

1 Transforming Separation Science with Single- 2 Molecule Methods

3 William Calabrase,[†] Logan D. C. Bishop,[‡] Chayan Dutta,[‡] Anastasiia Misiura,[‡] Christy F.
4 Landes,^{‡§⊥*} Lydia Kisley^{†Δ*}

5 [†]*Department of Physics, Case Western Reserve University, Cleveland, OH 44106*

6 [‡]*Department of Chemistry, Rice University, Houston, TX 77251*

7 [§]*Department of Electrical and Computer Engineering, Rice University, Houston, TX 77251*

8 [⊥]*Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77251*

9 ^Δ*Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106*

10 AUTHOR INFORMATION:

11 *C. F. L. Email: cflandes@rice.edu, Phone: (713)-348-4232;

12 *L. K. Email: lydia.kisley@case.edu, Phone: (216)-368-2118

13

14 ABSTRACT

15 Empirical optimization of the multiscale parameters underlying chromatographic and

16 membrane separations leads to enormous resource waste and production costs. A bottom-up

17 approach to understand the physical phenomena underlying challenges in separations is possible

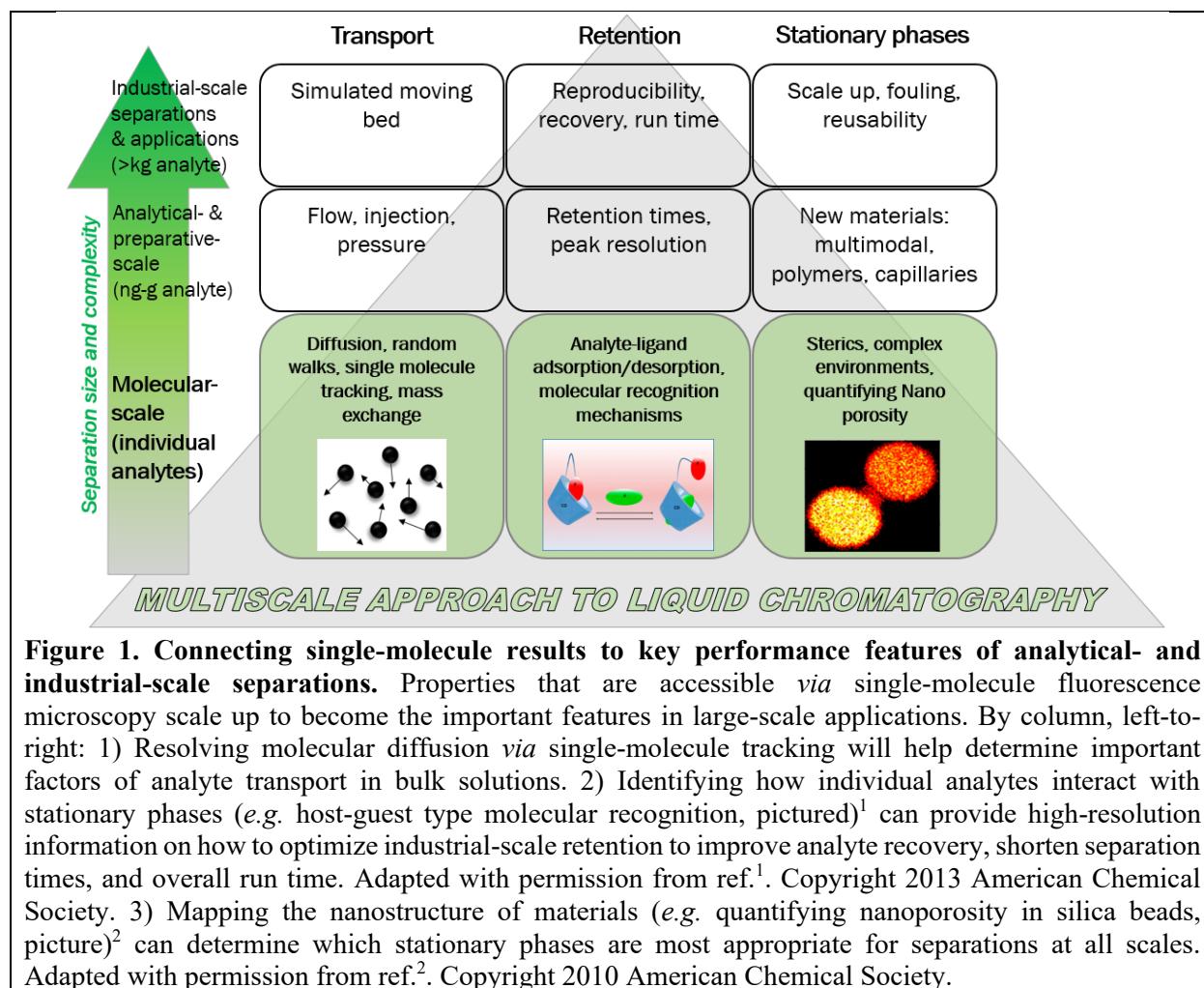
18 with single-molecule observations of solute-stationary phase interactions. We outline single-

19 molecule fluorescence techniques that can identify key interactions under ambient conditions.

20 Next, we describe how studying increasingly complex samples heighten the relevance of single-

21 molecule results to industrial applications. Finally, we illustrate how separation methods that have

22 not been studied at the single-molecule scale can be advanced, using chiral chromatography as an


23 example case. We hope new research directions based on a molecular approach to separations will

24 emerge based on the ideas, technologies, and open scientific questions presented in this

25 perspective.

26 INTRODUCTION

27 Liquid chromatography and membrane separations rely on the differential mass transfer of
28 analytes pulled through a solid stationary phase by a liquid mobile phase. Conventional industrial
29 grade separations are performed by empirical tuning of multiscale parameters, wasting analyte,
30 reagents, time, and energy.³ Separation depends on three major analyte phenomena:
31 mobile/stationary phase exchange, adsorption/desorption kinetics at the stationary phase, and
32 anomalous diffusion in complex environments.⁴⁻⁷ These fundamental physicochemical, molecular
33 level interactions of analytes within the stationary and mobile phase lead to the transport, retention,
34 and selection properties at the analytical- and industrial-scale (Figure 1).

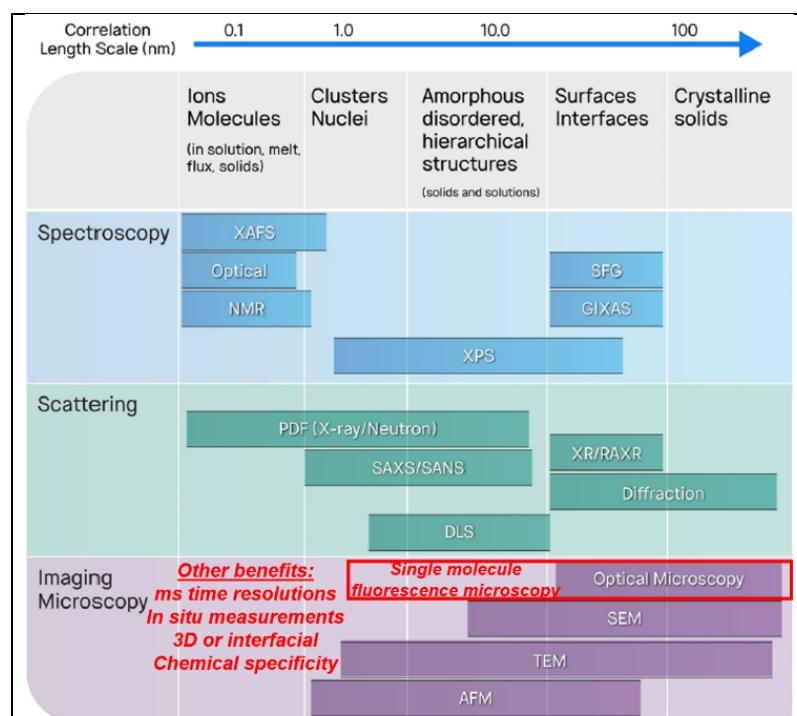
35 Studying separations from the bottom-up — one molecule at a time — can identify rare events
36 that lead to the failure of challenging, high-purity separations (**Figure 1**). Heterogeneous
37 interactions in the kinetic regime can lead to tailing, broadening, and peak overlap, resulting in
38 low selectivity and recovery of desired analytes. The consequences from impure separations that
39 result from rare populations can be catastrophic. For example, in chiral separations, the inability
40 to purify enantiomers and prevent their interconversion led to the infamous thalidomide tragedy in
41 the 1960's where fetal malformation occurred for pregnant women who used the racemic drug
42 mixture as a morning sickness treatment.⁸ In radiochemical separations, high purity is required to
43 avoid hazardous radioactive wastes and to provide high-quality spectral signatures used in
44 radiopharmaceutical imaging and treatment, nuclear energy, and nuclear forensic applications.⁹⁻¹¹
45 Oftentimes multiple, sequential separation steps are needed to obtain such rigorous purities due to
46 low selectivity of similar isotopes. This results in separations being involved in 75% of the
47 processing of rare earth elements: from the starting raw materials to the manufacturing and
48 production to the end-of-use waste management.¹⁰

49 Single-molecule and super-resolution microscopy allows for the visualization of separations at
50 a molecular level that could address challenges recently identified by the National Academies of
51 Science, Engineering, and Medicine. In the summer of 2019, the National Academies Press
52 released *A Research Agenda for Transforming Separation Science*.¹² The report proposes a range
53 of unanswered fundamental science questions, identifies a need to measure analyte dynamics in
54 realistic, complex environments, and encourages the use of new methods to understand the
55 intrinsically non-equilibrium chemical processes that occur during separations to develop more
56 efficient materials. Developments in single-molecule and super-resolution enable experimental

57 observation of non-equilibrium interactions that drive separations, offering an avenue to radically
58 advance the separations field.

59 Here, we detail the current potential to use single-molecule fluorescence microscopy to
60 understand the mobile/stationary phase exchange, adsorption/desorption kinetics, and anomalous
61 diffusion in complex environments that occur in separations. We describe how new optical
62 imaging technologies that use multicolored, three-dimensional, and expanded temporal
63 capabilities can address open questions on the structure, stoichiometries, orientation, diffusion,
64 and temporal changes in separations. We discuss how the study of more complex samples could
65 relate single-molecule samples to column conditions in industrial settings. Finally, as a
66 demonstrative example, we present how chiral chromatography, a technique that has not been
67 studied at the single-molecule scale, could be advanced with single-molecule methods. The
68 technologies and open research questions in this perspective are meant to inspire new research
69 directions and collaborative opportunities among analytical chemists, spectroscopists, and
70 separation scientists to drive improvements in separations from a molecular perspective.

71


72 **SINGLE-MOLECULE IMAGING AND BOTTOM-UP SEPARATIONS**

73 *Why use single-molecule imaging techniques?*

74 Single-molecule fluorescence microscopy, an optical imaging technique, is useful to
75 understand the spatiotemporal nanoscale heterogeneity and dynamics that occur in separations
76 (**Figure 2**). Individual fluorescently-labeled molecules are detected using a fluorescence
77 microscope that has high sensitivity due to a laser excitation source, a high numerical aperture
78 objective, high efficiency optical filtering, and high quantum efficiency detectors. By observing
79 one molecule at a time, subpopulations that may be as low as less than one percent of the overall

80 total molecular population that
 81 lead to peak broadening and
 82 asymmetry in chromatography
 83 are resolved. Such rare events
 84 would otherwise be hidden in
 85 conventional ensemble
 86 experiments. Millisecond time
 87 resolutions and sub-diffraction
 88 limited, three-dimensional spatial
 89 resolutions at ~10 nm are realized
 90 *in situ*.^{13–16}

91 Single-molecule
 92 fluorescence microscopy has
 93 detected and quantified the
 94 causes of common problems in

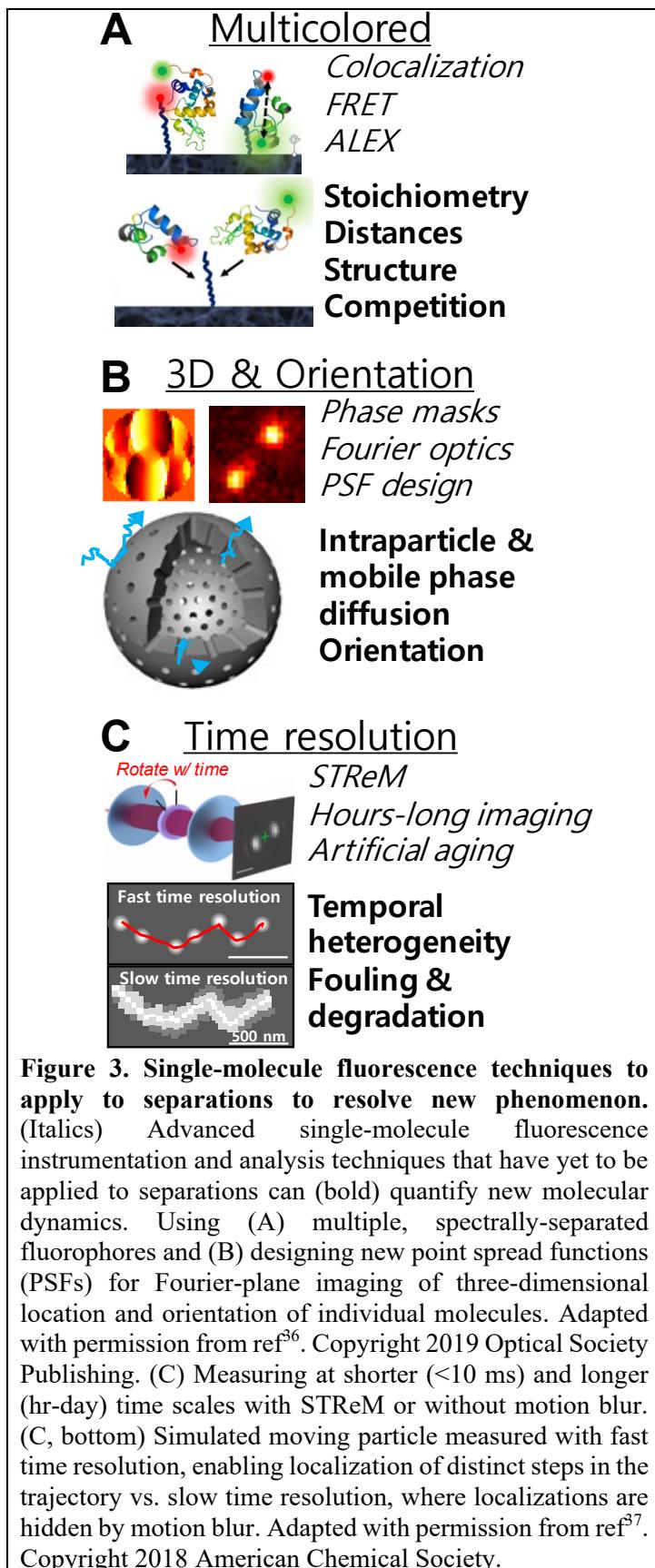
Figure 2. Single-molecule fluorescence microscopy complements the capabilities of other techniques used to study separations at length scales spanning subatomic distances to the bulk. (Red) The spatial capabilities of single-molecule fluorescence microscopy span from ~1's of nm using single-molecule FRET to ~10's of nm in three-dimensions using super-resolution imaging, to 10-100's of microns with wide field imaging. Please refer to the main text for technique abbreviations. Adapted with permission from ref¹². Copyright 2019 The National Academies Press. Republisher is a for-profit organization.

95 chromatography and membrane separations.^{5,17} Past findings include that defect silanol sites lead
 96 to rare (~1%), long-time adsorption of various analytes in reverse phase chromatography;^{18–22} the
 97 balance of short- and long-range forces and surface polishing influence the behavior of
 98 biomolecules at the surface in capillary electrophoresis, normal phase and capillary liquid
 99 chromatography;^{23–26} the sterics of the porous hydrogel stationary phase supports causes
 100 heterogeneity in ion-exchange chromatography;^{27–29} and the relationships between analyte,
 101 surface, and solution chemistry are important in determining tortuosity, fouling, and adsorption in
 102 polymeric membrane separations.^{30–32} Prior single-molecule studies have been carried out with

103 pM – nM concentrations of analyte so individual molecules can be localized and tracked. These
104 low concentrations are relevant to kinetic tailing where rare, heterogeneous adsorption events that
105 lead to peak asymmetry can be observed,³³ but below concentrations where column overloading
106 that leads to thermodynamic tailing occurs. For more details on the results of previous single-
107 molecule studies of separations, we refer the reader to prior review articles.^{5,17,18}

108 Spectroscopic, scattering, and imaging techniques can also provide atomic to nano- to
109 micrometer length scale information of materials used in separations. These were highlighted in
110 the National Academies of Press report (**Figure 2**).¹² Spectroscopic methods using x-rays (x-ray
111 fluorescence, absorption, photoelectron, and glancing incident absorption spectroscopies, [XRF,
112 XAS, XPS, GIXAS]) obtain elemental composition information and atomic structural information
113 down to molecular length scales of 0.6 nm. Nuclear magnetic resonance (NMR) spectroscopy
114 provides information on the chemical functionalities of analytes, diffusion, and can even be used
115 as a chromatographic detector, while sum frequency generation (SFG) and ellipsometry can
116 determine electronic, vibrational, or structural dynamics selectively at surfaces. Scattering
117 techniques such as dynamic light scattering (DLS), small-angle x-ray scattering (SAXS), small-
118 angle neutron scattering (SANS), and x-ray reflectivity/resonant anomalous x-ray reflectivity
119 (XR/RAXR) probe structural ordering and morphologies from atom–atom interactions (based on
120 pair distribution functions [PDF]) to crystalline, macromolecular and aggregate structures. Finally,
121 imaging techniques such as transmission and scanning electron microscopies (TEM, SEM) and
122 atomic force microscopies (AFM) can provide sub-nanometer information about the structure of
123 stationary phases.

124 The capabilities of single-molecule fluorescence microscopy complement the above-
125 discussed methods. Fluorescence microscopy can be performed under ambient conditions relevant


126 to liquid separations, compared to techniques which require vacuum conditions (SEM, TEM).
127 Three-dimensional imaging can track dynamics within the bulk of porous stationary phases,
128 compared to scanning probe techniques that are limited to the interface (AFM). Fluorescence
129 microscopy achieves chemical specificity with targeted labeling so that analyte dynamics can be
130 visualized directly, compared to the stationary phase focus of many scattering and spectroscopy
131 techniques. While labeling allows for high certainty about which analytes are observed,
132 fluorophore selection and tagging strategies must be carefully considered to not interfere with
133 anticipated interfacial forces that drive adsorption. For small molecule organic separations, the
134 fluorophore is often strategically selected to be a model analyte based on size, charge, or
135 hydrophobicity, while in biomolecule separations, the protein terminus or end of a nucleic acid is
136 labeled to decrease possible interference with biomolecule function. Control experiments, such as
137 measuring structural³⁴ and functional changes³² of the proteins due to the tagged fluorophores, are
138 required to understand the effects of dye labeling. Single-molecule fluorescence microscopy can
139 also be performed on accessible instrumentation. Many biophysics and medical microscopy core
140 facilities have confocal, wide field, and stimulated emission depletion (STED) microscopes
141 available. Construction of an economic homebuilt super-resolution microscopy setup can even be
142 achieved for < \$30,000.³⁵ In contrast, select x-ray and neutron techniques require access and travel
143 to synchrotrons.

144 We believe there is strong future potential for studying separations using single-molecule
145 fluorescence microscopy. We complement the National Academies Press report by highlighting
146 the potentials of optical imaging techniques, with emphasis on new technologies that have yet to

147 be applied to separations (**Figure 3**).
148 Creative sample preparations and
149 microscopy hardware arrangements
150 that have been developed by the
151 biophysics and catalytic single-
152 molecule communities should be
153 applied to separations to provide new
154 information on the structure,
155 stoichiometries, orientation, diffusion,
156 and temporal changes in separations.

157 *Multicolored imaging to understand*
158 *analyte structure and ligand*
159 *stoichiometries:*

160 Thus far, single-molecule imaging
161 of separations have studied the
162 adsorption and diffusion of analytes
163 labeled with a single fluorophore. By
164 using multiple dye labels that have
165 different wavelengths of emission on
166 either the analyte(s) or stationary phase,
167 single-molecule fluorescence
168 resonance energy transfer (FRET) and
169 alternating laser excitation (ALEX)

Figure 3. Single-molecule fluorescence techniques to apply to separations to resolve new phenomenon. (Italics) Advanced single-molecule fluorescence instrumentation and analysis techniques that have yet to be applied to separations can (bold) quantify new molecular dynamics. Using (A) multiple, spectrally-separated fluorophores and (B) designing new point spread functions (PSFs) for Fourier-plane imaging of three-dimensional location and orientation of individual molecules. Adapted with permission from ref³⁶. Copyright 2019 Optical Society Publishing. (C) Measuring at shorter (<10 ms) and longer (hr-day) time scales with STReM or without motion blur. (C, bottom) Simulated moving particle measured with fast time resolution, enabling localization of distinct steps in the trajectory vs. slow time resolution, where localizations are hidden by motion blur. Adapted with permission from ref³⁷. Copyright 2018 American Chemical Society.

170 analysis could be employed. FRET and ALEX resolve structural changes in analytes,
171 stoichiometries between analytes and adsorption sites, and competition between analytes (**Figure**
172 **3A**).

173 Single-molecule FRET could provide information on the dynamic structural changes in
174 biomolecules at separation interfaces. FRET quantifies the ~1-10 nm proximity between two
175 fluorophores based on distance-dependent non-radiative energy transfer from a higher-energy
176 “donor” fluorophore to a lower-energy “acceptor” fluorophore. Since this length scale is similar
177 to the size of many biomolecules, FRET is often used to understand folding and conformational
178 fluctuations. The donor and acceptor are placed at strategic locations on a biomolecule based on
179 anticipated motions and unfolding distances that do not interfere with the function of the
180 biomolecule. While the two fluorophore requirement for FRET limits the applicability of the
181 technique for small analyte, organic molecule separations, single-molecule FRET can answer
182 important questions regarding biomolecule structure and separation material function.

183 Single-molecule FRET studies show promise in answering fundamental science questions like
184 those posed in the National Academies Press report. Studies of model proteins at polymer brush
185 and silica interfaces with single-molecule FRET have shown that proteins diffuse and search in a
186 folded state before unfolding and adsorbing at distinct surface sites for longer times.^{38,39} Taking
187 inspiration from these works, single-molecule FRET applied to separations could answer questions
188 such as: Does the stationary phase disrupt the structure of the analyte causing it to unfold? How
189 does the folded structure of the analyte correlate to its residence adsorption time at the surface?
190 Does the analyte change structure, such as refolding, immediately before desorbing?

191 ALEX can allow for direct imaging of the arrangement of both the heterogeneous stationary
192 phase and of unbound analyte dynamics, providing stoichiometric information beyond the usual

193 applications of single-molecule FRET.⁴⁰ In ALEX, an excitation scheme that alternates direct
194 excitation of the donor fluorophore with direct excitation of the acceptor fluorophore at rates of
195 10-100's of kHz is used. FRET labels could be placed on separate molecules, such as tagging the
196 ligand with an "acceptor" fluorophore and the analyte with the "donor" dye label (or vice versa).
197 The fluorescently-labeled analytes and ligands can then be sorted based on the number and type
198 of fluorophores detected using ALEX. Three types of information can be determined by ALEX:
199 1) the number of and spatial distribution of acceptor-labeled ligands observed with direct acceptor
200 excitation; 2) the number of adsorbed analytes and the distance between the analyte and ligands as
201 indicated by FRET acceptor emission with donor excitation; and 3) the number of analytes and
202 their non-specific adsorption dynamics with direct donor excitation of the donor-labeled analyte.

203 Finally, multicolored single-molecule spectroscopy could determine the mechanism of
204 competitive interactions in separations by placing dye labels on two separate analytes. Due to the
205 focus on fundamental interfacial processes in separations, previous single-molecule reports have
206 focused on the dynamics of a single type of analyte. Yet, if an analyte is already isolated, a
207 separation would not be needed! In reality, all separations are performed in a complex environment
208 with multiple analytes competing for adsorption sites. While we have previously studied a
209 multicomponent sample, only one analyte was labeled, requiring the dynamics of the other
210 unlabeled analyte to be inferred.⁴¹ If labels were placed on each analyte in future work, their
211 dynamics could be directly imaged to answer questions such as: Are some binding sites preferred
212 by one analyte compared to the other? How do the kinetics differ at the same binding site with
213 different analytes? Can one analyte displace the other? Studying more complex, multicomponent
214 (>2) samples closer to real column conditions should be pursued.

215 *Three-dimensional imaging to understand realistic mass-transfer dynamics:*

216 Three-dimensional single-molecule imaging could resolve mass-transfer dynamics of analytes
217 through separation materials in a new axial dimension: the z-position of a molecule (**Figure 3B**).
218 Local, nanoscale differences in concentrations based on heterogeneous pore size, surface
219 chemistry, and confinement effects drive the function of separation materials. Single-molecule
220 tracking of diffusion and localization of adsorption in separation materials has characterized local
221 differences in one- and two-dimensions,^{7,26,42,43} but chromatography columns and membranes are
222 three-dimensional on larger scales: chromatographic beads with diameters of 1-10's μm or
223 polymeric membranes \sim 100 μm thick.

224 Three-dimensional single-molecule imaging is achieved through hardware modifications to
225 typical single-molecule microscopy setups. Introduction of an optical astigmatism encodes the
226 axial position of individual molecules in the orientation of the abberated emission pattern.¹⁴ More
227 advanced setups using phase masks in the Fourier domain produce engineered point spread
228 functions such as double-helix (**Figure 3B**),⁴⁴ tetrapod,⁴⁵ tri-spot,⁴⁶ and stretching-lobe,³⁶ patterns
229 that can determine three-dimensional molecular position at high precisions of \sim 10's of nm through
230 up to 20 μm thick samples.⁴⁷ Alternatively, hardware changes with light sheet excitation⁴⁸ or
231 detection with multiplane collection geometries⁴⁹ using multiple detectors placed at different focal
232 planes can image distinct axial locations in the sample.

233 If applied to separation science, three-dimensional single-molecule microscopy could resolve
234 the local fluid mechanics through three-dimensional stationary phase materials, informing the
235 relationship between nanoscale separation, material structure, and actual function.⁵⁰⁻⁵²
236 Characterizing intraparticle diffusion in three dimensions informs the relationship between
237 stationary phase structure and mass transfer resistance, a driving force of analyte separation and
238 source for elution profile artifacts.^{53,54} Increasing the yield and reliability of molecular separations

239 require proper characterization of the mass transfer resistance process and its control in three
240 dimensions. Recent studies of protein interactions on stimuli-responsive porous polymers have
241 demonstrated the dominance of confined diffusion of proteins on porous structures and the ability
242 to actively control molecular desorption processes at a single-molecule level.⁵⁵ Three-dimensional
243 tracking⁵⁶ combined with super-resolution diffusion imaging⁵⁷ could be implemented to
244 understand the relative distribution of adsorption/desorption and anomalous diffusion through
245 active porous materials and measure the effect on mass transfer resistance. Controlling the
246 physicochemistry of the porous stationary phase will increase the macroscale efficiency of
247 molecular separations.

248 *Expanding temporal resolutions to both shorter and longer times:*

249 New capabilities in hardware and analysis of single-molecule techniques will advance the
250 temporal capabilities of analyzing individual molecules in separations (**Figure 3C**). Molecular
251 dynamics monitored using single-molecule fluorescence imaging are conventionally observed
252 from 10's of milliseconds to minute time scales. This temporal range has monitored diffusion over
253 micron distances and adsorption kinetics,⁵⁸ but fails to resolve faster dynamics such as
254 conformational changes, intermediate formation, and electron transfer reactions, along with longer
255 dynamics such as fouling, degradation, formation of defects and unwanted products, and aging of
256 stationary phases.¹² Therefore, expanding the temporal capabilities of single-molecule
257 fluorescence microscopy to both shorter and longer scales should be pursued.

258 Faster time scales can be achieved by applying recent hardware advancements to separation
259 samples. Newer camera technology with back illuminated scientific CMOS can detect single-
260 molecules at a frame rate of ~80 Hz with better detection quantum yields than EMCCD detectors.
261 We have also improved the temporal resolution of single-molecule measurements below the

262 integration time of the camera, achieving “super temporal-resolved microscopy (STReM)” by
263 using a rotating phase mask (**Figure 3C**).⁵⁹ Traditionally, processes occurring faster than the
264 collection time of an individual frame are integrated and appear as identical emission patterns. In
265 STReM, a double-helix phase mask is rotated at a rate that is synchronized to have a 180 degree
266 rotation during the integration time of an individual frame so that the orientation and arc shape of
267 a double-helix point spread function in the image indicates the arrival time, residence time, and
268 desorption time of the molecule. STReM achieved improvements in temporal resolution by a factor
269 of 20, from 100 to 5 milliseconds. Further integrating stroboscopic illumination⁶⁰ or pump-probe
270 techniques with single-molecule fluorescence microscopy could access millisecond to sub-
271 millisecond processes in reactions. Faster time scales are currently not accessible even with state-
272 of-the art techniques. However, single-molecule methods are ideal for identifying rare events (on
273 the order of millisecond or sub-millisecond) occurring on the adsorbent surfaces during analyte
274 separations, which are the source for kinetic tailing.⁶¹ Quantifying these rare event populations and
275 the respective time constants are crucial for specifically designed stationary phases for optimal
276 separations.

277 Longer time scale studies can understand the temporal changes that occur during the lifetime
278 of industrially-relevant separation materials. The National Academies Press report identified
279 understanding the robustness of separation materials over time as one of two major themes to
280 pursue in the future research agenda of separation science.¹² Separation materials are used on a
281 temporal scale ranging from days to even months or years. Over that time, hydrolysis, fouling, and
282 aggregation can irreversibly change the chemical and physical properties of stationary phases. In
283 microscopy, measuring longer time scales presents challenges with sample drift and data storage,
284 but super-resolution measurements with ~14 hour collection times at 2 Hz frame rates have been

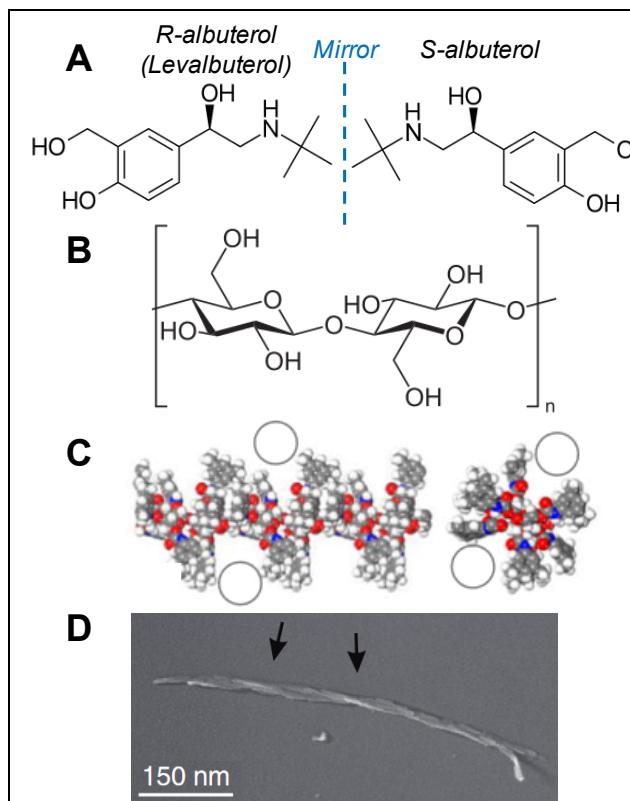
285 previously demonstrated.⁶² Long collection time measurements require accurate compensation for
286 microscope stage-drift and can be achieved by a feedback control system with fiducial markers.^{63,64}
287 Possible observations could include fluctuations in the local activity of adsorption sites due to
288 blocking or desorption of analytes or fouling agents. Studying materials that have been used
289 realistically or have undergone accelerated aging will increase the relevance of the stationary
290 phases studied. Measurements at hour- or day-long time scales could quantify aging, fouling, and
291 passivation that take place over the lifetime of the use of separation materials.

292

293 **STUDYING COMPLEX SINGLE-MOLECULE SAMPLES MORE RELEVANT TO**
294 **REALISTIC, INDUSTRIAL INTERESTS**

295 Future single-molecule work in separations should continue to advance the complexity of
296 samples. Many of the single-molecule spectroscopic studies of chromatographic interfaces have
297 focused on model systems: materials simplified to a few components to better match ideal
298 behavior, but that are far from the conditions for their intended use. Similar to how the single-
299 molecule biophysics community studies living cells in their natural complexity,⁶⁵ more
300 industrially-realistic, multicomponent separation systems should be studied in the future.
301 Increasing complexity will present new experimental challenges in preparing samples with low
302 enough background for single-molecule detection, but realistic systems will speed development of
303 predictive models for analyte-stationary phase interactions. Observations at the single-molecule
304 scale will resolve rare phenomena that drive macroscale engineering problems, refining
305 commercial applications through reduction of optimization time and increase in retained product.
306 As stated in the National Academies Press report, “[t]he ability to understand and design separation

307 systems for complex mixtures under various realistic conditions will be a turning point for the
308 separations community and is a key to transforming separation science.”¹²


309 Modeling and measuring realistic stationary and mobile phases at higher concentrations of
310 analytes is crucial to understanding the driving forces of separation and harnessing those forces
311 for optimal separation system design. Prior single-molecule studies^{17,18,21,22,24} used very low (pM-
312 nM) concentrations of labeled analytes in pristine solutions comprised of ultrapure solvents and
313 buffer salts. While this is beneficial for studying fundamental interactions, separations occur in
314 multicomponent mixtures with different species ranging from highly dilute to very concentrated
315 over the course of a column. Imaging an analyte in the presence of cellular lysate (100’s of mg/mL
316 or ~ mM concentrations of macromolecules)⁶⁶ would present a challenging, complex mobile phase
317 relevant to biologic pharmaceuticals produced by recombinant-expression. Frequently-used
318 organic mobile phases, such as acetonitrile or methanol, could be used as more dyes compatible
319 with organic solvents are developed.⁶⁷ Microfluidics and solvent mixing could be incorporated to
320 monitor dynamics that occur during gradient elutions. Higher concentrations of analytes could be
321 studied by mixing labeled and unlabeled molecules^{41,68} or utilizing unique sample hardware
322 geometries that limit the excitation to a small volume.^{69,70} High concentration samples could
323 observe thermodynamic tailing caused by overloading, in addition to the established studies of
324 kinetic tailing at low concentrations.⁶¹ Further complex conditions include incorporating high
325 pressures,⁷¹ temperatures, and oxidative/corrosive chemicals that are used in more extreme
326 separations such as (ultra) high-performance liquid chromatography.

327

328 **CHIRAL CHROMATOGRAPHY – EXPANDING THE TYPES OF SEPARATIONS**
329 **STUDIED AT THE SINGLE-MOLECULE LEVEL**

330 Among the types of separations that could benefit from a single-analyte understanding is chiral
331 chromatography. Chiral chromatography is challenging due to the identical size, surface charge,
332 and hydrophobicity of the enantiomers being separated (**Figure 4A**). The difference in enantiomer
333 efficacy can lead to drastically different drug prices for racemic mixtures vs. enantiomerically-
334 pure drugs. For example, the enantiopure asthma inhaler treatment levalbuterol costs five times
335 more than its racemic mixture albuterol (**Figure 4A**).⁷⁴ Improving the time and material cost to
336 separate enantiomers could reduce the expenses of producing bioactive drugs.

337 Single-molecule spectroscopy is suited to identify the molecular recognition mechanisms in
338 chiral chromatography. At the molecular level, chiral chromatography relies on multimodal
339 recognition between the analyte and stationary phase in a geometrically-dependent “three-point
340 interaction model”⁷⁵ in the simplest description. The formation of transient diastereomeric
341 complexes is driven by a combination of non-covalent hydrogen bonds, ionic, ion-dipole, dipole-

Figure 4. Chiral chromatography separates enantiomers with cellulose stationary phases. (A) Example of a commercial chiral drug, albuterol, used for treatment of asthma. The enantiopure sample of R-albuterol costs five times as much as the racemic mixture. (B-D) Chirality is present at different length scales in cellulose stationary phases. (B) Dimer structure of cellulose monomer. (C) Views of cellulose tris(3,5-dimethylphenylcarbamate) chain (left) perpendicular to the chain axis and (right) top-down the chain axis where circles indicate position of chiral grooves. Adapted with permission from ref.⁷². Copyright 2012 Wiley Online Library. (D) Cellulose chains self-assemble into nano-, micro- and even macrofibers that have chiral properties. Cryo-SEM image of nanocellulose fibrils where arrows indicate observed contrast indicative of a right-hand twist. Adapted with permission from ref⁷³. Copyright 2015 Nature Publishing Group.

342 dipole, van der Waals, or π - π interactions. The three-dimensional spatial arrangement of one
343 enantiomer will only allow for these multiple interactions to line up for an “ideal fit” with the
344 stationary phase. Single-molecule imaging of achiral dyes conjugated to chiral molecules could
345 quantify the different adsorption kinetics that occur with ideal and non-ideal fits and answer open
346 questions such as: Do both enantiomers have kinetic heterogeneity present when the wrong steric
347 fit occurs and only one or two of the required three-points are formed? Using a point spread
348 function that changes based on the orientation of a molecule (**Figure 3B**), does the rotation or
349 conformational adaptation of the analyte take place to form the desired geometric arrangement?
350 Do non-stereoselective adsorption sites exist?⁷⁶ How many are there, where are they located at,
351 and how do the kinetics of non-stereoselective sites contribute? By monitoring $>10^5$ individual
352 interactions, what is the percent contribution of the different ideal, non-ideal, and non-
353 stereoselective kinetic populations? Can both ideal and non-ideal adsorption kinetics be observed
354 for an enantiopure analyte that is studied under conditions that cause interconversion?⁷⁷

355 Single-molecule spectroscopy could quantify the heterogeneous nano- to microscale lengths
356 relevant to the stationary phase in chiral chromatography. Commonly used cellulose-based
357 stationary phases contain chirality on hierachal length scales: from the Angstrom-level of
358 individual monomer cellulose sugars (**Figure 4B**) to the polymerization of chiral chains (**Figure**
359 **4C**) and finally the self-assembly of chains into supramolecular chiral fibrils on nano-, micro-, and
360 even macro-length scales (**Figure 4D**). Previous work on the molecular recognition mechanisms
361 of cellulose stationary phases have focused on the individual cellulose unit and its chemical
362 functionalization.⁷² But longer-length scale chirality could also play a role, especially in the
363 separation of biomolecules.⁷⁸ Super-resolution imaging could spatially resolve which chiral length
364 scale is important based on the distances between adsorption sites. Further, derivatives of cellulose

365 have been observed in ensemble studies to have reduced separation resolutions due to hypothesized
366 heterogeneous chemical substitution and poor ordering of the supramolecular cellulose
367 structure.^{79,80} Single-molecule imaging could directly visualize if certain areas of the cellulose are
368 inactive due to heterogeneity in ligand functionalization or crystallinity.

369

370 **CONCLUSIONS – AN INVITATION TO JOIN THE MOLECULAR SEPARATIONS**

371 **SCIENCE COMMUNITY**

372 In conclusion, we show that single-molecule and super-resolution microscopy methods
373 provide new and exciting ways to characterize the fundamental properties of analyte-stationary
374 phase interactions in the context of liquid separations. Bottom-up, single-molecule studies of
375 interactions in complex environments addresses central themes in the National Academies Press
376 report¹² on the future of separation science. The methods highlighted here present new avenues for
377 detecting rare interactions that stymie better separations. Overall, we hope the technologies and
378 open questions presented in this perspective inspire new directions and exchange of ideas between
379 those in the broad field of separation science (analytical chemists, spectroscopists, chemical
380 engineers, computational/theorists, *etc.*). Only then will we achieve the molecular understanding
381 needed to drive improvements in the performance of separation processes.

382

383 **ACKNOWLEDGEMENTS**

384 W.C. and L.K. thank the Case Western Reserve University College of Arts and Sciences for
385 financial support. C.D., A.M., and C.F.L. thank the National Science Foundation (Grant no. CHE-
386 1808382) and the Welch Foundation (Grant no. C-1787), L.D.C.B. acknowledges that this material
387 is based upon work supported by the National Science Foundation Graduate Research Fellowship
388 Program (Grant 1842494). We also thank Prof. Christine Duval for helpful discussion.

389 **REFERENCES**

390 (1) Szente, L.; Szemán, J. Cyclodextrins in Analytical Chemistry: Host–Guest Type Molecular
391 Recognition. *Anal. Chem.* **2013**, *85*, 8024–8030.

392 (2) Skvortsova, Y. A.; Freeney, R. M.; Zhong, Z.; Geng, M. L. Tissue Phantoms Constructed with
393 Hydrophobic Nanoporous Silica Particles. *Anal. Chem.* **2010**, *82*, 6712–6716.

394 (3) Avorn, J. The \$2.6 Billion Pill - Methodologic and Policy Considerations. *N. Engl. J. Med.* **2015**,
395 *372*, 1877–1879.

396 (4) Bishop, L. D. C.; Landes, C. F. From a Protein’s Perspective: Elution at the Single-Molecule Level.
397 *Acc. Chem. Res.* **2018**, *51*, 2247–2254.

398 (5) Moringo, N. A.; Shen, H.; Bishop, L. D. C.; Wang, W.; Landes, C. F. Enhancing Analytical
399 Separations Using Super-Resolution Microscopy. *Annu. Rev. Phys. Chem.* *Annu. Rev. Phys. Chem.*
400 **2018**, *69*, 353–375.

401 (6) Kisley, L. Single Molecule Spectroscopy at Interfaces. In *Spectroscopy and Dynamics of Single*
402 *Molecules*; Elsevier, 2019; pp 117–161.

403 (7) Higgins, D. A.; Park, S. C.; Tran-Ba, K.-H.; Ito, T. Single-Molecule Investigations of Morphology
404 and Mass Transport Dynamics in Nanostructured Materials. *Annu. Rev. Anal. Chem.* **2015**, *8*, 193–
405 216.

406 (8) Rekoske, J. E. Chiral Separations. *AIChE J.* **2001**, *47*, 2–5.

407 (9) Florek, J.; Giret, S.; Juère, E.; Larivière, D.; Kleitz, F. Functionalization of Mesoporous Materials
408 for Lanthanide and Actinide Extraction. *Dalton Transactions*. Royal Society of Chemistry
409 September 27, 2016, pp 14832–14854.

410 (10) Bond, A. H.; Rogers, R. D.; Dietz, M. L. Nuclear Separations for Radiopharmacy: The Need for
411 Improved Separations to Meet Future Research and Clinical Demands. *Ind. Eng. Chem. Res.* **2000**,
412 *39*, 3130–3134.

413 (11) Yu, M.; Renner, J. N.; Duval, C. E. A Lysine-Modified Polyethersulfone (PES) Membrane for the
414 Recovery of Lanthanides. *Front. Chem.* **2020**, *8*, 512.

415 (12) National Academies of Sciences, E. and M. *A Research Agenda for Transforming Separation*
416 *Science*; National Academies Press: Washington, D.C., 2019.

417 (13) Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.;
418 Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F. Imaging Intracellular Fluorescent Proteins at
419 Nanometer Resolution. *Science* **2006**, *313*, 1642–1645.

420 (14) Huang, B.; Wang, W.; Bates, M.; Zhuang, X. Three-Dimensional Super-Resolution Imaging by
421 Stochastic Optical Reconstruction Microscopy. *Science* **2008**, *319*, 810–813.

422 (15) Dertinger, T.; Colyer, R.; Iyer, G.; Weiss, S.; Enderlein, J. Fast, Background-Free, 3D Super-
423 Resolution Optical Fluctuation Imaging (SOFI). *Proc. Natl. Acad. Sci.* **2009**, *106*, 22287–22292.

424 (16) Hell, S. W.; Wichmann, J. Breaking the Diffraction Resolution Limit by Stimulated Emission:
425 Stimulated-Emission-Depletion Fluorescence Microscopy. *Opt. Lett.* **1994**, *19*, 780–782.

426 (17) Kisley, L.; Landes, C. F. Molecular Approaches to Chromatography Using Single Molecule
427 Spectroscopy. *Anal. Chem.* **2015**, *87*, 83–98.

428 (18) Wirth, M. J.; Legg, M. A. Single-Molecule Probing of Adsorption and Diffusion on Silica Surfaces.
429 *Annu. Rev. Phys. Chem.* **2007**, *58*, 489–510.

430 (19) Kang, S. H.; Shortreed, M. R.; Yeung, E. S. Real-Time Dynamics of Single-DNA Molecules
431 Undergoing Adsorption and Desorption at Liquid–Solid Interfaces. *Anal. Chem.* **2001**, *73*, 1091–
432 1099.

433 (20) Zhong, Z.; Lowry, M.; Wang, G.; Geng, L. Probing Strong Adsorption of Solute onto C18-Silica
434 Gel by Fluorescence Correlation Imaging and Single-Molecule Spectroscopy under RPLC
435 Conditions. *Anal. Chem.* **2005**, *77*, 2303–2310.

436 (21) Cooper, J. T.; Peterson, E. M.; Harris, J. M. Fluorescence Imaging of Single-Molecule Retention
437 Trajectories in Reversed-Phase Chromatographic Particles. *Anal. Chem.* **2013**, *85*, 9363–9370.

438 (22) Mabry, J. N.; Skaug, M. J.; Schwartz, D. K. Single-Molecule Insights into Retention at a Reversed-

439 Phase Chromatographic Interface. *Anal. Chem.* **2014**, *86*, 9451–9458.

440 (23) Xu, X.-H. N.; Yeung, E. S. Long-Range Electrostatic Trapping of Single-Protein Molecules at a
441 Liquid-Solid Interface. *Science* **1998**, *281*, 1650–1653.

442 (24) Kang, S. H.; Yeung, E. S. Dynamics of Single-Protein Molecules at a Liquid/Solid Interface:
443 Implications in Capillary Electrophoresis and Chromatography. *Anal. Chem.* **2002**, *74*, 6334–6339.

444 (25) Isailovic, S.; Li, H.-W.; Yeung, E. S. Adsorption of Single DNA Molecules at the Water/Fused-
445 Silica Interface. *J. Chromatogr. A* **2007**, *1150*, 259–266.

446 (26) Kisley, L.; Poongavanam, M.-V.; Kourentzi, K.; Willson, R. C.; Landes, C. F. PH-Dependence of
447 Single-Protein Adsorption and Diffusion at a Liquid Chromatographic Interface. *J. Sep. Sci.* **2016**,
448 *39*, 682–688.

449 (27) Kisley, L.; Chen, J.; Mansur, A. P.; Shuang, B.; Kourentzi, K.; Poongavanam, M.-V.; Chen, W.-H.;
450 Dhamane, S.; Willson, R. C.; Landes, C. F. Unified Superresolution Experiments and Stochastic
451 Theory Provide Mechanistic Insight into Protein Ion-Exchange Adsorptive Separations. *Proc. Natl.
452 Acad. Sci. U. S. A.* **2014**, *111*, 2075–2080.

453 (28) Kisley, L.; Chen, J.; Mansur, A. P.; Dominguez-Medina, S.; Kulla, E.; Kang, M. K.; Shuang, B.;
454 Kourentzi, K.; Poongavanam, M. V.; Dhamane, S.; Willson, R. C.; Landes, C. F. High Ionic Strength
455 Narrows the Population of Sites Participating in Protein Ion-Exchange Adsorption: A Single-
456 Molecule Study. *J. Chromatogr. A* **2014**, *1343*, 135–142.

457 (29) Daniels, C. R.; Kisley, L.; Kim, H.; Chen, W.-H.; Poongavanam, M.-V.; Reznik, C.; Kourentzi, K.;
458 Willson, R. C.; Landes, C. F. Fluorescence Correlation Spectroscopy Study of Protein Transport
459 and Dynamic Interactions with Clustered-Charge Peptide Adsorbents. *J. Mol. Recognit.* **2012**, *25*,
460 435–442.

461 (30) Cai, Y.; Schwartz, D. K. Mapping the Functional Tortuosity and Spatiotemporal Heterogeneity of
462 Porous Polymer Membranes with Super-Resolution Nanoparticle Tracking. *ACS Appl. Mater.
463 Interfaces* **2017**, *9*, 43258–43266.

464 (31) Langdon, B. B.; Kastantin, M.; Schwartz, D. K. Surface Chemistry Influences Interfacial Fibrinogen
465 Self-Association. *Biomacromolecules* **2015**, *16*, 3201–3208.

466 (32) Moringo, N. A.; Bishop, L. D. C.; Shen, H.; Misiura, A.; Carrejo, N. C.; Baiyasi, R.; Wang, W.; Ye,
467 F.; Robinson, J. T.; Landes, C. F. A Mechanistic Examination of Salting out in Protein-Polymer
468 Membrane Interactions. *Proc. Natl. Acad. Sci. U. S. A.* **2019**, *116*, 22938–22945.

469 (33) Bishop, L. D. C.; Misiura, A.; Moringo, N. A.; Landes, C. F. Unraveling Peak Asymmetry in
470 Chromatography through Stochastic Theory Powered Monte Carlo Simulations. *J. Chromatogr. A*
471 **2020**, *1625*, 461323.

472 (34) Moringo, N. A.; Shen, H.; Tauzin, L. J.; Wang, W.; Landes, C. F. Polymer Free Volume Effects on
473 Protein Dynamics in Polystyrene Revealed by Single-Molecule Spectroscopy. *Langmuir* **2020**, *36*,
474 2330–2338.

475 (35) Ma, H.; Liu, Y. Super-Resolution Localization Microscopy: Toward High Throughput, High
476 Quality, and Low Cost. *APL Photonics* **2020**, *5*, 060902.

477 (36) Wang, W.; Ye, F.; Shen, H.; Moringo, N. A.; Dutta, C.; Robinson, J. T.; Landes, C. F. Generalized
478 Method to Design Phase Masks for 3D Super-Resolution Microscopy. *Opt. Express* **2019**, *27*, 3799.

479 (37) Wang, W.; Shen, H.; Moringo, N. A.; Carrejo, N. C.; Ye, F.; Robinson, J. T.; Landes, C. F. Super-
480 Temporal Resolved Microscopy Reveals Multistep Desorption Kinetics of α -Lactalbumin from
481 Nylon. *Langmuir* **2018**, *34*, 6697–6702.

482 (38) Weltz, J. S.; Schwartz, D. K.; Kaar, J. L. Surface-Mediated Protein Unfolding as a Search Process
483 for Denaturing Sites. *ACS Nano* **2016**, *10*, 730–738.

484 (39) Faulón Marruecos, D.; Schwartz, D. K.; Kaar, J. L. Impact of Surface Interactions on Protein
485 Conformation. *Curr. Opin. Colloid Interface Sci.* **2018**, *38*, 45–55.

486 (40) Kapanidis, A. N.; Laurence, T. A.; Lee, N. K.; Margeat, E.; Kong, X.; Weiss, S. Alternating-Laser
487 Excitation of Single Molecules. *Acc. Chem. Res.* **2005**, *38*, 523–533.

488 (41) Kisley, L.; Patil, U.; Dhamane, S.; Kourentzi, K.; Tauzin, L. J.; Willson, R. C.; Landes, C. F.
489 Competitive Multicomponent Anion Exchange Adsorption of Proteins at the Single Molecule Level.

Analyst **2017**, *142*, 3127–3131.

(42) Langdon, B. B.; Mirhossaini, R. B.; Mabry, J. N.; Sriram, I.; Lajmi, A.; Zhang, Y.; Rojas, O. J.; Schwartz, D. K. Single-Molecule Resolution of Protein Dynamics on Polymeric Membrane Surfaces: The Roles of Spatial and Population Heterogeneity. *ACS Appl. Mater. Interfaces* **2015**, *7*, 3607–3617.

(43) Robben, K. C.; Tran-Ba, K. H.; Ito, T.; Higgins, D. A. Trajectory-Profile-Guided Single Molecule Tracking for Assignment of One-Dimensional Diffusion Trajectories. *Anal. Chem.* **2014**, *86*, 10820–10827.

(44) Thompson, M. A.; Lew, M. D.; Badieirostami, M.; Moerner, W. E. Localizing and Tracking Single Nanoscale Emitters in Three Dimensions with High Spatiotemporal Resolution Using a Double-Helix Point Spread Function. *Nano Lett.* **2009**, *10*, 211–218.

(45) Shechtman, Y.; Sahl, S. J.; Backer, A. S.; Moerner, W. E. Optimal Point Spread Function Design for 3D Imaging. *Phys. Rev. Lett.* **2014**, *113*, 133902.

(46) Zhang, O.; Lu, J.; Ding, T.; Lew, M. D. Imaging the Three-Dimensional Orientation and Rotational Mobility of Fluorescent Emitters Using the Tri-Spot Point Spread Function. *Appl. Phys. Lett.* **2018**, *113*, 031103.

(47) Shechtman, Y.; Weiss, L. E.; Backer, A. S.; Sahl, S. J.; Moerner, W. E. Precise Three-Dimensional Scan-Free Multiple-Particle Tracking over Large Axial Ranges with Tetrapod Point Spread Functions. *Nano Lett.* **2015**, *15*, 4194–4199.

(48) Tokunaga, M.; Imamoto, N.; Sakata-Sogawa, K. Highly Inclined Thin Illumination Enables Clear Single-Molecule Imaging in Cells. *Nat. Methods* **2008**, *5*, 159–161.

(49) Ram, S.; Kim, D.; Ober, R. J.; Ward, E. S. 3D Single Molecule Tracking with Multifocal Plane Microscopy Reveals Rapid Intercellular Transferrin Transport at Epithelial Cell Barriers. *Biophys. J.* **2012**, *103*, 1594–1603.

(50) Hlushkou, D.; Gritti, F.; Daneyko, A.; Guiochon, G.; Tallarek, U. How Microscopic Characteristics of the Adsorption Kinetics Impact Macroscale Transport in Chromatographic Beds. *J. Phys. Chem. C* **2013**, *117*, 22974–22985.

(51) Hlushkou, D.; Gritti, F.; Guiochon, G.; Seidel-Morgenstern, A.; Tallarek, U. Effect of Adsorption on Solute Dispersion: A Microscopic Stochastic Approach. *Anal. Chem.* **2014**, *86*, 4463–4470.

(52) Gritti, F.; Hochstrasser, J.; Svidrytski, A.; Hlushkou, D.; Tallarek, U. Morphology-Transport Relationships in Liquid Chromatography: Application to Method Development in Size Exclusion Chromatography. *J. Chromatogr. A* **2020**, *1620*, 460991.

(53) Van Deemter, J. J.; Zuideweg, F. J.; Klinkenberg, A. van. Longitudinal Diffusion and Resistance to Mass Transfer as Causes of Nonideality in Chromatography. *Chem. Eng. Sci.* **1956**, *5*, 271–289.

(54) Giddings, J. C. *Unified Separation Science*; Wiley: New York, 1991.

(55) Dutta, C.; Bishop, L. D. C.; Zepeda O, J.; Chatterjee, S.; Flatebo, C.; Landes, C. F. Imaging Switchable Protein Interactions with an Active Porous Polymer Support. *J. Phys. Chem. B* **2020**, *124*, 4412–4420.

(56) Zhong, Y.; Wang, G. Three-Dimensional Single Particle Tracking and Its Applications in Confined Environments. *Annu. Rev. Anal. Chem.* **2020**, *13*, 381–403.

(57) Kisley, L.; Brunetti, R.; Tauzin, L. J.; Shuang, B.; Yi, X.; Kirkeminde, A. W.; Higgins, D. A.; Weiss, S.; Landes, C. F. Characterization of Porous Materials by Fluorescence Correlation Spectroscopy Super-Resolution Optical Fluctuation Imaging. *ACS Nano* **2015**, *9*, 9158–9166.

(58) Armstrong, M.; Hess, H.; Tsitkov, S. Statistical Inference in Single Molecule Measurements of Protein Adsorption. In *Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XV*; Cartwright, A. N., Nicolau, D. V., Fixler, D., Eds.; SPIE, 2018; Vol. 10506, p 46.

(59) Wang, W.; Shen, H.; Shuang, B.; Hoener, B. S.; Tauzin, L. J.; Moringo, N. A.; Kelly, K. F.; Landes, C. F. Super Temporal-Resolved Microscopy (STReM). *J. Phys. Chem. Lett.* **2016**, *7*, 4524–4529.

(60) Xiang, L.; Chen, K.; Yan, R.; Li, W.; Xu, K. Single-Molecule Displacement Mapping Unveils Nanoscale Heterogeneities in Intracellular Diffusivity. *Nat. Methods* **2020**, *17*, 524–530.

(61) Giddings, J. C. Kinetic Origin of Tailing in Chromatography. *Anal. Chem.* **1963**, *35*, 1999–2002.

541 (62) Dai, M.; Jungmann, R.; Yin, P. Optical Imaging of Individual Biomolecules in Densely Packed
542 Clusters. *Nat. Nanotechnol.* **2016**, *11*, 798–807.

543 (63) Pertsinidis, A.; Zhang, Y.; Chu, S. Subnanometre Single-Molecule Localization, Registration and
544 Distance Measurements. *Nature* **2010**, *466*, 647–651.

545 (64) Gustavsson, A. K.; Petrov, P. N.; Lee, M. Y.; Shechtman, Y.; Moerner, W. E. 3D Single-Molecule
546 Super-Resolution Microscopy with a Tilted Light Sheet. *Nat. Commun.* **2018**, *9*, 1–8.

547 (65) Lord, S. J.; Lee, H. D.; Moerner, W. E. Single-Molecule Spectroscopy and Imaging of Biomolecules
548 in Living Cells. *Anal. Chem.* **2010**, *82*, 2192–2203.

549 (66) Davis, C. M.; Deutsch, J.; Gruebele, M. An in Vitro Mimic of In-cell Solvation for Protein Folding
550 Studies. *Protein Sci.* **2020**, *29*, 1046–1054.

551 (67) Aloi, A.; Vargas Jentzsch, A.; Vilanova, N.; Albertazzi, L.; Meijer, E. W.; Voets, I. K. Imaging
552 Nanostructures by Single-Molecule Localization Microscopy in Organic Solvents. *J. Am. Chem.
553 Soc.* **2016**, *138*, 2953–2956.

554 (68) McUmber, A. C.; Larson, N. R.; Randolph, T. W.; Schwartz, D. K. Molecular Trajectories Provide
555 Signatures of Protein Clustering and Crowding at the Oil/Water Interface. *Langmuir* **2015**, *31*,
556 5882–5890.

557 (69) Crouch, G. M.; Han, D.; Bohn, P. W. Zero-Mode Waveguide Nanophotonic Structures for Single
558 Molecule Characterization. *J. Phys. D. Appl. Phys.* **2018**, *51*, 193001.

559 (70) Goldschen-Ohm, M. P.; White, D. S.; Klenchin, V. A.; Chanda, B.; Goldsmith, R. H. Observing
560 Single-Molecule Dynamics at Millimolar Concentrations. *Angew. Chemie Int. Ed.* **2017**, *56*, 2399–
561 2402.

562 (71) Sung, H.-L.; Nesbitt, D. J. DNA Hairpin Hybridization under Extreme Pressures: A Single-Molecule
563 FRET Study. *J. Phys. Chem. B* **2020**, *124*, 110–120.

564 (72) Kim, B.-H.; Lee, S. U.; Moon, D. C. Chiral Recognition of *N*-Phthaloyl, *N*-Tetrachlorophthaloyl,
565 and *N*-Naphthaloyl α -Amino Acids and Their Esters on Polysaccharide-Derived Chiral Stationary
566 Phases. *Chirality* **2012**, *24*, 1037–1046.

567 (73) Usov, I.; Nyström, G.; Adamcik, J.; Handschin, S.; Schütz, C.; Fall, A.; Bergström, L.; Mezzenga,
568 R. Understanding Nanocellulose Chirality and Structure–Properties Relationship at the Single Fibril
569 Level. *Nat. Commun.* **2015**, *6*, 7564.

570 (74) Asmus, M. J.; Hendeles, L. Levalbuterol Nebulizer Solution: Is It Worth Five Times the Cost of
571 Albuterol? *Pharmacotherapy* **2000**, *20*, 123–129.

572 (75) Lämmertofer, M. Chiral Recognition by Enantioselective Liquid Chromatography: Mechanisms
573 and Modern Chiral Stationary Phases. *J. Chromatogr. A* **2010**, *1217*, 814–856.

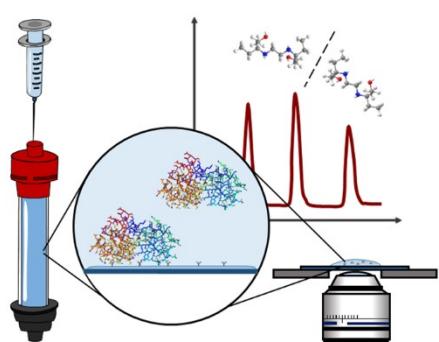
574 (76) Lang, J. C.; Armstrong, D. W. Chiral Surfaces: The Many Faces of Chiral Recognition. *Curr. Opin.
575 Colloid Interface Sci.* **2017**, *32*, 94–107.

576 (77) Sepsey, A.; Németh, D. R.; Németh, G.; Felinger, A. Rate Constant Determination of
577 Interconverting Enantiomers by Chiral Chromatography Using a Stochastic Model. *J. Chromatogr.
578 A* **2018**, *1564*, 155–162.

579 (78) Wallworth, D. Chiral Amino Acid and Peptide Separations – the Next Generation. *Chromatogr.
580 Today* **2016**, August/Sep, 44–47.

581 (79) Francotte, E.; Wolf, R. M. Benzoyl Cellulose Beads in the Pure Polymeric Form as a New Powerful
582 Sorbent for the Chromatographic Resolution of Racemates. *Chirality* **1991**, *3*, 43–55.

583 (80) Kasuya, N.; Nakashima, J.; Kubo, T.; Sawatari, A.; Habu, N. Chiral Discrimination with
584 Regioselectively Substituted Cellulose Esters as Chiral Stationary Phases. *Chirality* **2000**, *12*, 670–
585 674.


586

587

588 **FOR TABLE OF CONTENTS ONLY**

589

590

