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ABSTRACT 

Genomic DNA is chemically reactive and therefore susceptible to damage by many exogenous 

and endogenous sources. Lesions produced from these damaging events can have various 

mutagenic and genotoxic consequences. This Perspective follows the journey of one particular 

lesion, 1,N6-ethenoadenine (A), from its formation to replication, repair, and its role in 

cancerous tissues and inflammatory diseases. A is generated by reaction of adenine (A) with 

vinyl chloride or lipid peroxidation products. We present the miscoding properties of A with an 

emphasis on how bacterial and mammalian cells can process lesions differently, leading to varied 

mutational spectra. But with information from these assays, we can better understand how the 

miscoding properties of A lead to biological consequences and how genomic stability can be 

maintained via DNA repair mechanisms. We discuss how base excision repair (BER) and direct 

reversal repair (DRR) can minimize the biological consequences of A lesions. Kinetic parameters 

of glycosylases and AlkB family enzymes are described, along with a discussion of the relative 

contributions of the BER and DRR pathways in the repair of A. Because eukaryotic DNA is 
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packaged in chromatin, we also discuss the impact of this packaging on BER and DRR, specifically 

in regards to repair of A. Studying DNA lesions like A in this context, from origin to biological 

implications, can provide crucial information to better understand prevention of mutagenesis 

and cancer. 
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1. INTRODUCTION 
Genomic DNA is constantly subjected to endogenous and exogenous damaging agents, and the 

resulting damage can lead to a variety of consequences including mutagenesis, cancer, 

neurological disorders, autoimmune disease, and aging.1-3 Modified DNA nucleobases, referred 

to here as lesions, are formed by a variety of mechanisms with deamination, oxidation, and 

alkylation being especially prominent.4 For example, 1,N6-ethenoadenine (A, Figure 1), which is 

the focus of this Perspective, is generated by reaction of vinyl chloride (VC) or lipid peroxidation 

(LPO) products with adenine (A).5, 6 The lesion is so named because of two extra carbons attached 

to A in an exocyclic arrangement. Upon replication by a DNA polymerase, the A lesion is 

mutagenic in human cells resulting in primarily A→T transversions as well as A→G and A→C 

mutations.5, 7 These A-induced mutations have been shown to be associated with p53 mutation 

hotspots, cancerous tissues, and inflammatory diseases (Figure 1). 

Fortunately, cells have DNA repair processes such as base excision repair (BER) and direct 

reversal repair (DRR) to combat these lesions. BER involves the excision and replacement of the 

modified nucleobase through cleavage of the glycosidic bond by a glycosylase, followed by filling 

the resulting “hole” by downstream enzymes.8 BER works on a wide range of lesions created by 

deamination, oxidation, and alkylation, including A.9 The DRR pathway works on a much smaller 

subset of lesions, including some alkylated lesions, by directly converting the lesion to the 

canonical nucleobase, for example A to A.10, 11  

This Perspective outlines the mutagenic and genotoxic effects of A, as well as the DNA repair 

mechanisms capable of mitigating these effects at the cellular and organismal level. We also 
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consider the hierarchy of DNA packaging in human cells and how chromatin structure may affect 

these repair processes and biological consequences. 

 

Figure 1. Formation and consequences of the DNA lesion 1,N6-ethenoadenine (A). A is 

generated by the industrial pollutant vinyl chloride and lipid peroxidation byproducts associated 

with inflammation and metabolism. A can be repaired or replicated to cause mutations and 

biological consequences related to cancer. 

2. FORMATION OF A LESION 

The primary damaging agents responsible for formation of A are aldehyde byproducts of LPO 

and the industrial pollutant VC.12, 13 LPO is an oxidative stress response that generates byproducts 

known to cause DNA damage.12, 14 Endogenous reactive oxygen and nitrogen species (RONS) 

degrade phospholipids to create reactive aldehydes such as 4-hydroxy-2-nonenal (HNE) and 

malondialdehyde (MDA).15 These aldehyde byproducts of LPO react with DNA nucleobases to 
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generate lesions like A. Indeed, etheno DNA lesions have been shown to arise endogenously in 

both rodents and humans16, 17 and are efficiently induced in chronically inflamed human tissues.6   

VC is a known procarcinogen activated by cytochrome P450 to create the metabolites 

chloroethylene oxide (CEO) and chloroacetaldehyde (CAA).5, 13, 18 These metabolites react with 

DNA to form exocyclic etheno adducts like A.18 Etheno lesions have been identified in rodents 

and humans exposed to VC and its metabolites.6 Notably, VC has also been shown to cause 

tumors in individuals whose occupation results in chronic exposure.19 

The etheno ring of A interferes with formation of hydrogen bonds on its Watson-Crick face. 

NMR and molecular modeling of oligomer duplexes revealed that A does not hydrogen bond to 

T when both are in the anti conformation but, instead, the bases adopt a non-planar alignment.20 

However, in similar experiments hydrogen bonding was observed between an A:G base pair,21 

with A and G in syn and anti conformations, respectively. X-ray crystal structures of ternary 

complexes with a DNA polymerase and dATP or dGTP have shown that A remains in the 

preferred anti conformation while the incoming purine adopts a staggered orientation.22 These 

data provide a molecular basis for the mutational and genotoxic properties observed for A. 

A is also an inherently fluorescent molecule with a fluorescence maximum at 415 nm.23, 24 As 

a result, it has been used as a tool for determining nucleic acid structure,25, 26 dynamics of DNA 

binding and nucleotide flipping,27 and to monitor biochemical processes.28 

 

3. MUTATIONAL AND GENOTOXIC PROPERTIES OF ALKYLATED ADENINE 

The downstream effects of DNA lesions can be described in two ways. A lesion is genotoxic 

when it inhibits replication by blocking DNA polymerase activity. A lesion is mutagenic when 
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replication by a DNA polymerase occurs, but the base pairing is incorrect, meaning that the lesion 

is miscoding.  

3.1 Mutational and genotoxic properties of A in vitro 

In vitro replication assays have been crucial to our understanding of the molecular basis for A-

induced biological consequences. In fact, early studies with A were the first to show that a 

known human carcinogen, in this case VC, can form lesions that are miscoding during replication, 

linking molecular-level observations to cancer.26 In vitro assays examining replication of A by E. 

coli DNA polymerase I (Pol I) demonstrated its miscoding properties.26 Homopolymers of poly(dA) 

were exposed to CEO or CAA to generate templates for replication assays. Upon exposure to 

increasing concentrations of CEO or CAA, inhibition of and errors in DNA replication both 

increased. Specifically, replication of the etheno poly(dA) template was inhibited 100-fold. When 

replication did occur, A:G pairs increased by several hundred-fold compared to A:T.  

In other work, synthetically-prepared A templates as well as CAA-modified templates were 

used to examine replication of lesions by Pol I.29 Replication of the synthetic templates resulted 

in misincorporation of dGTP at a rate of 1 in 500 lesions.29 This rate of misincorporation is lower 

than reported previously26, suggesting the previously observed high levels of dGTP 

misincorporation were due to high concentrations of CAA exposure. Indeed, poly(dA) treated 

with CAA under conditions producing comparable levels of A as the synthesized template 

behaved in the same manner with a low level of misincorporation of dGTP observed.29 

Using extracts of HeLa cells, two-dimensional gel electrophoresis of a double-stranded M13 

bacteriophage genome containing a site-specifically incorporated A established that the lesion 

is genotoxic with significant inhibition of replication fork movement.30 A was weakly mutagenic 
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when replicated by human polymerases and induced all three base substitutions in 

approximately equal frequency.5, 7 The frequency of A→T mutations increased 5-fold in extracts 

of XPV cells, which lack the translesion DNA polymerase  (Pol ), suggesting that the replication-

blocking lesion A requires a Y-family polymerase for translesion synthesis.30 

Further studies probed the efficiency and fidelity of translesion synthesis of A by Pol ,22 which 

was reported to be 100-fold more active than Pol κ in replication past A.31  Steady-state kinetic 

analysis of nucleotide incorporation opposite A, and LC-MS/MS analysis of replication products, 

revealed that Pol  preferentially pairs dATP (3.7-fold) and dGTP (2.5-fold), instead of dTTP, with 

A.22  Additionally, -1 frameshifts were observed suggesting pairing of the newly incorporated 

purine and polymerase slippage before further replication. X-ray crystal structures of Pol η 

ternary complexes revealed incoming non-hydrolyzable dATP (dAMPNPP) or dGTP (dGMPNPP) 

analogs not paired with, but instead in a staggered configuration relative to A, thus opposite a 

5'-T in the template, explaining the propensity for the observed frameshifts.22 In these ternary 

complexes with Pol η the lesion remains in the preferred anti conformation and the incoming 

purine adopts a staggered orientation (Figure 2).  
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Figure 2. Crystal structure of ternary complex of Pol η (gray) with A lesion (red) and incoming 

dAMPNPP (blue) in a staggered configuration (PDB: 5DG8). 

3.2 Mutational and genotoxic properties of A in vivo 

To evaluate its mutagenic and genotoxic properties in vivo, A was site-specifically 

incorporated into the single-stranded genome of an M13 bacteriophage and transfected into E. 

coli.32 The lesion is genotoxic in E. coli reducing survivability by 65%. Mutation frequency was 

determined by exploiting the placement of A in an in-frame TAG amber codon. Wild-type phage 

would exhibit a light blue plaque color phenotype whereas any targeted mutation at the second 

base of the amber codon would restore the Lac+ phenotype and generate dark blue plaques on 

IPTG/X-gal containing medium. DNA sequencing analysis identified the specific type of mutations. 

Using these techniques, A was found to be very weakly mutagenic with only 0.1% of survivors 

exhibiting predominately A→G transition mutations. When a double-stranded version of the 

M13 genome was used in similar experiments, the genotoxicity and mutagenicity of A was 

eliminated, suggesting the presence of effective repair mechanisms in E.coli.32   

Over a decade later, other work used a similar single-stranded M13 bacteriophage genome 

with a site-specifically incorporated A. Lesion genotoxicity and mutagenicity were determined 

using the competitive replication of adduct bypass (CRAB)33 and restriction endonuclease and 

postlabeling (REAP)33 assays, respectively.10 A was found to be a nontoxic lesion when replicated 

in wild-type E. coli, having a level of bypass comparable to controls. In striking contrast, when the 

same viral genome was replicated in E. coli deficient in AlkB-mediated repair, the lesion revealed 

itself to be extremely toxic, as it was bypassed only ~5% as well as the control. This vast difference 

in lesion tolerance between wild-type and AlkB-deficient E. coli is suggestive of a role for AlkB in 
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mitigating lesion toxicity through repair of A (vide infra). Indeed, AlkB is now known to be an -

ketoglutarate/Fe(II)-dependent DRR enzyme responsible for repair of alkyl DNA lesions. Although 

toxicity can be partially overcome by SOS bypass polymerases,10 AlkB was identified as the main 

mechanism for avoiding εA-induced genotoxicity in the single-stranded bacteriophage genome. 

In terms of its miscoding potential, A was negligibly mutagenic (<0.5%) in wild-type E. coli,10 

consistent with other studies done in AlkB-proficient E. coli.7, 32, 34, 35 However, A was 35% 

mutagenic in AlkB-deficient cells, yielding 25% A→T, 5% A→G and 5% A→C mutations. 

In other work, using a single-stranded pMS2 shuttle vector, the genotoxicity and mutagenicity 

of A was compared in five strains of E.coli and simian kidney cells (COS7).35 The lesion was 

neither genotoxic nor mutagenic in the bacteria with only A:T base pairings observed. In 

contrast, when replicated in the mammalian cells, A caused a mutation frequency of 70% with 

predominantly A→G transitions, indicating that A:C base pairings are most common in these 

cells. These results are consistent with earlier reports using human cells with a shuttle plasmid 

modified with CAA, where A→G transitions were the most prominent among mutations 

observed at A:T base pairs.36 

Studies have also examined the replication of A in human cells. The lesion was incorporated at 

the second position of 5-CAA corresponding to codon 61 of the ras oncogene, in both single- and 

double-stranded pSBK vectors.7 When replicated in HeLa cells, A directs the misincorporation of 

dATP, leading to A→T transversions. These results are also consistent with others demonstrating 

A→T transversions in p53 and ras genes.19, 37 Similar to earlier work, A in the pSBK vectors was 

not miscoding when replicated in E. coli even in the presence of induced SOS functions,7 further 

highlighting the need for mutational assays in human cells. 4. REPAIR OF A 
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The BER and DRR pathways are responsible for the repair of A to A. As seen in Figure 3a, repair 

of A restores A:T base pairing. Both BER and DRR are described in detail below, followed by a 

discussion of the relative contributions of these two repair pathways in minimizing the 

genotoxicity and mutagenicity of A in bacterial and mammalian cells. 

4.1 BER of A 

A glycosylase is responsible for initiating BER by recognizing and excising the lesion via cleavage 

of the N-glycosidic bond, generating an apurinic/apyrimidic (AP) site (Figure 3b).8 AP 

Endonuclease 1 (APE1) incises the sugar-phosphate backbone creating a nick with 3-OH and 5-

deoxyribose phosphate (dRP) termini. Polymerase  (Pol ) then removes the dRP group and 

incorporates a dNTP. Finally, ligase seals the backbone nick to complete the repair. 
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Figure 3. Repair mechanisms for A. (A) Repair of A to A restores hydrogen bonding between an 

A:T base pair. (B) Mechanism of base excision repair (BER) of A initiated by the glycosylase AAG. 

(C) Mechanism of direct reversal repair (DRR) of A initiated by ALKBH2. The region of DNA 

altered in each step is shown in red. 

 

The E. coli AlkA glycosylase is part of the adaptive response that protects the bacterial genome 

against alkylation damage.38 In the early 1990s it was demonstrated that human and rodent cells 

also have DNA binding proteins that possess an A glycosylase activity, later identified as 

alkyladenine DNA glycosylase (AAG).39-41 AAG is the only mammalian glycosylase known to 

initiate BER on alkylated lesions including 7-methylguanine (7-meG), 3-methyladenine, and A.42-

44 (We wish to note that in the literature AAG is also referred to as N-methyl purine DNA 

glycosylase (MPG) and alkylpurine-DNA-N-glycosylase (APNG); in this Perspective we will use 

AAG). Our focus here will be on describing the activity of the human glycosylase AAG and the 

reader is referred to other sources regarding AlkA and its contributions to the adaptive response 

in bacteria.38, 45 

AAG works on double-stranded DNA to excise A via a base-flipping mechanism27, 43 but only 

requires contact with the lesion-containing strand.46 (It has been shown that AAG can excise A 

in single-stranded DNA, but with much lower levels of activity.43) Base flipping of A into the AAG 

active site is favorable and occurs rapidly with an equilibrium constant of ~1,300 and rate of 160 

min-1.27 Base flipping of A is thermodynamically favored because the lesion lacks hydrogen 

bonding with T but the extrahelical lesion forms a hydrogen bond with the backbone amide of 

His136 to form a stable complex. X-ray co-crystal structures revealed that when A is flipped out 
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(shown in red in Figure 4a), Tyr162 fills the resulting space by intercalation into the DNA helix 

(shown in green in Figure 4a).42, 46 The N-glycosidic bond that attaches A to the sugar-phosphate 

backbone is then cleaved at a rate of 0.04 min-1, which is the rate-limiting step of AAG.27 Finally, 

the A nucleobase and abasic DNA product are released. 

 

Figure 4. AAG binding to duplex DNA and NCP structures. (A) Co-crystal structure of AAG (blue) 

bound to A-containing oligomer duplex (PDB: 1EWN) (left: side view, right: view down helical 

axis of DNA). A (red) is flipped into the active site of AAG. Intercalation of the Tyr162 side chain 

in place of A, is shown in green. (B) X-ray crystal structure of an NCP (PDB: 3LZ0). Histone protein 

core is gray, DNA is black, and the dyad axis is shown as a dotted line. (C) Docking analysis of AAG 

(PDB: 1EWN) with NCP (PDB: 3LZ0) at A sites (left to right) 42, 19, and 112 with rotational 

positioning of OUT, MID, and IN, respectively. 
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BER is responsible for the repair of ~10,000 lesions per cell per day.1 In order to effectively 

search for lesions, glycosylases are thought to diffuse along DNA by either sliding and/or hopping. 

This process, known as processivity, allows glycosylases to efficiently search for and identify their 

target lesions.47 AAG has been shown to utilize hopping to more effectively search for multiple 

A lesions in a single binding encounter.47, 48 Furthermore, when AAG encounters a protein bound 

tightly to the DNA, it can microscopically dissociate or “hop” to search both duplex strands and 

find two damage sites.48 The EcoRI endonuclease dimer was used as a representative roadblock 

between two A sites and AAG was able to bypass it ~50% of the time.48 Hopping allows AAG to 

effectively search for DNA damage and circumvent tightly bound proteins, which may be relevant 

to repair of DNA packaged in chromatin. In cells AAG has also been shown to bind to chromatin 

in complex with RNA Pol II and its activity can be coupled with the transcription elongation 

process.49 

4.2 DRR of A  

In addition to BER, A is also repaired via DRR by the AlkB family of dioxygenases.10, 50 This 

family of enzymes use -ketoglutarate and Fe(II) to directly repair A to A by oxidative 

dealkylation (Figure 3c).51-54 The prototypic and homonymous family member is an E. coli enzyme 

which, along with the AlkA glycosylase, is part of the bacterial adaptive response to alkylation 

damage. Analysis by mass spectrometry (MS) confirmed the direct reversal mechanism.10, 55 

Incubation of an A oligomer duplex with AlkB caused a loss of 24 Da, consistent with removal of 

the two carbon etheno bridge and conversion to A. Two intermediates were also observed: a 

species that was 16 Da heavier than the A oligomer duplex, consistent with the epoxide 

intermediate, and a species was 34 Da heavier, consistent with the glycol intermediate. Notably, 
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it has also been proposed that DRR is mediated by a zwitterionic intermediate, which cannot be 

distinguished from the epoxide intermediate by MS alone.56 Based on quantum 

mechanical/molecular mechanical (QM/MM) calculations it has been proposed that the 

“epoxide” intermediate is an aldehyde resulting from rearrangement of the zwitterionic 

intermediate.56 

A total of nine mammalian homologs of AlkB exist (ALKBH1-8, FTO), but only a subset functions 

in DNA repair.57 Beyond DNA repair, functions of the AlkB family include protein demethylation 

(ALKBH1, ALKBH4), RNA demethylation (ALKBH5), and tRNA modification (ALKBH8).57 ALKBH2 

and ALKBH3 are the only homologs known to facilitate DNA repair.50, 57-59 ALKBH2 is responsible 

for direct repair of A to A in genomic DNA.57 Also referred to as the “housekeeping homolog”,60 

ALKBH2 acts on double-stranded DNA and flips A into its active site, much like AAG.61-63 But in 

contrast to AAG, ALKBH2 requires contact with both strands of the duplex.61 ALKBH3 facilitates 

DNA repair on single-stranded DNA and RNA substrates.57, 58 

Interestingly, AlkB, ALKBH2, and ALKBH3 have been shown to be inhibited by the 

oncometabolites D- and L-2-hydroxyglutarate,64 which are found at abnormally high 

concentrations in some tumors, Cu(II) ion which is dysregulated in Wilson’s disease,65 and 

hydrolyzable tannins that are found in many natural products.66 

Recent transient kinetic studies revealed E. coli AlkB is much faster than previously reported.67 

A DNA-glycosylase coupled assay was developed to evaluate AlkB kinetics in both single-stranded 

and double-stranded DNA. Previous reports of kcat values for repair of A in single-stranded DNA 

ranged from 0.001-0.03 s-1,10, 11 but with this rapid detection method, kmax was found to be 0.75 

s-1. Maximal rate constants are similar, within 2-fold difference, for both single and double-
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stranded substrates. While this work was conducted using E. coli AlkB, the methodology could 

also be applied to a kinetic analysis of the human homologs involved in DNA repair, ALKBH2 and 

ALKBH3.  

4.3 Repair in nucleosome core particles 

While the BER and DRR pathways are well understood for DNA oligomer substrates, it is 

important to consider how DNA packaging affects these repair processes.68, 69 The fundamental 

unit of packaging in eukaryotic cells is the nucleosome core particle (NCP), comprised of double-

stranded DNA wrapped around a histone octamer core.70 The NCP contains a dyad axis, which is 

a 2-fold axis of pseudo-symmetry (Figure 4b).71 Nucleobase positions in an NCP are described 

translationally, relative to the dyad axis, and rotationally, relative to the histone core. 

Nucleobases that face outward from the histone core are more solution accessible relative to 

those that face inward. NCPs also undergo transient unwrapping where the DNA entry-exit 

regions spontaneously and transiently dissociate from the histone core.72 Different translational 

positions experience different degrees of nucleosome dynamics and therefore can affect access 

to otherwise occluded nucleobases in the NCP. 

Biochemical studies of excision of a site-specific A from NCPs by AAG showed that lesion 

excision is correlated with rotational positioning.73 AAG activity was determined using strongly-

positioned NCPs with lesions positioned near the dyad axis and with varying rotational positions 

including outward towards solution (OUT), inward towards the histone core (IN), and a rotational 

position in between (MID). AOUT was excised from NCPs to the greatest extent, AIN was not 

excised, and removal of AMID was at an intermediate level. Single-turnover kinetic analyses 

revealed that excision of A from the NCP is much slower than from the same double-stranded 
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DNA control not bound to histones. Shown in Figure 4c are models of AAG bound to an NCP at 

three representative A positions, (OUT, MID, IN) to highlight how AAG interacts with different 

rotational positions. Notably, for AIN there is severe steric clash between the glycosylase and 

histone core, consistent with a lack of activity at such a site. These observations support the idea 

that rotational positioning affects the physical accessibility of lesions to a glycosylase.  

In other experiments with strongly-positioned NCPs, a global approach to examining repair by 

AAG was used. A population of NCPs was prepared with A lesions at 49 locations, with a variety 

of rotational and translational positions.74 Under reaction conditions in which all A lesions were 

fully excised from double-stranded DNA controls, 30/49 lesion sites had less than 30% excision. 

The level of A excision by AAG generally correspond to solution accessibility, with some 

exceptions. Repair is suppressed in the dyad region, even at OUT sites. This lower level of repair 

may be due to altered periodicity75, 76 or reduced dynamics. Meanwhile, some IN and MID sites 

at the entry-exit DNA regions experience higher levels of repair than expected, further 

emphasizing the effect of translational positioning on glycosylase activity.72, 74 High levels of 

excision of IN positions was seen mostly at the DNA end known to preferentially unwrap from 

the histone core.77  

The population of lesions not repaired is due to a structural impediment and/or conformation 

derived from the histone octamer which renders the lesion inaccessible to AAG activity. In the 

cell, repair of these lesions might require chromatin remodelers, coupling with RNA Pol II, and/or 

additional factors.  Previous kinetic characterizations of human glycosylases OGG1 and UNG2 

acting on site-specific lesion NCP systems revealed multiphasic kinetics for removal of lesions in 

some positions, which was attributed to conformation changes in the NCP.78, 79 Considering AAG’s 
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slower rate of glycosylase activity compared with OGG1 and UNG2, the monophasic behavior 

observed for AAG74 suggests that analogous conformational changes cannot be resolved on this 

timescale. 

These results obtained with NCPs are consistent with in vivo evidence for excision of alkylation 

damage in yeast by Mag1, which is the yeast homolog of AAG. The alkylation damage 7-meG in 

strongly-positioned NCPs in yeast was repaired to a lesser extent at the dyad region compared 

to the DNA entry-exit regions.80 Mag1-deficient strains had high and comparable levels of 

unrepaired lesions throughout the NCPs, indicating that these observations are due to 

differential repair and not because of a bias in formation of damage. 

The efficiency of repair initiated by AAG is also dependent on its searching ability in vivo.81 AAG 

mutants showed relative positive linear correlations between cell survivability and kinetic 

parameters like catalytic specificity (kcat/KM), fraction processivity (Fp), and efficiency of excision. 

Specifically, AAG mutants were expressed in yeast deficient in Mag1 and exposed to alkylating 

agents to evaluate how AAG searches chromatin. Mutants with poor searching ability or 

processivity showed decreased levels of excision. The mutations did not affect catalysis of 

glycosidic bond cleavage. These studies concluded that repair of alkylation damage in chromatin 

is governed by the searching ability of AAG.81 

5. RELATIVE CONTRIBUTIONS OF BER AND DRR  

AlkA and AlkB have almost identical overall repair efficiencies for A in double-stranded DNA, 

with comparable kmax/K½ values. However, to achieve this repair efficiency, AlkB couples a high 

kmax (which reflects chemistry) with relatively weak lesion recognition, whereas AlkA has an 

almost 400-fold lower kmax value but a much higher substrate affinity.67 
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The relative contributions of AlkA and AlkB to E. coli survival upon CAA challenge has also been 

examined.10 In this experimental model, the majority of etheno lesions would presumably be in 

double-stranded DNA. A deficiency in either repair protein rendered cells more sensitive to CAA, 

with loss of AlkA conferring a more severe phenotype than loss of AlkB.10 

To compare how BER and DRR are affected by DNA packaging, the processes were compared 

in a population of NCPs with globally incorporated A lesions.82 The ability of AAG to excise A 

from NCPs was compared to the ability of ALKBH2 to directly repair the lesion. While AAG activity 

generally correlated with rotational positioning of a lesion in the NCPs,73, 74 the same correlation 

was not observed for ALKBH2. Furthermore, while only AAG has, at some sites, full activity on A 

in NCPs, ALKBH2 is better at repairing occluded A lesions that are poorly excised by AAG. 

Modelling of AAG and ALKBH2 docked at OUT sites in an NCP provided insight into binding of 

these two enzymes.82 Steric interactions between the histone core and the long loop of ALKBH2, 

which is known to play an essential role in substrate binding, modulates binding to the NCP. This 

comparison emphasizes how the BER and DRR pathways may work together to repair A lesions 

yet certain sites in the NCP are still not readily repaired.82 

6. BIOLOGICAL IMPLICATIONS 

In diseases like ulcerative colitis and irritable bowel disease, where chronic inflammation is a 

major side effect, LPO is increased. Increased amounts of gastric lesions lead to gastric cancer 

after exposure to Helicobacter pylori. Mouse models mimicking these diseases help understand 

how DNA repair can protect against colon carcinogenesis.83 Mice were exposed to dextran sulfate 

sodium (DSS) to cause chronic inflammation and generate global DNA damage. AAG knockout 

mice accumulated damage suggesting that DNA repair is involved in preventing colon cancer. 
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AAG repair was shown to prevent epithelial damage in the colon and reduce the severity of DSS-

induced colon tumors.83  

Repair of A lesions was observed in lung tissue extracts and blood leukocytes from cancer and 

healthy patients. Comparing normal and cancerous lung tissue, there was no difference in A 

levels.84 This result may be due to higher levels of repair needed to maintain lesion levels in 

cancer lung tissue. The authors verified that the levels of repair were not significantly affected by 

age, sex, or smoking habits. However, in leukocytes of cancer patients, significantly lower levels 

of A repair lead to higher levels of lesions than in healthy individuals.84 Repair levels were found 

to be especially low in lung adenocarcinoma leukocytes compared to lung squamous cell 

carcinoma. From these results the authors concluded that LPO has a more significant impact on 

lung adenocarcinoma and a lack of enzyme repair activity on A may be a risk factor for this 

disease.84 

Accumulation of A lesions has also been correlated with chronic ethanol consumption.85 A is 

generated in liver cells over-expressing cytochrome P4502E1 (CYP2E1) when incubated with 

ethanol. Additionally, in liver biopsies A lesions correlated significantly with CYP2E1; such a 

correlation was also found in the esophageal- and colorectal mucosa of alcoholics. The level of 

A lesions is also increased in liver biopsies from patients with non-alcoholic steatohepatitis 

(NASH). In various animal models with fatty liver, CYP2E1 is induced and high levels of A are 

observed, which are further elevated by alcohol consumption. Children with NASH have elevated 

levels of A and these lesions may contribute to hepatocellular cancer development later in life. 

These data implicate A as a driving force for malignant disease progression. 
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To determine the effects of DNA sequence context, levels of A repair by AAG were observed 

in mutation hotspots of the p53 tumor suppressor gene.86 These results were compared to non-

hotspot locations in hepatocytes and endothelial cells. In-cell and in vitro experiments showed 

that low AAG turnover causes decreased repair at mutation hotspots. Specifically, at hotspots, 

AAG product dissociation rate was about 5-12 times lower than at non-hotspots.86 These 

experiments further suggest the importance of BER in the maintenance of genomic stability and 

prevention of cancer. 

While BER and DRR generally modulate DNA damage to prevent biological consequences, these 

processes can also lead to adverse effects. Alkylating agents used as chemotherapeutics induce 

a range of DNA lesions meant to be cytotoxic to cancer cells.87 When repair pathways respond to 

this damage, alkylation sensitivity has been observed from the cellular to organismal level.87-89 

Specifically, AAG has been shown to promote alkylation-induced tissue damage and whole animal 

lethality90 as well as ischemia reperfusion injury91 in mice. In both experiments, wild-type mice 

showed the respective effects of alkylation sensitivity compared to AAG-/- mice. It is thought that 

an upregulation of glycosylase activity in response to the alkylation damage, if not complemented 

by activity of the downstream enzymes of BER, leads to an increase in AP sites, double-strand 

breaks, and is therefore toxic to the cell.90, 91 These consequences of alkylation-induced damage 

highlight the disadvantage of toxicity to non-cancerous tissue and the importance of balance 

between alkylation damage and repair for it to remain an effective treatment. 

7. CONCLUSIONS 

Biochemical and cell-based assays highlighted that A is only weakly mutagenic in repair-

proficient E. coli, but is significantly genotoxic and mutagenic in mammalian and human cells. In 
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the absence of repair of A, mutational hotspots and cancerous tissues are prominent. BER and 

DRR work to alleviate the effects of A damage but are affected by chromatin packaging. A 

serves as a representative of many types of nucleobase damage. Future studies can elucidate the 

balance between replication and repair of lesions to better understand prevention of disease and 

other biological consequences. 
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