational locations prone to
unwrapping.?® 3% #! Unwrapping has also been reported to be rate-limiting for the activity of

endonuclease IlI-like protein 1 (NTHI) glycosylase ° >3

and to be exploited by Napl during
H2A/H2B dimer eviction.>

We find that lesions located near the DNA entry/exit region are better excised in NCPs
lacking the H2B but not the H3 tail. Computational studies have predicted enhanced unwrapping
when histone tail charges are neutralized, which is particularly pronounced for the H2B and H3
tails.'> % This charge neutralization stabilizes unwrapped states out to 40 base pairs for H2B and
30 base pairs for H3 under salt conditions similar to those used in our study. For comparison,
native NCPs demonstrate unwrapping of ~20 base pairs. Crystal structures have revealed that H2B
and H3 tail deletion weakens histone interactions with DNA and undermines the stability of the
NCP.!° Similar observations were made by SAXS®' and FRET®> 3 which demonstrated enhanced
dynamics and nucleosomal instability upon tail removal. Our results are consistent with the notion
that removal of the H2B tail promotes greater DNA unwrapping from the histone proteins and this
unwrapping allows for excision of otherwise occluded €A lesions by AAG. However, the removal
of the H3 tail does not promote similar enhancement of €A excision, possibly due to a lesser degree
of unwrapping than observed upon H2B tail removal.

While structural alterations and enhanced unwrapping of the DNA in the NCP explain the

observations above, it is also important to consider interactions between the histone protein



themselves. Interactions between the histone tails may explain some of the inhibition of AAG
activity. Histone tails are essential for formation of nucleosomal arrays through extensive intra-
and inter-nucleosomal contacts.’?> Even the presence of a bulky lesion in the DNA near the H2B
tail has been simulated to change tail conformation.>® Removal of €A at site 96, near the H2B and
H4 tails (Figure 5), is significantly inhibited by H3 tail removal but not H2B tail removal.
Surprisingly, the shift of the HRF maximum in this region to position 97, making it more OUT,
for the gH3 NCP does not enhance €A excision. The H4 tail, important for inter-nucleosomal
interactions,’ in this region may undergo a conformational change in the absence of the H3 tail
that inhibits AAG binding or excision activity. These potential synergistic tail-tail interactions are
not unexpected as computational studies have shown that the acetylation of the H4 tail impacts the
ability of the H3 tail to interaction with other proteins.’® Similarly, the maximum shift from
position 65 to position 64, making it a more OUT lesion, in the gH3 NCP does not confer enhanced
€A excision. In contrast, the gH2B NCPs show a small enhancement of activity while retaining the
same maximum at position 65 seen in native NCPs. The enhancement of excision at site 64 in the
gH2B without a change in DNA periodicity and absent any steric interactions with the H2B tail
indicate other modulating protein-protein interactions. Taken together these results indicate that it
is not only DNA-protein contacts that affect eA excision in NCPs, but also protein-protein
interactions. Only by taking all these factors cumulatively can the repair fingerprint of AAG in
these varied NCPs be understood.

Biological observations of mutational hotspots and accumulation of alkylation damage can
also be considered in light the results obtained here. In yeast, it has been reported that alkylation
damage accumulates at IN lesions.®* Such sites were also observed to be mutational hotspots in

the analysis of human tumors.®® These data suggests the need for alternate mechanisms to access



these IN sites for repair, such enhanced unwrapping of DNA from histones. Indeed, H2B®® and
H3° acetylation has been shown to enhance DNA unwrapping and acetylation has been observed
to occur as part of the DNA damage response.®® More intriguingly, it has been recently reported
that a complex is formed between AAG and RNA polymerase II that may access occluded lesions
by utilization of chromatin decondensation.®’” This complex, along with the observation that the
H3 tail protease JMJD5 relieves RNA polymerase 11 pausing'® and the protease is active under
DNA damaging conditions,?’ implicates tail clipping as a mechanism to repair DNA damage
during transcription. Together with these findings, our results indicate a potential mechanism to
access DNA damage by the BER pathway: utilizing tail clipping to promote DNA accessibility

through unwrapping from the histone octamer.
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